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AN UNUSUAL MINIMIZATION PRINCIPLE
FOR PARABOLIC GRADIENT FLOWS*

LAWRENCE C. EVANSt

Abstract. We show that for a general parabolic system, generated as the gradient flow of
a rank-one convex energy functional, the energy at any time is less than or equal to the energy
"smoothly sampled" at earlier times. This generalizes the classical assertion that energy cannot
increase along flows.

Key words, gradient flow, rank-one convexity, energy decrease

AMS subject classifications. 35K55, 49M10

This short note shows how a small modification of a computation due to Ball
and Murat [2] yields an unusual dynamic minimization principle for smooth solutions
of certain parabolic partial differential equation (PDE) systems, corresponding to
gradient flows governed by appropriate energy functionals.

The set-up is this. Let U denote a smooth, bounded, open subset of IRn. We
define the energy of a mapping v U - m to be

(1.1) I[v] -/u F(Dv, v,x)dx,

where F M’n’xU - I is a given smooth function, F F(P, z,x), and Mmxn

denotes the space of real m n matrices. We write x (Xl,..., Xn), v (v,..., v),
and

vDv (( x))l<i<m"
l<<n

Below, we implicitly sum repeated Greek indices from 1 to n and Latin indices from
1 tom.

We are concerned with the system of PDE

0 OF(Du u,z) + (Du, u,)=O (i-1 m)""

in U z [0, ), which is the gradient flow on L2(U) generated by I[.]. Let us henceforth
suppose u u(x, t) to be a smooth solution of (1.2), subject to the time-independent
boundary conditions

(1.a) u=g on0U[0,),

g OU being given. We also suppose that the mapping P F(P, z,x) is
rank-one convex for each z, x; this means f(t) g(P + t , z, x) is convex for each
P Mn, , , z , x U. The system (1.2) isthenparabolic,
at least in some weak sense.

The minimization principle is given below.
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THEOREM. Fix a time to > 0 and suppose O" U --, [0, to] is a smooth function.
Define

(1.4) v(x) u(x, 0(x)) (x e U).

Then

< +/-Iv].

The case tO(.) t < to becomes the classical assertion that the energy I[.] is
nonincreasing in time, More generally, (1.5) says that no matter how we "sample" the
values of u attimes previous to to, we cannot lower the energy below that of u(., to).

In the illustration (Fig. 1) below, the energy of u at the top is less than or equal
to the energy of u computed along any curved surface (-- the graph of (.)), as drawn.

time =t

graph of e(.)

FIG. 1.

Proof. In view of (1.4),

v u + uOx.X,o X, (l<i<m, l <_a<n).

Therefore

I[v] =/v F(Du + ut (R) DO, v, x)dx

u

OF
(Du, v,x)uO, dx,>_ F(Du, v,x) +

the inequality a consequence of the rank-one convexity. Hence

(1.6)
OF

(Du, v,x)uO.I[v] I[u(-, to)] >_ F(Du, v, x) +

F(Du(., to), u(., to), x)dx,

where Du and ut are evaluated at (x, 0(x)) in the first two integrands. Similarly to
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Ball-Murat [2], let us now compute

(by (1.2))

o(x)

lutl2dt + F(Du(x, O(x)), v(x), x) F(Du(x, to), u(x, to), x).
,I to

Plugging this identity into (1.6), we discover

S’’ (S’:I[v]- I[u(.,t0)] >_ lutl2dt dx.

Since ut 0 on OU according to (1.3), the integral of the divergence term is zero.
Consequently

I[v]-/[u(., to)] _> lutldt dm >_ O,

as 0 _< 0_< to on U.
Remarks. Ball and Murat’s calculation [2], following Sivaloganathan [4], simplifies

and clarifies aspects of classical field theory in the calculus of variations, to determine
when a critical point of I[.] embedded in a one-parameter family of critical points is,
in fact, a strong local minimizer. The theorem above is a kind of (very crude) dynamic
analogue.

Breis-Ekeland [3] contains an interesting and completely different minimization
principle for gradient flows governed by convex energies, and Auchmuty [1] has a
related minimax principle.

Ezmple. As an illustration of the Theorem, take m 1 and set

(1o) 1[1- 1/2IDol + g()

where H" N N. The corresponding gradient flow is the semilinear heat equation

(1.S + h() 0

on U x [0, ), for h- H’.
Let 0(.)= (., 0) denote the initial values. Now if

-Au+h(u)=0 in U,
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that is, if u is a critical point of I[-], then u(., t) u(.) for all t 0 and assertion
(1.5) provides no information. Suppose instead

(1.9) -Au + h(u) < 0 in ,
V denoting some smooth, open subregion of U. Now, if H is convex (1.9) implies the
one-sided minimization principle

I[u] <_ I[v]
for any smooth function v such that v _< u and v u on U- V. (Proof: Multiply
(1.9) by u-v >_ 0, integrate by parts, and use convexity.) However, if H is not
convex, as we hereafter assume, we can deduce no minimization principle from the
differential inequality (1.9).

But now let us evolve u under the flow governed by the PDE (1.8). In light of
(1.8), there exists a small time to > 0 such that ut > 0 on V [0, to]. The graph of u
is consequently rising in V during the time interval [0, to] and so sweeps out a region
R between the graphs of u(., 0) and u(., to). (See Fig. 2, below.)

graph of v(.)
graph of u(.,to)

V
graph of u(.,O)=uO(.)

FIG. 2.

Let v be any smooth function whose graph lies within R and agrees with u(., to)
on U- V. Then according to the Theorem,

(1.10) I[u(., to)]

_
I[v],

since we can find a smooth mapping 0: U - [0, to] such that v(x) u(x, O(x)).
In other words, even for a nonconvex H, the gradient flow evolution causes u(., t)

to become a local one-sided minimizer in any region in which the graph is moving.
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EXISTENCE OF PERIODIC SOLUTIONS FOR EQUATIONS OF
EVOLVING CURVES*

YOSHIKAZU GIGAt AND NORIKO MIZOGUCHI$

Abstract. Evolution equations of curvatures of convex curves are considered by the Gauss map
parametrization. A time periodic unstable solution is constructed for a reasonable class of time peri-
odic data. Our solution is arranged to satisfy a constraint so that it yields closed, embedded, convex
curves moving periodically in time (up to translation) whose normal speed equals the curvature mi-
nus a given time periodic function depending on curves only through its normals. For curvatures of
periodically evolving curves a priori lower and upper bounds depending only on periodic data are
obtained. A new penalty method is introduced so that our solution satisfies the constraint. Solutions
of penalized equations are constructed by adapting the degree theory.
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1. Introduction. We are concerned with positive, periodic solutions of a quasi-
linear parabolic equation for curvatures u of evolving curves

(1.1) ut=u2(uxx+u-f) in K,

with K (R/2Z) (R/TZ) for given T > 0. Here f f(x, t) is a given continuous
function on K, i.e., f E C(K). In particular, f is 27-periodic in space, i.e., f(x /
2r,t) f(x,t) and T-periodic in time i.e., f(x, t+ T) f(x, t) for all (x, t) e R2.
Our goal is to construct a positive solution of (1.1) satisfying a constraint

2r eix

u(x,t)dx=O for all tR (i=

1.1. Main existence theorem. Suppose that f is in C(K) together with its time
derivative ft. Then there is a positive function u in p>l W2p’I(K) c C(K) (which
implies ux C(K)) such that u solves (1.1) with the constraint (1.2) if f is positive
on K and satisfies

(1.3) f(x,t)eidx 0 for all t e R.

If f is smooth, so is u.
Here Wp2’I(K) denotes the space of all functions g in LP(K) together with

gxx, and gt and LP(K) denotes the space of locally Lp functions in R2 which is 2-
periodic in x and T-periodic in t. The main existence theorem asserts the existence
of a positive solution u, 2-periodic in x and T-periodic in t.

The restriction (1.3) is necessary if u satisfies (1.2). Indeed, dividing both sides
of (1.1) by u2 yields

(1.4) -u-1)t Uxx + U f in K.
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Multiplying (1.4) by ex and integrating by parts over (0, 2r) yields

edx
dt u

since (eiX)z + ei 0. If u satisfies the constraint (1.2), f must satisfy (1.3).
The positivity assumption on f cannot be dropped completely even if f is smooth

so that u is smooth. For example let f _< 0 on K. Then at the minimizer (x0, to) E K
of u the equation (1.1) yields

o ,(zo, to) 2(xo, to)((o, to) + u(o, to) -/(xo, to)) _> (o, to) > o,

so there are no positive solutions of (1.1) for nonpositive (smooth) f.
Our main result yields the existence of a periodic-in-time solution (up to trans-

lation) for an evolution equation of curves whose normal speed equals the curvature
minus a given time periodic function depending on curves through its normals. Let
{Ft} be a smooth one-parameter family of closed, embedded curves bounding a do-
main in the plane. Let n denote the inward unit normal vector field on Ft. Let V
denote the normal velocity of Ft in the direction of n. We consider an equation for
Ft of the form

(1.6) V k q(n, t),

where k is the inward curvature and q is a given function. The equation (1.6) is
an example of a curvature flow equation with anisotropy [Gu]. If Ft is convex, one
can parametrize Ft by a Gauss map by introducing 0, 0 _< 0 _< 2r, such that n
(cos 0, sin 0). The evolution of curvature k is expressed as

kt k(Yoo + V)

if we use 0-coordinate [Gu]. Applying this identity to (1.6) yields an evolution equation
of curvature

(1.7) kt k2(koe + k (Qee + Q)) with Q(O,t) q(cosO, sint?,t),

where k and Q are 2-periodic in . We next recover (1.6) from (1.7). For k a curve
is given by the Gauss map

z(o,t) (,t)’- (,t)

If k solves (1.7), then integrating by parts yields

OZ
Ot ((k- Q)cos0- (ko -Qe)sin0- (k- Q)la=0,

(k Q) sin0 + (ke Qe) cos0 (ke Q)la=0).

Translate Z by

(/0 /0 )X0(t) (k Q)(O, T)dT, (ko Qe)(O, T)d"
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so that new curve X(0, t)= Z(0, t)+ Xo(t) fulfills

0X 0X
Y- n.--- (cos0, sin0).-- k-q.

We have thus obtained the curve

Ft- {X(0, t); 0 <_ 0 <_ 2r}

satisfying (1.6). The equations (1.6) and (1.7) are equivalent through X. However,
for Ft closed we need X(0, t) X(2r, t), which is equivalent to the constraint

2r eiO o.

If we 8e k, 0, hi8 i8 nohing bu he eonsrain (1.2). Since he condition
(1.3) i8 auomaieMly satisfied for f Qoo + Q, he main existence heorem yield8
periodi-in-ime solution Ft (up o ranslaion in 8pace) of (1.6).

1.2. Existence of periodically evolving curves. Suppose that O is in C(K)
together with Qoo, Qt, Qeot and that

(1.8) Qee+Q>0 on K.

Then there are a constant vector c E R2 and a closed curve evolution Ft solving

(1.9) V k q(n, t),
(1.10) F+T F + c

for all t R. The curvature of Ft is always positive and the quantities in (1.9) are
continuous. If Q is smooth, so is Ft.

In general, translation by c is necessary. For example, take

Q(O, t) cos +
so that Qoo + Q 1. Suppose that F solves (1.9), (1.10) for some c. Then it is easy
to see that Ft + elt with el (1, 0) solves V k- 1 with T-periodic k. If
f 1 in (1.1), by a uniqueness result summarized in Lemma 1.3 the unique solution
of (1.1) with (1.3) is u 1. Thus t is a circle C of radius 1 and V k 1 0. We
now observe that under the relation Q(O, t) cos0 + 1 if r solves (1.9), (1.10) (with
positive curvature) then Ft C- ejt up to a constant vector (independent of time).
Thus Ft+T Ft -elT does not agree with Ft so translation is necessary in (1.10).

It turns out that the method developed here applies to a general parabolic equa-
tion

U a(n)k q(n, t)

including (1.9). This will be discussed in our forthcoming paper [GM].
1.3. Lemma on time-independent solutions. Suppose that f in (1.1) is time

independent. Then so is a positive solution u. If f is time independent there is at
most one positive solution u of (1.1) satisfying (1.2).

We shall prove this uniqueness result in the appendix. The condition (1.8) on Q
is equivalent to saying that the curvature of Frank diagram

’= {(Pl,P2) R2;r 1/Q(O),(pl,p2)- r(cosO, sinO)}
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is positive. This is also discussed in the appendix.
There seems to be no literature on the existence of nontrivial periodic solutions

of quasilinear equations, in particular of equations of evolving curves like (1.6), al-
though there are several results for semilinear equations. Besides, it turns out that
the periodic solution we seek is (Lyapunov) unstable. In fact all periodic, convex
solutions for a general parabolic surface evolution equation are unstable unless the
equation depends on location of surface explicitly. This was recently proved by the
first author and Yama-uchi [GY]. Even for semilinear equations several methods for
constructing periodic solutions only work for stable ones. For example in [AHM]
stable periodic solutions were constructed by using subsolutions and supersolutions.
For a class of semilinear equations a possibly unstable periodic solution was first con-
structed in [Am] as the "third" solution. Existence of unstable periodic solutions
were recently proved by Hirano and the second author [HM1, HM2] for a class of
semilinear parabolic equations. Their method is based on the Leray-Schauder degree
theory. Since our equation is quasilinear and not semilinear, their theory does not
apply directly to our setting. However we adapt the idea to construct solutions for
approximate equations.

Since the equation (1.1) is degenerate at u 0, we wonder whether positive
solutions are bounded away from zero. Fortunately, under the constraint (1.2) we
have a priori positive lower bounds for u (or curvature).

1.4. Theorem on bounds for curvature. There are positive constants 5 and M
depending only on T, Ilfll, Ilftllo, and mink f :> 0 such that ifu E C(K) satisfies
(1.1) and (1.2) with u > 0 and f, ft C(K) with f > 0 on K, then 5 <_ u <_ M
on K. The constant M is independent of minK f. Here I]f]l denotes the maximum
norm of f in C(K).

To obtain a priori bounds we derive Harnack-type inequalities in our setting. It
roughly asserts that

(i) u(x, t) and u(x, s) are comparable for all t, s R provided that u has an
upper a priori bound.

(ii) u(x, to) is not small compared with the maximum u(x0, to) of u over K.
Such estimates are derived by a differential identity as in [Ga2]. The derivation
of the Harnack inequality from differential identities stems from [LY]. For further
development of the Harnack inequality and its applications, especially for geometric
evolution equations, the reader is referred to [Ha], a recent article of Andrews [And],.
and references therein. We note that a higher-dimensional version of (1.1) with f 0
is found in [And] as the harmonic mean curvature flow equation.

The equation (1.1) admits a couple of integral bounds of solutions. If maximum
of u is large, the Harnack inequality (ii) says its integral must be also large. Thus
integral bounds yield an upper bound for solutions. The constraint is not invoked to
get an upper bound but without (1.2) we do not get a lower bound. Indeed, suppose
that f 1. Then by Remark 1.3 every positive solution of (1.1) is independent of t
and it solves

u+u=l in R/2Z.
Of course, u(x) (1 -a)cosx + 1 (2 > a > 0) is a positive solution but {u} is not
bounded away from zero.

To get a lower bound we integrate (1.4) over (0, T) and obtain

U:c+U>0 in R/2Z with U(z)= (z,t)dt.
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The constraint (1.2) implies

2

sin(x )u-ldx E0 for 11 R.

The key observation is that the integrals where the integrand is negative and positive
are balanced or both integrals have the same growth order as u tends to zero. By the
Harnack inequality (i) such a growth balance is true for U. We shall prove that if U
satisfies Uxx / U > 0 together with integral balance, then U must have a lower bound
away from zero. This is in turn gives a lower bound for u by (i). A rigorous proof
is given in 4. Although bounds obtained here do not directly apply to construct
solutions, the idea of proof is fundamental to finding uniform bounds for solutions of
approximate equations.

1.5. Penalty method and approximate equations. We seek a solution of
(1.1) satisfying the nonlinear constraint (1.2). Since not all solutions satisfy (1.2), we
shall select the desired one by introducing a kind of penalty method. It is heuristically
explained as follows. For small s > 0 we consider a penalized equation

(1.11) ut--u2( )ux + u + f in K.

For a positive solution u of this equation we observe that (1.3) implies

d jo2 eix jo
2r ei

-d- u
dx

u
dx

in the same way used to derive (1.5). Since u is periodic in time, this implies that our
approximate solution u > 0 satisfies the constraint (1.2). It is possible to construct
a positive solution of (1.11) mainly because 1/u has a strong stabilizing effect near
u 0; the derivative of 1/u tends to minus infinity as u --, 0. However, there is a
serious drawback for (1.11). Since we do not know that f /u is positive, it seems
to be impossible to derive a uniform bound from below for ue by the method sketched
in the previous section. To overcome this difficulty a naive idea may be to replace
(1.11) by

(1.12) ut u2( ) 1
ux + u + f 0 < < min fu Vm rn

so that f s(u V ms)-1 is positive, where a V b max(a, b). The solution u of this
equation has a priori bounds and it is not difficult to prove that {u } has a convergent
subsequence and the limit satisfies (1.1) and (1.2). However, it seems to be difficult to
construct a positive solution of (1.12) because the new term s(u V ms)-1 is constant
near u 0 and has no stabilizing effect for small u.

We adapt the method of finding unstable solutions for semilinear equations de-
veloped by Esteban [Eli, [E2] as well as Hirano and the second, author [HM1], [HM2].
Unfortunately, their method does not apply to solve (1.12). We explain the reason by
sketching our method. For fixed b > 0 we consider a uniformly parabolic equation

(1.13) ut a(u)(u -bu + h) in K

where u has now no sign conditions and h is for the moment a given data. If a is

continuous, one can- prove that the solution operator S h H u is well defined in
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C(K). If h H(u) depends on u, a solution of (1.13) with h H(u) is interpreted
as a fixed point of S o H. If we prove that

deg(I- S o H, 0, BR(O)) 0,
deg(I- S o H, 0, Br(0)) 1

for large ball BR(O) and small ball Br(0) centered at zero in C(K), then there is a
solution of (1.13) with h H(u) in BR(O) \ B(O). This method is used by Esteban
[Eli, [E2] for semilinear parabolic equations with superlinear nonlinearity. To imple-
ment this program for our equation we should at least modify our equation (1.12)
so that it is uniformly parabolic for all u E C(K). However, not all modification of
the u2 term is good to derive Harnack-type inequalities. Also we should be careful
to choose approximate equations so that degree of I- S o H has desired properties.
We should construct a homotopy of equations in a clever way. For example, to prove
the degree in a large ball, equations appearing in the homotopy should be arranged
so that solutions have an upper bound uniformly in the homotopy parameter. Our
choice of the approximate equation is

(1.14)

ut (u + s2)2(uxx bu + h) with h H(u) bu + + + +
Here is a mollified function of u/m. The multiplier u2 in H is necessary to calculate
local degree near zero since it vanishes faster than u. The multiplier (u + s2)2 is good
both for Harnack inequalities and uniform parabolicity. The shift term s2 should
vanish faster than the parameter s of penalization so that the limit of approximate
solution satisfies the constraint (1.2).

A penalty method is adapted in various evolution equations to introduce con-
straints of solutions. Rather than to present a huge list we point out one typical
example for the harmonic gradient flow equations for mapping into a unit sphere.
The requirement of values of mapping u is considered as the constraint lul 1. A
global weak solution was constructed independently by Chen [Ch], Keller et al. [KRS],
and Shatah IS] by using a penalty method; see also [CS] for a generalization.

The initial value problem for (1.7) with q 0 was derived in [Gall and extensively
studied by Gage and Hamilton [GH] for the curve shortening problem. Since a circle
shrinks to a point in a finite time for the curve shortening equation ((1.6) with q 0),
the curvature may blow up in a finite time. Blow up profiles for convex immersed
curves were classified by Angenent [An] based on results of [AL] and [EW] under the
self-similar growth assumption for curvatures. It may happen that curvature growth
is faster than self-similar rate. Its asymptotic profile is studied in [An] via (1.7) (with
q 0). Recently a more precise profile was obtained by Angenent and Velzquez [AV]
by studying (1.6) itself. The initial-boundary value problem for a higher-dimensional
version of (1.1) (with f 0),

ut=u(Au+u), u>0,

in a bounded domain with zero boundary data was studied in [FM] and [Ga2] for
positive initial data. The existence of blow up phenomena now depends on the first
eigenvalue of the Laplace operator with zero boundary condition. These authors
studied whether a solution blows up and they estimated the size of blow up sets.
Recently, Wiegner [W] extended the first part

ut u(Au + u)
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for > 2. There are interesting nonuniqueness results for 1 by [U] (for the
one-dimensional case) and [DL]. Among other results these authors proved that weak
solutions may not be unique if initial data takes zero in some open set of the domain
because of degeneracy of the equation. They discussed a class of solutions so that
uniqueness holds.

This paper is organized as follows. In 2 we derive the Harnack-type inequalities.
In 3 an upper bound of solutions is obtained for a general equation so that it applies
to our approximate equations. In 4 we establish a lower bound and prove Theorem
1.4. In 5 a lower bound is derived for a general equation. Section 6 is devoted
to constructing solutions for approximate equations based on a degree theory. The
main theorem is proved there. In 7 we study the property of the solution operator
S defined through (1.12). For the existence of S it may be possible to apply the
a priori estimate for quasilinear parabolic equations in [LSU]. However, since the
space dimension is one, we present a simple proof based only on Lp estimates for
linear parabolic equations. In the appendix we give a geometric interpretation of the
assumption (1.8); we also give a proof of Lemma 1.3.

2. Harnack-type inequalities. We consider a positive smooth solution u of

(2.1) ut u(uxx +g(u,x,t)) in Q I x (a,b]

with /E R and smooth g, where I denotes an open interval. We Study the behavior
of the function z (log u)t to show that the growth of log u does not become too
negative. Such an analysis was done by [Ga2, 2] when 2 and g u. We adapt
his method in our setting. As in [Ga2] Our results also extend to the case of several
space dimensions, where ux is replaced with Au; see 2.5.

For z (log u)t ut/u a straightforward calculation yields

Zx

Zxx

We thus observe that

ttxx tZxx -}- 2ttxZx -}- ltxxZ.

Differentiating z u-l(u + g) in t yields

Zt t--l(’ttxxt - gultt + gt) - ( 1)u’-2ut(uxx + g)

+ + + (z

Using the expression of ut by z’s, we end up with a parabolic differential equation
for z.

2.1. Differential identity. Suppose that u > 0 solves ut u(u + g) in Q.
Then z ut/u solves

Zt UZxx + 2u-lUxZx + Z2 + u-l(guu g)z + gtu-I in Q.
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2.2. Estimate of minimum of z. Suppose that u > 0 solves (2.1) in Q with
> O. Suppose that z takes its minimum over Q at (xo, to) E Q. Then

Z

_
--’/--lt’)’--l(gut 9)_t_ --/--1/2U(--1)/21gtl 1/2 at (x0, t0),

where f+ denotes the positive part of f, i.e., f+ f V O.
Proof. Applying the maximum principle for the differential identity of z yields

z2 - u’-lGz - gtu’-I
_

0 at (xo, to) with G gu- g.

Since > 0, this quadratic inequality for z implies

z

_
-(2"),) -l{u/-1G -- (u2(-1)G2 4u-lgt) 1/2 }_
-(2.)-1{72/-12G_t_ - 21/2(’-1)/21gt11/2}. []

We apply the estimate of rain z to get Harnack-type inequalities. We consider a
positive, smooth solution of

(2.2) ut=u(uxx+g(u,x,t)) in K,

where K (R/27Z) (R/TZ) and g is a smooth function in each variable.

2.3. Harnacks inequality in time direction. Assume that 7 >- 1 and a >_ O.
Assume that there are constants co, cl > 0 such that

(2.3) Vgv(V, x, t) g(v, x, t)

_
co, Igt(v, x, t)l 1/2

_
c

for all (v,x,t) (a,c) K. Assume that there is a constant c2 > 0 such that
maxK u >_ c2 for all solutions u of (2.2) with u > a. Then there is a positive constant
C C(co, Cl, c, 7) > 0 such that any solution u of (2.2) with u > a fulfills

(2.4) u(x,t) <_ u(x, to)exp(-CM-l(t to)), M maxu
K

for all (x, to), (x, t) K with to -T <_ t <_ to.
Proof. Since K is compact, the minimum of z in K is attained. Using the estimate

for mink z, together with (2.3), we observe that

(2.5) minz _> --coM- /-/2cM(-1)/2
K

if 7 -> 1. Since M _> c2 > 0, this yields

min z > -CM-K

1)/2with C 7-co + 7-1/2ClC(’- We now obtain a differential inequality

--(U-1)t---Ut/U2 Z/U

_
-CM-I/u in K

which becomes

(U--1)t/U-1
__
CM/-1 in K.

For fixed (x, to) K, integrating the differential inequality over (t, to) with to T _<
t _< to yields

logu-l(x, to) logu-l(x,t)
_
CM-l(to t),
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which is the same as (2.4).
2.4. Harnack’s inequality in space direction. Assume that >_ 1, >_ O,

and (2.3) holds for g. Let u be a solution of (2.2) with u > (. Let (x0, to) E g be a
maximizer of u. Then

(2.6) u(x, to)r >_ Mr -CM(x- x0)2/2

with

co M(r-1)/2 Mr-CM --Mr- + + gM M maxu u(xo,to),
72 K

gM max{(g(v,x,t))+;( < v <_ M,(x,t) e g}.

Proof. Since uxx z- ur-19, it follows from (2.5) that

(2.7) ur--lUxx k --CM in K.

This, in particular, implies

(.s) (.) (.-.) z(z 1)u-. +.- Uxx --’CM.

Integrating over (x0, x) yields

()(x, to) > ()(o, to) zc( xo) -C.(x o)

since (Xo, to) is a critical point of ur. Integrating again over (xo, x) yields (2.6). [::]

2.5. Remarks. The results in 2.1-2.4 can be extended to a multidimensional
problem. Indeed 2.1 and 2.2 are still valid for

(2.9) ut ur(/\u + g(u,x,t)) in Q=t(a,b], C Rn

if the first and second derivative in x is replaced by the gradient and the Laplacian,
respectively. We consider T-periodic positive solution u of (2.9) with a 0, b T. If
u is periodic in space, the same technique yields Harnack’s inequality (2.4) provided
that W Ft (R/TZ) replaces K, where Ft is an n-dimensional torus. However,
Harnack’s inequality (2.6) should be altered for W. Instead of (2.7) and (2.8), we
obtain

(2.10) ur-/\u -CM, /ur --’CM in W.

Contrary to the one-dimensional problem, (2.10) does not yield (2.6). Instead of (2.6)
we observe that

(2.11) (ur)(r,t) >_ Mr -’cMr2/2n, r Ix-x0]

for the maximizer (x0, to) of u over W. Here f(r) denotes the mean of f on the
sphere of radius r centered at xo, i.e.,

f(r) wl--1 f(rw + xo)dwa- a area of the unit sphere.
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Indeed, using the identity

(2.12) A(f(r(x)) f (Af)(r(x)w + xo)dwa-, r(x) Ix Xo],
I=1

we observe that (2.10) yields

(rn--1 ((t’))’)’ >--,-CMrn-1

since Axg(r(x)) rl-n(r-g’)’. Here, the left-hand side of (2.12) is the Laplacin
of f(r(x)) s a function of x. Since (x0, t0) is a critical point of (u), integrating
over (0, r) yields ((u)) _> -’CMr/n. Integrating over (0, r) again yields (2.11).

Now we must prove (2.12). We my assume x0 0. A direct cMcultion shows

(2.13) A(f(r(x)w)) ((w. V)(w. V)f)(r(x)w),
(2.14) IV -w(w. V)]. (IV- w(w. V)]/) [A -(w. V)(w. V)]f

for a given unit n-vector w. If the left-hand side of (2.14) is evaluated at r(x)w, it
agrees with Ag(w), g(w) f(r(x)w), where/ is the aaplace-Beltrami operator on
the unit spheres. By the divergence theorem, integrating (2.14) over the sphere yields

0 f [(A- (w. V)(w-V))f](r(x)w)dw.

This together with (2.13)yields (2.12).
3. Upper bounds. We shall derive an a priori upper bound for a positive

smooth solution u > a > 0 of

(3.1) ut u{uxx + (u)(u + (u) f(x,t))} in K.

Here and are smooth functions on (a, oo) and f is smooth on K, i.e., f E C(K)
with f > 0; a _> 0 and "X E R.

3.1. Lemma on integral bounds. Assume that >_ O, f >_ O, and that 0 <_
<_ c3, v- (v)v <_ c4 on (a, oo), (a >_ O) with some positive constants c3 and c4.

Then

JgUdXdt <_ 2 T(c IIfII + ca) =-
t dxdt < aClllfll ce

holds for all solutions u e C(K) of (3.1) with u > on K.
Proof. Multiplying u- with (3.1) and integrating by parts on K yields

]],{(u)u (u)(f (u))}dxdt.

Since u is T-periodic, we see

(1 o
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We thus observe that

/JK (u)udxdt //K (u)(f (u))dxdt <_ //K (u)fdxdt <_ 2rTc3,1f,l

since >_ 0 and 0. om v- (v)v ca it follows that

//KUdXdt /fK((u)u + c4)dxdt Cl

It remains to prove the second inequality of Lemma 3.1. Multiplying ut/u with
(3.1) and integrating over K yields

Integrating by prts, we see

u,,udxdt u,u,dxd - udxdt 0

by T-periodicity of u. We also observe that

V()( + ())dt x0 for all R.

We thus conclude by integration by parts in t that

by T-periodicity of u, where is primitive of defined by

(v)

so that O(v)t (v)vt and O(v) cav. It now follows that

This is the same the second inequality of Lemma 3.1.

3.2. Upper bound theorem. Assume that 1 < 3 and that a O. Assume
the hypotheses in Lemma 3.1 on f, , . Assume furtheore that

(3.2) ’(v)((v) f) + (v)’(v) 0,

(a.a) 0 ’(v): c, (v)((v)-n f) c(v + 1)

on (a, ) with constants c5 and c6 > O. Then there is a positive constant Mo
Mo(cj, 3 j 6, T, ]]f], ]], ) such that ff u e C(K) with minK u
solves (3.1), then maxgu M0.

Pro@ We shall combine Harnack’s inequality (2.6) with integral bounds. We set

(a.4) a(, , t) ()( + () f(z, t))
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so that

{’(v)( + () f) + ()(1 + ’(v))} ()(v + () f)
_< ’(v)v2 + (v)(f (v))
_< c5 +c31]f][ co for

by (3.2)

since >_ 0. Moreover,

Applying Harnack’s inequality (2.6), we have

(3.5) u(x, to) > M 7CM(x x0)2/2

with M maxK u U(Xo, to) and

Here

It follows that

for

for all x E R

Co ClCM-" --M"-1 + M(-1)/2
7

+ M’r-lgM"

gM max{g(v,x, t)+; c < v _< M, (x, t) e K}
<_ c3M+c6(M+ 1) by (3.3)2.

CM 2c’M (c’ c3 + c6)

for large M, say, M _> M1 M1 (co, Cl, C3, C6, 7)"
We now integrate (3.5) (assuming M >_ M1) to get

f.o+. i.o+.u(x, to)dx u(x, to)dx >_ (Mr 7c’M(x xo)2)dx
x 2g

Ma(1- 7c’a2/3) for 0 < a < r

>_ Ma/2 for small .a, say, a <_ (3/27c’) 1/2 =_ ao.

We shall fix a ao in the rest of our argument. By Lemma 3.1 there is t such that

u(x, tl)Tdx <_ 7 u(x, t)Tdxdt

M- f/tc C1M-<_ udxdt <_.
We now observe that

(x,)’dx (x,)’d + "’-’,(x, -)d-dx

<_
2

u x t dx + 7 (f/ dxdt)
1/ (ii Uu 2--t dxdt)

/2

< C--AM-I + 7Cll/2M(3-3)/2C/2 for all t R
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since ff u2t/u is estimated by Lemma 3.1. Setting t to now yields

2 C1M_ M(3_3)/2Mcr < u(x, to)dx < -- + [Cll/2.1/2"-22

Since < 3, i.e., (37- 3)/2 < 7, this inequMity for M yields a bound for M,
say M M2- M2(ao, C,C2,T, 7). We thus conclude that M M0 by setting
M0 max(M1, M2).

3.3. Remark. The assumptions of Theorem 3.2 are clearly satisfied for ut
uT(u + u- f) with f > 0, which is a particular example of (3.1) found by setting

1 and 0. We study general equations because we need to have a bound
of solutions for solutions of equations which appear in the homotopy of approximate
equations. These technical looking assumptions are really useful in what follows.

3.4. Remark. We obtain an upper bound as in 3.2 for the multidimensional
problem where K is replaced by W as in 2.5. Note that the integral bounds in 3.1
hold for W with no changes. The only place to be altered in the proof of Theorem
3.2 is the estimate of space integral of u7 from below since (2.6) should be replaced
by (2.11). By (2.11) it holds that

u(x, to)dx u(x, to)dx rn-l(M -7c’Mr2/n)dr

Ma/2n for small a.

The remaining argument is the same as in the proof of Theorem 3.2.

4. Constraints and lower bounds. We consider a positive (periodic) solution
u C(K) of (1.1) with the constraint (1.2). Our goal in this section is to establish
an priori lower bound for u when f > 0. Since an upper bound is obtained in The-
orem 3.2, this will complete the proof of Theorem 1.4. As noted in the troduction,
the constraint (1.2) plays an important role for lower bound. We first study the
stationry problem of (1.1),

(4.1) U + U- F in W- R/2Z.

4.1. Lemma on distance of zeros. For a E R and d > 0 suppose that V solves

Vxx+V>_O on (a,a+d)

with V(a) Vx(a) 0 and V(a + d) O. Suppose that

V >_ O on (a,a/d) and V O.

Then d > 7r. Here V is assumed to be Lipschitz on [a, a + d].
Proof. We may assume a O. Since V(O) V(d) O, integration by parts yields

dsin(-d-) Vx+()V dx O.

Suppose that r/d >_ 1. Since sin(rx/d) >_ O, V >_ 0 on (0, d), we now observe that

sin (rx V--) (Vxx + V)dx < sin (Trx r
dx=O.
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Since V + V > 0, this implies

V+V=0 on (0, d).

By V(0) V(d) 0 we see that

V(x) Rsin(Trx/d)

with some constant R. Since Vx(0) 0, this implies V 0, which contradicts V 0.
We thus proved 7rid < 1.

We next discuss the way to get a lower bound of solutions of (4.1) from constraints.
For later convenience we state here a general version. Let #+ {#}>0 be a sequence
of nonincreasing, continuous, positive functions on (0, ) such that # converges
to some (nonincreasing, positive,) function # on (0, cx3). We assume that #- is
continuous in (0, cx) and that the convergence #- --. #- is uniform in every compact
subset of (0, cx) as --+ 0. Let h- {h;}>0 be a bounded sequence in L(0,
such that 0 <_ h-[ _< 1. Assume that h-[ converges to h- 1 uniformly in every
compact subset of (0, cx3) as --. 0. For U > 0 in (4.1) and > 0 we set

(4.2) A(, U) sin+(x )#(U)h(U)dx, E R,

where sin+ z max(sin z, 0), sin_ z min(sin z, 0), and h+ 1 for s > 0.

4.2. Lemma on a lower bound for stationary solutions. Let kj (0 < j < 4)
be a positive constant. Suppose that

(4.3) #(x2)dx .
Then there are positive constants o, o depending only on kj and #+, h- such that
a positive solution U C2(T) of (4.1) satisfies mint U > o if U and (0 < < o)
fulfill the following properties:

(U1) 0 <: F <_ ko, where F Ux + U,
(U2) kl < maxT U <_
(V3) A[ (, U) <_ k3A+ (, U)+ ka for all R.
Proof. We argue by contradiction. Suppose that for some kj (0 < j < 4) there

would exist sequences {U}, {e} (s _> 0) satisfying (U1)-(U3) with U U,
F Fn such that

(4.4) 0<minU0 and --0 as n.
T

Let Xn T be a point such that mint Un Un(xn). We may assume x -- x0 for
some x0 T by taking a subsequence if necessary. Since F and Un are bounded by
(U1) and (V2), the equation (4.1) implies that {U} is bounded in C(W). By Ascoli-
Arzela’s theorem U converges to some function U in CI(T), by taking a subsequence
if necessary. Since {Unxx} is bounded, Us is Lipschitz in T and solves

By (4.4) we obtain

(by

U(xo) lim Un(xn) 0
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since the convergence Un U is uniform. By (U2) we see U 0, i.e., there is x, E R
with U(x,) > 0. We set

a sup{x e R; U(x)= 0,x < x,} e R.

Since U takes zero at x0 this is well defined. By continuity of Ux we see U(a)
Ux(a) 0 and U(x) > 0 for a < x _< x,. We now apply Lemma 4.1 to observe that
the distance of another zero (bigger than a) of U and a is more than r. Thus there
is a small 0 < P0 < /2 such that if 0 < p < P0 then

inf{U(x);a+ p x a+ p+} > 0.

We fix 0 < p < P0 and set a + p. Since U U is uniform, we have a uniform
lower bound for U,

(4.5) Ua=A/2 on [,+]

for sufficiently large n.
Since Ux is bounded, U(a) U(a) 0 implies that

(4.6) 0 U(x) R(x- a)2 for all x e R

with some R > 0. om a bound (4.5) it follows that

limnA lim sin(x-)p2 (U)dx sin(x-4)dx() 2(),
J J

where A A(, U) with . By (U3) this implies

limnA 2k3() + k4 L < .
Using Fatou’s lemma, we observe that

(- sin(z ))(U)dz < lim (- sin(z ))2(U)h2 (Un)dz

< limA L,

since the uniform convergence 2 , h2 h on every compact set in (0,
implies that

i (Un(z)) (U(z)), ih2 (U(z)) 1

for a < z < . om (4.6) it follows that

Since -sin(z- ) > 0 on (-, ) a, this contradicts (4.a). We have thus obtained
a lower bound 0 for U for small e O.

4.g. Corollary. et f C() be positive fection d > O. There
positive constaets o, Mo (depeedin9 onl on , lIIl d min f) sch that
positive fction C() solves

+ f ie with ei-dz O,
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then 50 < u <_ Mo provided that 1/2 < a.

Proof. Although an upper bound M0 is obtained by a general Theorem 3.2, we
sketch the proof in this context which reflects an essential step of the proof of Theorem
3.2. Clearly uuxx fu- u2 >_ -M2 with M maxT u. This implies that

which yields

(u)xx 2u + 2uux >_ -2M,
u2(x) _> M2 M2(x- xo) 2,

We now integrate to get

]2xo+l f02r f02rM2 (1 (x xo)2)dx <_ u2dx <_ M udx.

This yields a bound Mo of M since we observe that

by integrating ux + u f on T.
By the maximum principle we have

max u >_ min f.

Since the constraint f eiu-dx 0 is equivalent to

2

sin(x )u-dx 0 R,for all

(U3) is fulfilled with ka 1, k4 0, #(v) v-, h(v) 1 for all e _> 0. We
observe that (U2) is fulfilled with/1 min f > 0, k. M0. Since (4.3) is fulfilled
for #-(v) v-, we now apply Lemma 4.2 with k0 lfll to get a desired lower
bound 60 of u.

We now study the time-dependent problem (1.1) or its general form

(4.7) ut=u(ux+u-f) in K.

For u E C(K) it is convenient to define

U(x) u(x,t)dt.

Divide (4.7) by u" and integrate over (0, T) to get

(4.8) U+U=F in T with F= f(x,t)dt,

since u is T-periodic in time. Harnack’s inequality (2.4) allows us to compare u and
U.

4.4. Lemma. Suppose that u C(K) satisfies (2.4). Then there are ;, A > 0
(depending only on C, "y, M, T) such that Au(x,t) <_ U(x) <_ Au(x,t) for (x,t) K.
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Proof. Since u is T-periodic, integrating (2.4) on (to T, to) yields

U(z) (z,t)dt <_ (z, to)A, A exp(-CM’-l(t to))dt;
-T -T

A is indepenent of to. The inequality N U is similarly obtained by integrating

u(x, to)exp(CM-l(to t)) u(x,t) on to t t0 + T.

4.5. Proof of Theorem 1.4. Since an upper bound of a positive smooth solution
of (1.1) or (4.7) with 1 _< /< 3 is obtained by Theorem 3.2, it suffices to establish a
lower bound assuming the constraint (1.2).

By the maximum principle we see that

(4.9) max u >_ min f c2.
K K

Since Harnack’s inequality (2.4) is available for (4.7) with co Ilfll, cl Ilftll,- 2, Lemma 4.4 now yields

(4.10) max u > U(o) > u(xo, to) > c =_ kl
T

by taking (x0, t0) as a maximizer of u over K. From an upper bound M0 of u, it
follows that V fulfills (V2) with k2 MoT. Since 0 <_ f

_
]lfll, we see that (Vl)

is fulfilled with k0 TIIf]I. If U >_ 5o on K, Lemma 4.4 gives a lower bound
5 A-150 for u.

Finally, we check (V3) with (4.3) by choosing #(v) -v-1, h(v) 1 for s _> 0,
so that (4.3) is fulfilled. We shall drop subscript s since all quantities we handle are
independent of s. We estimate A- by Lemma 4.4 to get

A-(, U) < ,X-1 sin_(z )
u(x,t)

dx.

By the constraint (1.2) we have

f02 sin-(x- )f02 sin+(x )
-i t)

dx -i: t)
dx, E R

since f:" sin(x- )u-ldx 0. Using Lemma 4.4 again, we get

A-(C, U) <_ A-1AA+(, V),

which is (U3) with k3 A-1A and k4 0. This enables us to apply Lemma 4.2 to
get a lower bound 50 for U. If we examine properties of all constants, we conclude
that the constant 50 has the desired property.

4.6. Generalization. If we examine the proof, it turns out that the assumptions
in Theorem 1.4 are weakened. First of all we may replace (1.1) by (4.7) with 1 <_ , < 3.
Second, (1.2) may be replaced by

2r eix

t-----dx 0
Ua(X

for some a _> 1/2 and some t. Here #(v) should be v in the proof.
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5. Approximate penalized equations. To solve (1.1) with (1.2) for positive
f e C(K) satisfying (1.3) we consider an approximate penalized equation. Let
m > 1 be a large number such that

1 1
min f >
K m 2mnf"

For 0 < s, s < 1 we take a smooth nondecreasing function e on [0, cx) such that

(5.3)
(v) v for

vVms_<(v)_<g(vVms) for v_>0

with some 1 < t? < 2 independent of and v.

Our approximate penalized equation is of the form

( w2 ((5.4) wt=(w+s’)2 w+ (w+s’)2 w+ ((w+e,) f in K.

The term s/(w + s’) plays the role of a penalty term. (If we do not need to have
smoothness of this term, we may take s/(w + s’) V ms.) The cutting off by ms of is
introduced so that f- s/(w / #) is always positive, which will be important to get a
lower bound. The parameter s is taken so that equation (5.4) is uniformly parabolic,
while s is for penalization. To get a lower bound for w, the penalization effect must
dominate the other approximation so # should tend to zero faster than s when s 0.
For simplicity we shall take # s2 for the rest of our argument. We set w + s2 u
in (5.4) to get

ut u2(uxx + ,(u)(u + Ce(u) f e2)) in K

with

(v
v2 (v)=(v) for v>0.

A direct calculation shows

(5.7) e(v) 1----
v -(5.8) q’ (v) --- 1-

Since e and Ce satisfy

0<s(v)_<l, 0<q’s(v)v2_<2s2N2, v(1-qs(v))_<2s2<2, forv>a=s2,

(5.10) minf-(v)>0, (v)<0 for v>a,
K

all assumptions in Theorem 3.2 are fulfilled with C3 1, C4 2, c5 2, c6 0; to
get (5.10)1 we use (5.1)-(5.3).

5.1. Upper bound proposition. There is a positive constant Mo Mo(T, Ilfll,
Ilft[]) such that if u e c(g) solves (5.5) with q, Cs satisfying (5.9), (5.10), and
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u > 2 on K, then u

_
Mo on K. Here and hereafter, and are assumed to be

smooth on (0, ).
As in 4 we set

T

U(x) u(x,t)dt.

Applying the maximum principle for (5.5) we see

1 1
maXg u>_ Kminf--(u)-->mnf----m ->-2 fm’n C2

by (5.1)-(5.3). Since other assumptions for Harnack’s inequality (2.4) hold by (5.9)
and (5.10), U and u are compared by Lemma 4.4.

5.2. Comparison lemma. Assume that and fulfill (5.9) and (5.10)and
that

minf-(v)_>c2>0 for v>s2
K

for some constant C2. Then there are positive constants A and A (depending only on
T, Ilfllo, Ilftllo, c2) such that if u e C(K) solves (5.5) with u > 2 on K, then

(5.11) t) < U(x) < h (x, t) (x, t) e K.

We shall derive a uniform lower bound of u independent of s by assuming (1.3)
for f, i.e.,

2x

(5.12) f(x, t) sin(x )dx 0 for all

5.3. Lemma on approximate constraints. Assume that f E Ca(K) satisfies
(5.12). Assume (5.9)1 and

(5.13) 1- e(V) C72V-1 for v > s2

with some c7 > O. Then if u Ca(K) solves (5.5) with u > 2 on K, we have

(5.14) {(u)(u) + (1 (u))(f + s2))sin(x )dxdt <_ 4Tc72

for all R.
Proof. Since u is T-periodic in t, we have

dt O.

Since u is 2r-periodic in x, integrating by parts yields

2(uxx + u)sin(x )dx e0 for ll R.

Multiply (5.5) by u- to get

Utu-2 E2ux + u (f + + (u)(u) + (1 (u))(f + 2) + ((u) 1)u.
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Multiplying both sides by sin(x- ) and integrating over K now yields

.aT .a2r{e(U))e(U) -- (1 e(u))(f + s2)} sin(x )dxdt

(1 s(u))usin(x )dxdt.

We use (5.13) to get (5.14).
Since e in (5.6) satisfies (5.7), property (5.13) with c7 2 holds for defined

by (5.6). By its form of e and Ce in (5.6), it is clear that

e(v) - 1, (v)/ v-1 uniformly on every compact subset of (0,

5.4. Lemma on constraints for the limit of approximate solutions. As-
sume that and fulfill (5.9)1, (5.13), and (5.15). Assume that u e C(K)
(u > s2) solves (5.5) with f fee Coo(K) satisfying (5.12). Assume that IIflloo is
bounded for 0 < < 1. Suppose that ue converges to a positive u E C(K) uniformly
in K. Then

T

0
2r

(5.16) sin(x ()u-l(x, t)dxdt 0 for all ( e R.

Proof. Dividing (5.14) (f re, u ue) by 0 < < 1 and using (5.13), we observe
that

(5.17)

sin(x- ()e(ue)e(u)-ldxdt <_ c7 + cT[[f + l[[oo S--dxdt.

Since u > 0, ue is bounded away from zero, say ue 50 > 0 uniformly for sufficiently
small > 0. The right-hand side of (5.17) now converges to zero as 0. By the
convergence (5.15), sending to zero in (5.17) yields (5.16), since u 50.

The basic strategy to get a lower bound for u in (5.5) is similar to the proof of
Theorem 1.4. This time we should check assumptions of Lemma 4.2 by using our
approximate constraint (5.14). For this purpose we note a property of e of (5.6)1.
The sumptions on e in the following lemma are automatically satisfied for e of
(5.6)1.

5.5. Lemma. Assume that fulfills (5.9) and (5.15). Let Ao be a positive
number. There exists a sequence of continuous functions he, 0 h 1 on (0, )
such that he converges to one unifoly in every compact subset of (0, ) as 0
and that

(v(t))dt The(V), V v(t)dt

for ll v C[0, T] with v > e nd V A0v(t)., 0 t T.
Pro@ We set a continuous function

he(p) e(pA Vs2), p > 0
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and observe that he -* 1 uniformly in every compact subset of (0, oc) and that 0 <
he < 1. Since is nondecreasing on (s2, cx) by (5.9)2, we thus conclude

(v(t))dt >_ h(V)dt The(V).

We set

T f02{(u)e(u) + (1 (u))(f + s2)} sin+ (x )dxdt.

The approximate constraint (5.14) is rewritten as

(5.18) II+ -Il <_ 4TcTs.

5.6. Proposition on estimate of A+. Assume that u E C(K) satisfies the
comparison (5.11) with U and u > s2 on K and that f > O.

(i) Suppose that fulfills (5.9) and (5.15). Suppose that (v) _> s(v)/g for
v > O, where (v) 1/(v V ms) with some m > O, > O. Let he be as in Lemma 5.5
and set hi he and #-(v) (A-lv). Let A[ be defined by (4.2). Then

TA-[ (, U) <_ gI- (, u), R.

(ii) Suppose that satisfies (5.9)1 and (5.13). Suppose that 2 satisfies (v) <_
sv-1 for v > O. Let AS be defined by (4.2) with ItS(v v-1. Then

I+(,u) _< TA(1 + cllf + s2]I)A+(,U), e R.

Proof. (i) Since s-lce(t) /]e(t) It-(U) we see

T

j0
2r

I- >_ s-1 (u)(u) sin_(x- )dxdt (by f _> 0, _< 1)

>_ e-1 ()dt -2 (g) sin_(z )dzdt.

Apply Lemma 5.5 to get gI[ >_ TA.
(ii) We estimate , /)eS-1 1 -- from above to get

I+-< +llf+ I1 sin+(x-)dxdt
u

2 1
sin+(x )dx_< TA(1 + SCT][f + S2[[c)

which completes the proof.

5.7. Lower bound theorem. Assume that f e C(K) fulfills (5.12) with f > O.
Let and be defined by (5.6) with (5.2), (5.3), and rn > 1. Then there are positive
constants So, depending only on T, Ilfll, Ilftll, minK f such that if u e C(K)
solves (5.5) with m satisfying (5.1), then u >_ on g for O. < s < So provided that
u > s2 on K.
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Proof. Since and Ce in (5.6) fulfill all assumptions on e and in 5.1-5.6
including Proposition 5.6, we may apply all these results. By the comparison lemma
(Lemma 5.2), it suffices to apply Lemma 4.2 to get a lower bound for U for sufficiently
small s.

We shall prove (U1)-(U3) in Lemma 4.2. Dividing (5.5) by u2 and integrating
over (0, T) yields

0=Uz+U-F on T,

F {(f + s2 (u))(u) + (1 (u))u}dt.

Since f- (u) > 0 by (5.10) and (u) <_ 1 we see F _> 0. Moreover, by (5.13) with

c7 2, we observe that

which proves (U1). By (5.1)-(5.3) applying the maximum principle yields

maxK u(= u(xo, to))
_

nnf1_

as in 5.1. By Lemma 5.2 we see

maxT U >_ U(xo) >_ Au(xo, to) >_ - nn f =_ ]1 > 0

(cf. the proof of (4.10)). Since u _< M0 by Proposition 5.1, (U2) is now fulfilled with
k2 TMo.

It remains to show (U3) since #, h- satisfy the desired properties including
(4.3). Applying the approximate constraint (5.18) to Proposition 5.6 we observe that

A(, U) <_ T-II (, u)

_
2T-1I (, u)_

2T-1(I(, u) + 8T’)

_
2T-1I+(, u) -+- 2.8

_< 2A(1 + 2(11/11 + 1))A+(, U)+ 16

where we have used 0 < s < 1,/< 2, c7 2. We have thus proved (U3). The proof
is now complete. Vl

6. Existence of periodic solutions. We shall construct a positive solution
w . C(K) of the approximate penalized equation (5.4) (with ’= 2) for arbitrary
positive f E C(K). We always assume (5.1)-(5.3) and positivity of f C(K) in
this section. Also we fix > 0 except in the proof of the main theorem given in 6.8.
We begin with a solvability result for a uniformly parabolic equation since (5.4) is
uniformly parabolic for w > 0. For w > 0, T > 0 we set

K (R/wZ) (R/TZ).

We consider a uniform parabolic equation

vt a(v)(Vxx bv + h) in
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6.1. Unique solvability lemma. Assume that b is a positive constant and that
a is a continuous function on R such that a(a) >_ ao > 0 for all a E R with some
constant do. For each h e c(gw) there is a unique solution v e q>l W2’I(K) c
c(g) of (6.1). Moreover, the solution operator h - v is a continuous, compact
operator from C(K) into itself. There exist Oo Oo(ao,h,b,w,T) > 0 and
Co Co(ao,]]h]],b,w,T) > 0 such that estimate

]V]]w. Coh]]

holds for all 2 p 2 + o and h C(K).
We postpone the proof until the next section.

6.2. Mappings. We next interpret a solution w of (5.4) as a fixed point of a
mapping. Let b > 0 be taken so that

(w,x,t)-bw++ (w+ + 2)2 w++(w++2)-f(x,t) 0, w+ w V O,

for all w R, (x,t) e K, and > 0 on K if w > 0. It is possible to choose
b > 0 because (w+)2 vanishes faster than w+. Indeed, w 0 implies 0. If
w mxg f > 0, then > 0 for any b > 0 since > 0. If otherwise (but w > 0), we
observe that

(w,x,t)- (w+2)2 b(w + 2)2 W w2+
(w + 2) f w

W

(w + s)2
2bs2w fw) > 0

provided that b > f]/2s2.
For this choice of b let S denote the solution operator of

vt-(v++2)2(v-bv+h) in K,

i.e., S(h) v. By Lemma 6.1 S is well defined as an operator from C(K) into itself.
Lemma 6.1 also yields

(i) S’C(K) C(K) is compact and continuous.

(ii) S(h) is Hhlder continuous on K for h e c(g).
The second assertion follows from the Sobolev embedding since S(h) e W’I(K) for
M1 p > 1. Using (ii) nd the Schauder theory of linear parabolic equations [LSU] we
observe that

(iii) v S(h) e C2’1(K) (i.e., v, vx,vt e C(K)) provided that h is Hhlder
continuous in K.
By the strong maximum principle for classical solutions we see

(iv) v S(h) > 0 in K if h 0 and h 0, where h is Hhlder continuous.
For u e C(K) we define a continuous operator H’C(K) C(K) by

t) t), x, t).

Since is locMly Lipschitz in w, we observe that
(v) if u is Hhlder continuous in K so is g(u).

Suppose that w C(K) is a fixed point of S H, i.e., S o H(w) w. Then by (ii) w
is Hhlder continuous. This implies s(g(w)) e C2’(g) by (iii), (v). Since > 0 for
w>0
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(vi) H(u) >_ 0 and H(u) 0 unless u 0, so w S(H(w)) > 0 in K if w 0 by
(iv).

The equivalence of (5.4) and S o H(w) w is formally easy. We now obtain a
positive solution w E C2’1(K) of (5.4). Of course, this solution is in C(K) since

f C(K) by the higher regularity theory [LSU].
6.3. Lemma on the local degree near zero. There is a constant ro > 0 such

that the (Leray-Schauder) degree of I- S H of the vnlue zero in Br(O) equals one

for 0 < r < ro, i.e.,

deg(I- S o H, Br(0), 0) 1,

where I denotes the identity operator and

B(0) {h e C(K); Ilhll < r}.

Proof. Since S is compact and S, H are continuous, the degree of I S o TH
is well defined for 0 _< T < 1. Since S(0) 0 by b > 0, the homotopy invariance of
degree implies

deg(I S o H, B(0), 0) deg(I, Br(0), 0) 1

provided that

(6.2) (S o TH)(u) : u

for all u OB(O), 0 < T < 1 if r is sufficiently small.
It remains to prove (6.2). We argue by contradiction. We may assume that there

are {Tn} (0 < ’n < 1) and {u} such that tn 0 and

(S o TnH)(u) u with IlUnllcx --+ 0 as --4 (x).

By 6.2 (iv)-(vi) we observe that Un > 0 and solves

(6.3) ut (u + e2)2(uxx bu + TH(u)) in K

with T Tn in a classical sense. By (5.1)-(5.3) we see

f- (un +e2) >- mnf > 0.

Since lUnl]x 0, this implies

G, =- f- -un > 0 for large n.

Multiplying (6.3) by (u + e2)-2 and integrating over K with u un .and T Tn
yields

f0T127r { TnUn }0-- tn b(1-Tn)-+-(Ztn+2)2Gn dxdt

as in the proof of Lemma 3.1. Since 0 < T < 1, b > 0, and u > 0, this im-
plies Gn 0. This contradicts the positivity of Gn for large n. We have proved
(6.2). I--]
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6.4. Lemma on the degree in a large ball. There is an Ro > 0 such that

deg(I-SoH, Bn(0),0)=0 for R > Ro.

Proof. We set

2W
O(w) bw+ + (w+ + s2)2 w+ +

1

and its affine homotopy to H

for wER

Or(w) zH(w) + (1 -)O(w), 0 _< T <_ 1

for w C(K). We first observe that

deg(I S o p, BR(O), 0) 0 for R > 0.

Indeed, since (I) also satisfies (v) and (vi) of6.2 with H (I), if S o (I)(u) u, then
u > 0 and it is a C2’1 solution of

Uxx " (?.t " 2)2u -- 1 in K.

At the minimum point of u we see ut 0 and uxx >_ 0 but this is impossible by the
equation for u. So there is no fixed point of S o (I).

By the homotopy invariance of degree the proof will be complete if we prove the
a priori bound (indepenent of T) for w satisfying S o (w) w so that we set

R0 sup{llwll ; s o O (w) w, 0 _< _< 1}.

As in 6.2, S o Or(w) w implies that w is positive and it is a C2’1 solution of

(6.4) wt (w + e2)2{wx bw + (I)(w)} in K.

Since f is smooth, so is w. The following a priori bound is sufficient for our purpose.

6.5. Upper bound lemma. There is a constant R1 > 0 such that ifw C(K)
with w > 0 solves (6.4), then w <_ R1 in K.

Proof. In (6.4) we set w + s2 u to get

ut u2[u + (u){u + r(u) + (1 r)/(u) 7f 2}]
with , satisfying (5.6). If we denote

+
then u > 2 solves

ut u2(uxx + (u){u + (u) -f e2}.
It is sufficient to check the assumptions of Theorem 3.2 by setting a e2. By (5.9)
all we have to prove are

(6.5) ’(v)((v) Tf 2) + (v)’(v) <_ O, for V > $2,
(6.6) (v)((v) nn(Tf + 2)) _< c6(v + 1), for v > 2.
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The left-hand side of (6.5) is

9’((e f) a2 + (1 T)9-1) + (T’_
(fl’(fl-l(1 T) + (fl--1)’(1 T) (1 7")(99’fl-1 99(fl’(f1-2) 0

since >_ 0, e f < 0, _< 0 on [a,c) by (5.1)-(5.3); here -1 I/9. The
left-hand side of (6.6) is

+ < _< 1.

We have thus proved (6.5) and (6.6) (with c I).
6.6. Remark. For the semilinear equation

ut=Au+m(t)up in (0, T)t,
u=0 on (0, T)0Ft

with T-periodic m, Esteban [Eli, [E2] obtained a positive T-periodic solution u pro-
vided that 1 < p < n/(n- 2) where t is a smoothly bounded domain in Rn. The key
argument is to prove similar statements for Lemmas 6.4 and 6.5. The method to get
an upper bound in [Eli, [E2] is based on a blow up argument. This is used in [Gi] to
get a bound for positive solutions of the initiM-boundary value problem

ut Au + up in (0,x)gt

withu 0on (0, c) 0Ft for 1 <p < (n+2)/(n-2). However, it seems to be
difficult to obtain an upper bound by this method in our problem. The application
of Harnack’s inequality to get a bound seems to be a new approach.

6.7. Existence Theorem for approximate penalized equation. Assume that

f E C(K) and f > O. Then for every > 0 there is a positive solution W C(K)
of (5.4) with ’ 2 and (5.1)-(5.3).

Proof. By Lemmas 6.3 and 6.4 we have

deg(I- S o H, BR(O) \ Br(O), O) -1

for r < R with r < r0, R > R0. It now follows that there exists w 0 such that
S o H(w) w. This yields a desired solution w of equation (5.4) as remarked at the
end of 6.2. [5

6.8. Proof of Theorem 1.1. We approximate f by f e C(K) satisfying (1.3)
such that

ff in C(K) as 0 with IIft[Io<_211ftl[, [If[l<-21]f[l,0<<l.

Of course, this is possible by convoluting f with a mollifier in space and a mollifier in
time so that (1.3) is inherent to

Let we be a solution of the approximate penalized equation (5.4) (with s2 > 0
and f- fe) obtained in Theorem 6.7. By Proposition 5.1 and Theorem 5.7 we have
5 _< we + 2 _< M0 with M0, 5 > 0 independent of sufficiently small > 0, say,
This implies that w solves

wt a(w)(wxx w + F) in K
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with ae(a) ((a + e2)2 V 52) A Mo2 and IIFell _< No for 0 < e < 0, where Nj is a
constant depending only on T, Ilfll, Ilftll, minK f. Since ae(a) >_ 52, from Lemma
6.1 it follows that

II  llw ,  ollF ll 0 < <

at least for 8ome p > 2. Applying the Sobolev inequality yields a bound on the
-H51der norm of we for 8ome 0 < < 1,

II  llc _< N2, 0 < e < Co.

By the Banach-Alaoglu theorem and the Ascoli-Arzela theorem there i8 a 8ubsequence
(still denoted we) and u E Wp2’l 3 C such that

weu weaklyin W2’1
..p We U strongly in C(K).

Letting --, 0 in (5.4) now yields (1.1) for u since e/(we / 2) __, 0 by w + e2 >_ 5.
The higher regularity

uEWp2’1(K) for allp>l or

u e C(g) for f e Ca(K)

follows from the standard linear Lp and Schauder regularity theory [LSU] since the
equation (1.1) is uniformly parabolic if 2 <_ u _< M2.

It remains to prove the constraint (1.2). As in the introduction, if u solves (1.1)
and f satisfies (1.3), then

d fo: sin(:c ) fa
:’

dt (x,t)
dz f sin(z )dz O, t,R.

Applying Lemma 5.4 yields

T f02 sin(x )
u(x, t)

dxdt O.

We thus conclude that
2 sin(x )

for all t,(R

which is the same as (1.2).
7. Unique solvability of a class of quasilinear equations. Our goal in this

section is to prove Lemma 6.1. We first prove uniqueness of solution by reflecting Lips-
chitz continuity of solutions w.r.t, data in L1. In the proof we use smoothed signature
functions which were often used to prove L contractivity for scalar conservation law;
see Crandall [Cr]. We next establish a priori bounds for linear parabolic equations
by a perturbation method. Such a method is often used in a different context; see
Campanato [Ca] and Giga and Yoshida [GYo].

7.1. Uniqueness lemma. Suppose that v C(K) solves (6.1) with h h
C(K) with i 1,2, where b > O. Suppose that vi W2q,(K) for some 1 < q < oo

for i l, 2. Then

b [Vl v21dxdt <_ [hi h21dxdt.
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In particular, the solution of (6.1) is unique in C(K) N Wq2,1(K).
Proof. Divide (6.1){ by a(v{) and subtract one equation from the otherto get

(7.1) A(vl)t-A(v2)t-wxx+bw+k=O in K=K

with w Vl- v2, k h2- hi, and A(s) f a-(r)dr. Let sgnp(S), p > 0 denote the
piecewise linear continuous function such that sgnp(S) 1 for s _> p, sgnp(s) -1 for
s <_ -p, and sgnp is linear for Is <_ p. Multiplying (7.1) by sgnp(w) and integrating
it over K yields

O-- {(A(vl)-A(v2))tsgnp(w)-wxxsgnpw+bwsgnpw+ksgnow}dxdt.

Note that

Wxx Sgnp wdx w sgn(w)wdx >_ 0

since sgn >_ 0. Sending p to 0 in (7.2) yields

{(A(vl) A(v2))t sgn(w) + blwl}dxdt <_ Ikldxdt.

It remains to prove

(7.3) {(A(vl) A(v2))t sgn(w)} dxdt O.

Since a(r) > 0 we observe that sgn w --sgn(W) with

W A(vl) A(v2).

Thus

Wt sgn Wdxdt IW[tdxdt 0,

since W is T-periodic in time. This is the same as (7.3).
We next derive a priori estimates for linear parabolic equations of the form

ut=a(x,t)(u-bu+h) in K
with a constant b > 0. We use a perturbation method.

7.2. Linear estimate lemma. Let ai be a positive constant (i 0, 1). There
exist positive constants 1 (a, b, w, T) and C, C, (a, b, w, T) such that the
following estimate holds. For a,h E C(K) with ao <_ a <_ al there is a unique
solution u W2p’(K) satisfying

(7.5) II llw , C, Ilhll, for 2 p -I- 2.

The solution u always satisfies

(7.6) Ilull _< b-lllhll.
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Proof. We may assume a 1 by dilation of the time variable. We may assume
that a, h E C(K) with g K. Indeed, for a, h C(K) there are a, h C(K)
such that a a, h - h in C(K) as e - 0 and that a0 _< a _< al 1. There is a
unique solution u of (7.4) with a a, h h. By our results for u we have

for 2 _< p _< 2 + 0. We thus observe that

u - uo weakly in Wp2’1 and u -- uo strongly in C(K)

as e 0 by taking a subsequence if necessary. If w W22’1 (K) solves

wt a(wxx bw) in K

then we see w 0. Indeed, multiplying the equation by wt/a and integrating by parts
over K yields wt 0 so that w 0. Thus, the solution u W’1 for (7.4) is unique.
Since u0 solves (7.4) it follows that u u0. Sending s --. 0 in (7.7) yields (7.5), (7.6).

21We first admit that for (smooth) a there is a unique solution u e W2 (g) of (7.4)
for h E L2(K). This solution u belongs to C(K) if h is smooth by the standard
regularity theory.

By the maximum principle for u C (K), we see that

minh < bu < max h.
K K

This yields (7.6).
We next consider the L2 estimate of the linear equation with constant coefficients,

(7.8) ut=ux-bu+g on K.

Multiplying (7.8) with ux and integrating by parts over K yields

(u2 + bu2)dxdt guxdxdt.

Thus by the Cauchy inequality we have

J" 1//(u2 + g2)dxdt(u2 + bu2)dxdt <_ -which in particular yields estimates of the L2(K) norm

(7.9) I111 -< 1. Ilgl12.

Let L3 denote the operator norm of g u from L3(K) into itself. By Lp theory
[LSU] L3 is finite and depends only on w, T, and b. Applying Riesz’s interpolation
between L2(K) and L3(K) to (7.9) yields

(7.10) II   llp Lpllgllp

with Lp - 1 as p--, 2, p > 2, where Lp Lp(w, T, b).
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We shall use a perturbation argument. Rewrite (7.4) as ut uxx bu + g with
g (a 1)(ux bu + h) + h and apply (7.10) to get

Iluxxllp <_ Lp[llhllp + (1 ao)(llullp + bllullp + Ilhllp].

We take 1 such that 2 _< p _< 2 + 01 implies

c sup{Lp;2 _< p _< 2 + 01} <
1 a0

since Lp ---+ 1 as p 2. We thus have the estimate

with c,=(1-c(1-ao))-1.

Since (7.6) yields

with S S(T,w,p),

we now observe that

I111 c,Lp(2 + )Sllhll for 2 < p < 2 + 01.

Interpolating (7.6) with this inequality, we conclude that

II llw ,, _< C, Ilhlloo

for 2 _< p _< 2 + 01 by estimating ut by the equation (7.4).
It remains to prove the unique existence of solution in W’1 of (7.4) for h E L2.

As in the first paragraph of the proof, we have the uniqueness of solution of

-t (a) b(a) in K.

By the regularity theory only the L2 soldtion is zero. This implies that the dual
operator L* of the bounded linear operator L’u h (defined by (7.4)) from
to L2 is injective. The closed range theorem now implies that L is surjective provided
that the range of L is closed. Using (7.4) in the same way we did to obtain (7.9), we
get

Multiplying ut by (7.4) and integrating now yields

since f uutdt- O. Use (7.4) to get

which implies the range of L is closed, and the proof is now complete.

7.3. A priori estimate. We consider

(7.11) vt-a(v)(vxx-bv+h) in K=K
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with a-(p) Ta(p) + (1 ---)a0, 0 _< - _< 1, where a(p) >_ ao is given in Lemma 6.1
and b > 0. The estimate (7.6) yields

for a W22’1 solution v of (7.11) with v E C(K). We set

(7.12) al- max{a(p); IPl -b-lllhll} < oc

to get

ao < a (v) <

for a solution v C(K) of (7.11). By Lemma 7.2 there are positive constants 01 and
C, such that for 2 _< p _< 2 + 01 a solution v C(K) N W’1 (K) fulfills

(7.13)

Here O and C, depend only on Ihll, a0, b, w, T.

7.4. A homotopy of mappings. We fix p such that 2 < p < 2 + 01. Since
K- K is two dimensional, there is 0 < < 1 such that the inclusion W2’I(K) intop

C’(K) is continuous by the Sobolev inequality. We fix and set X C’(K). For
(v, -) X [0, 1], let w R(v, ) be the unique solution of

(7.14) wt=a(v)(wxx-bw+-h) in K.

7.5. Proposition. The mapping R gives a compact, continuous mapping from
Z [0, 1] into X. The image ofR is contained in q>l Wq2’I(K) Moreover R(v, O)
0 for all v X.

Proof. For v X, (7.6) implies

ao <_ a-(v) <_ al,

where al is defined by (7.12). Suppose that [Iv]Ix _< M. Then a(v) has a modulus of
continuity rn depending on v only through M. Since rn is a modulus of continuity of
a for 0 _< r _< 1, Lq theory of linear parabolic equation provides

for 1 < q < oc with Z Z(ao, al, q,M) where al is as in (7.12). We observe that
the image of R is contained in W’I(K) for all q. Take q large so that W2’1..q c X is
compact. Thus

{R(v, 7); [Ivllx _< M, 0 _< - _< 1}

is compact in X, so R:X . [0, 1] --+ X is compact.
From (7.14)it is clear that R(v, O)= O.
Now we must prove the continuity of R. Suppose that vj v in X, -j - as

j --, oc. We apply Lq theory to estimate (for 1 < q < )
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with B B(ao, al,q, I[hll) since {vj} is bounded so that a-j(vj) has a modulus of
continuity independent of j.

For sufficiently large q we observe that

(7.15) uj---+u weakly in W2’I(K) and uju in C’(K)

for some u E X N Wq2’I(K) by taking a subsequence if necessary. Sending j in

a. (v)(u b + h)
now yields (7.14) with w u. Since (7.14) admits a unique solution for given v, we
see u R(v, ). We have thus proved that R:X x [0, 1] X is continuous.

7.6. Proof of Lemma 6.1. Since is chosen so thatw’l(K) C C(K) X is
continuous, a priori estimate (7.13) yields

vx SC,]]h

with S S(p, u, w, T). By Proposition 7.5 and this estimate the Leray-Schauder
fixed point theorem yields v X such that R(v, 1) v. By (7.15) we see v

> W’(K) C C(K). R(v, 1) v means v solves (6.1). A priori estimate of
Lemma 6.1 follows from (7.13). Since the solution of (6.1) is unique, it remains to
prove that h v is compact, continuous from C(K) into itself.

The compactness follows from a priori estimates in Lemma 6.1 since K is two
dimensional. Suppose that hj h in C(K) nd that vy is a solution of (6.1) with
h hi. By a priori estimate there is a v such that

vjv weklyin W’ nd vjv in C(K)(j)

by taking some subsequence if necessary, since K is two dimensional. Letting j
in (6.1) with v vj, h hj yields (6.1) for v nd h. This implies the continuity of

8. Appendix. We shall prove that (1.1) with constraint (1.2) admits at most one
positive solution if f is time independent. We shM1 Mso give a geometric interpretation
of the assumption (1.8).

8.1. Proof of Lemma 1.3. Multiplying (1.4) by u and integrating by parts
over K yields

Udxdt= -() + () f, ddt 0

if f is time independent. This implies ut 0 on K.
It remains to prove that

(s.1) . + f(x) on T R/2Z

admits at most one positive solution satisfying (1.2). Suppose that u > 0 solves (8.1)
with (1.2). Then all positive solutions V of (8.1) are of the form

U(x; , ) u(x) + cosx + sinx
for some , R. It is esy to see that

D={(,);U(x;,)>0 for all xGT}cR2
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is open and convex. Since -log is strictly convex, so is the function

E(, 7) log U(x, , )dx on D.

The strict convexity of E on D implies that E has at most one critical point. Since

OEo --jo
2 cs--xdx’U 0E07 _]2 _sinXdx

’U

V(x;, 7) satisfies (8.1) with (1.2) if and only if (,) is a critical point of E in D.
By the choice of u, E takes its critical point at the origin, so there is no other critical
point of E on D. In other words, there is no U(x, , r]) satisfying (1.2) unless (, 7) is
the origin. We have thus proved the uniqueness of positive solution u of (8.1) fulfilling
the constraint (1.2).

8.2. Curvature of Frank diagram. Let J: be the Frank diagram of Q > 0 as
in 1.3. Let () be the inward curvature of at p= (Q(t?))-l(cos,sin). Then

Q" Q)/.(8.2) a Qa(Q + )/(Q’e +
In particular, (1.8) is equivalent to saying that the curvature of jz is positive.

Proof. For p R2 we define q(p) by

p q(p)(Q(O))-(cosO, sinO),

where 0 is the argument of p. Thus q is a well-defined positive function (except the
origin) and is positively homogeneous of degree one. Moreover, " is a one-level set of
q. We observe that

(8.3) a div (Vq) 1

(q2 + q22)3/2
(qql 2qlq2q12 + q12q22),

where qi Oq/Opi, 1, 2.
We may assume that 0 0 and Q(0) 1 by rotation and dilation of coordinates.

Since q is homogeneous of degree one so that qi is of degree zero, we see

(8.4) q q cos + q2 sin 0, 0 q cos + q12 sin , 0 q2 cos 0 + q22 sin ,
where functions are evaluated at (cos0, sin 0). From these identities it follows that
q2(p,) O, q11(P,) 0, and ql(p,) q(p,) 1 for p, (1, 0) since Q(0)
q(cos0, sin 0). Differentiate Q in 0 and use (8.4) to get

Q(0) -q sin 0 + q2 cos 0,

Q"(o) + Q(0) qll sin 0 2q1 cos 0 sin 0 + q22 cos2 0,

which yields

q2(P,) Q’(0) and q22(p,) Q"(O) + Q(O) Q"(O) + 1.

Plugging these values into (8.3) we obtain

1
(0) ( + Q’(O))/ (0) + ).

This completes the proof. []
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FULLY NONLINEAR STOCHASTIC PARTIAL DIFFERENTIAL
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Abstract. The authors study a class of fully nonlinear stochastic partial differential equations by
the reduction to a family of deterministic fully nonlinear equations using the stochastic characteristic
method.
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1. Introduction. We are concerned with the stochastic equation

du(t, .) L(t,., u, Du, D2u) dt + (b(t, .)Du + h(t, .)u, dW(t)l

u(O) uo

where

L’[O,-[-O0[X]N X ] X ]1N X ]N2 --+ ] t X, U, p, q) --, L t x, u, p, q

b" [0, T] x RN --. L(NN; ]M), (t, X) --+ b(t, x),

h" [0, T] x ]RN --. NM, (t, x) - h(t, x)

are suitable functions, (see Hypothesis 2.1 below), and W is an NM-valued stan-
dard Brownian motion in a given probability space (gt, 8,F) adapted to a filtration
$- {t}t>0 and such that, for any t _> 0 and any > 0, $-t and W(t + ) W(t) are
independent. Moreover, L(N) and L(N; NM) denote, respectively, the spaceof the
square matrices or order N and the space of the M x N rectangular matrices.

Problem (1) has been extensively studied in the semilinear case, where the oper-
ator L is simply

N

L(t, x, u, p, q) E aj(t, x)qij + ao(t, x, u, p),
i,j=l

and matrix a(t, x) is positive definite; see, for instance, [4] and the references therein.
To our knowledge, in the quasilinear case

N

L(t, x, u, p, q) E aii(t, x, p)qii + ao(t, x, u, p),
i,j=l

only a few papers have been devoted to the subject. We recall [1] for quasilinear
equations in divergence form, where a "splitting up" method was used, and [3] and
[5], where an abstract quasilinear equation was solved, under suitable hypotheses,
using a semigroup approach.

Received by the editors Octobe 8, 1993; accepted for publication (in revised form) May 24,
1994.
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Dipartimento di Matemtic, Facolta di Scienze Universit di Trento, 38050 Povo, Trento, Italy.
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In this paper we proceed, as in [15] and [19], by transforming problem (1) in
a deterministic fully nonlinear equation for almost all w E (see 2 below). This
equation can be solved in a maximal time interval by using recent results about
(deterministic) fully nonlinear equations (see [11] and [13]). One can also show that
the solution is global, provided a suitable (sharp) a priori estimate holds. We will
give an application in 4.

We shall use the following notation. If is a mapping from ]N into I, we shall
denote its gradient by D and the Jacobian matrix by D2.

If a is a mapping fromN into lN, we shall denote its first and second derivatives,
provided they exist, by a and a". We shall denote the trace of a matrix a by Tr a
and we denote the vector of components

(TR [a’(x)a(x)]) Tr [(a’(x)e)a(x)]

by TR[a’(x)a(x)], where el,..., en is the canonical basis of Ig.
Moreover we shall denote the Banach space of all real bounded functions in ]IN

endowed with the "sup" norm by C(]N), the subset of C(]I(N) of all a-Hblder contin-
uous functions by C(N), and the subset of C(N) of all functions that are k-times
differentiable with continuous and bounded derivatives of order less or equal to k by
Ck(N), k 1, 2

It is convenient to introduce two special classes of functions.
DEFINITION 1.1. (i) A mapping

a "[0, +c[IN I ]N ]N __. 1, (t, X, U, p, q) a(t, x, u, p, q)

belongs to the class (0, 0) if it is continuous and, for any T > 0 and r > O, there exists
a constant NT,r such that

la(t, x, u, p, q)l <- NT,r

for all t [0, T], x ]1N, and u, p, and q with norms not greater than r.

(ii) The mapping a belongs to the class (a, fl), with a e ]0,1[ and e ]0, 1[, if for
any T > 0 and r > O, there exists a constant MT,r such that

la(t,x, u,p,q)-a(s,x’, u’,p’,q’)l <_ MT,r(It--sl"+lx--x’l

for all t, s [0, T], x, x ]1N, and u, u, p, p, q, and q with norms not greater than
r.

Roughly speaking, a function a(t,x, u,p, q) belongs to the class (a, ), if it is
a-Hblder continuous in t,/-Hblder continuous in x, and locally Lipschitz continuous
in u, p, and q uniformly in the other variables.

Finally we give. the definition of solution of problem (1).
DEFINITION 1.2. Let T be a stopping time with respect to the filtration {’t}t_>0.

A strong solution of problem (1) in [0, T] is a mapping

u" [0, T] ]N , (t, x, w) --. u(t, x),

such that the following hold:
(i) u(t, .) is t-Bochner measurable, for all t >_ 0; that is, u(t, .) is the a.s. limit

of simple random variables with values in C2+(]N).
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(ii) For all x E N, the real stochastic process u(., x) is such that

L(t, x, u, Du, D2u) e L ([0, T] t),

b(., x)Du, h(., x)u e L2([0, T] gt; IRM).

(iii) For any t [0, T], it holds that

u(t, .) uo + L(s,., u, Du, D2u) ds + (b(s, .)Du(t, .) + h(s, .)u(t, .), dW(s))

almost surely.
A strong solution of problem (1) in a stochastic interval [0, -[, is defined in the

obvious way.

2. Reduction to a deterministic problem. In this section we transform prob-
lem (1) into a deterministic one. For the sake of clarity the transformation will be
defined in two steps. We assume that the following hypothesis holds.

HYPOTHESIS 2.1. (i) For some c,/3 ]0, 1[, the mapping

L" [0, +oo[ xIRg ]R IRN IRN2 -+ IR, (t, x, u, p, q) --+ L(t, x, u, p, q)

belongs to the class (a, ) together with its partial derivatives of the type DxDuDph k DL,
for Ih] + ]k + Ill + Im] < 2.

(ii) There exists > 0 such that, for any r > O, there is Cr > 0 satisfying

]L(0, x, u, p, q) L(0, y, u, p, q)l <- C]x yl+

for all x, y N and u, p, and q with norms not greater than r.

(iii) L belongs to the class (0, 0) together with all its partial derivatives of the
type h k mDxDDpDq L, with Ihl + Ikl + Ill + Irn 3.

(iv) b and h are uniformly continuous and bounded in [0, T] IRg together with
all their partial derivatives with respect to x, u of order less or equal to 4.

(v) All partial derivatives of b and h with respect to x, u of order less or equal
to 4 are of class C in time, uniformly in x.

(vi) For all T, r > O, there exists T,r > 0 such that

OL
(t,x,u,p,q)

1

0- -b(t, x)b* (t, x) >_ T,I,

for all t [0, T], x ]1N, and u, p, and q with norms not greater than r.
In the following we set

1
L(t, x, u, p, q) L(t, x, u, p, q) - Tr [b(t, x)b* (t, x)q].

Assumption 2.1(vi) implies that the nonlinear operator

u [,(t, x, u, Du, D2u)

is elliptic.

Here, following usual notation, the indices are multiindices.
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We now define

y(t,x) u(t,(t,x)),

where is the solution to the system

(2)
d -b(t,) dW(t) + TR [b’(t,)b(t,)] dt,

(0) x.

In virtue of Hypothesis 2.1(v) there exists a.s. the inverse of (t, .) for all t _> 0
which we denote by /(t, .) (see for instance [9]), so that

(t, x) v(t, v(t, x)), t >_ o, x e .
By the ItS-Ventzell formula (see [15], [14], [19]), it follows that y is the solution to
the stochastic partial differential equation

dy(t, x) (t, , u(t, ), Du(t, ), D2u(t, )) dt

((t, )D(t, ), h(t, )) dt Tr(Dh(t, ). (t, )) (t, ) dt

+u(t, )(h(t, ), dW(t)).

Now we go to the second step by setting v(t, x) p(t, x)y(t, x), where

p(t,x) -exp (h(s,(s,x)),dW(s)) + - Ih(s,(s,x))leds

By using the fact that p is the solution to the stochastic differential equation

dp= -p(h, dW(t)) + Ihl2p dt, p(O) 1,

it is not difficult to check that v fulfills

Dtv(t,x) p(t,x) L(t,(t,x),u(t,(t,x)),Du(t,(t,x)),D2u(t,(t,x)))

(3) p(t,x)(b(t,(t,x))Du(t,(t,x)),h(t,(t,x)))

-Tr(Dh(t, (t, x)) b(t, (t, x))) v(t, x).

In order to get a (deterministic) partial differential equation for v, we now have to
express u and its first and second derivatives in terms of v by using the identity

(4) u(t x)- v(t,I(t,x))
p(t, rl(t,x))"

Setting lip and recalling that, by [9], the flow rl(t, .), t >_ 0 is regular, we obtain
by a straightforward computation

Du(t,x) (l’(t,x))*D(t, l(t,x))v(t, (t, x)) + (l’(t,x))*Dv(t, l(t,x))(t, I(t,x))
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and

D:u(t, x) (’ (t, x) )*D2(t, (t, x))?’(t, x)v(t, (t, x))

+ (rl’(t,x))*D2v(t, rl(t,x))’(t,x)(t,l(t,x))

+ 2(’(t,x))*D(t, (t,x)) (R) ’(t,x)Dv(t, (t, x))

+(De(t, r/(t, x)), "(t, x)(., .))v(t, (t, x))

It follows that

+(Dv(t, (t, x)), r/" (t, x)(., .))(t, (t, x)).

u(t,(t,x)) (t,x)v(t,x),

(6) Du(t,(t,x)) (’(t,(t,x)))*D(t,x)v(t,x) + (rl’(t,(t,x)))*Dv(t,x)(t,x),
and

D2u(t,(t,x)) (’(t,(t,x)))*D2(t,x)rl’(t,(t,x))v(t,x)

+ (’(t,(t,x)))*D2v(t,x)q’(t,(t,x))(t,x)

+ 2(rl’(t,(t,x)))*D(t,x) (R) ’(t,(t,x))Dv(t,x)

+(D(t, x), "(t, (t, x))(., .)}v(t, x)

+(Dv(t, x), "(t, (t, x))(.,-)}(t, x).
By substituting (5)-(7) in (3), we finally obtain that v is the solution to the problem

(8) ! Dtv A(t, x, v, Dv, D2v),

( v(0) uo,

where

(9)
A(t,x,v,p,q) p(t,x)L t, (t,x), (t,x)v,(’(t,(t,x)))*D(t,x)v

+(’(t, (t, x)))*(t, x)p, ’(t, (t, x)))*D2(t, x)v’(t, ((t, x))v

+(rl’ (t, (t, x) )* qrl’ (.t, (t, x))(t, x)

+2 (l’(t,(t,x)))*D(t,x) (R) ’(t,(t,x))p

+(D(t, x), "(t, (t, x))(., .))v

+(p,"(t,(t,x))(.,.))(t,x) )
-p(t,x)(b(t,( t,x))((’(t,(t,x)))*D(t,x)v + (l’(t,(t,x)))*(t,x)p), h(t,(t,x)))

-Tr(Dh(t,(t,x)) b(t,(t,x))) v(t,x).
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Now, by using the It6 formula and by proceeding as in [15] and [19], we can prove the
following proposition.

PROPOSITION 2.2. Let uo E C2+Z(NN) and let - <_ T be a stopping time with
respect to the filtration {grt}t_>0. If u is a strong solution of (1) in [0, -] then the
function v(., .)= p(., .)u(.,(., .)) is a strict solution of (8).

Conversely, if v belongs to C([0, T]; C2+(NN)) N Cl([0, 7-1; C(]IN)) a.s. and is
a strict solution of (8) such that v(t, .) is t-Bochner measurable for any t >_ O, then
u, defined by (4), is a strong solution of (1).

In order to state the Markov property we need to extend Proposition 2.2 to the
case of initial datum given at time s >_ 0. This is a straightforward task. Then, with
obvious notation, (4) is meant as

(10) (t,x,; , o(., )) (t, (t, ; , x), ; , o(., ))
p(t, r(t, w; s, x), w; s)

In what follows, we will omit the w-dependence for brevity.
PROPOSITION 2.3. Assume that problem (1) has a unique strong solution u.

Define Ads C {" > s}, s >_ 0 and let " C2+Z(RN) IR be a bounded Bochner-
measurable function. Then u(t, .; 0, uo) is Adt-Bochner measurable and

(11) [((t, .; o, o))lz4] [((t, .; , ))]
=u(s,.;O,uo)

In formula (11) u(s, .;0, ) is the the strong solution to problem (1) with deter-
ministic initial datum E C2+(NN).

Proof. We exploit the fact that the solution u to problem (1) can be expressed
by mean of the solution v to problem (8); then we can apply known results about
deterministic evolution equations available for v, to state corresponding results for u.
First we remark that the semigroup property of the process u follows from Proposition
2.2 and the uniqueness of problem (8).

Finally, let us prove the Markov property (11). Arguing as in the proof of Theorem
9.8 in [4], we have

,=u(s,. ;O,uo

= [v((t,.; s, ))]
’-u(s,.;O,uo)

Note that the second equality is a consequence of

where 2::ft C2+(1N) is Ad-Bochner measurable. In fact, this can be easily
checked when Z is a simple function. Now let Z be a general random variable and
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{Zn} a sequence of simple functions coverging a.s. to Z; then we are allowed to pass
to the limit for n --. oc on the equality

thanks to continuous dependence on the initial data in equation (8) and recalling that
(10) holds. D

3. Local existence and maximal solution. Here we are concerned with prob-
lem (8). We start by proving existence for almost any fixed w E f in a maximal
interval [0, 7(w)[.

PROPOSITION 3.1. Assume that Hypothesis 2.1 holds with a El0, 1/2[, and that
u0 C2+Z+(]N) a.s.; moreover, let uo be o-rneasurable. Then for all w gt, there
exists a maximal interval [0, 7(w)[, depending on uo(w), and a unique regular solution
v of problem (8). Moreover, v(t) is t-Bochner measurable for all t >_ 0 and T is a
stopping time.

Proof. Consider problem (8) for any fixed w e f. To solve it we are going to use
Theorem A.2 in Appendix A. We set

X CZ(IRN), D C2+Z(IN)

and consider the mapping F’[0, T] D --. X, defined by

(12) F(t, v) A(t, x, v, Dv, D2v), ’ t

_
0.

Now we check that Hypothesis A.1 is fulfilled.
Hypothesis A.l(i) follows from Hypothesis 2.1, Proposition B.6 and standard

arguments.
Hypothesis t.l(ii), with 0 min{a, 1/2}, follows again from Hypothesis 2.1

and Proposition B.6, recalling that the trajectories of Brownian motion are 0-HSlder
continuous for any 0 < 1/2.

We now consider Hypothesis A.l(iii). Let t _> 0 and v0 C2+Z(]RN). Then we
have

Fv(t, vo)v DvA(t, ., v0, Dvo, D2vo)v + DpA(t, ., vo, Dvo, D2vo)Dv
+ DqA(t,., vo, Dvo, D2vo)D2v.

We claim that the linear operator F(t, vo) is uniformly elliptic. Due to formula
(9) and Hypothesis 2.1(vi), it is enough to show that II’(t,(t,x))-l]l is uniformly
bounded in t and x. This follows from Hypothesis 2.1(v) and from the identity

l’(t,(t,x)) -1 ’(t, x).

Now we notice that, due to the regularity of its coefficients, the realization of
the operator F(t, vo) in C(IN) is the generator of an analytic semigroup on c(N),
thanks to [17]. By interpolation arguments (see, e.g., [12, 3.1]), it follows that
Fv(t, vo) D X generates an analytic semigroup in X and that

DF(t,o)(a, c) C/+2(N), a e]O, 1[, / + 2a not integer.
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So, A.l(ii) follows. Moreover, thanks to 2.1(i).and (ii), we have

F(O, no) e C+(N) DFv(t,vo)(/2,

so that A.l(v) is satisfied with a /2. Finally, A.l(iv) follows from the Schauder’s
Theorem. So, Hypothesis h. 1 is satisfied, with 0 min{a, 1/2, /2}.

Now, fix T > 0, then, by Theorem A.2 there is a unique solution of problem (8)
in a maximal interval, [0, T(W)[ included in [0, T]. Since the proof of Theorem A.2
(see [11]), is based on an iteration procedure which involves ’T-Bochner measurable
functions, then the solution v is 9rT-Bochner measurable too. Now, fix T1 E [0, T[,
then, by the same argument and by the uniqueness, the maximal solution in [0, T1]
is $’T1-Bochner measurable and defined in [0, T1 A -(w)[. It follows that T1 A - is

T1-Bochner measurable and so T is a stopping time. 0
In order to prove global existence (that is T T a.s.) for problem (1), we need

global existence for problem (8) a.s. We now show that to accomplish this, it is enough
to prove an a priori estimate for the norm IIv(t, .)llc.++(tN) of the solution.

PROPOSITION 3.2. Assume that Hypothesis 2.1 holds. Let uo C2+Z+(IRN) a.s.
Let v(.,w): [0, T(W)[ be the maximal solution of problem (8) given by Proposition 3.1.
Assume moreover that there exists a constant M > 0 such that

(13) [Iv(t, ")IIC2++*(RN) --< M, for all t e [0, T(w)[.

Then we have T(W)
Proof. We still put X CZ(IN) and D C2+(N) and apply Theorem A.2.

Thus, to have a global solution, we have to prove that the mapping

is uniformly continuous. By estimate (13), we have, in fact, where B(0, T; X) denote
the space of bounded function with value in the Banach space X,

v B(0,

which implies, since Dtv- F(t, v),

Dtv e L(0, T; C+(]l,g)).

By an interpolation result (see [16, Prop. 2.7]), it follows that

V e CI-([0, 7-]; C+e+2(][N)).

Choosing 0 1 -s/2, it follows

e c([0,

which yields the conclusion.
Remark 3.3. Sufficient conditions to get a priori estimates of type (13) for the

deterministic problem (8) may be found in [6] and [8]. However, it is not easy to
express such conditions in terms of the coefficients of the original problem (1).

Nevertheless, in the next section, we present an application where it is possible
to prove global existence.
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4. An application. We consider here the special case

(14)
du a(t, x, u)uxxdt + (b(t, x)ux + h(t, x)u)dW(t),

(0) o,

where W(t) is a scalar Brownian motion and a, b, and h satisfy the following hypoth-
esis.

HYPOTHESIS 4.1. (i) For any T > 0 the mappings

a: [0, T] I I -. I, (t, x, u) ---, a(t, x, u),

: [0,T] - , (t,) - (t,),

h: [0, T] IR JR, (t, x) -, h(t, x)

are of class C and are bounded together with all their derivatives.
(ii) There exists u > 0 such that

a(t,x, u) b2(t,x) >_ , V t >_ 0, x,u ]R.

Under this hypothesis, we can easily see that,setting N 1 and

L(t, x, u, p, q) a(t, x, u)q,

hypothesis (2.1) holds.
Now we can prove the follow.ing result.
PROPOSITION 4.2. Assume that Hypothesis 4.1 holds, and let uo E C3(1). Then

there exists a unique strong solution of problem (14).
Proof. We first remark that in this case problem (2) becomes

d -b(t, )dW(t) + b(t, ) bx(t, )dt,

(0) x.

Proceeding as in 2, we set

(t, x) (t, (t, x))
(t,(t,))’

where r(t, x) is the inverse of (t, x), and

{ t lf0t h2 }p(t,x) exp h(s,(s,x))dW(s) + - (s,(s,x))ds

Then v is the solution of the problem

(15)
vt R(t, x, v)vxx + S(t, x, v)vx + T(t, x, v),

v(o) uo,
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where, setting

we have

b(t,x),(t, x, v) a(t, x, v) -( 1 ) 2(t (t,x))R(t, x, v) =d t, (t, x), p(t, x)
V x

1

-(t, (t, x))h(t, (t, x))(t, (t, x)),

( 1 ) ((t,(t,x)) 2p2(t’x) p(t,x)px(t,x)
T(t, x, v) -"d t, (t, x), p(t, x)

v
p2(t, x)

-(t, (t, x))
px(t, x)
p(t,x) ]

-b(t (t,x))h(t (t,x)) +b(t,(t x))h(t,(t,x))(t,(t,x))
px(t’x)
p(t,x-"

In view of Proposition 3.1, given E ]0, 1[, problem (15) has a unique adapted
solution in a maximal interval [0, r[. We want to prove that, with a suitable choice of, there exists K1 > 0 such that

(16) II(t)llc.+, _< K1, ’t E [O,’r[.

We first remark that, by the maximum principle, there exists a positive-constant
K(llollo) such that

fly(t, )IIo K(llollo), t [0, -[.

It follows that the operator

v R(t, x, v)v + S(t, x, v)vx + T(t, x, v)

is an elliptic operator with L coefficients; so, from the well-known Krylov-Safonov
theorem (see [7]), v belongs to C([0, T[;]N) for some / e ]0, 1[. Consequently,
is an elliptic operator with Hhlder-continuous coefficients. Now the required a priori
estimate (16) follows from the classical parabolic Schauder theory, which can be found
in [8]. I-I

Appendix A. Fully nonlinear equations. Let D and X be Banach spaces
such that

DcX,

with the embedding being continuous but not necessarily dense. We are given
mapping

F: [0, +cx[D -- X, (t, v) --. F(t, v),
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and we are concerned with the initial value problem

(A.17)
F(t, t > 0,

v(0)=voED.

We shall consider only regular solutions. Let J be an interval in [0, +c[ such that
min J 0, and fix 0 E ]0, 1[. By definition, a solution of (A.17) on J is a function v
such that, for some 0 ]0, 1[,

(i) v Cl+(J1; X) C(J1; D), for any closed and bounded subinterval J1 of
J, and

(ii) v’(t) F(t, v(t)),t J, and v(0)= v0,

We assume the following hypothesis
HYPOTHESIS A.1. (i) F is continuous together with its partial derivatives Fv and

Fvv.
(ii) For every T > 0 and vo D, F(., vo) and Fv(., v0) are O-HSlder continuous

in [0, T] locally uniformly with respect to vo.
(iii) For all (t, v) E [0, +c[D, F(t, v) generates an analytic semigroup in X;

that is, there are p , ] ]r/2, r[, and M > O, possibly depending on t and v, such
that the resolvent set of F(t, v) contains the sector

and

I]/(/- Fv(t V))-I][L(X) M for

(iv) For all (t, v) E [0, +x[D, there exists a constant a > 0 (possibly depending
on t and v), such that

a[izllD < liFe(t, v) zllx lllzllD, all z D.
a

(v) We have

F(0, vo) e DA(O, ),

where A F(0, vo) and DA(O,) is the real interpolation space defined by

DA(O, cx) (z X: sup
e ]0,1]

The following result is proved in [11, Prop. 2.3 and 2.4].
THEOREM A.2. Assume that Hypothesis A.1 holds. Then there exists a unique

solution

of problem (A.17) in a maximal interval [0, "r,o [, with ’o > O.
If, in addition, v(., vo): [0, T [--+ n is uniformly continuous, then
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Appendix B. Composition of Hhlder-continuous functions. Let E ]0, 1[.
For any function u" Rn --. N, x --. u(x) we set

I111oo sup(l()l x },

S I(x) (y)l
sup

Ix-l
x, yE]Rn },xy

(

[u] sup {
k

x, ye,xy, Ix-yl 1},

We remark that, since

[] _< [1 + 2111Ioo,

the norms I1" II and I1 are equivalent
If u is k times differentiable, k >_ 1, we set

and

We are given a mapping

A" [0,+oo[xNN x ]R x RN x NN R, (t, x, u, p, q) --+ A(t, x, u, p, q),

and we set

(B.18) F(t,u)(x) A(t,x,u(x),Du(x),D2u(x)), V u e C2+(Rg),t e [0, T].

We are interested in the regularity properties of F.
LEMMA B.1. Assume that A belongs to the class (0,0) together with its par-

tial derivatives DxA, 1 ..,N, DA, DpA, 1,...,N, and DqjA, i,j
1,... ,N. Then, for any i, 1[, F belongs to C([0, T] x C2+fi(]N); C(’N)).

Proof. We have to prove that liP(t, u) F(to, uo)ll -- 0 when t to and u -- uo
in C2+(’). Since clearly

lim IIF(t, u) F(to, o)11 0,

it suffices to show that

lim IF(t, u) F(to, u0)] 0.
0
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Let IIx- yll-< 1. We have to estimate

(t, )() (to, o)(x) (t, )() + (to, o)().

To simplify the next formulae, we introduce the notation

(t,x,u(x),Du(x),D2u(x)) + (1 -) (t,y,u(y),Du(y),D2u(y))
and

0 (to, x, uo(x),Du(x),D2uo(x)) + (1 ) (to,y, uo(y),Duo(y),D2uo(y))
Then we have

I [DA(A)(x y) + DA(A)(u(x) u(y))

+DpA(/k)(Du(x) Du(y)) + DqA(),)(D2u(x) D2u(y))]d

[DA(Ao)(x y) + DA(Ao)(uo(x) uo(y))

+DpA(/ko)(Duo(x) Duo(y)) + DA()(D2uo(x) D2uo(y))]d

[Dl(X/- D(Xo/]( )e

+ [D(a) D(ao)l(o()

jo+ [DpA(A)- DpA(Ao)](Duo(x)- Duo(Y))ld{

/o+ [DvA(A) DvA(Ao)](D2uo(x) D2uo(y))]d{

/oo+ ()((x) () o(x) + o())d

+ DpA(A)(Du(x)- Du(y)- Duo(x) + Duo(y))d{

+ DqA(A)(D2u(x)- D2u(y) D2uo(x)+ D2uo(y))d{.

It follows that
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+ IDpA(Ao)l[u-

/o/ [DqA(Ao)I[- u0]Z,2lx y[Zd,

which yields the conclusion.
The proof of the following lemma is similar and is left to the reader.
LEMMA B.2. Assume that A belongs to the class (0, 0) together with its partial

k mderivatives of the type DhDDpDq A, with Ihl / Ikl + Ill +[m <_ 3. Then for any

3 c ]0, 1[, F is a mapping of class C2 from [0, /cx[C2+f(n) into C(n).
We now give sufficient conditions in order that F(t, u) is a-HSlder continuous in

t.
LEMMA B.3. Assume that A belongs to the class (a,) together with its par-

tial derivatives DxA, 1,...,N, DA, DpA, 1,...,N, and Dq.jA, i,j
1,..., N. Then for all u CZ+2(]Rn) there exists a constant C(u) such that

(B.19) [IF(t, u)- r(s, -< C(u)lt- sl", for all t,s [0, T].

Proof. Let u e C/3+2(]n) and r first remark that

(B.20) liE(t, u) F(s, u)ll <_ MT,rlt sl s, for all t, s [0, T].
Now we want to estimate IF(t, u)- F(s, u)]. To do this, we have to estimate

J A(t,x, u(x),Du(x),D2u(x)) A(s,x, u(x),Du(x),D2u(x))

We have

-A(t, y, u(y), Du(y), D2u(y)) + A(s, y, u(y), Du(y), D2u(y)).

J A(t, x, u(x), Du(x), D2u(x)) A(t, y, u(x), Du(x), D2u(x))

-A(s, x, u(x), Du(x), D2u(x)) + A(s, y, u(x), Du(x), D2u(x))

+A(t, y, u(x), Du(x), Du(x)) A(t, y, u(y), Du(y), Du(y))

-A(s, y, u(x), Du(x), D2u(x)) + A(s, y, u(y), Du(y), D2u(y)),
and so, setting

#t (t,x + (1 )y,u(x),Du(x),D2u(x)),

t (t,y,u(x) + (1 )u(y),Du(x) + (1 )Du(y),D2u(x) + (1 )D2u(y)),
we have

[DxA(#t) DA(#s)](x- y)d

[DA(t) DA(s)](u(x) u(y))d

[DpA(t) DpA()](Du(x) Du(y))d

[DqA(,) DqA()](D2u(x) D2u(y))d.
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If Ix- y[ _< 1 and r [[u[[2,f, we get

IJ[ <_ MT,r(1 + Ilul[2,z)lt- HI’Ix-
which yields

IF(t, u) F(s, u)] _< Mr(1 + ]lullz,2)lt sl s. D

The following result is proved similarly.
LEMMA B.4. Assume that A belongs to the class (a, ) together with its partial

mderivatives of the type DhDkDpDq A, for Ihl + Ikl + Ill + Iml <_ 2. Then, for all r > 0
and for all v E CZ+2(In) such that I[vl[2, < r, there exists such that

(B.21) I[F(t, v) F(s, v)l[Z < MT,[t S[ for all t, s e [0, T].

We end this section by giving a sufficient condition in order that F fulfills Hy-
pothesis A.1 (i) and (ii). For this, we need the following hypothesis.

HYPOTHESIS B.5. (i) A belongs to the class (a, ) together with its partial deriva-
tives of the type h k m _2.DDuDpDq A, for ]h[ + [k] + ]+lm

(ii) A belongs to the class (0, O) together with its partial derivatives of the type
mnhnnpnq A, for Ihl + Ikl + Ill + Iml 3.

Then the following proposition holds.
PROPOSITION B.6. Let F be defined by (B.18) and assume that Hypothesis B.5

holds. Then E fulfills Hypothesis i.l(i) and (ii).
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CAPILLARY WEDGES REVISITED*

PAUL CONCUS AND ROBERT FINNS

Abstract. Equilibrium capillary surfaces in zero gravity in cylindrical containers whose sections
are (wedge) domains with corners are studied. Necessary and also sufficient conditions are developed
for the existence or nonexistence of surfaces that are locally graphs over the base at the corner, with
(prescribed) contact angles that may differ on the two sides. It is shown that the behavior can depart
in significant qualitative ways from that which occurs when the two contact angles are the same.
Conditions are derived under which such qualitative changes must occur, and illustrative examples
are given.

Key words, capillarity, contact angle, free surface, mean curvature, microgravity, wedge do-
main
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1. Introduction. This paper is devoted to the results announced in our earlier
note [1], concerning existence and nonexistence of capillary surfaces over domains
with corners, when the data on the two sides of the corner may differ. The behavior
of the solutions can differ in significant qualitative ways from that which occurs in
the previously considered case of constant data; we are able to a large extent to
characterize the conditions under which such qualitative changes must occur.

For background considerations, we refer the reader to our earlier papers [2], [3]
and to Chapters 1, 5, and 6 in [4]. In general terms, we consider a cylindrical capillary
tube Z with section Ft, closed at one end and partly filled with fluid in the absence of
gravity, forming a free surface $. We suppose the boundary E of t to be piecewise
smooth and to have an isolated corner P of opening 2(, 0 < 2( < , forming a local
"wedge domain" at P; see Fig. 1. We seek conditions under which, for prescribed
constant (contact) angles 71 and /2 in the interval [0, u], there will exist an S that
can be (locally) represented by a function z u(x, y) over a neighborhood * of P
in Ft and which meets the sides Z1 and Z2, over adjacent segments E1 and E2 of OFt
that abut at P, in the angles 71 and /2.

Specifically, we seek a solution of

(1) div Tu 2H

in some *, with

(e)
Du

V/1 + IDul 2
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(sin a, cos a)

Z 1 (a, b)

P

2
(sin a,- cos a)

FIG. 1. The wedge configuration.

and H an arbitrary prescribed constant, such that

(3)
. Tu cos 0’1 on 1,. Tu cos0’2 on E2,

being unit exterior normal vector. Geometrically, H is the mean curvature of S;
when H 0, ,S becomes a minimal surface. In a physical situation, H is determined by
the global configuration of t and by the boundary conditions over the entire boundary.
One sees easily that meaningful.physical conditions can give rise to any desired value
of H. It is worth noting that if 0’1 0’2 = r/2 over the entire boundary, then H = 0; if

0’1 0’2 7F/2 over the entire boundary, then the global problem admits the solution
u -= 0 in t, which is unique up to an additive constant.

It is important to observe that in the statement of the problem, ,S is not assumed
to be defined over P, and no growth conditions are imposed as P is approached from
within f.

2. Relation to previous work. In earlier work [2], [3], we have shown that if

0’1 0’2 0’, then a solution of the local problem (1)-(3) can exist only if a _> I 0’1;
if H = 0 and if E1 and E2 are linear segments, then this condition also suffices, while
if H 0, then a > I -0’1 suffices for existence. Again we emphasize that no growth
restriction is required at P. Tam [5] showed that whenever a solution exists, then the
surface 8 is continuous and has a continuous unit normal ] up to P, see also Simon
[6] for earlier work and Miersemann [7] and Lieberman [8] for further developments.
This remarkable behavior is the underlying reason that Vreeburg obtained in [9] the
identical expression a _> I -0’1 as condition for existence of a surface with normal
vector continuous to the vertex, without any use of the differential equation.

In the interim, Keller, King, and Merchant [10, 2] studied again the question of
a capillary surface u(x, y) defined in a wedge, with (possibly) differing angles 0’1,0’2 on
the two sides. Statements given in that paper conflict basically with a previous result
of ours to which the authors refer and of which they assert a simplified proof. The
new results of our present study disagree in turn with those announced in [10] for the
corresponding general case. Our results are also to some extent at variance with the
work by Vreeburg [9] indicated above; these differences are discussed in our paper [1].

It is a curious accident that, when the contact angles on the two wedge sides
are equal, all the procedures lead to criteria that look formally similar to those we
originally obtained. The criteria do nevertheless differ, even in the equal angle case, in
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an important respect. This discrepancy presumably lies at the source of the statement
in the abstract of [10] that "the height of the free surface at the corner tends to infinity
as the wedge angle decreases to a critical value dependent upon the contact angle."
The statement is in conflict with the discontinuous dependence on the data that is
characteristic for the behavior of the solutions.

When differing contact angles on the two sides are contemplated, the distinctions
become still more marked. A whole range of solutions appears that is not encom-
passed in the results stated in [10]; these solutions exhibit a singular behavior at the
vertex that has not been previously remarked, beyond a particular case that arose
peripherally in [11]. For this reason, it appears to us that the proposal of [10], to
use its criterion as a basis for experiments to measure contact angle, would lead to
incorrect results in many cases. Examples of the new range of solutions are described
in 5 below, and some numerically computed illustrations are given in [12]. It should
be of considerable interest to test the results with physical experiments, which could
be carried out in a suitable microgravity environment.

A more complete discussion of some of the above material appears in [13].
3. Conditions for existence. We proceed to discuss the problem posed in 1.
In the (B1, B2) plane, we introduce the closed elliptical domain

(4) $" B -t- B22 + 2BIB2 cos 2a _< sin2 2a

inscribed in a square Q as indicated in Fig. 2. $ cuts off domains 791+, 79i- of Q that
are interior to the strip A’[B1 B2[ < 2cos a, and domains 792+, 79- of Q that are
exterior to A. Note that the lines B1 B2 +2 cos2a pass through the intersection
points of 05 with OQ. We then have

THEOREM 1. Set B1 cos9/1, /2 cos9/2. A necessary condition for existence

of a solution surface S" u(x, y) of (1)-(3) with unit normal N continuous up to P is
that the point (B1, B2) lie in $; the boundary of $ corresponds to those configurations

for which S is vertical (2 horizontal at P. On 05n079+ there holds 71 +9/2 r-
on 05 N 079, there holds 9/1 --9/2 7r -- 2a. On 05 c979 and 05 C? 079+2, there hold,
respectively, 9/1 -9/2 7r 2a and 9/1 -9/2 -Tr zt- 2a. For existence of such a solution
in a domain ft* of the type considered and for arbitrary H, it suJfices that E1 and E2
be linear segments, and that (B1, B2) lie interior to $. If (BI, B2) E/)’ C/c979+ ffl 4,
then there is a solution (in some ft*) for any H > O; if (B1,B2) E 05 /079
there is a solution for any H < O.

Any solution u(x, y), corresponding to interior points of $ or to points of
interior to .4, is continuous and admits a continuous unit normal vector up to P.

Proof. Write f (a, b, c} with c _< 0, a2 + b2 + c2 1. Referring to Fig. 1, we
find

cos 9/1 a sin a + b cos a,
cos 9/2 a sin a b cos a,

and the first sentence of the necessary condition follows immediately from the observa-
tion that a2+b2 <_ 1, equality holding if and only if c 0. For any (B1, B2) /)8C10q791+,
there corresponds a unique (9/1,9/2) with 9/1,9/2 in [0, r]. We rewrite

(5) B -t- B22 + 2B1B2 cos 2c sin2 2c

in the form

(6) (1 B12)(1 B) (BIB2 + cos 2c) 2.
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B2

B1

Bl-B2 2 cos2

FIG. 2. Elliptical domain $, reference strip .A, square Q, and domains
2a > -ff,r the directions of major and minor axes interchange.

case 2a < -ft. If

Since on the indicated arc we have

(7) (B1- B2) < 4cos4 a,

there follows from (5)

(8) B1B2 %. cos 2a > 0.

Thus, using positive square roots, we obtain from (6)

(9) l B21l B BIB2 %.cos2c,

which is equivalent to

(o) cos(z + cos( 

so that either ")’1%. 2 71-- 2o or 1%. 2 71- %. 2oz. But from (5), we find at the
symmetry point B1 B2 B > 0 on 0$ g 0:D+ that B sin a cos( a). Thus,
the former relation must hold at the symmetry point, and hence it holds throughout
the arc. Similarly, on 0$ N 0:D-, there holds ")/1%- 2 71-

On the remaining two arcs 08 N 0D and 08 V 0D2+, we obtain by analogous
reasoning that ’1 2-- 71" 2a and -r + 2a, respectively.

To prove the sufficiency, observe that if (B,B2) is interior to 8, then a, b, and
c are uniquely determined by the conditions just given, and observe that c < 0. The
plane II through P with normal N then solves the problem when H 0. If H > 0,
then a lower hemisphere of radius 1/H and tangent to II at P provides an explicit
local solution, while if H < 0, then an upper hemisphere yields a solution (see Fig. 3).

If (B1, B2) is a boundary point of 8, then this procedure always fails when H 0;
if H : 0, then the procedure can under some circumstances yield a solution, provided
the trace of II on the plane of 9t does not enter the (closed) wedge domain. That is,
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P P

FIG. 3. Covering of neighborhoods of P by hemispheres; when H is vertical (corresponding to
points on 0), only one of the two hemispheres achieving the boundary data at P covers a neighbor-
hood of P in .
the vector (a, b) of Fig. 1 must be a linear combination, with positive coefficients, of
the two other vectors in the figure. Since c 0 in this case, the condition becomes
Ibl < cosa, or equivalently IB1 B21 < 2cos2 a; that is, (B1, B2) e A. But even with
that restriction, not all possibilities can be achieved, as the signs of ux, uy now reverse
for the two hemispheres tangent to II at P that cover a neighborhood of P in t (see
Fig. 3), and thus changing the sign of H also reverses the signs of ux, uy. Nevertheless,
on 0g0/)l+ the condition 71 + 72 -2c can be realized by an explicit construction
with a lower hemisphere of arbitrary radius; the construction is indicated in Fig. 4.

Similarly, on 0 N 0/)-, there must hold 71 + 72 r + 2c, and an explicit
construction can be achieved with an upper hemisphere of arbitrary radius.

With regard to the remaining two arcs 05 N 0/)2+ and 05 0/), it will be shown
below (in 5) that solutions exist, at least at the symmetry points of these arcs; these
solutions are, however, not known explicitly.

The final statement of the theorem follows from the method of Tam [5], which
applies without essential change to the extended situation considered here.

It should be emphasized that we have not excluded the possibility of solutions
with negative H achieving the data on the segment 0 0/)1+ or with positive H
achieving the data on the segment 0

In view of the four relations just obtained for 71 and 72 on 05, we see that
appears as a rectangle in the 71,72 coordinates, with sides inclined at 45 to the axes
(Fig. 5).

4. Nonexistence. In the above discussion, the requirement that E1 and E2
be linear was introduced solely to facilitate a simple explicit sufficiency proof; it is
not essential to the substance of the problem. It is less clear under what conditions
solutions with discontinuities at P are excluded, as happens in the equal angle case.
To study that point, we attempt to extend the method we introduced for that case
to this more general situation. Following in general outline our earlier procedure, we
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FIG. 4. Construction of solution as lower hemisphere; "1 + /2 r 2a, H > 0.

2

0 -2a

FIG. 5. Image of g and of Q in (1, /2) coordinates.

apply Green’s identity to (1) in the subdomain f(A) indicated in Fig. 6, cut off by F
and A (the segment A is introduced to exclude possible singularities at the vertex P).
We obtain

(11)

The crucial observation in what follows is that lu.Tul <1 for any function u(x, y).
This inequality permits us initially to move A to the vertex P, with the integral over
that segment disappearing in the limit. Our next step is to replace u. Tu in the
other integral by its positive and negative bounds and then to let F move to P by
parallel translation. Referring to Fig. 6, we choose OZl and o2 in (2c , y) such that
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FIG. 6.
(2a_,).

P

Configuration for Theorem 2. Note that 01 > O, OZ2 < O; both are in the range

al + a2 2a. Since the area term in (11) tends to zero faster than any of the lengths
and since E1 and E2 are asymptotically linear, we are led to the inequality

cos "1 cos2+
COS O/1 COS O2

tana + tan 02

as a necessary condition for existence of a solution. Setting A1 cosal, A2 cos a2
and introducing B1, B2 as above, we are led to

LEMMA 1. If O1,O2 are as above and IB2A1 + BIA21 > sin2a then there is no
solution to the problem, regardless of growth conditions at P.

Clearly the conditions of Lemma 1 cannot be satisfied when (B1, B2) is interior
to $, as Theorem 1 would then imply existence of a solution. We ask whether the
conditions are necessarily satisfied for points exterior to $. In formal terms, we have
the

QUESTION. Given (B,B2) disjoint from , do there exist and (2 in

(2a- , ) such that a + a2 2 and IB2A + BIA21 > sin2a?
To answer the question, we first prove the following lemma.

the constraint al + (2 2a implies theLEMMA 2. For o1 and a2 in (- - -relation

(2) A21 + A2 2AIA2 cos 2a sin2 2a; A1, A2 > 0

describing that portion of an elliptical arc partly inscribed in a unit square in the
(A1,A2) plane, that lies in the first quadrant (see Fig. 7). Conversely, whenever (12)
holds there is a unique pair (, 2 (up to permutation) such that 1 + 2 2 and

and 02 are. in 2 - -i

Proof. From a + a2 2a, we find AA2- cos2a +V/1- Av/1- A, from
which (12) follows on squaring both sides. Conversely, if (12) holds, it can be rewritten
in the form just indicated. Choosing al cos-(A1) and a2 cos-(A2)in [0,r/2),
we find cos(a1 =t= a2) cos 2a, from which al =t= a2 2a. By changing the signs of
al or a2 or both, we can arrange to have al + a2 2a, with a and a2 in (-y, ).

then 1 + a2 < 2. This contradiction completes theIf OZl < 2a- y or a2 < 2a- ,
proof. FI
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A2 or B2

A orB1

FIG. 7. Elliptical domain , elliptical constraint arc :Tz; case 2a < -.
We set

(13)

x y
A1 =-+-

cos a sin a
-x y

A2
cos a sin a

transforming the elliptical arc (12) into a circular arc C centered at the origin, of radius
R sin a cos a, and restricted to the upper sector between the lines

(14) y +xtana

(see Fig. 8). The two lines L1 and L2 determined by B2A1 -b BIA2 +sin2a now
become

(15) B1 B2 B1 + B2
x + --y :t: sin 2a.

cos a sin a

The inequality IB2A1 + BAeI > sin2a holds if and only if (x,y) lies outside the strip
Y bounded by the lines, and each line has distance

(16) d
sin2 2a

2v/B12 + B22 + 2B1B2 cos 2a

from the origin. When (B1, B2) is exterior to 8, we find

(17) d < sin a cos a R.

Despite the inequality in this last result, it can happen that C lies strictly interior
to l/Y, as C contains only a portion of the full circle. In such a case, the method
yields no information. But it can also occur that interior points of C lie exterior to l/Y;
whenever that happens, any such point of C yields by Lemma 2 a suitable pair o1, O2
and excludes the possibility of any solution to the original problem. We summarize
what we have found in the following theorem.
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Y

""’ sin O cos tX

FIG. 8. Normalized configuration (tentative); reference lines.

THEOREM 2. If C contains points exterior to the closed strip 14; determined by
(15), then there is no solution of (1)-(3) in any neighborhood ft* of P in ft, for any
constant H; this result holds without growth condition at P. If C lies interior to 142,
then the method provides no information.

The final statement of the theorem does not reflect technical failure of the
method, but rather arises from actual properties of the solutions. This will be apparent
from the second of the following examples.

5. Four examples.
Example 1. E1 and E2 are linear, ")’1 9’2 9’ (equivalently, B1 B2 B).

Then (15) becomes the pair of horizontal lines y +/-(sin2 acosa)/B. The arc C
is independent of B and is indicated in Fig. 9. If (B, B) is exterior to g" then one
of the lines crosses C as indicated and points of C will lie exterior to 14;; hence by
Theorem 2 no solution can exist. If (B, B) is in the closure of $ then C lies in the
closed strip and Theorem 2 yields no information. However in this case we clearly
have IB1 -B21 < 2 cos2 a and hence, by Theorem 1, a solution with continuous normal
exists. Since (B, B) is exterior to $ if and only if a < I -9’1 we retrieve exactly our
earlier result for the constant angle case, from a more general point of view.

r (B1 -B2 B 7 0). NowExample 2. E1 and E2 are linear, 9’1 r- 9’2 -C is as before, but (15) now yields the two vertical lines Bx +/-sinacos2a. Since

IBI <_ 1, C always lies interior to 14;, and thus Theorem 2 yields no information.
If in addition B > cos a, then (B,-B) is exterior to 8, and according to Theo-

rem 1 no solution with continuous normal can exist. Nevertheless, a solution to the
original problem without growth hypotheses can exist, at least in a significant family
of cases. Examples with B 1 and any a are provided by the "moonies", whose ex-
istence is proved in [11]. These surfaces have 9’1 0 and 9’2 r on adjacent circular
arcs of differing radius, see Fig. 10. Theorem 1 provides a new proof independent of
the one given in [11], that these surfaces have discontinuous normals at P.

The existence proof in [11] can be modified without essential change to show that
thenif the data 9’ 0 and 9’ r are modified to 9’ and r- 9’, with 0 _< 9’ _< 3,

a solution exists in the identical domain. Thus we obtain a solution of the problem
just formulated for any B with 0 _< B _< 1; these solutions have normal vectors
discontinuous at P if B > cos a. It can be shown that, if B < 1, then the surface is
bounded above and below in t; if B 1, then u(x, y) --, -oc for any approach to the



CAPILLARY WEDGES REVISITED 65

sin o cos o "

L1

FIG. 9. Configuration for Example 1.

FIG. 10. Domain for moonie.

P

smaller circle, but remains bounded above and below on the larger one.
Thus, in a configuration with differing contact angles, solutions may appear whose

behavior at P is very different from that which can occur in the equal angle case. These
solutions could not have been obtained by the procedures used for Theorem 1. El

We observe that if B1 -B2, then according to Theorem 1 solutions that are
smooth up to P can be obtained with successively larger values of IBI tending to
unity, as the opening angle 2a closes down to zero. This is despite the discontinuity
that occurs when IBI > cos c, and in contrast with the equal angle case, where the
admissible B necessarily become small in magnitude with c.

Example 3. E1 and E2 are linear, B1 B, B2 0, o < . We obtain once more
the same C, but (15) yields the sloping lines

B B
x + y + sin 2a.

cos a sin a

These two lines will enclose C if and only if IBI _< sin 2a (see Fig. 11). This is exactly
the condition that (B, 0) should be in the closure of and also that IB1-B2] < 2 cos2 a
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sin a

FIG. 11. Configuration for Example 3; IBI sin 2cz.

FIG. 12. Configuration for Example 4.

(in the given range of c). Thus, by Theorems 1 and 2, there is a solution if and only
if IBI _< sin 2a, and in this case, a solution can be found with continuous normal up
to P.

This configuration connects naturally with the equal angle case, as any solution
can be reflected across E2 to obtain a solution with equal angles on the edges of a
wedge of opening 4a, and conversely, every symmetric solution in such a wedge yields
a solution for the given data (B, 0) in the half angle. But the existence-criterion for
the equal angle problem is 2a > I- 71, which is equivalent to IBI _< sin 2c. Thus,
we obtain once more (as in Example 1) the existence theorem for the equal angle case
from a more general point of view.

In this case evenExample 4. E1 and E2 are linear, B1 B, B2 0, < o < .
though the lines L1 and L2 cut through the completed circle containing C, the arc C
itself lies between the lines (see Fig. 12), and thus Theorem 2 yields no information.
If ]B] < sin 2c, then Theorem 1 still guarantees the existence of a solution smooth
to P. But in this case, sin 2c > 2 cos2a, and hence we can no longer be assured of
existence of solutions corresponding to data points on the boundary of $.
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If B > sin 2a, then Theorem 2 yields no information while Theorem 1 guarantees
that no smooth solution can exist. As in Example 3, any solution would yield a solution
of the constant angle problem in a wedge of opening 4a. For such a case, for which 4c
7, Korevaar [14] has shown the existence in a gravity field of solutions that are bounded
but discontinuous at the vertex. Computations we have made [15] indicate that jump
discontinuities can occur in the absence of gravity for values I- 1 that exceed a
critical one, depending on a and on the global geometry. In a forthcoming work,
Lancaster and Siegel [16] characterize the local qualitative behavior of the solutions
at such points.

It should be observed that not only can discontinuities appear at reentrant corners
with constant data as above; discontinuities occasioned by abruptly changing data can
occur for smooth boundaries, at least in the presence of gravity fields; an example is
given on p. 15 of [17].

6. Other properties. We note that in all the above examples, the endpoints
of C lie interior to the closed strip determined by L1 and L2. This behavior is in fact
quite general.

LEMMA 3. Let L and L2 be determined, respectively, by the plus and minus signs
in (15). Then the right-hand endpoint of C lies on L1 if and only if B 1; it lies
on L2 if and only if B -1. The left-hand endpoint of C lies on L1 if and only if
B2 1; it lies on L2 if and only if B2 -1. Both endpoints lie always interior to the
closed strip .

Proof. Setting

F(x,y) B1- B2 x+ BI + B2
cos a sin a y sin

((x, y) B1 B2 x
__

B1 + B2
cos a sin a Y + sin

the lines L1 and L2 are characterized, respectively, by F(x, y) 0 and by G(x, y) O.
Choosing for x, y the coordinates of the right-hand endpoint of C, we find F(x, y)
(B1 1) sin2a, G(x,y) (BI + 1) sin2a. This proves the assertions relating to B;
those relating to B2 are proved analogously. The same relations show that if IBI < 1,
then the right-hand endpoint of C lies strictly between the two lines; similarly, the
left-hand endpoint lies between the lines when

As a consequence of Lemma 3, we see that the configuration indicated in Fig. 8,
which was drawn to be indicative of a general situation, cannot occur as shown, as one

of the endpoints of C lies exterior to the strip in that configuration.
Referring to Fig. 2, we introduce :D+, :D-, :D2+, and :D- as in that figure. We adjoin

to these domains all the boundary points that lie on the boundary of the square. On
the line segment B B2 B > 0, L takes the form y (sinacosa)/B, a
horizontal line that is tangent to C at its midpoint when (B, B) is on the boundary
of $, and cuts through C when (B, B) lies exterior to $, as in Fig. 9. Thus, according
to Theorem 2, the wedge problem admits no solution corresponding to the segment
1 >_ B > sins (cf., Example 1). We now allow (B,B2) to move along the arc of
0 between the two nearest contact points with the square. According to (16), the
distance of L1 to the origin remains unchanged, and thus we obtain a family of lines
tangent to the circle on which C lies. Since IBI < 1 and IB21 < 1 interior to the arc
of 05 considered, we find by Lemma 3 that all corresponding contact points with the
circle actually lie interior to C. Again by Lemma 3, as the points on 05 move to the
contact points with the square, L1 becomes tangent to 2 at the respective endpoints;
thus, all of C is covered. It is easy to see that the covering is 1-1.
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Through each of the considered points of 05, we construct the extended line
segment from the origin. Repeating the reasoning given above for the B1 B2 > 0
configuration, we find that, for all points of that line segment exterior to $, there
exists no solution to the wedge problem. Since these lines sweep out :D+, there can
be no solution for any point of :D+. An identical reasoning excludes solutions for any
point of -.

We now consider the two remaining complementary domains T2+ and T, which
have (1,- 1) and (-1, 1) as boundary points. In Example 2 above, we have shown the
existence of solutions for every point on the line segment -1 _< B1 -B2

_
1; thus

(: lies between L1 and L2 for all points on that segment (see Fig. 12). These solution
surfaces have discontinuous normals at P for all points exterior to ’. Essentially, a
repetition of the reasoning directly above shows that C lies between L1 and L2 for all
points of T2+ and of :D-. We have proved the following theorem.

TREOREM 3. For any points (B1, B2) in the domains T)+ andT defined above,
there are points of exterior to the strip l/Y, and hence there exists no solution to the
wedge problem (1)-(3) in any neighborhood of the vertex P, for any constant H. In
P+2 and T), lies interior to V; solutions do exist, at least on the symmetry line
BI -B2 of those domains. For all points of that line exterior to $, the unit norrnals
to the solution surfaces are discontinuous at P.

For all interior points of $ and any H, solutions exist and all such solutions are
smooth up to P. We conjecture that for any c in the range 0 < a < considered,
there exist wedge domains for which solutions (with discontinuous normal) exist for
all (B1, B2) lying in :D2+ or in T.

We close with the following theorem.
THEOREM 4. Whenever a bounded solution exists in a wedge domain, then every

solution is bounded.
This is an immediate formal consequence of the general comparison principle for

capillary surfaces; see [17, 2] or [4, Chap. 5]. Unbounded solutions can occur, as in
the "moonie" example above. In such a case, every solution is unbounded.
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GLOBAL EXISTENCE OF SOLUTIONS FOR THE SYSTEM OF
COMPRESSIBLE ADIABATIC FLOW THROUGH POROUS MEDIA*

L. HSIAO* AND D. SERRE$

Abstract. Consider the quasilinear hyperbolic system

vt-ux O,
(1) ut T p(v,s)x =-cu, (>0,

st --O
Pv < O for v > O,

with initial data

() (, 0) o(), (, 0) v + o(), (, 0) + 0(),

where V > 0, V and are constants, (uo(x), vo(x)) E C with a compact support, and so(x) C2

with a compact support.
It is proved in this paper that there exists a globally defined classical solution for the Cauchy

problem if the Cl-norm of (uo(x), vo(x)) and the C2-norm of so(x) are small.

Key words, global existence, the system of compressible adiabatic flow, damping dissipation,
L2-estimates, L-esitmates.

AMS subject classifications. 35, 76

1. Introduction. Consider the system

(1.1)
Vt tx 0,
ut + p(v, s)x -au,
St O,

which can be used to model the adiabatic gas flow through a porous medium, where
v denotes the specific volume, u denotes the velocity, s denotes the entropy, and p
denotes the pressure, with pv < 0 for v > 0. This system is strictly hyperbolic, with
eigenvalues /1 --v, /2 ----0, and

For the case a 0, namely

(1.2)
Vt Ux O,
ut + p(v, s)x 0,
St O,

there is no globally defined classical solution, in general. In fact, consider the initial
data

(1.3) o) o) +  vo(x), o)

such that is a positive constant, and (u0(x), vo(x),so(x)) e C with a compact
support. It is shown in [LI] and [LZ] that there exists a small e0 > 0 such that for
any 0 < _< 0, the C solution of this Cauchy problem blows up at a finite time
and the life span is (s) O(s-1).
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For system (1.1) with a damping term, however, the situation is different. Con-
sider any initial data

(1.4) (x, 0) 0(x), (x, 0) + 0(x), (x, 0) + 0(x),

where > 0, and are constants, (uo(x), vo(x)) E C with a compact support, and
so(x) C2 with a compact support. We prove that there exists a globally defined
classical solution for the Cauchy problem if the Cl-norm of (uo(x), vo(x)) and the C2-

norm of so(x) are small. This means that the damping dissipation is strong enough
to preserve the smoothness of the initial data when it is small.

Another concern is the influence of the damping mechanism on the large-time
behavior of solutions. For the case of isentropic flow, namely s(x, t) =_ constant, it
has been proven [HL] that the solution of the Cauchy problem

Vt tx 0,

(1.5) ut + p(v)x -au, > 0, p’(v) < O
v(x, O) vo(x), u(x, O) uo(x) with

can be described by the solution of the problem

(1.6)

forv >0,
lim (vo(x), uo(x)) (v=, u=)

-1_1(),-- (),
(x, 0) 0(x) with lim 0(x) vT

time asymptotically. The system in (1.6) is obtained from (1.5) by approximating
the momentum equation in (1.5)2 with Darcy’s law. Moreover, the L2-norm and L-
norm of the difference between these two solutions tend to zero with a rate t-1/2 as
time t tends to infinity [HL]. This shows that certain nonlinear diffusive phenomena
occur for the solution of (1.5), which is caused by the damping mechanism.

For system (1.1), the corresponding simplified system takes the form

(1.7) u --p(v,s),
(x) + 0(x).

Consider the initial data

(1.8) v(x, O) + o(x), o e C with a compact support.

It is expected that the large-time behavior of the solution for (1.1) and (1.4) can be
described by the solution of (1.7) and (1.8). This is discussed in [HS].

The global existence result in this paper is established by the L2-estimates for
the solutions and L-estimates on the first derivatives, which are given in the second
section. The third section is devoted to the global existence theorem.

2. The a priori estimates. Denote c (-pv(v,s))1/2. Let

(2.1) { w u- h(v, s),
z=u+h(v,s),

where h(v, s) satisfies the equation

(2.2) chv pv O.
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Then system (1.1) can be written as

,- -(z + )+(-),
(.) z + -(z + ) +( )s,

St O,

which is equivalent to (1.1) for classical solutions.
For the system ofg dynamics-,

(2.4)

and it is easy to find that

and

h(v, s) 2/ 9/ -9/- 1
v "e2

chs Ps v-es.
Thus, system (2.3) takes the form

D-w -(z + w)+ f(z w,s,s),
(2.5) D+z -(z + w) + f(z w, s, s),

(t, ) (o, ),
where

D- Ot cO, D+=Or+cOS,

f(z w, s, s) A(7)(z w)-=-,e s,

(z , ) B(e) (z ),
-I-1

For simplicity, we will. only discuss system (1.1) for gas dynamics from now on.
Introduce g(z w, s, sx) g (z w, s) + g2(z w, s)s, in which gl and g2 are

chosen so that

g’ ]--C--
1g’2 4(7 1) c,

0g (i 1, 2) (let recall that c may be viewed as a functionwhere 9i denotes o(-o) us

of z w only).
We may choose

3’-3
(2.6) gl(Z W,S) a(7 1) [B(7)]_1/2e.(_l (z w)=(-1)

2(3-’7)

[e()l-1/2--. ( ).,-.(" ( ’) (a
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Then it can be shown that

(e.8)
(2.9)

D+[c 1/2 zx + g] -l[c1/2 zx + g]2 + mR[c1/2 zx + g] GF,

D-[c1/2w + g] -l[c1/2wx + g]2 + mB[c1/2w + g] aB,

where

2 8)+Q(z w, s)s + Q(z w s

Furthermore, it can be shown that

2
(2.10) mF 41GF --- + ClF(Z W, s)s + C2F(Z W, S)S + C3F(Z W, S)S,

o2

(2.11) m2B 41GB -- + ClB(Z w, s)sx + C2B(Z W, S)S2 + C3B(Z W, S)S,

where

2c 2c(/+ 1)
c (IF1( ,)
3 , (3 )1

4c2 2a(7 + 1) Q2F,(z ,)
(3, 1) (3 1

C3F(Z W, S) _2a( + 1)
Q3F,

(3 ")’)gl
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4a’7 2a(’7 + 1)ClB(Z W, 8) --(3_7)(7_ 1)C-- (3--")/)gl
IB,

1672c2 2a(7 + 1)
Q2B,C2B(Z- w,s)=

(37- 1)2(7- 1) 2 (3- /)gl

C3B(Z- W S)
20(’y + 1)
(3 --’)’)91

It is easy to see that l(z w, s) > 0 for z w > 0. Moreover, m2 41G. > 0 and

m 41GB > 0 if ]sx and [sx are small.
Denote c1/2 zx + g y. (2.8) implies that

(2.12)

where

( -z)
Yl-- O(’ %- 1) gl{mF v/m2- 41GF},

(3-)
Y2 o / %- 1) g {mF %- v/m2F --41GF}.

Similarly, denote c1/2 wx + g Y. (2.9) implies that

(2.13) D-[Y] -l(Y Y1)(Y Y),

where

Define

( -)YI c(’y + 1) g {rob V/m2B 41GB },

(-)Y2 a(7 + 1) g" {rob + v/m2B -41GB}.

D {(z, w, s)" alh(V, ) < z w < ag.h(, ), Is l < 1,

0 < a < 2 < a2 < %-00, ai is a constant, 1, 2},

where a and a are chosen so close to 2 such that for a given constant b" 1/4 _< b
it holds that

(2.14) sup gl <
D

(1 + b)7 + (1 3b)
if gl.

( ) (2 a)

Thus, it can be shown with a careful calculation that there existw a positive constant
51 depending only on D, b, a, and 7 such that if, for any x E R,

18’o(X)] _< 1, 18U0(X)]
_

61,

then it holds that

(2.15) supyl < igfy2,D

(2.16) supY1 < ipgf Y2.
D
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Furthermore, it can be claimed, with the help of (2.14) and the range of b, that there
exist positive constants So and 52, depending only on D, b, a, and 7, such that if, for
any x E R,

I’o(x)l < o Iv’o(x)l < o, I’o(x)l <_ I"o(x)l <_ ,
then it holds that, for any x E R,

(2.17)
y(x, 0) > sup Yl,

D

Y(x, 0) > sup Y1,
D

provided (z, w, s)(x, O) e D.
In view of (2.12)-(2.17), it is not difficult to prove the following lemma.
LEMMA 2.1. Suppose that the solution of (1.1) and (1.4) defined for 0 <_ t <_ T

satisfies (z, w, s) D. Then the following estimates hold if

I’o(x)l < o, I’o(x)l <_ o,

I’o(x)l < 5, I"0(x)l < 5,

where 53 min{61,52}.
For any (t, x) [0, T] R,

inf y2 }min (c1/2zx + g)(0, x3(0;t x))
a(.;.x)
o_<r<t

< (c1/2zx +g)(t,x) <_ max {(c1/2z +g)(O, x3(O;t,x)), sup
3(’r;t,x)
O<<t

min {(C1/2Wx + g)(O, Xl(O;t,x)), al(r;t’x)0<.<tinf Y2}_
(c1/2w + g)(t,x)

_
max {(c1/2w + g)(O, xl(O;t,x)), sup Y2 }

O<<t

where x x3(’;t,x) denotes the forward characteristic passing through (t,x) at- t and meeting (O, x3(O;t,x)) at T 0 and x xi(-;t,x) denotes the backward
characteristic passing through (t,x) at - t and meeting (O, xl (0; t, x)) at - O.

In order to get the L2-norm of the solution, we use a different form of system
(1.1), namely

(2.19)
Vt Ztx O
u + p(v, s) -an, a > O,

[(v, )+ -] + (p) -,,
where e denotes the specific internal energy for which es 0 and ev +p 0 holds due
to the second law of thermodynamics. In the present discussion, e(v, s) v---f_lP(V, s)
and p(v, s)is expressed by (2.4).
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System (2.19) is equivalent to (1.1) for smooth solutions. (2.19)3 can be written
as

(2.20) -u + e(v, s) e(, s) +v + 9 p(, )Ulx -u2,

where p(, ).
Integrate (2.20) over [0, T] R. By using the Cauchy inequality and the fact that

e(, ) / 0, Lemma 2.2 follows.
LEMMA 2.2. Suppose that the solution of (1.1) and (1.4) is defined for 0 t T,

with (z, w, s) D; then it holds that

a
(v )2(t x)dxu2(t x)dx +

],](x) + + + dx,
M a a

wherea= inf evv >0,&= sup ev >0, d= sup
(z,w,s)ED (z,w,s)ED (z,w,s)D

the compact supports for (uo(x), vo(x)) and so(x), respectively.

and I-M, M] D

3. The existence theorem.
THEOREM 3.1. There exists a globally defined classical solution of (1.1) and (1.4)

with (2.4) if the Cl-norm of (uo(x), vo(x)) is small and the C2-norm of so(x) is small.
Proof. By a routine argument, it can be proved that there exists a local so-

lution of (1.1) (1.4) for 0 _< t <_ to which satisfies (z, w,s) E D if the Co-norm of
(u0(x), Vo(X), so(x)) is so small that

(z(x, 0), w(x, 0), s(x, 0)) e D* {(z, w, s) dlh(, ) < z w < d2h(, ),

Thus, Lemma 2.1 implies that

s-l<l, whereal<Al<2,2<A2<a2}.

(3.2) I(ux, vx)lL <_ M*

if the Cl-norm of (uo(x), v(x)) is small and the C-norm of so(x) is small, where M*
only depends on D.

Therefore, Lemma 2.2 implies that

(3.3) (z, w, s) e D*

if

(3.4) u(x) + -Vo(X + + s(x) dx < [h(,)]3. (4/)-3,
M a 3M*

where suPD ]hv].
Thus, there exists positive 70 such that the solution of (1.1) (1.4) can be defined

for 0 t t0 + T0, where (z, w, s) D. Repeat the above argument, the Theorem
3.1 follows.

REMARK 3.2. The assumption < 3 in (2.4) is crucial, since (2.14) would not be
possible otherwise.
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A SPATIAL DECAY ESTIMATE FOR
THE HYPERBOLIC HEAT EQUATION*

R. QUINTANILLA

Abstract. In this paper we establish a spatial decay estimate for the hyperbolic heat equation
similar to other known estimates for the parabolic equations. Alternatively, the results may be
viewed as theorems of Phragmen-Lindelof type [J. B. Conway, Functions of One Complex Variable,
Graduate Texts in Mathematics, 2nd ed., Springer-Verlag, New York, 1978], JR. Quintanilla, Publ.
Mat., 37 (1993), pp. 443-463], [C. O. Horgan and L. E. Payne, Arch. Rational Mech. Anal., 122
(1993), pp. 123-144] for this kind of equation. We conclude the paper by extending the results for a

type of semilinear wave equation.

Key words. Phragmen-Lindelof principle, hyperbolic heat equation, spatial decay estimate,
semilinear damped hyperbolic equation

AMS subject classifications. 80A20, 30C80, 35B45, 35L70

1. Introduction. In the last three decades many papers have studied spatial
decay estimates for several types of partial differential equations and systems, but very
little attention has been devoted to the study of the hyperbolic problems (see [1], [2]).
We should mention the works of Flavin and Knops [3] and Flavin, Knops, and Payne
[4], [5] as pioneering contributions for this kind of equation. We also recall the recent
work [28] on elasticity with voids. Many authors (see [1]-[4]) seem to accept that for
hyperbolic problems describing elastic wave propagation, one should not expect spatial
decay estimates similar to those obtained for the elliptic and parabolic problems. In
this paper we prove that for hyperbolic equations describing dynamical problems with
damping effects, we have results similar to those which were obtained in the study of
parabolic and pseudoparabolic equations [9]-[21]. In fact we derive a spatial decay
estimate for a functional defined on the solutions of an initial-boundary value problem
associated with the equation

(1.1) p/i + ri/t Au,

where p and 1 are two positive numbers.
We recall that equation (1.1), among others, arises in the studies of heat propaga-

tion for an isotropic and homogeneous rigid body for the theories of Muller [6], [7] or
Green and Laws [8]. Thus, it seems appropriate to mention some works dedicated to
the study of spatial decay estimates for the parabolic linear heat conduction equation
[9], [11]-[15], [21] and the nonlinear heat conduction equation [17]-[20]. Spatial decay
estimates for the solutions of equation (1.1) for large time have been obtained in [3].
We also mention the papers of aauch [22] and Cox and Zuazua [29], where-the time
exponential decay of solutions of equation (1.1) for bounded domains is proved. In
[23], Lindsay and Straughan studied wave propagation for the nonlinear hyperbolic
heat conduction equation.

Alternatively, the results may be viewed as theorems of Phragmen-Lindelof type
[24], [26], [27] for equation (1.1).

Received by the editors October 13, 1993; accepted for publication (in revised form) March
25, 1994.

Departamento de Matemtica Aplicada II, Universidad Polit6cnica de Catalunya, Colom 11,
Terrassa, 08222 Barcelona, Spain.
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We would like to emphasize that the energy decay estimate known for the Laplace
equation (see [1]) is quicker than the one obtained here for our hyperbolic equation
when the cross-section is small. Thus, the estimate for the parabolic heat equation is
also quicker than the estimate for the hyperbolic heat equation.

Though the equation we study in this paper agrees with the one studied in [3],
our results apply to the transient function, while the object of [3] was the study of the
low frequency range effects.

The method is based on the study of a nonhomogeneous first-order differential
inequality. In our case the unknown of the differential inequality is related to a
cross-sectional integral involving the temperature scalar field, its time derivative, and
its gradient.

In 2, we state the notation and basic definitions. We also prove two lemmas.
These lemmas will be used in 3, where the main result of the paper is stated and
proved. Thus a spatial decay estimate is obtained. In 4 we obtain an upper bound
for a quantity arising in the estimates we have found in 3. This bound is given in
terms of the boundary and initial conditions of the problem. Ve finish the paper in

5 by describing some possible extensions of the methods and results for a class of
semilinear wave equations.

2. Preliminaries. In what follows letters in boldface stand for vectors. We
shall employ the usual summation and differentiation conventions: Latin subscripts
are understood to range over the integers (1,2,3), while Greek subscripts take only the
values (2,3); summation over repeated subscripts is implied and subscripts preceded
by a comma denote partial differentiation with respect to the corresponding Cartesian
coordinate. We use an overdot to denote partial differentiation with respect to the
time. As usual V denotes the three-dimensionM gradient operator and by V. we
denote the three-dimensional divergence operator.

Let B be the interior of a semiinfinite cylinder. We choose the Cartesian coor-
dinates in such a way that the origin lies in the finite end of the cylinder. We can
express B as the union of its simply connected two-dimensional cross-sections D(xl)
for all xl >_ 0 and such that D(0) is contained in the X20X3 plane. We suppose that
the boundary of the cross-sections OD(x) allows the use of the divergence theorem.
By B(z, z’) we denote the subset of points (Xl, X2, X3) E B such that z < x < z’.

We shall be concerned with the problem defined by equation (1.1), the boundary
conditions

u 0 on OD(x) x [0, T), x > 0, T > 0,

(2.1) u f(x2, x3,t) on D(0) [0, T),

where f(x2,x3, t) is a prescribed function, and the initial conditions

u(x, 0) 0) .x e B.

We restrict our attention to initial conditions which satisfy

(2.3)

where

rl (puOvO +
_

Ouo 1
(uo iu

o(2.4) R(x)
(1 + p) -u ) + - , + pvv).
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Now, we define a function on the solutions of the initial-boundary value problem
(1.1), (2.1), (2.2). This function is a measure on the solutions. The knowledge of its
asymptotic behavior is the objective of 3.

First we state a couple of equalities. Let u be a solution to the equation (1.1);
we have

d t r/dv.(w) A, + ,,, p, +,+,, p () + +

After an integration from 0 to to, we obtain

t fo r u2 r]
uouo(e.) V.(W)d (,,-e:)d++ -v- or 0 >_ 0.

By a similar method we also obtain

(2.6)

fo jo 1to
V.(itVu)dt l it2dt + -(u,iu, +p/t2) -(u,u,i + pvv) for all to _> 0.

Let Ao __7_. we may considerl+p

(2.7) F(x, to) V.[(/ + )0)V]dt for x B and 0 t0 < T.

LEMMA 2.1. The fection F stisfies the ineqalit

to P + u, R(x) for all 0 < to < T,(x, to) o (,,, + pe)dt + 2(1 + p) ’
where R(x) is dCned at (2.4).

Proof For all positive constants e we hve the equality

1 .2 AOu2pu + pou +- a+, + (-) +(-((1+))(1 + o ( + )
Now, by taking e (1 + p)-I we obtain

1 . og > p
(.sl +a0 + (1 + ’On the other hand, we also have the equalities

1
(.) o(,, ) + va a0,, + (v(1 + vo)a ao(,, + al.
Lemma 2.1 is a direct consequence of equalities (2.g), (2.6), and (2.9) and inequality

We now state a lemma which gives some information on the asymptotic behavior
of the solutions of a nonhomogeneous first-order ordinary differential inequality. This
abstract lemma will be applied to our problem in the next section to conclude spatial
decay estimates for the solutions of (1.1).
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LEMMA 2.2. Let w and R be two positive functions defined on the nonnegative
real line such that

(2.10) lirn R(t)exp co-l(x)dx dt=O.

Let G(t) be a C function satisfying

G <w(t) (dG )-j( + (t)

(2.11)

Then

/olim G(t)[- w-(x)dx O.

lim sup G(t) <_ O.
t--- cx:)

Proof. First we consider the function

R1 (t) R1 (to) exp co-1 (x)dx

After some calculations we get

Thus we conclude

d
wR w-R R1.

-l(c)d] dx.

d(G+R1) for allt>to>0.a + R _<_ (t)
Let us suppose that there exists to such that G(to) > 0; we obtain

(G + R)(t) >_ (G + R1)(to) exp w-l(x)dx for all t _> to.
to

Thus we deduce

]{ ]a(t) > xp -x(x)dx a(to)- R(x)exp -()d dx for nt > to.

Now if there exists to such that

a(to) > R(x)exp -x()d

the asymptotic condition (2.11) on G would not be satisfied. Thus we obtain

a(t) _< R(x) exp w-l()d dx for all t _> 0.

In view of (2.10) Lemma 2.2 is proved.
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3. A decay theorem. In this section we state a spatial decay estimate for the
solutions of the problem defined by (1.1), (2.1), (2.2). We define a function on the
cross-sections

(a.1) a(, to) , (,g + o)dadt for all z 0 and to > O.
(

Using the divergence theorem we obtain

(3.2) a(z + h, to) a(z, to)+ [ F(x, to)dv for all h > 0 and t0 > 0.
JB(z,z+h)

Direct differentiation gives

OG
(z to) fD F(x, to)da.Oz ()

(3.5) -G(z, t0) -z(Z, to) + w(z) 1/2 R(x)da,
(z)

where w(z) 1/4[A-lp-1 + AoA(z)/rj].

IG(z, to)l < foot ( /D(z) u’ u, da) 1/2 { ( /D(z) (f }l dt"itda/1/2+AO\jD(z) u2da/1/2
From Poincar and the arithmetic-geometric mean inequalities we deduce

la(z, to)l _< [(1)-1- (2) ,l,dadt
()

idad + A(z)_ e
u,u,dadt,

where (z) is the first nonzero eigenvalue of the Laplacian operator in D(z) with
homogeneous Dirichlet boundary condition. Now, if we take e(z) e(z)pA(z)-nd (z)= Z(z)Z( + (z)-)Z, e obti

1 _] / OG]V(z o) <[- +o() (z o)
(.)

+ fz[- + (z)-]Zn(x)d"

Now we recall the Faber-Krhn inequality

(.) (z) jA-(z),

where j0 is the smallest positive zero of the Bessel function J0 nd A(z) is the re of
the sction D(z). euitie (.) nd (.a) ed to the etite

V(z,o) < (l/oa(,to +(1/ fv

Using the Schwarz inequality we find
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If we suppose that the initial condition satisfies (2.3) as well as the following
asymptotic condition on the solutions

/0(3.6) zlirno G(z, to)exp CO(T)-l/2dr O,

then Lemma 2.2 and the first inequality of (3.5) imply

(3.7) limsupG(z, to) <_ O.

From the second inequality in (3.5) we get

G(z, to)

_
-G(zo, to)exp w(-)-l/2dT

(a.s)

+exp [-fo w(T)-l/2d7] : exp[ ()-l/d](fD() R(x)da)dXl
for all z _> z0 >_ 0.

Equalities (3.2) and (3.4)imply

(3.9)

F(x, to)dr <_ G(z*, to)

F(x, to)dv G(z*, to) exp [- CO(T)--I/2dT]

R(x)da)dxl
for all z* _> z _> z0 > 0.

Thus we have proved the following result.
PROPOSITION 3.1. Let u be a solution of the initial-boundary value problem

(1.1), (2.1), (2.2) that satisfies the asymptotic condition (3.6). We also suppose that
the initial conditions satisfy (2.3). Then the estimate (3.9) is satisfied for all z* >_ z >_
zo >_0.

In case there exists z* > 0 such that G(z*, to) O, the following estimate holds
for all z* >_ z >_ zo >_ 0:

to)d <_ f(x, to)& exp
(z,z*) (o,*) o

(3.10) z z x fDo(x)da)dXl.
Remark. If we relax condition (2.3) on the initial conditions to the asymptotic

condition

(3.11) lim f(* () ’0

xl

R(x)da) exp [- (w(r))-l/Vdr]dxl O,

then inequalities (3.9) and (3.10) also hold.
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Now if we suppose

(3.12)

and

(3.13)

i
c

w(T)-l/2dT.

lim w(z)/ R(x)da=O,

then after l’H6pital’s rule we have

zlim exp [--
z

w(7)-l/2dT] exp w(z)-l/2dT]((x) R (x)da) dxl O.

Inequalities (3.7) and (3.8) imply that G(oc, to) 0. Thus, we may state the following
result.

THEOREM 3.1. Let u be a solution of the initial-boundary value problem (1.1),
(2.1), (2.2) that satisfies the asymptotic condition (3.6). If the cylinder satisfies (3.12)
and the initial conditions satisfy (2.3) and (3.13), then the following estimate holds:

(3.14)

/B fO
t

Pit2 l+Pu’u]dv
(,)

r] (u,u, + pit2)dT + - + 2

P)[/B(z,oo) R(x)dv + [/B(zo,) F(x, ’0)’v] exp [-z(T)-I/2’T]o(i
, ,

RO(x)da)dxl]+exp [--I W(T)--I/2dT] o exp [IxI.(T)-I/2(T)dT](L(x
for all zo S z S .

The methods used to prove Theorem 3.1 can be adapted for bounded cylinders
whenever we adjoin the condition to the boundary conditions (2.1)"

0 on D(z*) [0, T),
where D(z*) is the other plane face of the cylinder.

If the area of the cross-sections satisfies the inequality

A(z) S Cz for all z 0,

condition (3.12) holds. Now condition (3.13) will be satisfied whenever

lim zf R(x)da-0.
z JD(z)

Many other sufficient conditions can be given to satisfy (3.12), (3.13).
In the case in which the initial conditions for the temperature and the time

derivative of the temperature are zero, inequality (3.14) implies

(,*

( + ) (, to)a xp
(o,z*)
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for all z* _> z >_ zo.

4. A bound for fs F(x, t)dv. Estimate (3.11)is not of practical use unless the
quantity

Q(t0) =/ F(x, t)dv

is bounded in terms of the prescribed data. The object of this section is to obtain an
estimate for Q(t0) in terms of boundary conditions (2.1) and initial conditions (2.2).
For simplicity, we assume that the cylinder is semiinfinite and prismatic. We follow
the methods used in [25] (see also [26]).

Let be a function defined on B x [0, to], chosen to satisfy boundary conditions
(2.1). The divergence theorem shows

Q(to) U,l(+Ao()dadt {u,i(4,i+Ao(,i)+(pii+li)(+Ao()}dvdt.
(o)

Use of the Schwarz inequality and integration by parts allows us to obtain the next
inequality

(4.1) + ; p[i(to)(to) + Ao/(to)((to) (fi(0)(0) + A(0)((0)).]dv

+ Lt/B Ii (Aor + 1 )--p’)] dvdt.

Using the Schwarz inequality again we obtain

x ( +

Thus we have
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Using Lemma 2.1 we deduce

where 3{max( 1+-" ,2(1 + p), l+_p )}1/2 and n(x) is defined in (2.4). Because of
the positivity of R(x), we obtain the inequality

Now we may deduce the estimate

(4.3) ,

We make the following choice:

C(x, t) f(xfl, t) exp(-cXl),

where a is a positive constant and f(x, t) is defined in (2.1).
Easy calculations lead to
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(4.4) (x,t) ](xz, t)exp(-aXl), ’(x,t)= f(xz, t)exp(-aXl),
,(x,t) f,(x,t)exp(-aXl), c,(x,t)= -af(x,t)exp(-ax),

,,(x, t) ],w(xz, t) exp(-aXl), and ,l(X, t) a](xz, t) exp(-aXl).

By using equalities (4.4) we may obtain the following equalities for the right-hand side
terms of (4.3):

((o)(o) + o(O)(o))v [ v(x)(](x, o) + o)))v,Aof(x, exp(-cXl
JB

to/ts(,
+ Ao,i)(,i + Ao,i)dvdt

1/o O/o2c
(:/’,(z, t) + Aof,o(z, t))(,(z, t) + Aof,o(z, t))dadt

+ - (](z, t) + Aof(z, t))dadt,

p( + Ao)2dv (](xz, t)+ Aof(xz, t))2da,

and

(4.5)

Inequality (4.3) and equalities (4.5) give the desired estimate for Q(to) in terms of
boundary conditions (2.1) and initial conditions (2.2). Thus we have

(4.6)
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Remark. To obtain inequality (4.3), we have not made use of the prismatic form
of the cylinder. Estimates like (4.6) could be deduced by changing the choice of the
function in a suitable way. In the case in which the section D(xl) can be obtained
from D(0) by a homothetic motion of ratio 1 + cxi (where c > 0), we may take

( X2 X3 t)exp(--OXl)(x,t) f 1 +cx’lWcx-----’
where a is a positive constant and f is given in (2.1). The reader can conclude the
analysis in a way similar to that in the appendix of [26].

5. An extension for semilinear wave equations. In this section we discuss
some possible extensions of the previous methods and results to nonlinear damped
hyperbolic equations. Let us consider the semilinear wave equation of the form

(.1) + () .,
where g is a nonlinear function.

Some recent papers devoted to the study of temporal decay estimates for semi-
linear wave equations are [30]-[34] (see also the references therein). Now we suppose
that g satisfies

(5.2) g(s)s

_
C11812 and Ig(s)l <_ c2]s I.

To avoid cumbersome calculations we will make a couple of simplifications in the
statement of the problem. We consider the problem determined by equation (5.1),
boundary conditions (2.1), and the initial conditions

(.a) (x,O)=O, (x,O)=O, xeB.

We suppose that the cross-section is constant for all X 0 and we denote that
cross-section by D. Similar calculations to those used in 2 lead to the equalities

V.(aVu)dt

In a way similar to the definition of the function G in 3, we define the function

H(z, to) ,( + u)dadt for all z 0 and t0 > 0,
(

where is a positive constant to be specified later. Also, the use of the divergence
theorem leads to the equality

(5.4)

H(z + h, to) H(z, to)+ V.[(/ + )V]dtdv for all h > 0 and to > O.
(z,zTh)

Direct differentiation gives

OH
(z to) V.[( + l)V]dtda.Oz
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Now we take )1, a positive number which is less than a(0)1/2. As in 3, a(0) is the
first nonzero eigenvalue of the Laplacian operator in D with homogeneous boundary
conditions. We also recall estimate (3.4), which relates a(0) with the area of D. Thus
we obtain

(5.5) H(z, t) >_ Al(U,iU,i + ug(it) itit) + g(it)it dtds.

Using the Schwarz inequality and the second inequality in (5.2) we have

After using the arithmetic-geometric mean and Poincar6 inequalities we conclude

ug(it)ds <_
2ca(0) u,iu,ids + - it2ds

for all positive e. From (5.5) and (5.6) we deduce

O-O-H(z’t) Lt

(/1 (1 c2 (1 c2e2oz(O))t,iU,i nu (el ,1 -[-2 ])it2) dtds"
We may always take e > 0 so large that

C2

and/1 > 0 SO small that

(el--A1 I+
2]-

Then.we obtain

O---H(z t) > w u,u, + it2 dtds for all z > 0 and 0 < to < T,

where w min(A1/l,t2). Now we may proceed in a way similar to 3 to deduce
spatial exponential decay for the solutions to the problem determined by equation
(5.1), boundary conditions (2.1), and initial conditions (5.3).

Remark. The methods used in the previous sections could be extended to this kind
of equation. We could consider other initial conditions and more general geometries.
Of course, new initial conditions and new geometries imply new decay estimates. We
also may obtain bounds for

fB(0,) Lt
V.[(/t + AlU)Vu]dtdv

in terms of the initial and boundary conditions using the methods of 4.
We apologize for the fact that the results presented in this section cannot be

applied to the case g(s) s2’+1, where n is a positive natural number. This kind of
problem and some natural extensions will be the object of a future paper.
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CONVERGENCE OF THE CHILD-LANGMUIR ASYMPTOTICS OF
THE BOLTZMANN EQUATION OF SEMICONDUCTORS*

NAOUFEL BEN ABDALLAHt

Abstract. In a previous paper, the Child-Langmuir asymptotics of the Boltzmann equation
of semiconductors were presented, a limit problem was then derived, and its well posedness was
analyzed. In this paper, the convergence of the perturbed problem to the limit one is proved. The
proof is done in three steps. In the first step, we prove uniform bounds by using supersolution and
support estimates. The second step involves combining the supersolution technique and semiexplicit
formulas derived from the phase portrait of the Boltzmann equation to improve the regularity results.
Finally, the limit equation is integrated and the convergence is proved in the third step.

Key words. Child-Langmuir, Boltzmann, singular perturbation, convergence, support, super-
solution, bounded measure

AMS subject classifications. 35B25, 35B45, 35Q95, 35J05, 78A35

1. Introduction and main result. Various models are used to describe elec-
tron transport in a semiconductor. The simplest one is the drift-diffusion model
consisting of the charge conservation equation and a phenomenological relation ex-
pressing the current as the sum of a drift term due to the electrostatic field and a
term related to the density diffusion. Many mathematical results are available for this
model (see [13], [14], and references therein) but its validity is not very clear, especially
in short devices. Another kind of model is the hydrodynamic model, which includes
an equation on the energy and is valid when the mean free path is very small compared
to the characteristic length of the device. The main difficulty related to this model
is that the physical coefficients appearing in the equations are not well known and
are often experiment dependent. In short devices, a kinetic description is necessary
to model correctly the transport of particles: the population of charged particles is
described not only by the position variable, but also by the velocity. A wide variety of
problems is treated with these models [17], [15] and numerical solutions are computed
with Monte Carlo techniques [11], [20] or deterministic particle methods [16], [9], [6].
The kinetic models are in fact generalizations of the drift-diffusion and hydrodynamic
models; indeed one can derive the drift-diffusion and the hydrodynamic models as
asymptotic approximations of the kinetic ones when the mean free path tends to zero

(see, for example, [18], [191).
In the situation we are interested in here, the mean free path is not so small

that a complete kinetic model need be used. This presents a serious drawback when
numerical resolution is considered since kinetic models are very costy (the dimension
is multipied by two) and present oscillations in the interface between lowly doped and
highly doped regions. This singular behavior is often due to the existence of differ-
ent scales in the physical parameters and lead mathematically speaking to singular
perturbation problems.

In this paper, we deal with a special singular perturbation problem which arises
when the velocity of injected particles is small compared to the velocity they reach
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after being accelerated by the electric field. These asymptotics are called the Child-
Langmuir asymptotics and were first introduced to analyze a vacuum diode under
high voltages (see [10], [7], and [8] for mathematical treatment and [12] for physical
background). The asymptotics lead to a reduced problem much simpler than the
complete one and which contains most of the physics. Our aim here is to extend
the analysis to semiconductors where specific issues, namely the collisions, enter into
account and complicate seriously the analysis of the problem.

In a previous paper [3], P. Degond and the author introduced a model for elec-
tron transport in a unipolar N+ N- N+ junction at low temperatures taking
into account the collisions with the lattice. This model consists of the linear Boltz-
mann equation of semiconductors (with nondegeneracy assumption), in the parabolic
band, and in relaxation time approximations, coupled with the Poisson equation. We
introduced a scaling of the equations describing the model and got a singular pertur-
bation problem for the Boltzmann-Poisson equation (the so called Child-Langmuir
asymptotics). These asymptotics are intended to model the device behavior when the
lattice temperature is small or equivalently when the applied voltage is large. A limit
problem was formally derived [3] and its well posedness was analyzed. However, we
did not prove any convergence result of the perturbed system to the limit one. In
this paper we fill this gap and prove the convergence. Let us first recall the scaled
one-dimensional stationary Vlasov-Poisson-Boltzmann system

(1.1) Off l dcp Off 1 (ff _nslMo(V)lv-0--x +2 dx Ov T

d2 =uS(x), x e [0, 1],(1.2)
dx2

(1.3) ns(x) fS(x, v) dv, x e [0, 1],

1 (v)(1.4) ff(0, v) gS(v) g v>0,

(1.5) if(1, v) 0, v<0,

(1.6) s(0) 0, s(1) 1,

where

(1.7) Mo(v) x/
exp ---(1.8) g(v) <_ C1 exp (-).

In these equations fs is the distribution function and 99
s is the electric potential. We

refer to [3] or [5] for the derivation and the scaling of the equations. Here, e is a
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small parameter and stands for the temperature of the crystal lattice. Notice that
the singularity of this system appears not only in the boundary condition as in the
collisionless case, but also in the equations themselves.

Remark I.I. We notice that in the Poisson equation (1.2), the doping density
was neglected. This hypothesis is highly questionable from the phyiscal point of view
since the scaled doping density is of the order of 0.5 in the test case we considered
(see [I]). The reason we neglect it is mathematical since this assumption guarantees
the monotonicity of the limiting potential as we shall see it later. However, we can
conjecture that the monotonicity still holds for the small doping profile (this is in fact
the case when there is no collision [2]). For physical applications, a reduced model
including the doping density was implemented and the results so obtained are in very
good agreement with experimental measures (see [4]). But in this case we do not yet
have any mathematical result.

Let us now come back to our problem and begin with the following existence
theorem proved by F. Poupaud [17].

THEOREM 1.1 (see [17]). The system (1.1)-(1.8) has a solution (,fe) e
W2’(0, 1) x [L V! L (0, 1) x IR] such that

C1 -v2 -}- e (x)(1.9) f (x, v) _< -- exp
22

The main topic of this paper is the analysis of the behavior of the solutions
(if, ) as tends to zero. The limit problem was derived formally in [3] where the
limit distribution function f was written in the following form:

(1.10) f(x, v) nl (x) (v 4ix)) -- oox
The first part of the distribution function represents the so-called ballistic electrons
which simply drift along the principal characteristics v V/(x), whereas the sec-
ond part stands for electrons which collide with the crystal lattice. The integral
representing them can be interpreted as a change of variable. Indeed, if we set
u V/(x)- (y), then

x

fx/%- 2udu

2v
x*)

where x* is given by the equation (x*) (x) v2. Now if we replace f by
the expression (1.10) in the formal limit of the Boltzmann equation (see [3] for the
formal computations), we end up with the following semilinear (and nonlocal) elliptic
equation for the electric potential:

d2(1.11)
dx2 n(x),

(1.12) n(x) l(X) - 2(x),

(1.13) Ttl(X



CONVERGENCE OF CHILD-LANGMUIR FOR BOLTZMANN 95

(1.14) n2(x) ]i
x g(x, y) foo

x g,(x, y)
v/(x (1

(1e v/(x ()

(1.15) (0) 0, (1) 1,

where

(1.16)

and

v/(z) ()

nl(y)dy,

x

(1.17) n2(x) 2(x, y)dy, 2(x, y)
n(y) g(x, y)

v/(x) ()

Notice that (1.10) can be rewritten using the above expression of 2

en(x* (x, x*(1.18) f(x, v) Hi(X)(v- V/(x))- ’(x*) (x*) (x) v.
We proved [3] the following results for the limit problem. They state that the limit
problem has a unique Child-Langmuir current (corresponding to a vanishing electric
field at x 0) and no solution if the current j is large.

THEOREM 1.2 (see [3]). There exist 7 7/9 and 72 4/5 such that for every
T (0, T] [2 ITS, C), there exists a unique value j jCL(-) such that the problem
(1.11)-(1.16) has a unique solution satisfying d /dx(O) O. Moreover, jCL(T)
4/9 when T tends to x and jCL(T) 79/16 when T tends to zero.

THEOREM 1.3 (see [3]). There exists a value jmx(T) such that the system (1.11)-
(1.16) has no solution for j > jmx(T). This value satisfies the following estimate:

jCL(’)

_
jmax(’) < min ,

Since the derivation of the limit problem was purely formal, we did not prove any
convergence theorem in [3]. The aim of this paper is then to prove the convergence of
the perturbed problem toward the above limit problem when s tends to zero. Before
stating the main theorem of this paper, we introduce some notation which will be
used throughout the paper. We define, respectively, the injected current, the total
current, the kinetic energy, and the total energy by

(1.19)

(1.20)

(1.21)

(1.22)

j vg(v)dv,

() i(,),

() .I*_5 f(’

h()- (/- --(/ +

Now we are able to give the main result of this paper.
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THEOREM 1.4. Let T be in (0, T1] t2 IT2, +C).
(i) Suppose that jg > jmax(T). Then, the solutions (f,) defined in Theorem

1.1 converge as goes to zero to (f, ) where f is given by (1.10) and is the unique
solution of (1.11)-(1.16) corresponding to j jCL(’).

(ii) Suppose that jg <_ jCL(-), then there exists a subsequence (re, e) converging
as goes to zero to (f ) where f is given by (1.10) and is a solution of (1.11)-(1.16)
corresponding to j jg.

(iii) In the case jg E (jCL, jmax), the convergence holds for a subsequence but the
limit current is not fully determined. However, we have j {jg,jCL}.

The convergence holds in the C1([0, 1]) strong topology for and in the weak
topology of bounded measures for fe.

The scheme of the proof follows closely, at the beginning, the previous works on
collisionless Child-Langmuir asymptotics [10], [7], [8], [2]. Using the supersolution
technique and the maximum principle, we first prove some energy identities and de-
duce from these identities and support estimates the boundedness of the L norm of
the density. This implies the weak convergence of the distribution function f in the
bounded measure topology.

Besides, the nonlinear term in the weak formulation of the Boltzmann equation
reads

1 / d- --x f dxdv

where is a test function. Since fe tends weakly toward a bounded measure, the
electric potential has to converge strongly in the C topology, otherwise the nonlinear
term does not pass to the limit. Hence, the L bound on the density is not sufficient
since the maximum regularity of the electric potential allowed by the L estimate on
the density is W1,.

In the collisionless case, this difficulty was solved by using the energy, invariance
which implies that the electric field ’ can be expressed by means of the kinetic energy
k, Indeed, in the collisionless case, the limiting distribution function is monokinetic
which allows us to express in a simple way the kinetic energy by means of the current.
With this expression, one can prove the uniform convergence of the kinetic energy
which in turn implies the C strong convergence of the electric potential. Unfor-
tunately, in the collisional case, the distribution function is no longer monokinetic
because of the collisions. Therefore there is no hope for the kinetic energy to be
expressed in a simple way and the energy invariance does not help to prove the C
convergence of the potential.

An alternative approach lies in the use of the Poisson equation. We first prove
that the density is bounded in L[a, 1] for every a > 0. We deduce from this (using
the Poisson equation), that the potential converges in Cl[a, 1] for every a > 0 and
using the convexity of the potential we prove that the C convergence actually holds
on the whole interval [0, 1]. The main difficulty in proving the L bound on the
density is that the supersolution introduced in Theorem 1.1 is almost of no use since
it is much larger than the solution in the regions where we intended to use it. The
solution we propose is to combine the supersolution bound with semiexplicit formulas
derived from the knowledge of the phase portrait of the Boltzmann equation.

Afterward, we pass to the limit in the Boltzmann equation and determine the
structure of the limit problem by integrating the equations. The final step in the
proof is the knowledge of the current and is achieved by using the results of [3].
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The outline of the paper is as follows. In 2, we first establish uniform bounds
on the solution of the perturbed problem using energy invariants and supersolution
bounds. Then we give some qualitative properties satisfied by the limit solution. In a
third part we prove, using these properties, the C strong convergence of the potential.
In 3, we pass to the limit in the equations and prove the main theorem. In 4, we
summarize our results.

2. Regularity and support estimates. This section is divided into three parts.
In the first part, we prove some preliminary estimates following essentially from the
supersolution exhibited in Theorem 1.1. From these estimates, we deduce the con-
vergence of the solution by a compactness argument. In the second part, we give
some information on the structure of the limiting problem: support of the distribu-
tion function, positivity of the current and of the limit potential. Finally, in the third
part we prove the C convergence of the potential.

2.1. Preliminary estimates. We begin with an immediate result obtained by
taking the 0th and the first moments of the Boltzmann equation with respect to v.

LEMMA 2.1. (i) The current j(x) does not depend on x and 0 <_ j <_ ja.
(ii) The total energy he does not depend on x.
LEMMA 2.2. For small enough, we have the following:
(i) 82 In e _< 99e(x) _< 1.

c ()).(ii) (j -Ca5)/(x)- 10a21na n(x) v exp( 2
(iii) -C-aIn ’(0) 1.
(iv) There exits C > 0 such that the following implications hold:

(x) -10s21n (’(x))2 C(j- C5)(x),

(x) e2 (e (x))2 C(Je Ce5)Y- Ins"

Proof. (i) The integration of (1.9) with respect to v gives

((x))0 < n(x) < C
exp

22

Therefore is a supersolution of the following semilinear elliptic equation

-" + exp 0(2.23)
(0)=0, (1)=1.

It is easy to check that the function

(x) 82 ln e + e2x2

is a subsolution of this equation and thus (x) _> (x); the upper bound on is a
direct consequence of the positivity of n.

(ii) We have

1 0V/cfl(x)-lOe21n
Vff (X, v)dvn(x) >- V@(x) 102 ln

vff(x,v)dv-> V@(x)- lOeelne o()-o.n
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We deduce from (1.9) that

vff (x, v)dv <_ Cs5,

which ends the proof of (ii).
(iii) The second inequality is easily deduced from the convexity of e. For the

first inequality, we suppose that e(0) < 0. Then, there exists re > 0 such that e is
c [0, re]. This implies thatnegative on [0, re]. Therefore ne _< - on

C< + -x

and

C x2< +

Let xe - (0), then < and

_<-

The result follows easily since _> 10e2 In e.
(iv) We first remark that e is positive on the set e > 0 (because e is convex

and is equal to zero at x 0). Let xo be the largest point where e vanishes. Then
the set { > 0} is equal to (xo, 1]. We consider now x > xo, we multiply the first
inequality of (ii) by e, and integrate it between xo and x. We end up with the
following inequality:

(e’)2(x) _> 4(je -C5)(V/i(x)- 10s21ns V/-10e21ns), x > x0.

This yields the results of (iv).
PROPOSITION 2.1. We have the following uniform estimate

Proof. First, we have

he ke(0)- -dx (0)

then since the integration of (1.9) gives

(2.24) ke(x) < C exp
2s2

we deduce from Lemma 2.2(iii) that he is bounded. Assume for the moment that ke(1)
is bounded. Then we deduce from the definition of he that qe(1) is bounded. Now
since qe is convex, this leads to the boundedness of IIqe’llL Using he once more,
we deduce that IIkllL is bounded. Additionally, since IInllL e’(1)- qe’(0), we
conclude that IlnellL is bounded.
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Now we prove that k(1) is bounded. Since if(l, v) vanishes for negative v’s, then

ke(1) v2ff (1, v)dv

vff(1,v)dv+ (1,v)dv

V2 -- 1
dv.<_ 2je + - exp

22

Hence

(2.25) k(1) _< 2j + O(s),

and the result holds since j is bounded.
At this stage we can conclude that for a subsequence we have

f f
n--n

k k
j --. j
h - h

Mb([O, 1] IR) weak
Mb([O, 1]) weak
WI’p([o, 1]) strong V1 < p < oe

WI’([O, 1]) weak
L([0, 1]) weak

and we have obviously

n (f 1)b,Co,

and

j (f, vlb,Co,

l(d)2jx- (x)- (x) + --, > o,

where (., "},Co denotes the duality product between the bounded measures and the
continuous compactly supported functions (the duality is taken with respect to the
velocity variable only). Of course, the functions 1, v, v2 are not compactly supported,
but the duality product still holds because thanks to (1.9) the support of f is compact
(f 0 for v2 > (x)).

2.2. The limiting solution: Qualitative structure. In this section we prove
that the limiting current cannot vanish. We deduce from this that the limiting electric
potential vanishes only at x 0. Finally, using this result we characterize completely
the support of the limiting distribution function. We begin with the following lemma.

LEMMA 2.3. Let us assume that converges uniformly to in the C1([0, 1])
strong topology and that (0) > O. Then the limit current j is equal to the injected
current jg.

Proof. Since the convergence holds in C1([0, 1]), then for small enough, the
function (x) _> ax, with a > 0. Since is positive, then the characteristics
passing through a point (x, v) with v < 0 are issued from the boundary x 1. Hence,
writing the Boltzmann equation

Off l d Off l
ff n 1 ()v--x + 2 dx Ov + --T --MoT
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n +()-)
ff(x,v)=

(y) exp(-
4 v/v + () (x)

for v negative. Hence

we can express f (x, v) explicitly in terms of the density

dz I dy
v/ + (z) (x)

d dlim -x (0) lim (1),

IJ Jgl vff (0, v)dv

+(x exp(____< C n(y)
v 2e2 dy dv
v/+()

exp(-- (Y)2e= dy.(.) c ()
()

We split the integral of the right-hand side into two integrals, the first from zero to
and the second from to one. To estimate the first integral, we use Lemma 2.2(ii);
this yields

() (),
and using the estimate (y) ay, We obtain

d <
()

For the second integral, we recall that is increasing so that

exp(-) exp(-/c ()
() ()

and taking once more into account the estimate (y) ay, we have

1 exp(_)
dy < C exp -(.es) c (u)

()
In view of (2.26), inequalities (2.27) and (2.28) lead to j jg.

The following proposition is a direct consequence of this lemma.
PROPOSITION 2.2. (i) The limit current j is strictly positive.
(ii) The limit potential is strictly positive on (0, 1].
Proof. (i) Assume that the current j tends to zero. Then we deduce from (2.24)

and (2.25) that lim k (0) lim k(1) 0. Therefore, (1.22) implies

(e( =_h.lim (0) lim

Since is convex, we deduce that lim(’)(1) -4h 1. Hence, Lemma 2.2(iii)
implies that (0) 0 for e small enough. Therefore
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which implies, since e is convex, that de/dx converges uniformly to a constant on

[0, 1]. We deduce finally that e(x) converges to x in C ([0, 1]), therefore the preceding
lemma applies and gives j jg, which obviously contradicts the above hypothesis.

(ii) Assume that there exists r > 0 such that (r) 0. Then, since is convex
and nonnegative, it vanishes on the whole interval [0, r]. Using (i) and Lemma 2.2
(ii), we claim that the following estimate holds for small enough:

ne(x) >_ J
2V/e(x 10s2 lns

Since e converges uniformly toward , we deduce from the last estimate that

lim inf n
e-0 [0,r]

which contradicts the boundedness of I]ne]lL1. [:]

The following lemma characterizes completely the support of the limit distribution
function and shows that the first moment of ff is bounded.

LEMMA 2.4. (i) The sequence f+_ Ivlff (x, v)dv is bounded in L([0, 1]).
(ii) The limit distribution function f is supported by the set

{(x, vl,

(iii) There exists a constant C independent of such that

< c, + o(1).

Proof. (i) Let 0(v) be a decreasing C function such that 0(v) 0 for v 0
and 0(v) 1 for v -a with a > 0 and 0 0 1. Then, since

Off 1 d Off f nv + 2 dx Ov + M
T

we have

d/vO(v)ffdv l de/ --/Mo(v)O(sv)dv.dx 2 dx
0,(v)ff (v)dv + f 0,(v)ff net

Let x _> re, where re is defined by

(e.eg) () :.
Then since ’(x) > 0 on [re, 1], we deduce from the above formula that

vO(v)ffdv < Mo(v)O,(sv)dv, x > r.dx T

Integrating this inequality between x and 1, we obtain

(.o)
-,n. fMo()e.(v) [ O.()f(x,) O, x [, 1.

T

Letting a tend to zero implies that supxe[,l] f vf (x, v)dv[ is bounded and since
the total current is bounded, this leads to the boundedness of

sup I1: (x, v)dv.
z[r,l]
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On [0, re] the boundedness can be proved by the use of (1.9), since

(ii) It is readily seen that the estimate (1.9) implies

supp f c { (x, v), v2 _< 99(x)}.
Let us now show that f(x, v) 0 for every v < 0. For x 0 there is nothing to show.
For x > 0, the estimate (2.30) holds for every fixed a and for small enough. Since,
for a > 0 the integral

Mo(v)0(v)dv

is exponentially small, then we pass to the limit (with a fixed a) and get

(f, 0, v > 0,

which implies that f(x, v) 0 if v < 0.
The proof of (iii) is a consequence of (1.9) and (i). Indeed,

k(x) fv v2ffdv+fl v2ffdv.
[_ V/qO(X)--10e In

The first integral is bounded by

V/9(x) 102 ln

and the second one is small in view of (1.9). [:]

2.3. Showing the C strong convergence. Up to now, the results we ob-
tained in 2.1 needed essentially the estimate (1.9) and the procedure used to obtain
them is an adaptation of [7] (the collisionless case). In the collisionless case, the
support of the limit distribution function is the set v V/(x). This allows us to
express the kinetic energy by means of the current and to obtain the C regularity
result for the potential. In fact, this regularity result could be proven (still in the
collisionless case) by expressing the density by means of the current which yields that
ne is bounded in L far from the point where vanishes. This is not straightforward
when the collisions are taken into account, because the Maxwellian
delta measure which implies that the distribution function does not vanish on the
axis v 0. Besides, the estimate (1.9) is very bad when v2 < (x) (the support of f
is a part of this region) and this is a serious limitation of the supersolution method
which, alone, does not allow us to prove a sharper estimate on the density. We shall
show this estimate by using semiexplicit formulas for the distribution function. This
is stated in the following proposition, for which the proof is somewhat lengthy and
could be skipped in a first reading.

PROPOSITION 2.3. (i) The function nex [/[ is bounded in L([0, 1]).
(ii) The distribution function fe is bounded in Llo([0 1] x lR- {v V/(x)}).
Proof. (i) Let re be defined in (2.29). Then since 99

e _< 2 on [0, re], the estimate
(1.9) gives

sup < c.
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Hence, we focus on the interval [r, 1]. We first rewrite the Boltzmann equation in
the following form:

Off 1 d Off f n(x) Iv
V-x H

2 dx Ov -F --,r z-
Mo , )

where the right-hand side is considered as a source term. The integration of this
equation over the characteristics gives, for (x, v) [re, 1] z _,
(e.a)

f(x, v) (Y) +(Y)-()) I u dz2 exp dy: +() (x) ffv + (z) (x)

and, for (x, v) [re, 1] [0, ),

(e.ae)

e exp d,

where z* is uniquely defined by

(.aa) (*) () .
These relations follow from the integration of the Boltmann equation over the

characteristics and can be understood by viewing ig. 1 which represents the phase
portrait.

Estimti9 the distribtio fctioe. Let us now estimate (2.al). or v negative,
we first remark that

-()

(2.34) I ’(y)exp(-(Y)-e(x)) e ( u2 )2: dy= exp du < C.
() (x)

We then remark that’ is increasing on (re, 1] so that (2.31) leads to

c : _/1 ()(),() ex(- ()-().)
f (x, )

ff(x)’(x) ff() (x)
:: d.

The term e’ is introduced in the integral to make the quantity
appear and to use the estimate (2.34). This leads to the following estimate:

Moreover, since j > 0, we deduce from Lemma 2.2(iv) that for e small enough, we
have

(.a) I(, )

()
(x)((x))X/

(- )/4, (x), 0.
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v2- (x)= constant

\,

FIG. 1. Phase portrait.

For v positive, we obtain, in view of (2.32), the same estimates as above with v
replaced by zero and x by x*. Hence

Estimating the density. Let us now estimate n (x) fo_ if(x, v)dv. To this
end, we do not need the sharp estimate (2.35). Estimate (2.36) is sufficient and gives
after integration on JR_

(2.39)
e(- ln)l/4V/(x)n_(x) <_ C
(e(x))l/4 [Inev99e[][L

_
For positive v’s, more care should be taken since (x*) 0 if v V/(x). Then let
k > 2 be a constant (to be fixed later) and 0 < v < V/(x)/k Then (x*) > 3 (x)
and therefore, we can replace x* by x in (2.38) and (2.37) (modulo a change in C).
By integration this leads to

V/e(X) f <_ 1/4,
C e 1/4 e2 _< (x) _< -lOe2 lne.
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This implies that

C
ffdv <_ - n V/99 L

which together with (2.39) leads to

(cff (x, v) dv <_ - +o(1)

Additionally, we have

V/99 (x) ff (x, v)dv <_ k vff (x, v)dv,

and by Lemma 2.4(i), we deduce that

V/: (x) ff (x, v) dv <_ Ck,
k

xr.
This, combined with (2.40), implies that

Now, to prove the L bound, we just have to choose k > C and the result follows
immediately.

(ii) follows from estimate (2.35) and (2.37) which give a uniform bound for ff as
long as 99(x) > 0 (i.e. x = 0) and v

PROPOSITION 2.4. The convergence of 99 toward 99 holds in the C ([0, 1]) strong
topology and n e Llo((O, 1]) V LI([0, 1]).

Proof. (i) First since 9: converges uniformly to 99, then n V9:I converges in the
bounded measure weak topology to nx/. We deduce from the preceding lemma that
nv/- is in L(0, 1) and by a diagonal extraction we deduce that n converges to n
in the weak L topology on any interval
converges in Cl[a, 1] for a > 0. Since 99’ >_ 0 and increasing, then it has a limit 99’(0)
when x tends to zero. Suppose first that 99’(0) lim 99e’(0) has already been shown.
Then by the use of Dini’s theorem, we deduce that the convergence of 99! to 99! holds
in C([0, 1]). Let us show now that lim99’(0) 99’(0). It is sufficient, in view of
Lemma 2.2, to prove the equality for absolute values. We have

1/d99 /.2 jx
h+ -x (x) =k(x)+

Therefore, passing to the limit for x > 0 and taking into account point (iii) of Lemma
2.4, we get

jx<_ cv/:(x) +
T
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Afterward, we let x tend to zero and obtain

h+ x-x(0)
Furthermore, using (2.24), we have

which leads to

h + \---x (0) k (o) <_

l[dh + lim \---x (0) 0.

Therefore lim dd-x (0)] I- (0)I, which is the expected result.
(ii) Since nx/ E L ([0, 1]) and vanishes only at x 0, we can deduce that

n(x) n(x) + noh(x),

where n is an L((0, 1]) L([0, 1]) function and n0 is a nonnegative constant.
Since by the wek convergence of ne to n we have

’(x) ’(0) + no + nreg,

we deduce by letting x tend to zero that

’(0) n0 + ’(0),

which implies that n0 0 nd ends the prooL

3. Characterization of the limit problem. We can pass to the limit in the
Boltzmnn equation since the nonlinear term passes to the limit. Indeed, for every
test function O(x,v) C([0,1] ) such that 0 0 is in the neighborhood of
{o} { }

[ O0 ldO0 0] 1( ),v
f v 2 dx Ov

dxdv + --T Mo(v)O(x, ev)dv n(x)dx O.

Since converges uniformly nd ff converges wekly, the nonlinear term

fd
00

dx Ov

psses to the limit and we obtain finMly

+ O(x, O)n(x)dx O.(3.41) f,v 2 dx Ov ,Co T

This equation means that for (x, v) (0, 1] + f is a solution of the equation

Of 1 d Of fv 2dxOv --=OT
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with the boundary condition

2 (x)f(x,O)

Notice that is in Wt2o’c(0, 1] and that the characteristics passing through a point

(x, v) such that 0 < x and 0 < v < V/99(x) are-issued from the axis (0, 1]. Therefore,
f(x, v) has a unique expression in terms of the potential and the density (obtained
after an. integration of the equation over the characteristics)

(3.42)

f(x,v)=f2(x,v)= 2n(x*)( lf dz )T’(X*)
exp v e [0, V/(x)),

where x* is uniquely defined by

Since f is a bounded measure supported in the set {0 _< v <_ V/(X)} and since f f2
almost everywhere in the set {0 <_ v < V/(x)}, then we can conclude that

where f is a bounded measure supported in the set {v V/(x)}. We now determine
the measure f by noticing that the current is constant. Since fl is supported in the
set {v V/(xi}, then it reads

f n(x)5(v V/(x)),

where n is a bounded measure on [0, 1]. We have obviously nl (fl, 1}. Let jl be
the current associated with f

j (f, v).

We have obviously

jl(X) nl(x)v/(x).

Let n2 and j2 be the density and the current corresponding to f2 defined above. We
have

f(x, v) fl (x, v) -- f2(x, v),

Tt(X) Ttl (X) 2r- ?’t2(X),

Moreover, we have

j jl(x) + j2(x).

n2 (f2, 1}v fv/- fz(x, v)dv.
J0
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The change of variable y x*(x, v) gives

x

(3.43) n2(x)
n(y)

exp

Analogously, we get

(3.44) j2(x) foo
x n(Y)T exp

dz I dy.

Therefore

j2(x) -< --T1 j0
x

and since n is an L1 function, then

lim j2(x) 0.
x--*0

Thus

(3.45) jl(0) j.

Notice that this identity was an assumption in the derivation of the limit problem in
[3]. Here it is proved. The differentiation of (3.44) using (3.43) implies that

dj2 Tt t2 lt j
dx - T - TV/-

and since j jl + j. is constant, we deduce that

which together with the condition (3.45) gives

and

(3.47) n(x) V/(x)exp ----T V/-Z)
Proof of Theorem 1.4. At this stage, we have proven that (1.11)-(1.18) are sat-

isfied. To prove Theorem 1.4, it remains now to determine the current. Point (iii)
is straightforward since j jg if 99’(0) > 0 (Lemma 2.3) and j jCL if 99’(0) 0
(Theorem 1.2). To prove point (i), we suppose that j = jCL. Then j jg and this
is not possible in view of Theorem 1.3. Point (ii) follows easily from the fact that
j <_ jg, which implies that j < jCL.
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4. Conclusion. In this paper we gave a mathematical justification of a formal
model derived in a previous paper [3] from a singular perturbation problem. The
convergence result is not complete because the limit problem is not fully solved;
namely, the uniqueness of the solution of the limit problem is not shown and the
possible difference between the Child-Langmuir current jcL and the maximal current
jmax is not known. Such pr-oblems were already noted in [7] and [8] where the authors
show that the maximal current can be different from the Child-Langmuir one in some
particular situations. In that case, statement (iii) of Theorem 1.4 cannot be improved.

Acknowledgments. The author would like to thank Pierre Degond and Frederic
Poupaud for many encouraging discussions and enlightening remarks.
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RIGOROUS WKB FOR FINITE-ORDER LINEAR RECURRENCE
RELATIONS WITH SMOOTH COEFFICIENTS*

OVIDIU COSTIN AND RODICA COSTIN

Abstract. The 0 behavior of recurrence relations of the type j=0 aj(ke, e)yk+j O,
k E Z (1 fixed) is studied. The aj are C functions in each variable on I [0, e0] for a bounded
interval I and e0 > 0. Under certain regularity assumptions we find the asymptotic behavior of the
solutions of such recurrences. In typical cases, there exists a fundamental set of solutions in the form
(exp(e-lFra(ke, e))}m--1 l, where the functions Fm are C in each variable on the same domain
as the aj, showing in particular that the formal perturbation-series solutions are asymptotic to true
solutions of these recurrences. Some applications are also briefly discussed.

Key words, recurrence relations, asymptotic behavior

AMS subject classifications. 41A60, 65M06, 65M12

1. Introduction. In this paper, we study the asymptotic behavior to all orders
in -- 0 of the solutions of one-dimensional recurrence relations of the form

j=O

which we may interpret as follows: for each fixed k, yk+t is determined from its
predecessors Yk,..., Y+t-1 (this is assumed possible--see condition (6) below).

Under some further regularity assumptions, we prove that the general solution of
the recurrence can be piecewise represented as a sum

(2) Yk,e
m=l

where the functions Fm are everywhere smooth with the exception of a small neigh-
borhood of the points where two characteristic roots (24) cross and where the rep-
resentation is different (Proposition 2.2) In particular, a fundamental system of
solutions can be chosen such that each of them has, for small e and between crossings,
a Wentzel-Kramer-Brillouin (WKB)-like expansion

(3) Yk exp (e(ke))(Ao(ke) + eA1 (ke) +...),

where is the root of the eikonal equation

exp(’(x)) A(x),

A is one of the roots of the characteristic equation (24), and the successive amplitudes
Ai can be determined by perturbation-expansion.

For technical reasons, we prefer the less familiar notation (2). It is essential for
our arguments that a continuous branch of In A0 can be chosen.

Received by the editors April 26, 1993; accepted for publication (in revised form) May 24, 1994.
This work was supported, in part, by Air Force Office of Scientific Research grant AF-0115.

Mathematics Department, Hill Center, Rutgers University, New Brunswick, NJ 08903. Current
address: Department of Mathematics, University of Chicago, 5734 University Avenue, Chicago, IL
60637-1538 (costin@math.uchicago.edu).

110



RIGOROUS WKB FOR LINEAR RECURRENCE RELATIONS 111

One of the applications of the rigorous WKB approach for discrete schemes is in
determining the spectrum of large matrices with slowly varying entries. Such problems
appear for instance in the continuum limit of the Toda lattice. This system, described

n 2 n--1by the Hamiltonian H -k=l Pk + k=l exp(xk xk-1), is completely integrable;
this can be expressed in terms of the constancy of the spectrum of the matrix

(4)

The spectral problem in the case where the coefficients are of the form a
a(ke), b b(ke), with a and b smooth and satisfying some regularity conditions,
leads to a recurrence of the type of (1) that is solved asymptotically by the methods
described below [1].

In (1) the number of steps of the recurrence is fixed, e > 0 is a small parameter,
and k E ;Y is such that k E I where I C IR is a compact interval. Some initial or
boundary conditions are assumed.

The coefficients a0(x, e),..., az(x, e)" I x [0, 0] are assumed C in x and in
e in some domain I [0, e0]. We also require the existence of a uniformly asymptotic
series for aj" for any t /N,

(5) aJ (x’ ) E aJ,(x)e I< Mj,st+1,
8--0

where the functions aj,s are C in x (for instance, aj C(I [0, e0]).
We are also imposing the nonsingularity condition

(6) inf{lao(x, O)l} > 0 and inf{laz(x 0)]} > O.
xI xI

We begin by giving some simple examples and deriving heuristically their small-
e behavior. The contents of the paper will subsequently make the given solutions
rigorous.

Example a. Consider the one-step recurrence relation

(7) Yk+l eI(a)Y,

where y0 1, 0_< k _< e-l, and f is aC function on [0,1]. It has the explicit
solution

(s) yk exp ( f(je))
When f f0 is constant, yk exp(e-f0ke) and this should also be the order of

magnitude of yk for a general smooth f when e is very small; we then try a formal
asymptotic solution

(9) Yk exp(e-lOo(ke) + (I)l(k) -- (1)2(k) --...)



112 OVIDIU COSTIN AND RODICA COSTIN

in (7). To be consistent with (7) we must have

(10) exp ’-io,(ke + e) exp f(k) + E 5rn-lOra(k) "- O.

Expanding the exponent in the left-hand side of (10) in a Taylor series around ke and
then identifying the corresponding powers of in (10) we obtain

1 f(j)(11) Oo f, Ol --f’,..., Oj Cj

where the constants Cj are seen to be f-independent and can thus be determined by
choosing a particular f for which the sum in (8) can be explicitly evaluated. Taking,
e.g., f(x) exp(x), this sum is

(12) ’23 (2j --> O,(exp(x)- 1)(exp(e) 1) -1 e-l(exp(x) 1)E (2j)!
j=0

where B are the Bernoulli numbers. It follows that Cj Bj (B2j+I 0) and thus,
for any smooth f,

(13)
k-1

2n f(n) (t)dt, --+ O,E f(je) - (2n)!
j=0 n=0

which is, of course, the Euler-Maclaurin summation formula. Proposition 2.1 below
justifies the derivation of (13).

Example b. Analogously, we can easily obtain the asymptotic behavior of spe-
cial functions from their generating recurrence relation. For instance, the recurrence
relation

(14) Yk+l -F Yk-1 2(1 + ke)yk

has for a fundamental set of solutions the Bessel functions Jk+-i (--1) and Yk+- (--1).
Let x ke, k + -1, a=-l-l. Wefixp< 52 and for x > eP we take y

of the form (9) determining the successive terms by substituting the formal series in
(14). To leading order,

(15) e(x) + e-(x) 2(1 + x)

and we can choose two independent solutions

(16) (-1(I)0;4- -}-//(O tanh(c)) (c (cosh)-l(1/a)).

For the next order (I)l;+ we obtain

10’ coth(O’)(17) Oi;+/Ol;+ =- ;+

which can again be integrated explicitly to give exp(l;+) -const sinh(a) -1/2. That
is, the asymptotic behavior is

(18) (, tanh(a))-l/2(A exp[,(a- tanh(a)) +...] + B exp[-,(a- tanh(a)) +...])
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and we get the familiar expressions in the theory of Bessel functions (see [2], [3]). All
the successive orders are easily obtained in the same way. For x < -ep we obtain from
the same equations (15), (17) similar expressions but with trigonometric instead of
hyperbolic functions. For small values of Ixl, Ixl 5  2/3, the  bove asymptotic series
becomes singular. The appropriate WKB-like series in this region is in powers of el/3
and the coefficients will be smooth functions of el/3k, but otherwise the calculation can
be done explicitly in the same way; there is a region of overlap where both asymptotic
series are valid, namely 2/3 < ix < el/2, and where the series can be matched.

Proposition 2.2 can be used to make the above approach rigorous.
Example c. Finally, let q be a smooth function and consider the Cauchy problem

(19) y" q(x)y, y(O) O, y’(O) 1.

Assume for simplicity that q [0, 1] --+ IR+ and consider the associated Euler scheme

(20) Yk+c; + Yk-c; (2 + 2q(ke))yk;, Y0; 0, Yl; .
To characterize Yk; for small we substitute

(21) Yk;
rn,--O

in (20). Note that if E0 : 0 we obtain this type of series from (9), when (I)0 0, by
expanding the exponential.

The substitution leads to the equations

2
=(28)

l<_s;2s<_m
(28)!

with the initial conditions

(23) E,(0) O,
,(k+l)

(0)
(0)

"m (k+l)!
k=l

In particular, it follows that the scheme converges to the solution of the given Cauchy
problem (as it should) and because, as it is easily seen, ,=.1 0, the error
is O(e2). Proposition 2.3 applies to this example.

2. Main results. In this section, we consider the problem (1) and the assump-
tions following it and give conditions under which the exact solutions of the recurrence
have asymptotic series to all orders in e.

PROPOSITION 2.1. Let ,l(X),...,/l(X) be the roots of the characteristic polyno-
mial

(24) E aj(x, O)Aj 0
j=0

and assume that they are simple throughout I

(25) inf{[ Am(X) ,n(X)[} > 0 ifm .
xEI



114 OVIDIU COSTIN AND RODICA COSTIN

(consequently, we will choose , to be C functions). Suppose also that the interval
I is a finite union of (closed) intervals such that in each one of them the ordering of
the moduli of the roots does not change, i.e.,

(26)

P

I= U IP and Vp <_ P (il,...,it) such that
p--1

(x)l < (x)l <.-. _< x e

where (il,...,it) is a permutation of (1,..., 1). Then there exists ’ <_ o and func-
tions F(x, e),..., Ft(x, ) on I [0, e’], C in each variable, such that for each ,
{exp(e-lFm(k,e))}m= form a fundamental set of solutions of the recurrence
relation (1), in the sense that for any solution Yk, of (1), there exist constants

CP),..., Cp) such that in each Ip,

m--I

REMARK 1. In particular, this means that for small ,
F (x,

8--0

where the O,,s are smooth; they can be computed from (1) by usual perturbation
expansions in e. For example, the first term is obtained from the eikonal equation,

(29) exp(O,0(x)) A,(x),

giving the connection between the functions Fm and the roots Am of the characteristic
polynomial. The second term is obtained from

(30) O (x) --=[j2n’(x)"/2Aj’(x) + exp(O},o(x))Aj, (X)]

-tj=o jAj,o(x)exp(O},0 (x))

and so on.
Note also that if not all the functions F, have the same real part, then there

exist solutions of the recurrence which are exponentially small relative to the dom-
inant ones and which will therefore be unstable in the sense that a small "generic"
perturbation of the initial condition will completely change the behavior of these so-
lutions; a perturbation series not involving terms beyond all orders will only see the
component of the solution along the dominant directions. However, the relative size
of the solutions could change with x and then all the coefficients in the expansion (27)
could be important for matching different regions.

We now address the question of the asymptotic behavior of the solutions of the
recurrence when two characteristic roots cross. Proposition 2.1 is generalized below
to the case when two of the roots of the characteristic polynomial become equal at
some point in I provided the roots do not coalesce too quickly (condition (31)). In
this case a fundamental set of solutions has a more complicated structure. Not too
close to the crossing point, a solution is still a linear combination of the form (27) but
the coefficients C(mp) can change at the crossing (Stokes phenomenon). Very close to
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the crossing, the coalescing roots bring in the asymptotic expression of the solution
series in noninteger powers of . This is in some sense the discrete counterpart of the
turning-point behavior of the solution of a differential equation depending on a small
parameter.

Consider a subinterval I0 of I such that two roots of the characteristic polynomial
cross once in I0 (say, at x 0) and except for this, the ordering of the moduli of the
characteristic roots is constant in I0. The crossing is assumed to be generic:

(31) IA,(x) An(x)l > const (for rn : n).

To avoid excessive branching of the discussion and formuli, we also assume that
the coalescing roots are complex conjugate for negative x and real valued for x positive.
The general case is treated in a very similar way.

PROPOSITION 2.2. Fix two constants 1/2 < < a < 1/2. Then,
(i) For Ikl > - the general solution of the recurrence can be written in the form

(32) Y EC exp(e-lFj(ke, e))
j=l

with F as in Lemma 3.2. The constants C depend, in general, on the sign of k.
(ii) For Ikl < - a fundamental set of solutions can be chosen such that

l- 2 solutions are o.f the form exp(e-lF(ke, e)) and two special solutions are o.f the
orm

exp(F+ (k1/3, 1/3)),

where the functions Fj and F+ are smooth and exp(F+(x, 0)) Ai(Ox) + Bi(Ox),
where Ai and Bi are the Airy functions (for the value of O, see equation (89)).

Moreover there is a particular solution of the recurrence which has the behavior

yk Ai(O kel/3)(1 + /3A1(0 k1/3) --.. ")

for large k < e_-’.
The representations in (i) and (ii) are simultaneously valid in the region - <

Ik] < -, where the asymptotic series can be matched.
Note. A similar result can be proven if condition (31) is replaced by

(33) lAin(x)- An(x)l > const xcnst’

for some const > 0. Another case which is interesting for schemes that converge to
differential equations for small e is covered by the following proposition, in which we
assume that the roots of the complete characteristic polynomial

(34) E aj(x, e)Ay, rn 1,...,
j=0

are nondegenerate in a higher order in .
PROPOSITION 2.3. Assume that the roots Al (X, ),..., At(x, ) of (34) satisfy the

estimates

(35) Im(X, ) 11 e(Q.(x) + o()), m <_
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for some q E 15l, where the smooth functions Qi verify

inf Q,(x) > 0 inf IQ,(x) Q(x)l > o (m : n) m, n < 1.
xEI xEI

Then the conclusion of Proposition 2.1 holds and, furthermore, for any formal series
solution of the recurrence relation (1), there exists a true solution which is asymptotic
to it.

In this particular case, since, as we shall see, Fm (x, O) O, it is more natural to
represent the formal solutions as power series

r

where the i are smooth and subject to the condition

(37) aj(x, )F(x + je; ) o() Vs, x e I,
j=0

where Fs(x) =o i(x)" The series (36) and those appearing in the previous
WKB expansions are usually divergent and one could imagine that by iterating the
recurrence the small error appearing in the local condition (37) could quickly reach
O(1). Under the given restrictions, however, Proposition 2.3 guarantees that F is
indeed an o(e) approximation to a genuine solution.

It can now be checked without difficulty that Propositions 2.1-2.3 apply to Ex-
amples a, b, and c, respectively.

The layout of the remainder of this paper is as follows: in 3 we prove our main
results and in 4 we discuss some further applications of these results.

3. Proof of the results. To prove Proposition 2.1, we show (Lemma 3.1) the
existence of formal series solutions of the form (9) to the recurrence.

We then show (Lemma 3.2) that the proposition is true if P 1 (cf. (26)). The
proof is by induction on the order of the recurrence. First, we choose the particular
formal solution corresponding (cf. (39)) to the root with maximum modulus, which
gives the "stable" direction, and show that there is a true solution with this asymptotic
behavior. Next, we use this particular solution to decrease the order of the recurrence
byl.

3.1. The functions m, of the following lemma will turn out to be the functions
giving the asymptotic expansions (28) and can be obtained by requiring that (1) is
satisfied in all orders in e by the formal solution y exp(e-1 O,(x)e).

LEMMA 3.1. For each m 1,..., there exists a sequence {Om,s}sN offunctions
in C(I) such that

(aS) exp(--e-lm,O()) aj(e, )exp -1 tm,t(( + j)) O(s+l)
j=o t=o

and

(39)

for e <_ eo, s E M, and ke I.
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The proof of Lemma 1 is by induction on the expansion order s. In view of (5)
and (6), we can define for each characteristic root m(X) (i.e., root of (24)), a function
(,,o C(I) such that (39) holds.

It is then straightforward to show that exp(e-l(I)m,0) verifies the. recurrence (1) to
O(e) exp(e-l(I)m,0(x)) so that (38) holds for s 0. Assuming now that (I)m,0, (I)m,1,
(I),, are already defined so that for all s _< so (38) is verified, one can easily check
that for any C(I),

(40)

exp[-e-lOm,(ke)] E exp --1 E (m,t((k + j)e)e + es+l((k + j)e) aj(ke, e)

+
j=0

where Ho is a smooth function.
Since by (6)and (215)

(41) inf
xEI

Ejaj(x,O)AJ(x)
j=0

>0,

one can define a smooth function (x) (I)so+l(X) such that the term in square
brackets in the right-hand side of (40) vanishes. ]

We note at this point that the series o (I)-,(x)e* is usually not convergent
and there does not yet follow the existence of a solution asymptotic to it.

Now we address the question of existence of true solutions of the recurrence having
the prescribed asymptotic behavior. In what follows, we shall define, by a formal solu-
tion, an expression Y exp(-1 E__0 m,s(X))s satisfying the conclusions of Lemma
3.1. Given O,,0, the O, are uniquely determined up to integration constants.

Assume first P 1 (cf. (26)). Relabelling if necessary, we assume that for m n,

LEMMA 3.2. Let be a formal solution of(l) (me {1, ,1} fixed). There exists
a sequence {Y,k;}, such that for any co, Y,k; is a solution of (1) for ke I
having Fm as an asymptotic series in the sense that there is a sequence of positive
constants {Cs }s such that

(42) Ym,k;exp[-e-Om,t(ke)et-1 <Cs s+l, foralls.

REMARK 2. The previous lemma can be restated as follows: For each m 1,...,
there is a function F(x, ) I [0, eo] , smooth in each variable, such that
exp(e-lFm(ke, e)) is a solution of the recurrence (1) for every , k I and, as

0,

(43) F(x, e) O,t(x)et.
t=0

This remark follows easily from a classical result (see, e.g., [4, p. 33] and [5])
stating that for any sequence of numbers there is a smooth function having that
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sequence for its derivatives at the origin and from the easily proven fact that for
each sequence {(xn, an)}nelN xn X 0 and annk --, 0 Vk, one can construct
"interpolation" function f such that f(k)(O) 0 Vk and f(xn) an for all n.

Some of the estimates that we need for proving Lemma 2 become to a certain
extent easier by the remark that a global shift in the estimates defining an asymptotic
series is unimportant.

REMARK 3. Let F be a function such that for a fixed so >_ 0 and any s in

(44) limsup e-s-1
e-0

Then

(45) limsup e-8-1
e--+0

s-t-so

F()- E Ctt
t--O

_< D8 + IC/ll.

Thus, to prove (42) we need only show that for some fixed so (we drop the
subscript e to ease the notation),

(46) 1 Cs (s+l-so

REMARK 4. In view of condition (25), it is easy to check that, for small , the
solutions exp(-lF,(ke, e)) are linearly independent, thus forming a fundamental set
of solutions on I.

Proof of Lemma 3.2. The proof is by induction on the order of the recurrence.
Step 1. For any l, in the same conditions as in Lemma 3.1, the estimate (42)

holds for m 1 (recall that AI(X) is the largest in absolute value). First we show
that if a solution is asymptotic to the formal solution corresponding to/kl at the left
end of I it remains asymptotic to it throughout I. We can assume without loss of
generality that the left end of I is at x 0. At this point, we choose appropriate
initial conditions.

Let p, p 1,..., be any functions such that as e --. 0

( )(47) qp(e) exp -1 l,t(p)t
t--0

(see Remark 2) and let

Let also Yl,k be the solution of (1) satisfying the initial conditions Yl,p
p- 1,...,/.

It is natural to rescale the recurrence relative to its approximate solution. Let

(49) Ck;

Then the recurrence relation for C;8 can be written

j=O

=0,
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where gj,8(ke, e) aj(ke, e)L;8((k + j)e)/L;(ke). It can be seen that (50) is of
the same type as (1) and that, for e small enough, it satisfies the corresponding
assumptions (6),_(25), and (26)on I.

Also, max{IA,(x)l;x E I, m 1,...,/} 1. Now, (46) means that for some
fixed so,

(51) ICk;- 11 < conste-s+l.

From the definition of Y;8, it follows that

(52)
j=0

Rewriting the recursion relation (50) in matrix form Ck+l ff4kCk, where

(53) A

and also rewriting (52) as

(54) 1 1 + E,
where lj 1 and IIEII < const uniformly in k, e, we have

k

(55) Ck 1 + es tkk_l ..j+lEk.
j=l

Step 1 is completed by showing (51) (and thus (46)), which follows from the stability
lemma below.

LEMMA 3.3. Let fik be a family of matrices of the form of (53), where gj
I x [0, e0] ( (I is an interval) as in Lemma 3.2. Suppose further that the roots
r(ke, e) of the polynomial

(56) E gj(ke, e)j O, m 1,...,
j=0

satisfy

(57) sup{lAm(ke, e)l } _< 1+ const e, m- 1,...,1
keI

and that the condition corresponding to (25) is fulfilled on I. Then there is an
independent constant C such that

(58)

Proof of Lemma 3. The eigenvalues of the matrix (53) are the ,(ke, e) and
the corresponding eigenvectors matrix is (/k)i,j j(ke, e) t-i. We then write the
product on the left-hand side of (58) as

--1(59) kDk-lk_lDk_l j+IDj+IAj+I,
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where

(60) Dp diag({,(pe, )}m=l l),

and the proof follows from (57) and the estimate

(61) I]/;1/p_l[I _< 1 + const e,

which can be checked, for instance, using the following explicit formula, whose ele-
mentary proof we omit.

REMARK 5. Let X and Y be two nonsingular Vandermonde-type matrices X,j
l--i 1--i

xj Y,j yj i, j l, ,1. Then

(62) (X-1y),J H yj Xn.
ni

Xi Xn

Step 2. The conclusion of Lemma 3.2 for 1 follows from Step 1. Now we
assume that the conclusion of the lemma holds for all recurrences of order less than
and prove it for order by reduction to the 1- 1 case. In view of the first step,

we know that to All there corresponds a true solution Y1 for which the asymptotic
behavior is the formal solution Y1. We shall use this solution to reduce the order of
the recurrence by 1. Let

(63) Ck Yk/Yl,k.

The recurrence relation for Ck is then of the form (50), where now

(64) j(k, ) aj(k, e)Yl,k+j/Yl,k

and, obviously, the asymptotic behavior to all orders is the same as if we had made
the rescaling with respect to a formal solution. The point is that now instead of (52),
we have

() (,) 0
j=0

so that the y 1 is an actual solution. To use this fact, let dk C+I -C. We get

1-1

() (,)+ 0,
8-0

where b(k, ) Ej=+I j(ke, ).
The characteristic equation for (66) can be written as

j--1

(x, 0) 0
j=l s=0

or, for A - 1, as it easily follows from (65),

(67) (x,0)
j=0
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We first check that the new recurrence satisfies the hypothesis of the lemma. But
this is easy since the new coefficients are finite combinations of aj and in particular

b0 -j=l aj --Co and bt-1 at, and in view of (67) the same arguments as in Step
1 apply to ensure that the characteristic roots have the required properties. Then we
want to check that we have the required number of appropriate formal solutions. This
is also straightforward because we can derive them from the formal solutions of the
original equation. Indeed,

(68) dk Yk+l/Yl,k+l Yk/Y,k.

If we substitute for y a formal solution m we obtain the formal expression

& exp e-1 E[,t((k + 1)e) l,t((k + 1)e)]e
t=0

(69) -exp e-1 [,t(e)) l,t(e)]e
t=0

exp {e-l((z) (z)) + series} [,(z)/)l(X)](1 + e x series],

which, since /m(X)/.,l(X) doe8 not vanish, can be written as an exponential of
formal series in the form required by our arguments

t=0

Then the expressions (70) for m 2,..., are formal solutions for the recurrence of
order l- 1 (66) because, by construction, (69) are. It then follows by the induction
hypothesis that there exist true solutions of (66) of the form

(71) d,,k exp(-D,(k, e)),

where Din(’," are smooth functions having the asymptotic behavior given by (70).
Step 3. To complete the proof of Lemma 2, it remains only to check that

k

(72) exp (e-1Fl(ke,
p=0

has the asymptotic behavior needed for the original recurrence, i.e.,

(73) exp(-1 E(aem,t(k)t)).
t=0

We let k (k2) be the left (right, respectively) end of the interval. Both k and k2
might depend on . By the definition of the dk;,, we have

k

Cm;k Cm;kl + E d,;i.
i--k1

With the choice

k2

Cm;kl E din;i,
i--k1
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we get the particular solution

k2

Cm;k din;i,
i--k

from which, referring to the definition of the C,;k, we get a solution of the 1- 1
recurrence in the form (the choice of the sign will become clear later)

k2

Y,; -Y1; d,;
i--k

whose asymptotic behavior is given by the formal solution Ym. Indeed, for any fixed
large s, we have

----gl;k[(exp(-lm;t(i-e)t-ffpl;t(ie-)t
t=0

--XP (-lm;t(2)--l;t(2)t)t=O

Because, by assumption, A has the largest modulus, (O;0(ke)- O;0(ke)) is
nonincreasing in k in the given region. Therefore, (74) equals

Y;k (1 + const max {]exp
k

(1 +
The proof of Proposition 2.2 follows essentially the same steps but is, as expected,

more involved in the regions of near breakdown of the asymptotic series. The details
are given in the next section.

The proof of Proposition 2.3 is very easy, using an estimate of the form (58)
for the matrices corresponding to the original recurrence, an estimate which can be
obtained directly from Remark 5 and the hypothesis of the proposition.

4. Proof of Proposition 2.2. We assume at first that the crossing occurs be-
tween the two largest characteristic roots and explain at the end of the proof how the
general case is reduced to this one.

The layout is as follows. We first study the small region around the crossing
point (the interior region), where exp(e- O,2;t(x)et) fail to be formal solutions
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(and the series occurring at the exponent cease to be asymptotic series). The new
formal solutions are to leading order combinations of Airy functions. Their formal
properties (domain of asymptoticity, growth in x) are examined. Next we show that
there exist true solutions of the recurrence that are asymptotic to them. It is also
shown that there exists a particular true solution which is asymptotic, to leading
order, to the function Ai(xe-2/3) and is important for the matching problem (it gives
the exponentially decaying formal solution).

We then show that the formal solutions coming from the exterior region continue
to represent correctly the solutions of the recurrence far enough into the interior region
(down to Ixl 2/3) to allow for matching with the interior ones, which are valid up

4.1. The interior region of the crossing interval. This is the region Ixl <<
2e/2; for definiteness we fix a (, ) and take it to be

or, in terms of :-- ke/3 :- kf, which is, for reasons that will become clear later, the
natural variable in this region,

(76) .< (1-3c}.

The basic steps of the proof of existence of solutions with given asymptotics are
the same as for Lemma 3.2. We will first obtain a solution corresponding to (one
of the two) largest eigenvalues and with it reduce the problem to a lower order,
nondegenerate recurrence.

Because the variable of D is unbounded, a slight extension of Lemma 3.2 is
needed for the interior region. We now allow the interval I in Lemma 3.2 to be of the
form (76) but strengthen the other hypothesis. Corresponding to Lemma 3.2, plays
the role of x and 5 is the counterpart of . We require the following three conditions
in addition to those of Lemma 3.2.

(a) aj(, 5) are assumed to have asymptotic series t aJ,t()5t valid throughout
the region D which are smooth in the sense that all their formal derivatives with
respect to t -(’) a(’) (const’tcj, ()6 exist and] j,t ()1 < const

(b) The roots of the characteristic polynomial

(77)

are nondegenerate,

E ay(, 0)A()j 0
j=0

(78) infD IA,() n()] > const > 0 (m = n),

and the polynomial itself is nondegenerate in the sense

(79) infD lao(k)l, la(k)l,
laj(k)l

> const > 0.

(c) Finally,

const
/ 1
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in Da, where Am((k+ 1)5, 5) are the roots of the complete polynomial E=o aj(, 5)Aj.
LEMMA 4.1. Under these assumptions for any formal solution of (1) of the form

S :: exp -1(I0() - E (I)m()m
m--0

where the exponent is assumed to be a smooth asymptotic series in the sense defined
in (a), there exists a true solution of the recurrence which is asymptotic to it in Da.

Proof. The proof follows closely the proof of Lemma 3.2. We emphasize only the
differences: For the recurrence (50), we also have to verify condition (c),

The equivalent of Lemma 3.3 states now that there is a 5-independent constant C
such that

(s0)

(81)

IIAkAk-1...Aj+lll

_
(1 + CIk jlcnst).

Indeed, by Remark 5 a diagonal term of the matrix T := A-1Ap_ is of the form

by (c). Similarly, the moduli of the nondiagonal terms are seen to be less than
const/(Ik + 1). Therefore, T I + R where the IIRII is O((Ik + 1)-1), and hence the
inequality (80) follows.

The last part of the proof of Lemma 3.3 applies here without any significant
change.

Next, we discuss the reduction to the nondegenerate case. We consider the initial
recurrence in the neighborhood of a crossing point, say x 0, where A1 (0) A2(0) 1
(the value at zero can be chosen through a trivial global rescaling of the recurrence).
It is convenient to consider rescaled variables fi el/3 and k. In these variables,
the coefficients ay(x, e) ay(fi2, 3) have smooth asymptotic series in in Da which
are in fact obtained through series expansion in x from (5)

(82) aJ(52’ 53)
s>O

where

Pj,0 aj(0, 0), Pj, () 0, Pj,2() (Dxaj)(O, 0),

and in general Pj,s() are polynomials in of degree at most s/2 for s even and (s-3)/2
for s odd. To avoid complicating the notation we write aj(,5) =_ aj(52,53). We
have first to find formal solutions for this new recurrence.
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LEMMA 4.2.
form

There exist linearly independent formal solutions in D of the

(83) exp (-1
t--0

where q2.,t() are smooth in and satisfy the estimates

Im,t()l < conStm,t + conStm,tl[l t/2+1.
This means in particular that the domain of formal validity of the power series

is then 1/25 << 1, i.e., x << 1. The domain in which it is actually asymptotic to the
solution is however much smaller (x << x/), as we shall see.

Proof of Lemma 4.2. The formal solutions corresponding to the nondegenerate
roots give rise automatically to acceptable formal solutions in the new variables , 5.
Indeed,

(84)

The term in 5-3 is merely a multiplicative constant so it can be dropped and we are
left with a formal solution of the form

( )(85) exp -1 X.m,t()t,
t--0

where the X,,t() are in fact polynomials in of degree _< t/2 + 1.
For m 1, 2 it is more convenient to write first the possible formal series solutions

for the equation in the form

(86) EXt()5
t--0

and then show that we can write them in the form (85).
Substituting (86) in the recurrence, we get

E aj,,5EXt( + j5)5t.
j=0 =0

The term of order s in (86) is obtained by differentiating the auxilliary equation

E aj(, 6)X( + j6, 5) 0
j=0

s times with respect to 6. We get (see (82))

E P-t() (D + D,)tX
j=o t=o

6=0
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which, after expansion, change of order of summation, and use of (82), gives

D ,()E E
j=0 a=0 t=a

(sT) + Dxaj(O, 0) X8-2 + aj(0, 0)j2x,_2] 0.

It follows that Xo is obtained as a solution of the homogeneous Airy equation

(ss) x"() ox(),

where

(89) 03 Etj:0 Daj (0, O)

E:0 ay(0, 0) j

and that, given X0,..., X-3, we get X-2 as a solution of an inhomogeneous Airy
equation of the form

x"() ox()+ R(),

where R() is a linear combination of higher derivatives of X0,..., X-3. To avoid
cumbersome notation, we shall assume in the following that O is 1. We can check that
the assumption of genericity (IAl(X)- A2(x)l > const x/) implies Yj=0 Dxaj(O, O)
0. We shall assume for definiteness that it is negative.

It follows by an obvious induction that the X8 are smooth. Now we show that
they satisfy the inequalities stated in the Lemma 4.2.

Remark. Consider the inhomogeneous Airy equation f"() f() + R() and
assume R() P exp(2A/33/) with A _+1 for x oc and A +/-i at -cx. Then
f() p-1 exp(2A/33/2). This estimate follows immediately from the explicit form
of the solution

f() Ai() R(t)Bi(t) dt Bi() R(t)Ai(t) dt.

At this point we can show by induction that the solution Xn() grows at most
like exp(2A/33/2)/2. So we assume that this holds for s _< n and we show that it
is true for n + 1. Using the remark above and (87), the induction step is as follows:
with p, n/2,

max (n+l-t) +
0<_<,;_<t<n+3 2 + 1 (t a) + Pn } < Pn+l - 1,

which is straightforward.
Finally, we argue that there are two linear independent formal solutions of this

type that can be written in the form (85) which is convenient for our approach. For this
we have to choose X0, which is a solution of the homogeneous Airy equation such that
it does not vanish in D. Since the Wronskian of the couple Ai(), Bi() is a nonzero
constant, any combination with real nonzero constants of the form CIAi() +i C2 Bi()
is an everywhere nonzero solution (and the derivative is also nonzero). We can choose
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two linear independent solutions in this way, say the ones for which X0 =Ai()+/-iBi().
That they are formally linearly independent with respect to the solutions obtained
from (84) follows easily, for instance from the fact that they correspond to different
roots of the characteristic polynomial.

To show that there is an actual solution for each formal solution in this region,
we first single out a true solution corresponding to the dominant characteristic root
and then use it to reduce the problem to a regular one. Then we show that they give
the expected asymptotic behavior for the solutions of the original equation.

The ideas .are similar to those used in the regular case with the exception that
extra care is needed along the degenerate directions.

Choose

X0() Ai() + Bi()

and consider the nonzero formal solution that has the leading order X0. We proceed
as in Step 1 of 3 to construct a rescMed recurrence with respect to the truncation of
our formal solution. The same argument used there shows that the new coefficients
have smooth asymptotic series.

What is new here is that we must provide for the estimate of the type (c) to. which
end we examine the complete characteristic equation P(, ; ) 0. P is a polynomial
in (actually_it is, to leading order_, a polynomial with constant coefficients), C in
and 5. P(0,0,A) has a double root A = 1 but by assumption the second derivative does
not vanish so that we can obtain the roots of the polynomial perturbatively. After
series expansion, we obtain

E { [aj(0, 0)(1 + 5 Cj + 52Ej + 0(53)) + Dxaj52 + 0(53)]
j=0

(90) (1 + jXI()5 + (jx2()52 + j(j 1)/2X) + O(53))} 0,

where we have taken 1 + Xl ()(-}-X2()2 - O((3) and

__1 (jx +Xl)CJ
Xo
1

Ey X--o (J2xrX + JXXo JXX X)

Using the relations in (82), we get two solutions for XI: X 0 (actually, as expected,
we get a root 1 1+O(5)) and X1 1-2XX1S+O(52). We see that in
the first order in 5 there is no root crossing, which is not a surprise since a generic
perturbation tends separate coalescing roots. The asymptotic series are uniformly
valid in our domain D. Now we show that

(91) A2((k + 1)e)-
l(k)

const

Ikl + 1

(this explains the condition (c) at the begining of this section).
We have

1.

I(log X0())’ > constv/- + const’.
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This is obvious since it holds asymptotically and the function does not vanish. Hence

12(5 k))- 1(5 k)l > constv/51kl + 1,

I(log h0())"l < const/v/ + 1 + const’.

Using the asymptotic series for the A1,2 and the above estimates (1) and (2) we
see that

+ k) (v/ + 1 + constl)52 const

(constv/ + const’)5 Ikl + 1

The similar estimates for the other roots are better but this of course does not
improve the overall rate of convergence. A1 1 + O(58 and can be obviously made
less than 1 + const 52 in D so that also IXl((k + 1)5)- Al(kh)l < 1 + const’ 52, which
is enough for our purposes. For m - 1, 2 we can for instance use the fact that the
derivative of the polynomial at these points does not vanish and settle for a crude
bound X,(5 (k + 1)) ,(5 k)l < const 52, which can be obtained immediately from
(90).

Now, to see that there is a true 8olution of the recurrence which i8 asymptotic to
our formal series starting with Ai + iBi, we only have to repeat the same argument8
used in the regular case.

The next step i8 to use this particular solution to lower the order of the recurrence.
We mimic the construction done in the proof of Lemma 3.2 to get a lower-order
recurrence in the variable d

1-1

=0
8---0

(see (66)) and want to check that this new recurrence satisfies the hypothesis of
Lemma 4.1. To leading order, the characteristic polynomial of the above equation has
no double roots (it now has only one root equal to 1).

As in the regular case, b0(, 0) -(, 0) -a0(0, 0); b_l (, 0) -(, 0)

Noting that the coefficients of the recurrence (66) have asymptotic series valid
throughout the domain (as finite sums of terms of the series of aj(, 5)Y,+j/Y,),
the boundedness of the coefficients is also trivial.

As in the proof of Lemma 3.2, the polynomial in by has the same roots as the
polynomial in 5j (except for the eliminated one), for which we have already obtained
the estimates of type (c).

Now we have a regular problem for which we know that to each formal solution
there is a genuine solution asymptotic to it.

It remains to check that we can recover the asymptotic behavior of the solutions of
the original recurrence from those of the reduced one. For the solutions corresponding
to the characteristic roots that are less than 1, exactly the same proof as in Step 3 of
Lemma 3.2 works. For any formal solution of our original equation that corresponds
to the largest eigenvalue and which does not vanish, the proof is the one given in
Lemma 4.1.
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In the crossing region however there might be a special interest in finding a
particular solution which is not of exponential type and which is small for large
(the Airy-like solution). To this end, a slightly different argument is necessary. We
can obtain a formal solution of the reduced equation which is, to leading order,

Bi( + 5)Ai() Bi()Ai( + 5)(92)
(Ai({) iBi({))(Ai(c + 5) iBi({ + 5))

(suggested by computing (68) for two formal solutions of the original equation, cor-
responding to Ai :t: iBi)). The asymptotic behavior of (92) for large { is

5
(1 + power series) (1 << I1 << (-1/2)(93)

(Ai(c) iBi())2

Writing the asymptotic representation of Ai + iBi in the form

-1/4 exp(2/33/2)(1 + series)

is sufficient to see this. It is important to note that there are no powers of multiplying
the asymptotics (93); its leading order does not vanish, and (93) can be written as an
exponential of a formal series, the form required by our arguments.

We now apply the construction in Step 3 of 3 to recover the solutions of the
initial recurrence.

Using the asymptotic behavior of the Airy functions for large argument, we get
for the reconstructed solution the representation

(2) (4)y (-1/4)exp 3/2 E(k()l/2 exp _()3/2 (1 -- power series),
k=j

for which the Euler-Maclaurin summation formula gives the asymptotic representa-
tion

-1/4 exp (-- 3/2)
for large positive .

In conclusion, there is a true solution of the recurrence which behaves like the
Airy function for positive k (also for negative k when this is properly interpreted)
and our argument shows what initial conditions have to be chosen to obtain it. For
negative k we see that, in fact, all the solutions corresponding to the largest two
eigenvalues are comparable.

4.2. The exterior region. Now we want to show that the solutions coming
from the exterior region remain asymptotic to the true solutions as long as Ixl >> 2/3.

The problem that arises here is that the characteristic polynomial has a virtually
degenerate root for small x and this leads to a lesser smoothness of the asymptotic
series and ultimately to its collapse at Ixl 2/3. Let/9 be as in Proposition 2.2 and
define the exterior region by

{x" Ixl >
In what follows, we make the following conventions. We write
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if lim_0 e-k g(e) 0 for all k; also 9V(x) will denote a generic function such that it
and its derivatives of arbitrary order s satisfy the estimates

(94) [$’(x)(8)(x) < A8 + Bx-
with the convention that I$’(x) $’(ln(x)) < A + B In Ixll.

The first step is to study the asymptotic properties of the formal solutions, i.e.,
of the (possibly divergent) expressions for which

(95) E aj(x; e)exp Ot(x + je)et O.
j=o t=o

We show by induction that Ot and their derivatives behave like x(l-t) and its
derivatives. We place ourselves in the assumption of genericity of the crossing which
means in particular that oP(;x)

ox > const
LEMMA 4.3. (i) If in (95) the asymptotic series for the aj are of the form

Ek=o.k(xl--)ek, then, in the formal solution (95), we have t=JZ(x(-t)).
(ii) The same conclusion is true if ox > const > 0 uniformly in x and

Note that the coefficients ay of our initial recurrence are smoother than it is
assumed in (i) but this smoothness does not withstand a rescaling as done for (65).

The proof of Lemma 4.3 is by induction on t.
(i) It is easy to see from the eikonal equation that 0=$’(x3/2). Assume that the

conclusions of the lemma hold for all t < t. After a formal series expansion of the
exponent of (95), one gets

(96)

aj(x; e) et j() + _. (s,) +

_
+0 O,

j=0 > k=0 >
d + --- t+ + s: t+

which, using the induction hypothesis, can be rewritten as

(97)

After expanding in powers of e and collecting the term in t, we obtain the equation
for (I)t in the form

(98) E (jay;(x)e‘’() ((x) + ,5"*(xl--’)) --0
j=0

or

(99) (I) (x)
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where the derivative of the polynomial is evaluated at 0, , exp((I)) thus proving
(i).

For (ii) the same proof works, replacing everywhere 9C(xl-t) with 9r(x1/2-t).
4.2.1. Rescaling first the recurrence with respect to the approximate solution,

we show that there is a genuine solution corresponding to the maximal eigenvalue.
Let , be any function such that ,(x; ) E ,;t(x)t and take

(100) m :-- exp(e-1 tm(X; )).

The existence of a solution corresponding to the asymptotics exp(e-1 1 (x; e)) is
again equivalent to a solution which is 1 to all orders in e of the recurrence

(101) E gj,s(ke, )Ck+j O,
j=0

where gtj,8(ke, e) aj(ke, e)l)l((k + j)e)/l)l(ke). The formal solutions of the equation

(101) are Y,/Y1. We need the roots of the new characteristic polynomial

P(i) .= 0.
j=0

It is easy to see that the polynomial (102) has a root which is 1 to all orders in
Now let G(x; ) be one of the differences Gm(x; ) m(X; e) I/1 (X; ). We have

E 5j.8(k, )exp(e-lG(x + je; e)) o(t)
j=0

for all t and so, after series expansion,

(103) E j,(k, e),(1 + Hj(x; )) o(),
j=0

where Hi(x; e) are some smooth functions of x,e and A0 exp(Gx(x; e)). Using
Lemma 4.3 and the genericity assumptions, it is not difficult to see that

(104) IHj(x; e)l < const Ix1-1/2.
If we look for solutions of the characteristic polynomial (102) in the form A0 + 7,

we get

0-/5() EP(Y)(A)
j=0

(where the derivatives are taken with respect to A). Using (103) we obtain - as the
unique small solution of the equation

(105) 7
E _-0 a (x; (x;

E=I P(J)(o)"/j-1
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which is a contraction for small enough e (and small /) in the region Ixl > Z as it is
easy to check. We then obtain from (104) and (105)

Izl < Ix-]’

again valid for Ixl > .
We shall also need estimates for 7(x+e)-’(x). Differentiating (105) with respect

to x and using Lemma 4.3,

17(x + e) 7(x)l < const Ix1-2.
Now we proceed as in the regular case in rewriting the recurrence in matrix form

and evaluating the terms in the product (59). In the matrices T "= -l/k_l, the off-
diagonal elements are estimated by T,n < const lx1-1 and for the diagonal elements
we have Tram 1 + O(e/x). Indeed,

Am((P 1), ) ), (pe, ) )
Since by the assumption of genericity the roots of the polynomial are separated by at
least constv/lxl), each term in the product above can be estimated by

1 + const (/k(x) + t(x))[x1-1/2 - O (((,(x) -- /t(x))lxl-1/2)< 1 + const ([x1-1 --2[Xl-5/2) < ][ -const [X[ -1

in our region EZ. The nondiagonal terms are estimated in a very similar way.
We derive the estimate liT(x)- Ill < Ke/x for some constant K. Assume for

definiteness that we are on the left of the crossing point. We get

< const (-K/3.

Finally, we have to control the product of the norms of the diagonal matrices

Dk. Since they all have one eigenvalue equal to 1 to all orders in and for i > 2
[A(x; e < 1 -const, the only nontrivial contribution comes from A2 and this only if

and A2 have the same modulus to leading order in e. Referring to the decomposition
A0 + ’, we have in this case, using the Euler-Maclaurin summation formula,

exp {} ((i)2;1(_52/3) (I)1;1(_2/3)) } < (-const.

Also,

II 1+
const (-const
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so that also rI A is less than --const. At this point, the same arguments as in the
regular case show that there is a true solution behaving asymptotically as the formal
solution corresponding to the largest eigenvalue.

4.2.2. Let Y1 be a solution of the recurrence relation such that Y1 exp(e-1"
E (I)l;tt) in EZ. We now follow the same steps that led to equations (65) and (66).

It is a matter of straightforward induction to determine by Lemma 4.3 that the
coefficients y have the behavior

5j(x; e) aj;o(x)e (x) +E $’Y;

and then clearly

(108) bj(x; e) E J;k(x1/2-k)e"
k>0

It is also easy to check that the recurrence (66) is now nondegenerate in the sense
that

(109) infEf Ib(ke)l’ Ibt-l(ke)l’ "j"e" > const > 0

and the characteristic polynomial of the new recurrence does not have coalescing roots
(the root A 1 of (65) has been eliminated in the reduction)"

(110) inf{I I’km(X)l- ]A(x)I I} > const > 0 (m = n).
E

We are now left with a problem of the following type. Taking a recurrence of the
form

(111) E ay(x; e)y+j 0
j=0

under conditions

(112) j(x; ) E $’Y;(x1/2-c)k’
k>0

(113) infE la(ke)[’ lat-l(ke)[’ ’ay"e" > const > 0,

(114) inf{I IA,(x)]- IA=(x)l > const > 0 (m # n)},
E

where Am(X) are the roots of the polynomial

(115) P(A) := E aJ,(ke)AJ O,
j=0

we want to show the following.
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LEMMA 4.4. Given a formal solution to (111)

exp (--1 tt(X
t=0

where Or(x) .’t(X(1--t)), there is a solution asymptotic to it for 0 < x E EZ (and
correspondingly, one when x is negative).

Proof. We prove Lemma 4.4 by using induction on 1.
(a) We show that we can find a solution corresponding to the root that has the

largest modulus (this will simultaneously prove the lemma for 1). All the argu-
ments in 4.2.1 above apply here. Actually, now we could get some better estimates
since we do not have small denominators in (106), (107), and in the estimates of the
matrices, but this would not affect the final result.

(b) We assume that the conclusion is true for all recurrences of order less than
l- 1 and show it holds for recurrences of order 1. By the arguments above, there is a
true solution asymptotic to the formal solution defined by the maximum eigenvalue.
Using it to reduce the order of the recurrence, we obtain an order l- 1 scheme, which
satisfies the conditions of Lemma 4.4 as it is easy to check and for which we thus know
the asymptotic behavior of the solutions. It remains to verify that they can be used to
produce solutions of the higher-order recurrence with the stated asymptotic behavior.
For definiteness we study the subregion x < -eZ. All the arguments in Step 3 of
3 apply if we take 1 to be -eZ. The only change is that in (75) m;l(X) are not
uniformly bounded. Instead, using Lemma 4.3 we get j;l[ (ln(Ix])) < K In e[ for
some fixed constant K so the right-hand side of (75) changes to Ym;k (1 + O(S-2-g)).

Finally, after the first reduction we end up with a recurrence that is nondegenerate
in the sense of Lemma 4.4 and for which we can control the small-e behavior of the
solutions. Now, the reconstruction of the solutions of the original recurrence from
the solutions of the reduced one amounts to merely repeating, without any significant
change, the construction and estimates in part (b) above. At this point in the proof,
it is clear that if the crossing roots are not the largest, one can reduce the order of the
recurrence to the actual level at which the roots cross and then apply the arguments
above.
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Abstract. A resonance result for a time-periodic quasi-linear reaction-diffusion system with
(possibly) different diffusion coefficients is established. The driving force of the system may depend
upon the dependent variables as well as their derivatives. Also a nonresonance result below the
common first associated eigenvMue is stated and proved, and an example of an autocatalytic system
illustrating this result is presented. Two other examples for the resonance result are also presented.

Key words, reaction-diffusion, time-periodic, quasi-linear partial differential equations, non-

linear driving force
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1. Introduction. It is the purpose of this paper to present a resonance-type ex-
istence theorem for a system of time-periodic quasi-linear parabolic differential equa-
tions with a driving force that depends upon the derivatives of the dependent variables.
The result obtained appears to be new, even in the semilinear parabolic case. The
quasi-linear parabolic system that we study is of the following form with N1 a positive
integer:

(1.1)
Dtui / piQiui piAui + fi(x,t,m(Ul),... ,m(UN1))-- Gli(Dtui)G2i(ui)gi(x, t), 1,..., N1,

for (x, t) E f (-, r), where each Qu is a 2ruth-order quasi-linear elliptic differential
operator, A is its common associated first eigenvMue, Dtu ,,(u) {Du
lal _< m}, and p is a positive diffusion coefficient. We shall also give a nonresonance-
type result for a quasi-linear system closely related to (1.1).

Systems of the form (1.1) play an important role in applied mathematics and are
generally referred to in the literature as reaction-diffusion equations. In particular, in
mathematical biology when the diffusion coefficients (i.e., the p) are different they give
rise to the Turing mechanism, which is important in the theory of pattern formation
(see the interesting article [14] .and a further discussion in [15, pp. 375-379]). Also, in
predator-prey problems autocatalytic systems (see [2, pp. 116-120]) are important.
In 2 we give a quasi-linear autocatalytic system that is covered by Theorem 2 and
two other examples that illustrate Theorem 1.

The two theorems that are proven in this paper are motivated by the work of
Shapiro [17], de Figueiredo and Gossez [6], Lefton and Shapiro [12], and de Figueiredo
[5]. In [17] the notion of a first eigenvalue for a higher-order quasi-linear elliptic
operator is introduced (evidently for the first time), and this gives the aforementioned

A. (See also (1.5) and (1.6).) In [6], techniques for. solving semilinear higher-order
elliptic boundary value problems below and at the first eigenvMue (called problems
at resonance) are developed. In [12], a time-periodic result at resonance for quasi-
linear parabolic operators is obtained; and in [5], a resonance theorem for semilinear

* Received by the editors October 1, 1993; accepted for publication (in revised form) April 6,
1994.

Department of Mathematics, University of California, Riverside, CA 92521.
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elliptic partial differential equations with derivatives in the nonlinear forcing term is
established.

To be quite explicit about the various aspects of each of the quasi-linear partial
differential equations in (1.1), let ft C I[(N,N >_ 1, be a bounded open connected
set. The points of f will be designated by x (Xl,...,xg) and the elementary
differential operators by D 1-IJV= o (al ON)) for an ordered N-tuple a
of nonnegative integers with the order of the operator D written as lal N-j=lOj.
To write nonlinear partial differential operators in a convenient form, we introduce
the vector space Rm whose elements are (m { Il _< m} and divide each m
into two parts: m (.-1, Cr), where ?r-i {r/ I1 <- m- 1} e Rm- is the
lower order part of m and m { I1 m} is the part of . corresponding
to the ruth derivatives. In particular, . Rqm, where qm s. Sm--1. For u
Wg’2(a),m(U)(X) {Du(x)’lal <_ m}. (Note D(, )u u.)

Qiu will designate a 2ruth-order differential operator of the generalized divergence
form

(1.2) Qiu (-1)llDA(x,m(U)) + ao(X,(m(U))U,

and the following hypotheses will be imposed on the functions A(x, m), 1 <_ lal <_ m,
and a appearing in (1.2).

(Q-l) Ai(x,(m) ft x IRs- IR satisfies the Carathodory conditions (i.e.,
A(x,m) is measurable in x Vm N and continuous in for a.e. x for
1 5 m).

(Q-2) Sc0 > 0 and h# e L2(a) with h# nonnegative such that [A(x,)
h#(x) + colm[ V(m , 1 m, and a.e. x for 1,... ,gl.

(Q-3) lal=m[A(x, m-1, m) A(x, m-,)]( ) > 0 for a.e. x ,
V(m-,m), (m-,) R with Cm , where m (m-,m), and for
1,...,N1.

(Q-4) 2c > 0 such that ll=mA(x,(m) C]ml2 V(m e and a.e.
x for i l,...,N.

(Q-5) a(X,m) X Ns satisfies the Carathodory conditions and

The notation we have introduced is the standard type used. (See [4].)
Next, we introduce the Hilbert space as follows. Set A {v(x, t) e C( x

N)’v(x,t) is real-valued and satisfies (A-l) and (A-2)}, where
(A-l) v(x, t) v(x, t + 2) Vx e and Vt e ,
(-2) E, a compact subset of a, such that v(x, t) 0 Vx e aE and Vt R.
Set x T where T (-, ), and introduce the following inner product,

where we write L2 for L2 (),

(1.3) (u, v> [-I (Dtu, Dry> L= + ’ De’u, DaY}L

for u, v E A, where (., ")L is the usual L2-inner product over t. With this inner
product j( becomes a pre-Hilbert space. H will designate the Hilbert space that we
obtain by completing ,4 using Cauchy sequences with respect to the norm [lu[[//

For our quasi-linear operator Qu in (1.2) we shall also suppose
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(Q-6)

A(X’m(v))DDtv +/[-I a(X’m(V))vDtv 0 Vv e .,4.

In (Q-6), we note that {,(v)= {D"(v(x,t))’lal <_ m}.
From (1.1), (Q-1), and (Q-2) we see that the two-form

(1.4) e (u,v) A(x,m(u))Dav + a(x,,(u))uv

is well defined for u, v E r and 1,..., N1.
Motivated by Shapiro [17, p. 1821], we define

liminf
Qi(u,u)(1.5) ’1i [[U[[L2--(:X:) [[tj,[l2

U E /ro

The same proof used in [17, p. 1822] shows that Ai is a finite real-valued number. Ai
plays the role of the first (or principal) eigenvalue of Qi. We shall suppose throughout
this paper that

(1.6) AI AN AI.
Next we set

(1.7) Lu E (-1)llD,(bf(x)Du),
[a[,[f[_<m

where we have the following hypotheses on b((x).
(L-l) b are real-valued functions in L() for la[, [1 <- m. Also, if [a --[/[--

m, then b is uniformly continuous in .
(L-2) 3c2 such that Yll-ll-m ba#a#f >- C21[2m VX ’ and V# RN where

# (#,..., #N) and [[2 12 _... _[_ V"
Observe that with (L-l) and (L-2), L is a higher-order linear elliptic operator.

Associated to L is the bilinear form

(1.8) a(u, v) E b,f(x)DauDfv Vu, v Wn’2()

where W’2() is the well-known Sobolev space obtained by taking the closure of
Cn() in Wm,2() with inner product (u, v) f -lal<m D"uDOv.

We will also assume throughout this paper that L satisfies (L-l) and (L-2) as well
as the following conditions.

(L-3) L is symmetric; that is, a(u, v) a(v, u) Vu, v W’2().
Also, we have the following well-known facts about i (see [8] and [18, p. 858])"

(1.9)

::q{n}nC:l a nondecreasing sequence with An -- ec and a
n--o

sequence of real-valued functions {n}nC__l in Wy’2() such that
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(1.10) {n}nC__l is a CONS on L2(t2);

(1.11) )1-- inf n(: u)

Extending the bilinear form (., .) from W’2(t) to/ by

(1.12) (u, v) /Ta(u’ v) 9f E bDuDZv

for u, v E H, where T (-, ), we see from (1.11) that

Also, w st I111 -I(, )1 for u e/ and

(1.14)

Let be given with 0 _< < 1.
We shall say Q is ,-related to L if the following conditions hold.

(1.15) /i /1.

(i) u e/, liminf
Qi(u, u) (u, u) > O.

Wm,.,

(1.16) (ii) There exist positive constants Cl#, c2
# such that

@(u, u) Z:(u, u) > -Clllull+1 c vu E ft.Wm,2,

(Qi being a,-related to L comes from the notion introduced in [12, p. 153] where in
(1.19) in this last-named reference, Ilulln should be replaced by Ilullw,,2,~. In case
A1 > 0, Ilull and IlUllw,,2,~ are equivalent norms.)

Let n be the largest integer such that 1 An1 < An +1. This implies that

(1.17) (V, i) 1 (V, i}L2() VV e Wy’2() for 1,..., nl.

We set

(1.18) S# v djCj dj is a real constant j 1 nA1
j=l

We shall impose the following hypotheses upon the fi given in (1.1) for
1,...,N1.

(f-) fi(x,t,ml,... ,mN1) X ]Sm X X Sm ---4 ]

N



QUASI-LINEAR REACTION-DIFFUSION 139

satisfies the Carath6odory conditions.
(f-2) with 0 _< < 1 and 3 nonnegative constants ca and an L2-function d(x, t)

such that

If(x,t,.,...,.g,)l _< cll+d(x,t) V(.,... ,.g,) e’ ’" %,
al-m N1

a.e. in for 1,..., N1 where m{
(f-3) Let S {m e Rs. Iml land(0 0) # 0}. 0 C with meas

( f0) 0 such that the following uniform limit holds for each (x, t) E fl0:

(1.19)
hi(x, t, mi)

uniformly for (ml,.-., m(i-1), m(i+l),..’, mN1) ]Ism X X ISm
N1

for all sequences {rn} C I and If(n)
-.i } C S such that rn -* and

where hi(x, t,mi) is a Carath60dory function on D x S that is uniformly bounded
by a function in L2().

For the G’s on the right-hand side of (1.1) we make the following assumptions for
i= 1,...,N1.

(G-l) Gli" L2() --* ] is sequentially weakly continuous and with 0 < < 1
such that [Gli(U)[ Ci[[l[. + C VU e L2(), where c and c are nonnegative
constants.

(G-2) G2 n2() is strongly continuous and c such that

c Vu e n2(). Also in case 0 in either Theorem 1 or Theorem 2,
IG=,()[ 0.

We shall establish the following resonance theorem for the time-periodic quasi-
linear parabolic differential system (1.1).

THEOREM 1. Let C N,N >_ 1, be a bounded open connected set; and let
be given with 0 <_ < 1. Suppose that the coefficients of Qi satisfy (Q-1)-(Q-6);
is ,-related to L; fi satisfies (f-1)-(f-3); gi e L2(); Gi and G2i satisfy (G-l) and
(G-2), respectively; and pi > 0 for i 1,..., N1. Also suppose

(1.20) Jf5 hi (x t, for every nontrivial v S#

for i 1,...,N1, where hi is given in (f-3) and (v) {(x,t) e v(x,t) 0}.
Then S(u,..., ugl) N1, which is a weak solution to the system (1.1) on .

What we mean by (Ul,..., ug,) HN’ is a weak solution to the system (1.1) on
F/is that

(1.21)
<Dtui, V>L + piQi(ui, v) piA<ui, v>i + <fi(’,m(tl), ,m(UN,)), V>L2

-[- Gli(ntti)G2i(ui)(gi, V>LU
Vv and i 1,...,N.

The nonresonance-type theorem that we shall prove will deal with the system

Dtui + piQui pi(A -5i)ui + fi(x,t,,(u),..., ,(uN,))
+ Gli(Dtui)G2i(ui)gi(x,t), i 1,...,N1,
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where each 5i is a positive constant. To handle the system (1.22) we do not need the
condition (f-3) nor the condition (1.20). In particular, we shall prove the following
theorem.

THEOREM 2. Suppose the conditions in the hypothesis of Theorem 1 hold, except
for (f-3) and the condition in (1.20). Then S(ul,..., UN1) E -INI, which is a weak
solution to the system (1.22).

In Theorems 1 and 2, besides dealing with a system, we also allow derivatives
of the dependent variables to appear in the forcing terms on the right-hand side of
the equations. Also, we allow derivatives of order m as well as derivatives of lower
order of the dependent variable to appear in the coefficients of each of the Qi on
the left-hand side of the equations. Neither of these situations were handled in the
paper by Lefton and Shapiro [12], and some new ideas of the type presented in the
current paper are needed. In the next section, we give examples of Q’s and f’s that
are relevant for Theorems 1 and 2 but are not covered in [12]. The extension of our
results to almost-periodic reaction-diffusion equations is left as an open problem.

2. Some examples. If L satisfies (L-1)-(L-3) and m 1, then L is automat-
ically tc,-related to itself. For m >_ 2, if L also satisfies (L-4) below, then L also is
a,-related to itself; this is the first situation we deal with in this section. Next, we
give two examples of a Q that has derivatives of order lower than m involved in its
coefficients (as well as of order m) and a corresponding L to which Q is a,-related.

Finally we consider three different systems, the first of which is autocatalytic and
involves Theorem 2 and the second and third of which illustrate condition (1.20) in
Theorem 1.

We first show that if Lu is given by (1.7) and L meets (L-1)-(L-3), then

(2.1) (v, Dtv) 0 Vv e .4,

where (., .)is defined by (1.12).
To see that (2.1) is true, we observe from (a-3) that for v e A,(v:Dtv)

(Dtv, v). Also, we see that Dt[DZvDv] (DDtv)DZv + (Ov)DZDtv. Hence
from (1.12)

2(v, Dtv)= E bf[(D"v)(DZD,v) + (DDtv)(DZv)]

=0,

which establishes (2.1). Next, we say L meets (L-4) if
(L-4)

where c is a positive constant and qm Sm Sm--1.

(In the special case m = 1, it is easy to see that (L-2) implies (L-4).)
We now show if

Lu= (-1)l"D"[b,z(x)nu]

(2.2)
+ +



QUASI-LINEAR REACTION-DIFFUSION 141

and

(2.3) if L meets (L-1)-(L-4), then L is ,-related to itself.

In order to establish (2.3), what we have to do is show that L given by (2.2)
satisfies (Q-1)-(Q-6). To do this we define

(2.4)

Aa(x,m)= E b,z(x)@ forla]=m
I1=m

E b(x)l for 1

__
lal _< m- 1,

co(x, m) boo(x).

It is clear from (2.4) that A(x,,) satisfies (Q-l), (Q-2), (Q-5), and (Q-6); this
latter fact holds because of (2.1). Taking m 0 in (L-4), we see from (2.4) that

so (Q-4) holds. It is also clear from (L-4) that (Q-3) holds. Hence L is indeed ,-
related to itself since (1.15) and (1.16) obviously hold. So Theorems 1 and 2 hold
when Qi is an L of the form (2.2) satisfying (L-1)-(L-4). If all the Qi’s are L’s of this
nature, our quasi-linear result is actually a semilinear result and appears to be new
even in this case.

For m 1, any Lu of the form (2.2) that also satisfies (L-1)-(L-3) automatically
is ,-related to itself by (2.3) since (L-2) then implies (L-4) as we noted earlier. For
m _> 2, suppose Lu of the form (2.2) satisfies (L-l) and in addition

(2.5)
baf(x) 0 if I 1- IZl m and a fl,
b(x) >_ c Vxeiflal=m,
baH(x) bz(x) if 1 _< II, I/l <_ -,-

where c is a positive constant. Then it is easy to see from [9, p. 55] that (L:2), (L-3),
and (L-4) also hold. Hence by (2.3) such an L is n,-related to itself. In particular,
we observe that Lu (-1)mA’u, where A" is the familiar ruth-iterated Laplacian,
satisfies (2.5) and, therefore, is n,-related to itself.

In [12, pp. 154-160], two quasi-linear examples, one of second order and one
of higher order, were given that meet the criteria for the n,-relationship. We now
give some quasi-linear examples that are not covered by the theorems in [12] because
A,(x, m) for lal m will be allowed to depend on derivatives or order m- 1. How-
ever, these examples will be covered by Theorems 1 and 2.

We first consider the case when Qu is a second-order quasi-linear differential
expression, that is, m 1 in (1.2). For this situation, we can designate the As when
]a 1 by Aj for j 1,...,N and 1 by (r0,l,...,N) with 11] 2 /]02 -- -+; SO rl0(U) U and j(u) O-’ In particular, we set

A(x,) j +
(1 + I ) 1/2’

ao(x,) (1 +

j 1,...,N;
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It is clear from the start that (2.6) implies that (Q-l), (Q-2), (Q-4), and (Q-5)
are automatically satisfied. To see that (Q-3) holds, we observe that for c > 0, [c +
41 +"" + v] 1/2 is a convex function in N. Hence by [11, p. 16], the gradient of this
last-named function is monotone. This fact plus an easy computation show that (Q-3)
holds for the Aj in (2.6).

To see that (Q-6) holds we observe from (2.6) that for v E 4

N

E Aj(x, 1 (v))DtDjv + a0(x, 1 (v))vDtv
j--1

1
Dt[1 + / IVvl ] / -DtlVvI

Hence, the periodicity of v shows that the integral over t2 of the expression on the
left-hand side of the equal sign in (2.7) is zero and (Q-6) is established.

We set Lu -Au where A stands for the Laplace operator. To complete this
example we must show that Qu given by (2.6) is .-related to L. An easy computation
using (1.4) and (2.6)shows that

IWl 

Since the right-hand side of (2.8) is nonnegative, it follows that conditions (1.16) hold.
In a similar manner it follows from (1.5), (1.13), and (2.8) that A >_ A1. Next, with

1 given in (1.9), we have that (nl,nl)= n2/k12r. Consequently, we obtain from
(2.8) that

Taking the lim inf of both sides of this last inequality as n - c, we infer from (1.5)
that A _< A1. Hence A A1, (1.15) is established, Q is .-related to L, and our
example is complete.

For our next example, we let rn _> 2 and let c (al,..., aN),/ (/31,...,/3N)
designate N-tuples or orders (rn- 1) and rn, respectively, ia will stand for the N-
tuple/3 where 3j aj for j : and/i ai + 1. Also, for each/3 with 1/31 rn, let
Fz(s) be a mapping of the following nature:

(2.9) F" [0, c) - is continuous and nondecreasing;

(2.10) 0 <_ Fz(s)_ 1 Vs e [0, c);

(2..11) lim s[1 FZ(s)] 0.

Examples of such an Fz(s) are

8 82

(1 + s2)1/2 1+ s2’
and

2+s
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We shall also suppose

(2.12) b(x) e C() with b(x) >_ c’ Vx e ,
where c is a positive constant. Next, we set

(i)
(2.13)

(ii)
F(fl) {a "lal m- 1 and Bi such that ia =/5},
(/) the number of

We define

(2.14) An(x ,) + b(x) E F[(2a +)1/21 for 1/51 m,
er()

N

(2.15) A,(x,m) E b(x)F"[((2 + 2)1/2] for lal m 1,
i--1

and

(2.16) Qu E (-1)mDA(x,,(u)) + E (-1)m-lDA(x,m(U)).

Now, it is clear that the coefficients Q satisfy (Q-l), (Q-2), (Q-4), and (Q-5).
From (2.9), we see that sF[(s2 + c2)1/2] is a nondecreasing function of s for s e R
and c e ]t(. Hence it follows from (2.12) and (2.14) that the condition (Q-3) is also
satisfied. To see that the condition (Q-6) holds, we observe from (2.13) that the
following equality of sets holds:

(2.17) {(/5, a)" I] m,a e F(/5)} {(ia, a)" lal m- 1, 1,...,N}.

From (2.17), it consequently follows that for v E A

(2.18)

E E bF { [(Dv): + (Dfv)] 1/2 } DvDDtv
Ifl=m aer(f)

It therefore follows from (2.14)-(2.16) and this last fact that

(2.19)

Set Gia(s) fFia(r1/2)dr for s >_ 0. Then it is clear that DtGi[(Dv)2+
(DDv)2] the integrand for fT in (2.19). Hence the periodicity of v implies that
Q(v, Dtv) 0 for v E .4, and we see that the condition (Q-6) does indeed hold for Q.
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Next, we set

Lilt--(--1)m E D[Du]

and with u(/3) defined in (2.13) (ii),

(2.21)

Consequently, it follows from (2.13)-(2.16), (2.20), and (2.21) that for u E H,

(2.22)

Our example will be complete if we can show Q is .-related to L. To accomplish this
we first observe that

(2.23)

2where II llw , ,~ is defined in (1.14). Equation (2.23) follows easily from the fact that
given > 0, there is an so by (2.11) such that the numerator of the integrand in (2.23)
is majorized by lDZu if IDZu[ >_ so. Consequently, using (2.10) and (2.12) joined
with (2.23), we see that each of the integrals in the first term on the right-hand side
of (2.22) when divided by Ilu][ 1+w-,2,~ tends to zero as ]lU[Iw,,2,~ . A similar
situation prevails for each of the integrals in the second term. We conclude that

Hence (1.16) (i) holds. A similar argument using (2.22) shows that K > 0 such that
.(u, u)- Q(u, u) <_ [lUllw,.2.~ + K ’u H. Hence (1.16) (ii) holds.

It remains to show that 1. From (2.10), (2.16), and (2.22) we see that
0 <_ Q(u, u) <_ .(u, u) Vu H. Hence for 1 given in (1.10),

Q(nl, nl) for every positive integer n.

Consequently, from (1.5), we have that

(2.24)
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Next, we set

(2.25) Z:(u,u)- [DI.

and observe from (2.10), (2.12), and (2.14)-(2.16) that

(2.26) 1 (u, u) <_ Q(u, u) Vu E .
Also, we see from Poincar6’s inequality and (2.25) that there is a positive constant c
such that

(2.27) E Dul= < c’(u, u) Vu .
Let {Un}nC= be a sequence of elements in H with the property that

(2.28) IluIIL= and lim
Q(Un, U,)- Ilull=

;

Hence, for n > n2, Q(Un, Un) < (, + 1)llull., Consequently, it follows from (2.25)
and this last inequality that 1(Un,U,) < (’ + 1)1111 for n > n2. Therefore, it
follows that for I1 m

(2.29)

l(Un, Un)

for n > n2. Now in a manner similar to that used to establish (2.23), we obtain from
(2.25) that the right-hand side of the inequality in (2.29) tends to zero as n cx3.

Therefore, the limit as n --+ of the left-hand side of (2.29) is zero. In a similar
manner, using (2.27) we obtain that

I1,11,.
0 for I,1 - 1.

We conclude from (2.22) that

(2.30) lim
(Urt, l,n) -(Un,

=- I1=11
=0.

But ((Un, )/1111) -> and we obtain from (2.28) and (2.30) that 1 _< ,k.
This fact coupled with (2.24) give that ,kl . Hence Q i8 ,-related to L and our
example is complete.
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Next we take Ni 2 in (1.1) and give two examples of an fl and f2 that satisfy
the conditions of our theorems. Our first example will be a simple autocatalytic system
that qualifies under Theorem 2. For this system we also take N 1,

Ql(ttl) -Dx/Dul +

1 IQ2() =-D 1 +

arctan u2fl(x,t, ul,u2)
l+u2

tanh Ulf2(x, t, ul, u2)
1 + %2 + b2(x, t),

Dxul
(1 + u + Dxu) 1/2 +

(1 + IDul)
Dxu,

4. bl (X, t),

Ul

(1 + u + Du21)1/2’

where bl(x,t) and b2(x,t) are in C{[0, r] [0,2rc],]R}. It follows from our earlier
discussion in this section and from [12, pp. 156-157] that Q1 and Q2 are .-related
to L and that AI A2 A1 1. Hence with

(:2.31)
Fl(x,t, ul,u2) pl(1 (51)1 4. fl(x,t, itl,u2),
g2(x, t, itl, it2) p2(1 52)u2 4. f2(x, t, itl, it2)

we see from Theorem 2 with n 0 that there exist (ul, u2) E H2, which is a weak
solution to the system

(2.32)

gUl

c9u2
Ot

-[- PlQlUl F1 (x, t, itl,

4. p2Q2u2 F2(x, t, itl, U2)

on the interval (0, r) (0, 2rr), where pl, p2, (51, and 52 are positive real numbers. An
easy computation shows that < 0 and o__gaF > 0 for all values of Ul u2 in IR andou. Oul
(x, t)in [0, r] [0, 2r]. Likewise we see that

OFi arctan u2(2.33) (ltl
pl(1 --(51)4. 2Ul (1 4- it2)2

Since the second term on the right-hand side of the equality in (2.33) is bounded in
absolute value by r, our system (2.32) will be autocatalytic (see [2, p. 116]) as long
as p > r/(1 -51), where we now also assume that 0 < 51 < 1.

We next give an example of an fl and f2 with corresponding h and h2 that meet
(f-3) and the condition (1.20) of Theorem 1. For this example we use the notation of
(2.6) and take rn 1,0 < < 1, 1 (g]0,l,..., N), and

(2.34)
N

Qu E DjAj(x, 1 (it)) 4- ao(x, 1 (t))it,
j--1

where Aj(x,) and ao(x,{l) are defined in (2.6). Also, we take Lu -Au and
(O,)N,N > 1. As we have shown, Q is n.-related to L. In the system (1.1)
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with which we shall be dealing in this example N1 2, Q1 Q2 Q, and gl (x, t)
g2(x, t)= 0. With bl (x) e C(gt) and b2(t) e C(T) we take

(2.35)

fl(x,t,(ll,(l.) -bl(x)b(t) Collroll ’ aretanr/m -t- E eJlljll arctanl
j=l

+ arctan(g + +... +) + d(, t),

[ ]f(z, t, (1, (1) -bl (z)b(t) o1 tanho + IGI G
j=l

+ tanh(g + +... +) + d(x, t),
(1 +

where coi, oi,... ,CNi are constants with c0i > 0 and di(x, t) E L2(f) for 1, 2. It
is clear that f, for i 1,2, satisfy (f-l) and (f-2). Also, since 0 < < 1, an easy
computation using (1.19) in (f-3) in conjunction with (2.35) shows that

hl(x,t,l) -bl(x)b2(t) coll7ol sgn r/o + Ecjllj[ sgn j
j=l

=-b(z)b(t) ann + ann G
j’-I

where I{11 1 and r/0 # 0. Hence fi also meets (f-3) for 0 < < 1 for i 1, 2.
We show that condition (1.20) holds for hi. Similar reasoning shows that it holds

for h2 To show that condition (1.20) holds for hi we observe that if v E S# is)il

nontrivial, then v is a positive multiple of 1-IN=l sinxi or -yLN=I sinxi. It therefore
follows that

(2.37)
1 (v)

4
cos xl l-I/N=2 sin xi

1-IN=l sin2 x + cos2 xl 1-IY__2 sin2 x +... + cos2 xy 1-IN__l sin2 x

Consequently from (2.36), we see that the integral involving 1(v)/11 (v)l in (1.20) is
a constant multiple of

(e.as) b2(t) dt bl (x)ll (v)lv sgn
[{l(v)[

N

dxl dxN.

At this point we impose two further conditions on bl(x) and b2(t) that we know
are in C(t) and C(T), respectively. We shall also suppose

(i)
(2.39)

(ii)
bl (x) > 0 Vx e t and b2(t) > 0 Vte T;
in each variable xj,j 1, N, bl(x) is even around
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In particular, for the Xl-variable, (2.39) (ii) means bi (-ff + Xl X2, ..., XN) bl r2
Xl,X2,... ,XN) for 0 < Xl < y and 0 < xj < r,j 2,..., N. For example, bl(x)

j=l sin4 xj.
It follows from (2.37) that 1 (V)/II (V)I is odd in Xl around . Hence from (2.39)

(ii), the integrand for

N

in (2.38) is odd in Xl around . Hence the corresponding integral is zero. A similar
remark is valid for the integrals involving i(V)/II(V)] i= 2,... ,N. Consequently, it
follows that the integral in (1.20) is a positive multiple of

(2.40) foo foo" foo [ r!O V ] dx dxNb2(t) dt bl(x)[rlo(v)[v sgn il(v)
N

where v + 1-IN=1 sinx and

{YI;=l sin2 xj + cos2 Xl l-I;=2 sin2 HN-1 }1/2"Xj - -- COS2 XN j--1 sin2 Xj

It is clear that regardless of the choice of :t:, v sgn [Vo(v)/]l(V)]] is strictly positive.
Hence, from (2.39) (i), it follows that the integrand for

is strictly positive. Likewise f: f2(t)dt > 0. We conclude that the full expression
in (2.40) is strictly negative, and therefore the condition in (1.20) prevails for hi and
likewise for h2. Hence a weak solution to (1.1) exists where N1 2 and Q1 Q2 Q
with Q given by (2.31), fl and f2 by (2.35) and (2.39), and gl- g2- 0.

In the previous example, 0 < < 1 and m 1. We now allow to take on
the value 0, so that 0 _< < 1. Also, we take m >_ 2, N1 an arbitrary positive
integer, Qu to be given by (2.16), and Lu to be given by (2.21). Furthermore, we set
Q1 Q2 QN1 Q. With 0- (0,..., 0), we then define
(2.41)

N cbi(x,t)oioil + Ey= EI<,I 1+
i=l,...,N,fi(x, t, ml, mN 1 +

where

(2.42) b(x, t) e C() A L(t) and b(x, t)

In the example under consideration ft c ]tN is a general bounded open connected set
and the cj in (2.41) are real constants. It is clear that fi given by (2.41) satisfy (f-l)
and (f-2) with 0 < < 1 Suppose :(n) I:(n)

mi --+ mi where ]= 1 ]-il 1 and 0i 0.
"m
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Further suppose that rn -+ oo. Then an easy computation using (2.41) shows that
(1.19) holds with

hi(x,t,m) -bi(x,t)0 for [ml- 1 with 0 0.

Consequently, .fi also meets (f-3) for 1,..., N1.
Next, we take

(2.44) Gu(u) u(x, t)i(x) sin it + 1 and i 1,...,N1,

where qhi(x) is the ith element in the sequence (1.10) corresponding to the L given by
(2.21). It is clear that Gli meets (G-l) for 1,..., N.

We define

1
(2.45) G2i (u)= + 1

Vu E L2(t) and 1,..., N1.

It is clear that G2i(u) meets (G-2) for i 1,..., N. Hence with Qi defined as above;
with fi, Gu, and G2i defined, respectively, by (2.41), (2.44), and (2.45), and with gi

arbitrary functions in L2(t) to show that 2(Ul,...,uy,) IN1 which is a weak
solution to (1.1), it remains to demonstrate that the hi given by (2.43) each satisfies
the condition in (1.20).

To show this, let v S# with v nontrivial, i.e.

(2.46) jf v2 0.

Now for (x, t) e (v), o(v(x, t)) v(x, t). Hence it follows from (2.43) that

(2.47) ( rn(V)) Im(v)lav= -- bi(x,t)lv]1+hi x, t, ICm (v) ()

for 1,..., N. From (2.42), (2.46), and the definition of (v), it follows that the
integral on the right-hand side of the equality in (2.47) is strictly positive. Hence it
follows that the integral on the left-hand side is strictly negative and the condition in
(1.20) is established for every i. We conclude that with the conditions just enumerated
above, a weak solution to system (1.1) in F exists and our final example is complete.

3. Fundamental lemmas. To establish the theorems in this paper we use a
Galerkin technique that depends upon a CONS for ft that comes from our elliptic
operator L introduced in (1.8) and (1.9). To do this, we introduce a CONS on ft in
the following manner.

Define

(3.1)

(i)

(ii)

k(X, t) (X) COS kt
n,k=l,2,...,

Cn(Z)
k 0, n 1,2, ..;

qk (X, t) Cn (X) sin kt

v n,k 1,2,
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Note that k, Ssk E /.
For u E L2(t), set

(3.2)
(i)

(ii)

c t)nk(X,t).,tc(n, k) (u, nk}n2 u(x, -
From (1.9) we see that if 5(n, 0) 0 for n 1, 2,... and 5(n, k) 58(n, k) 0

for n, k 1,2,..., then u 0 a.e. on t. Therefore,

(3.3) - t,o -8 is a CONS for L2(t).{nkJn=l,k=O U {nk n=l,k-----1

We first state the following lemma proved by Lefton and Shapiro in [12, pp.
0-].

LEMMA 1. Let Lu be the elliptic operator give_n by (1.7) satisfying (L-1)-(L-3),
(u, v) be the bilinear form given by (1.12), and {nkC }n=l,k=O’ U {WnkJn=l,k=lAs , be the

CONS for L2() given by (3.1). With 1 defined by (1.11), suppose furthermore that
,1 > O. For v L2(), set

(3.4)
n n n

an(V) E O(J’ 0)@0 + EE [O(J’ k)jk~c + )8 (j, k) ~s
j--1 j--1 k--1

where c(n, k) and ?s(n, k) are given by (3.2). Then

(3.5)
(i)

(ii)

.limoo [Dtan(v) Dtv] 2 0 Vv e ,
lim E ]n"[an(V) V]l2=0 Vve

Next, we observe that the following easily obtainable facts hold.
Fact 1. For 0 < a < 1 and some positive constant K1 (to),

(3.6)

Fact 2. Set IIllw,.,- fa EII<_ ID"I fn lS(u)l (see (1.14)) for u e .
Then for0<a<l,

where 8m is the constant introduced in the fourth paragraph of 1.
Also, we record for future use the following fact, which is a consequence of the

well-known Grding’s inequality on f [8, p. 34].
Fact 3. There are two positive constants c and c such that

(3.8)

Next, we prove the following lemma.
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LEMMA 2. Suppose that Q, L, f, g, Gli, G2i, hi, and pi meet the conditions stated
in the hypothesis of Theorem 2. (Hence by (1.6), % %1i > 0 fori 1,...,N1.)
Then for each positive integer n, (Uln,..., UNln E SnN such that

(3.9)

for i 1,..., N, where we define for n >_ 1

To prove the lemma we first note from (3.1) that

Dt cCnO O,

(3.11) DtCnk ~s=-k fork>l

=knk for k > 1

Hence by (2.10)

(3.12) V E Sn = Dtv Sn.

%2n2+n .c -[n,n . ffhs ].n,n where {)j }jn: cor-For ease of notation, set {Djjj= t jkJj=l,k=OtjkJj=l,k=l,
ln’n and tWIa/’J 12n2+nresponds to {k}j=l,k=l {J2n2 corresponds toJj=n2+l j=2n2+l

corresponds to {o}l" Hence we r write

(3.13) 2n2nSn v H’v 7jCj where 7j ],J 1,...,2n2 +n
j--1

Let 7 ()k--1 ,2n2Tn,i--1 N 2Nn2TNn. Set

(3.14)

for k 1,..., 2n2 + n,i 1,..., N1, where we use the summation convention in
(3.14) for j 1,..., 2n2 + n. We shall use the summation convention also on k
1,..., 2n2 + n.
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Set B(3’) (B(7))k=l 2n2+n,i=l NI" Observing that Qi(’, ") is linear in the
second variable and using the summation convention on j and k, we have

From (Q-l), (Q-2), (f-l), (f-2), (G-l), and (G-2) we see that

B ]12N1 +N1n
__

]12N +Nn(Bk)k=l ,2n2+n,i=1 ,Ni

12n2+nis continuous in 7. Also, it follows from the orthogonality of the {)JJj--1 that there
is a positive constant c such that

(3 16)

We propose to show that for sufficiently large

(3.17) B(/) > 0.

To show that (3.17) is true, we first observe that 0 f( Dtv2 2(Dtv, V}L: Vv E
Hence it follows that

N1

(3 18) E D ’)k} 2Nn2-t-Nn.t z.-0
i--1

Also, it is easy to see from (f-l), (f-2), Fact 1, and Fact 2 that

(3.19)

where C1 and C2 are positive constants.
Next, we note from (.9), (1.10), (3.1), and (3.3) that

(3.20)

V(jl, kl), (j2, k2),

V(jl, kl)# (j2, k2),
V(jl, kl) # (j2, k2),

’)’ ]2Nln+N1n,
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Since n is fixed and we are assuming that A1 > 0, it follows from (1.13) and (3.20)
that

C3 > 0 such that Alibi2 <: (jj, kk) <_ C3112
V- (1,..., n+) e+.

Consequently, we see from Fact 3 and (3.21) coupled with (3.19) that there are positive
constants C4 and C5 such that

N1

I(f(’,m(/Y),.. ",m(/Oj)),/)LI C4IYI+1 + C5ll
i=1

l E ]t2Nn2+Nn"

Next, we note from (3.1), (3.3), and (3.11) that there exists a positive constant
C6 such that

Hence it follows from (G-l) and this last inequality that there is a positive constant
C7 such that

N1

IGli(Dt/j)l <_ CTIyI ’ + C7
i=1

/ ]I2Nn2-FNI n.

Using this last inequality in conjunction with (G-2) and the fact that gi L2(), we
finally obtain that

(3.23)

N1

>I-< c811+’ / cll
i=1

/ ]2Nln2TN1 n,

where Cs is a positive constant.
2Next we see from (3.21), Fact 3, and the fact that 1 > 0 that IlyjCjllw.,2,~

cE.(jj, kk) ’ 2n2+n, where c is a positive constant. Therefore, it follows
from (1.16) (ii) that there are positive constants C and C such that

(3.24) ( %z:(i )> c )-I(i C
for 1,..., N. Also from the fact that A A we obtain from (1.13) that

,i)--’(-)Y 1 (Q/’i/JJ, /k)k>L -- O.

We conclude from the above inequality and (3.24) that

i=1

N1 N

n
i--1 i=1
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where p0 min(pl,..., PN1) > O. Now it follows from (3.21) that there is a constant

C > 0 such that
N1

i=1

Using this last inequality in conjunction with (3.15), (3.18), (3.22), (3.23), and
(3.25), we obtain that

N1

B(y) "y PI-yl 2 (C4 + Cs + Cg)I-yl ’+1 (C + C )l-rl ca p
n

i=1

Since 0 _< t < 1, we conclude that there exists F0 > 0 such that

p0B(’).7 _> -n[",/I 2 for [’71-> to.

This establishes the inequality in (3.17).
Since B(-) is a continuous map from ][2Nn2+Nn into ]12Nln2+Nn, it follows

from (3.26) and a well-known theorem in nonlinear analysis (see [10, p. 219] or [16,
p. 18]) that -# (/j#i)j=l 2n2+n,i=l N with I#[ < F0 such that B(’#)= 0
for k 1,...,2n2 + n and 1,...,N1. Hence

(3.27)

for k 1,..., 2n2 + n. Since every element in Sn is a finite linear combination of the
Ck’s, the conclusion to the lemma follows immediately from (3.27).

Remark 1. It is clear from the proof of Lemma 2 that in (3.9) can be replaced
by 5 > 0 for 1,..., N and the conclusion of Lemma 2 will still prevail. So,
in particular, we have that under the conditions in the hypothesis of Lemma 2 with
5i > 0 for i= 1,...,Nl,(Uln,...,ttNn) SnN such that (3.9) holds with (A- )
replaced by (AI 5i).

4. Proof of Theorem 1. We notice that if we add a large positive constant c,

to a(x,,(u)) in (1.2) and to bo,o(x) in (1.7) where 0- (0,...,0) and pic,ui to the
right-hand side of (1.1), then with no loss in generality we can assume that

(4.1)
a(x,C.) _> so > 0 V. N8- and a.e. x f,

boo(x) _> so > 0 a.e. x f

and that

(4.2) for 1,...,N.
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Since A1 > 0, we see from (L-l), (1.13), and (3.8) in Fact 3 that there is a positive
constant c such that

where [[u[[ .(u, u) > 0 for u # 0. As a consequence of (4.3), we see that (1.16) (i)
is equivalent to

(4.4) u e , lim inf
Qi(u, u) E(u, u)

1+ >_0 fori-l,...,N1.

To prove Theorem 1, we invoke Lemma 2 and have a sequence {(Uln,...,
tN,n)}nC=l with each Uin e Sn (defined in (3.10)) such that (3.9) holds. We claim
there is a constant K1 such that

IlUinll

__
K1 Vn and for i 1,..., N.

For ease of notation, we shall establish (4.5) for the case i 1. A similar proof
will prevail for the other values of i. Suppose then (4.5) is false when i 1. Then
without loss of generality, we can suppose

(4.6) lim II’ttlnll --00.

We propose to show that (4.6) leads to a contradiction of the inequality in (1.20)
when 1. To accomplish this we put un in place of v in (3.9) to obtain
(4.7)

( 1)iitlnl]2--(fl(’,m(Uln), ,m(tg, )),tln>LPl1 (/,ln, tln) Pl , n

+ Gll (DtUln)G21 (tln)(gl, Uln}L

where we have used the fact established in (3.18) that

(4.8) (Dtv, vlL2 0 Vv e H.

With e > 0, we have from (4.4) and (4.6) that

(4.9) for n >_ n2.

Also, we note from (3.2) that

(4.10) .(u,, k)
with a similar situation for -sqbjk Thus

(4.11) (tln, Uln) E "j E Itn(j’k)[2 + E Itn(j’k)12
j=l k--0 k--1

Now A An1 and 37 > 0 such that

(4.12) 7Aj <(Aj-A1) forj>n+l.
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Thus, we see from (4.2), (4.7), (4.11), and (4.12) that

where 7 > 0.
Next, we note from (f-2), (4.3), and (4.6) that there is a constant K2 > 0 such

that

I<A(.,m(Uln),...,m(UNln)),?ln>L2 g2[]l,/tlnll t_ 1]]llnllL

Likewise from (G-l) and (G-2), we see there is a constant K3 such that

(4.15) IGll(DtUln)G21(Uln)<gl, Uln>Ll K3[ilDtltlnil5. -}- 1]lllnllL= ’n.

We define

(4.16) Yln E Etn(j’ k)k -- E tn(j’ k)k
j-1 k-0 k--1

and

(4.17) Zln Uln yln.

Since Uln has the same form as Yln in (4.16) with nl replaced by n we see from (3.20)
that

(4.18)

Next, we observe from (3.11) that DtUln e Sn Vn. Hence taking v DtUln in
(3.9) with i= 1, we see from (O-6) and (4.8) that

(4.19) IID   II = , m(UN n)),DtUln}L
+ Gii(ntuin)G21( tln)<gi,nt tln>L2.

It therefore follows from (f-2), (4.6), (G-l), and (G-2) that there is a positive constant
K4 such that

IIDtUlnIlz. K411Ulll + K4llDtunllL + K4 W.

It follows from this last inequality, (4.6), and the fact that 0 < a < 1 that

(4.20) lim IlDtul"llL= O.- Ilulnll:
From (4.13) and (4.16)-(4.18), we see that

p1711zlnl12 <_ the right-hand side of (4.13),
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where 7 > 0. Consequently, it follows from this last inequality, (4.14), (4.15), and
(4.20) that

(4.21) p, lim IIZnll2 <_ O,

where

Ul__n gin Yl---2--n Z n
Z n(4.22) Uln ilul,ll ilu,ll, ilu,ll

Since 7 > 0 and px > 0, we conclude from (4.21) that

(4.23) lim Ilznll o.

Next, we observe from (1.3) and (1.14) that

(4.24)

From (4.20) and (4.22)we have that

(4.25) nlirn IIDU.IIL o.

We conclude from this last fact in conjunction with (4.3), (4.22), and (4.24) that

(4.26) { g. }. is a bounded sequence.

It follows from (4.26), standard Hilbert space theory, and the compact imbedding
theorem for Sobolev spaces that there exists a subsequence (which for ease of notation
we take to be the full sequence) and

(4.27) U e H

such that

(4.28) lim IIU1. UIIL O;

(4.29) nlirno Uin (x, t)

(4.30) lirn DU.(x, t)w D"U(x, t)w, < I1 < m,W E L2(a).

Since IIZ.ll, <_ (A1)-llZl.[l and Yn Uln- Zln, it follows from (4.23) and
(4.28) that

(4.31) lim IIY- UIl o.

Next, we observe from (4.16) that n(j,k) ,Sln (?, 0 for j >_ nl -t- 1.
Consequently, it follows from (4.31) that

(4.32) Oc(j,k)=s(j,k)=O forjkn+landk=0,1,2,
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Next, we observe from (3.1) that for j _> 1 and k _> 1

kOn (j, k) Uln (x, t)Dt@k (x, t)

k(x, t)DtUl(x, t).

Consequently, it follows from (4.25) that for j > 1 and k > 1 lim_ ln(3, k) 0.
We conclude from (4.28) that

(4.33) (Tc(j, k) s(j, k) 0 for j, k >_ 1.

From (4.32), (4.33), and (3.3), it follows that

(4.34)
nl

U(x, t) E c(j, 0)
Cj(x)

a.e. in.

Next, we note from (4.16) that

-. Yln Yln ,1 Yln Yln L

and from (4.22) that
21 -llUnll -IIYI, II / llZl, ll .

From these last two equalities and (4.23), we see that

lim IIYI.II , . )k-1.

Hence it follows from (4.31) that

(4.a5) IIUIl , . )-1 > 0.

From (1 18) (4.34) and (4.35), we see that U is a nontrivial function in S#

With t(U) defined in the statement of Theorem 1, we set

(4.36) (u) fi(u) rio,

where 0 is defined in (f-3).
Next, we return to (4.16) and write

(4.37) Yl,ln Yln Y2,1n,

where

Y2,1n E E ln(3’ k) ~cd/)jk nt- in (3,
j=l k=l

U’x" for 1, 2, we see from (4.37) thatThen with ]/,ln Ilullc

nl

(4.38) Yl,ln(x, t) E (7fn(J’ 0) Cj(X)

j=l
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From (4.28), n(J, 0) - c(j, 0) for j 1,..., nl as n --. cx). Consequently, we obtain
from (4.34) that

(i)
(4.a)

lim DYI,I(x, t) DU(x, t) a.e. in for la[ <_ m,

lim ]ID’YI,n DU[[L2 0 for [a[ < m.

From (4.31) and (4.37), we also have that

But then it follows from (4.31) and (4.39) (ii) that limn-. [[Y2,1n[[i O. On the
other hand, it follows from (4.37) that E(Y2,n, Y2,In) AIllY2,1[,I. We conclude
that

(4.40) lim [[Y2,n][ 0.
n---(X)

From (4.23) and (4.40)joined with (4.3), we in turn obtain that

(4.41)

(i)

(ii)

(iii)

lim [IID,=II= + IID"ZIII]- 0 for I1 < m,

lim DY2,,(x,t)= 0 a.e. in 2 for [a[ m,

lim DZln(X,t)= 0 a.e. in for [a[ m

where we have used full sequences in (4.41) (ii) and (iii) rather than subsequences for
ease of notation.

Since Uln Y,In + Y2,in + ZIn, we see from (4.39) and (4.41) that (4.2S), (4.29),
and (4.30) can be replaced by the stronger assertions

(4.42) lim IID"U D’UIIL 0 for I1 < m,
n---oo

(4.43) lim DU=(x,t)= D"U(x,t) a.e. in 2 for I1 m.

Next, we return to (4.13) and observe that since pl, 7, and A1 are all positive,
the left-hand side of the inequality is nonnegative. Consequently, upon dividing both
sides by Iluinll+, we obtain that
(4.44)

(fl (’, m(Uln), m(WNln)), Uln)L -[- G11(DtUln)G21(ln)(g1, Uln)L
--Pl <

Since

by (4.22), (4.35), and (4.42), we have that limn-oo IlunllL oo. Consequently it
follows from (G-l), (G-2), (4.20), and (4.42)that

lira
G11(Dtuln)G2(Uln)(gl, Uln)L O.
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We therefore conclude from (4.44) that

(4.45) 0 _< limsup <fl (’, m(tln),..., m(?.tNln)), Uln>L

because is an arbitrary positive constant.
Next, we observe that

(4.46) { fl(’,m(Uln)li... ,rn(’ttNn))Ulnn, }cx
is an absolutely equi-integrable sequence;

that is, given > 0, 35 such that if E C t and meas (E) < 5, then

< Vn.

To establish (4.46), we see from (f-2) that it is sufficient to show

(4.47)
{ID(Uln)IIUlnl}=I is an absolutely equi-integrable

sequence for 0 _< lal _< m.

From (4.42) we see that {IUlnl }n--1 is an absolutely equi-integrable sequence and that
{IDaUlnl2}nC=l is a bounded sequence in LI(). Equation (4.47) follows immediately
from Schwarz’s inequality and these last two facts. Hence, (4.46) is established.

Next, with f(U) defined in the statement of Theorem 1, we see from (4.43) that

lim DaUln(x,t)Uln(x,t)--0 a.e. in fi\t(U) for Il _< .
Consequently, from (f-2) and this last fact, it follows that

lim
f(x’ t, m(2tln),..., m(ZtN,n))Uln(X, t)

0 a.e. in t\(U).

Hence, it follows from (4.46) and Vitali’s theorem [7, p. 325] that

lim f fl (X, t, m(Ztln),..., m(N,n))Uln(4.48)

Observing from (f-3) that meas (\t0) 0, we conclude from (4.36), (4.45), and
(4.48) that

(4.49) 0 < limsupgfh
fl(x,t,m(Uln),...,m(UN,n))Uln

---, ,(u) Ilunll2:

Next, set

(4.50) fi2(U) {(x,t) e I(U) lim DaUln(x,t)- D"U(x,t) for Io1 < m}.
n----+ cx:)
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From (4.43), we have meas(tl(U)\t2(U)) 0. We consequently obtain from (4.49)
that

0 < lim sup f fl (x, t, m(Uln),..., m(itNln))Uln

Next, we observe from (4.36) and (4.50) that

(i)
(4.52)

(ii)

U(x, t) = 0 for (x, t) e t2(U),
lim m(Uln(x, t)) ,(U(x, t)) for (x, t) e 2(U).

Let (x,t)
_

t2(u). It follows from (4.52) that IUln(x,t)l > 0 for n > no(x,t).
Consequently (m(Uln(x,t))[m(Uln(x,t))[) e a.s defined in (f-3) for n >_ no(x,t).
Also from (4.52) for (x, t) e ft2(U),

m(Uln(x,t)) m(U(x,t))(4.53)
nlirn [m(Uln(x, t))[ ICm(U(x, t))l

where the right-hand side of (4.53) is in S. Next, set

(4.54) rn --Ilulnll]m(Uln(x,t))l for

It follows from (4.6) and (4.52) that limn--, rn oc. Consequently, from (f-2),
(4.53), and (4.54) we have that

fl x, t, rn ]5,(u1(, t))]],"" mlim hi x, t,
m(U(x, t))[

for (x, t) e h2(U). Observing that

m(Uln(X, t)) [m(Uln(X, t))l m(Uln(X,t))
I(U(x,t))l

(v,(x,t))
=rnlm(Uln(X,t))

we see that it then follows from (4.53), (4.44), and this last fact that

lim
Yl(X,t,m(Uln(X,t)),...,m(UNn))Uln(X,t)

( m(U(x’t)))l(U(x t))lU(x t)h , t,
I.(U(x, V))I

for (x, t) . f2(U). We conclude from (4.46), (4.55), and Vitali’s theorem that

(4.56)
lim fl (X, t, m(Ztln(X, t)), m(UNn(X, t)))Uln(X, t)

(u) ) i.hi x,t,
Im(U)l Im(U) U,

From (4.51) we conclude that the integral on the right-hand side of (4.56) is

nonnegative, that is, > 0. But U E S# and U is nontrivial by (4.35) Also meas.kl
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(t(U)\2(U)) 0. Hence by (1.20) the integral on the right-hand side of (4.56) is
negative, that is, strictly < 0. We have arrived at a contradiction. We conclude that
(4.6) is false and that (4.5) is indeed true when 1. A proof similar to that above
prevails for 2,..., N1. Hence, we have that (4.5) holds for all values of i.

Next, we return to (4.19) and obtain from (4.3), (4.5), (f-2), (G-l), and (G-2)
that a positive constant K5 exists such that

[IDtullL Kl[Dtu.ll + K for i-- 1,..., N1 and n 1, 2,

But 0 _< < 1. Therefore, from this last inequality, we obtain that {llDtuinllL2}l
is a bounded sequence for 1,..., N1. This fact coupled with (4.5) implies that

IlUin[l[<_K6 fori=l,...,N1 andn=l,2,...,

where K6 is a positive constant.
We next use Lemma A in 6 (the Appendix) and standard Hilbert space theory to

obtain the following from (4.57)" There exists a subsequence of {(u,..., UNln)},__l
(which for ease of notation we take to be the full sequence) and functions

(4.58) (1,’.’, ?-tN1) e /rN1

such that

(4.59) lim IlDu- DuIIL. 0 for Icl <_ m- 1,

(4.60) lim Duin(x,t) Dui(x,t) a.e. in h for I1 _< m- 1,
n---+oo

(4.61) lim <bruin W) L2 (Dtui, w)L Vw e L2
n---x)

(4.62) lim (Dui,, W>L <Dui, W>L Vw e L and [a m,

for/= 1,...,N.
We next propose to show that for a subsequence (4.60) also holds for lal m,

that is,

(4.63)
{uik} such that lim m(uink (x, t)) m(Ui(X t))k=l k--c

a.e. in for i- 1,...,N.

Once (4.63) is shown, it will be an easy matter when this fact is coupled with (4.60)
to show that the conclusion of Theorem 1 holds.

To establish (4.63) for the case 1, it is sufficient to establish the following two
facts"

(4.64)

S a subsequence {Uln/}=l such that

lim E [A(x,I,-l(Ul),(Ul))-A(x T]m-l(tln)m(tl))]

[Dul, Du] 0 a.e. in ;
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With {ulnk }=1 designating the same subsequence as in (4.64)
(4.65)

{lm(Unk (x,t))l}_- is pointwise bounded for a.e. (x,t) in t.
Using (4.60) in conjunction with (4.64) and (4.65) to obtain (4.63) via the mono-

tonicity assumption (Q-3) is standard fare in nonlinear partial differential equations
(see [4, p. 30] or [13, p. 104]). It therefore remains to show that (4.64) and (4.65)
hold.

To establish (4.64), the key idea is to show that the summation in (4.64) with

u replaced by un converges to zero in L-norm over and then to pply the
monotonicity condition (Q-3) in conjunction with a standard theorem in Lebesgue
theory to reach the conclusion in (4.64). The technique for accomplishing this follows
the lines of [17, pp. 1830-1833] and [12, pp. 168-171] nd makes use of Lemma 1. We
leave the details to the reader.

Next, we show that (4.65) for i= 1 follows from (4.60)and (4.64). To accomplish
this, we observe from (Q-4) that

(4.66) clm(U(x t))l u A(x, -(ln), m(Uln))Daln

for a.e. (x, t) where Cl > 0. Also, we see that

A(x,
_

(u), Cm(Un))Dauln(X, t)
A(x, m-1 (Uln), m(Uln))Daul (x, t)

(4.67) + A(x,m_l(Uln),m(Ul))[DaUln(x,t) Daul(x,t)]
+ [A(x,m-l(Uln),m(Uln)- A(x,m-l(Uln),m(Ul)))]

[D" ln(X, t) (x, t)].

If (x,t) is a point such that (4.60) holds for a[ m- 1, where Du(x,t) is
finite-valued for a m, and such that (4.64) holds, and furthermore such that the
inequalities given by (Q-2) hold, then it follows on dividing both sides of (4.66) by
]m(Ul(X, t)) and using (4.67) that a subsequence of m(U(x,t)) cannot tend to
+, for then we would have that this same subsequence also tends to zero. Since these
aforementioned conditions hold almost everywhere in , (4.65) is established for 1.
A similar argument prevails for =. 1,..., N1. Hence, (4.65) holds for 2,..., N1.
As we have stated earlier, (4.63) then holds because it is a standard consequence of
(4.64) and (4.65).

We now show that (4.57)-(4.63) along with the fact that {(Un,...,UN)}
satisfies (3.9) gives (1.21), which is our desired result.

To accomplish this, let n3 be a fixed but arbitrary positive integer and let w S.
Then it follows that

(4.68) (3.9) holds for i= 1,..., N1 and n n3 when v is replaced by w.

We observe that (f-l), (4.60), and (4.63)imply that

n

for a.e. (x,t) e . Also, we see from (f-2), (4.57), and the fact that w e L2()
that {fi(x, t, m(Un),..., (UN,n))W}= is an absolutely equi-integrable sequence
for 1,..., N1. Hence it follows from Vitali’s theorem [7, p. 325] that

(4.69) i(fi(’,m(Uln)),...,m(UNn),W)L: (fi(’,m(Ul),...,m(UN)),W)L.
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In a similar manner using (Q-l) and (Q-2), it follows that

(4.70)
lim (A(.,,(uin)),D"W}L2 (A(.,,(ui)),Dw)i,
lirn(a(., ,(unllun, W}L (a(., m(ullu,

for/= 1,...,N1.
Also, we have from (4.61) that lim_ Gl(Dtu,) G(Dtu) and from (4.59)

that lim__ G2(un) G2(u). In a similar manner, we have that limn(Dtu,,
W}L. (Dtui, W}L:. Putting all these facts together, we conclude from (4.68), (1.4),
(4.60), and (4.68)-(4.70) upon taking the limit as n of both sides of (3.9) with
v replaced by w that
(4.71)

(Dtui, W)L + piQi(Ui, W) Aipi(ui,
+ (fi(’,m(Ul),...,m(UN)),W)L:
+ GI(Dtu)G(u)(g,w) for 1,...,N,

and for w E Sn3. However, n3 was an arbitrary positive integer. So we see that (4.71)
holds n-1 n.

Next, let v /. Then it follows from (4.71) and our last observation that (4.71)
holds when w is replaced by a,(v) where a,(v) is defined in (3.4). From (3.5) (ii) and
(1.4), it follows that limn- Qi(ui, an(V)) Qi(ui, v). We consequently obtain from
(3.5) (i) and this last remark upon replacing w in (4.71) by an(V) and taking the limit
of both sides as n - c that

But this is precisely (1.21), and the proof of Theorem 1 is complete.

5. Proof of Theorem 2. To prove Theorem 2 we can assume as in the proof of
Theorem 1 that (4.1) and (4.2) hold. As a consequence we have that (4.3) and (4.4)
hold. Next we invoke Remark 1 and have a sequence {(Ul,,..., UNl)}n__i with each
Uin S, such that

(5.1)

(Dtuin, V}L + Pii(Uin, V) Pi(, 5i)(tin, V)L
+ <f/(’, (m(Uln),... ,m(Nln))), V>L2
+
vS, and i 1,...,N.

We claim there is a constant K1 such that

I]uinllc

_
K Vn and for 1,...,N1.

For ease of notation, we shall establish (5.2) for the case 1. A similar proof will
prevail for the other values of i. Suppose then that (5.2) is false for 1. Then with
no loss in generality we can suppose

(5.3) lim
n---o
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We propose to show that (5.3) is false, and we shall do this without using (f-3)
and (1.20). First, we observe as in the proof of Theorem 1 that Dtuln E Sn. Hence
taking v Dtuln in (5.1) for i 1, we obtain that (4.19) holds and, as a consequence,
since (4.6) is the same as (5.3), that (4.20) holds. We record this as

(5.4) lim
IID,llL= o.- IIll

Next, we claim that 3K2 > 0 such that

To see that (5.5) is true, we first observe from (5.1) with v uln and 1 that

p(,,) p(i e,)llll- (fl(., (m(Uln),... ,m(UN,n))),Uln)L
+ ,(D,)a.()(a,).

If I111. o, it follows from (1.5) that

for n >_ n2.

But then from (5.4) and (5.6) we have that there is a constant K3 such that

(1
(5.7) p TII.II, _< 111,11.11,11, + Kall.ll, for n >_ n2,

where we have also used (f-2), (G-l), and (G-2) to establish this last inequality. From
(5.3) and (5.7), we infer that (5.5) is indeed true.

Now we have that Q1 is a,-related to L. So it follows from (1.16) (i) and (4.3)
that for n >_ n3

1-l-IlUlnll2
_
i(Uln, Sin) -- (11171n[1:

Using this last inequality in conjunction with (f-2), (G-l), (C-2), and (5.3)-(5.6), we
obtain that there is a constant K4 such that

As a consequence of this last inequality and the fact that 0 _< a < 1, we obtain that

Ilunll-’ <_ 2Ka for n _> n3. But this is a contradiction to (5.3). Hence (5.2) does
indeed hold for i 1. A similar proof prevails for i 2,..., N1. Hence (5.2) holds for
i-- 1,...,N.

But this last situation is the same as (4.5) in Theorem 1. After (4.5) was estab-
lished, the rest of the proof of Theorem 1 did not depend upon (f-3) and the condition
in (1.20). So the remainder of the proof of Theorem 2 follows exactly the lines of
Theorem 1 and the proof of Theorem 2 is complete.

6. Appendix. In this section, we shall prove the following lemma.
LEMMA A. Let {Un}n=l be a sequence of elements in H with

(6.1) I111, <_ K forn 1,2,
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Then u E and a subsequence {Unq}=l such that

lirn [Dunq Du[2 =0 for lcl <_ rn -1.

For rn 1, the above lemma is an easy consequence of the familiar compact
imbedding theorem for Sobolev spaces [1, p. 97]. Therefore, to prove the lemma, we
can assume from the start that the rn used in the definition/ is a positive integer
with rn _> 2. Also since for un H, Vn ,4 such that Ilu vll <_ n-l, we can
assume from the start that

(6.2) uA forn=l,2

Furthermore, since ft is a bounded open set, we can suppose that Ft is contained
in the interior of an open cube with each side of length 2r. In particular, we shall
suppose f c (-r, 71") N. Since by (6.2) each u A, we have that for each n, a
compact set En C (-r, r)g such that u(x, t) 0 in (-r, r)N\E and t N. Also,
un(x, t) is C((-r, r)g x ]R) and periodic of period 2r in t. Hence we can view each
u(x,t) as a real-valued function in C(TN" x T) C(TN+I), where Tg is the
N-dimensional torus.

Next, we introduce the complete orthogonal trigonometric series {ei[(j,x)+kt]},
where j (jl,... ,jg) with jl,... ,iN and k integers running from -oc to oc and
(j,x) jlxl +... + jNXN. We set tn(j,k) (27r) -(N+I) fT fTN Un(X’t)ei[(j’x)+kt]"
From (6.1) and [9, p. 55] we have that

(6.3) [Ijl2 + k2]ln(j,k)l K2 Vn 1,2,...
(j,k)EM

where [j]2 (j, j) and M {(j,k)’-oe < jl < x,-oe < k < c,l 1,...,N} is
the set of integral lattice points in NN+I. Also for future use we record the fact that
we are assuming

(6.4) rn >_ 2 is a positive integer.

Since TN+ Iftl 2
_

/2, we see there exists a subsequence (which for ease of
notation, we take to be the full sequence) and a u L2(TN x T) such that

n--+cx N N

In particular, taking w e-i[(J,x)TM], we have that

lim tn(j, k) t(j, k) V(j, k) M.

Next, let p > 0 be any positive number.

ljl.+k.<p[Ijl2" + k2]lt(j,k)l 2 <_ g2. Hence,
It follows from (6.3) and (6.5) that

(6.6) E [Ijl2m + k2]l(J’k)l -< K2"
(j,k)eM
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We therefore conclude that Du exists in the distributional sense [3, Chap. 3] and
Du E L2(TN T) for lal <_ m. The conclusion to Lemma A will follow if we can
show

Now from a Fourier series point of view

Daun Du E (ijl)al"’" (ijN)"N[tn(J’k) t(J’k)]ei[(J’x)+kt]"
(j,k)EM

Therefore (6.7) will follow if we can show

2c1 .2cn(6.8) lim E ?1 3N Itn(j, k) t(j, k)l 2 0 for lal _< m 1.
(j,k)eM

Now

.2aN < j2(m-1) .;2(m-l) < Nijl2(m_l) for lal < m-1 and (j,k) e M."’’,N --all +’’’’+-tin

Hence (6.8) will follow if we can show

(j,k)M

Ijl2(m-)ltn(j, k) (j, k)l O.

We now show that (6.9) follows from (6.3)-(6.5).
To accomplish this, we first set

(6.10) y(s) sm -pm 8m-1 -- p,

where p >_ 2 and m >_ 2. Then

(6.11) y(s) >0 forO<_s_<p.

To see that this is the case, we observe that both y(0) and y(p) are positive numbers.
Also the only place where y’(s) 0 inside the interval (0, p) is when s ((m-
1)p/m)/m. But

[(m-1)P--][(ml)m-]> 1- p>0.Y m

Hence, y(s) does not have a nonpositive minimum inside (0,p) and (6.11) is estab-
lished.

To show that (6.9) is indeed true let In be the summation in (6.9) and let > 0
be given. (6.9) will follow if we can show

(6.12) lim In <_ 2.
n--

Choose p >_ 2 such that also

(6.13)
4K2
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and set

MI(p) {(j, k) e M: Ijl 2 + k2 _< 2p},
M2(p) {(j, k) e M: Ijl 2 > p},
M3(p) {(j, k) e M: Ijl 2 <_ p,k2 > p}.

It is clear that M M1(p)U M2(p)t_J M3(p) because [M1 (p)LJ M2(p)]C C M3(p). Set

(6.15) I(P) E [jl2(’-l)[n(j,k) t(j,k)l 2, p 1,2,3.
(j,k)Mp(p)

Therefore

(6.16)

Since there are only a finite number of lattice points in M1 (p), it follows from
(6.5) and (6.15)that

(6.17) lim I(1) O.

Also from the fact that la- b12 _< 2a2 + 2b2, it follows from (6.3) and (6.6) that

E [Ijl2m + k2]15n(J, k) 5(j, k)l 2 _< 4K2.
(j,k)eM

This fact coupled with the fact that

for (j, k) e M2

hmn_I < But both p > 2 and m > 2. It follows therefore fromgive that (2) 4K

(6.13) that

(6.19)
,-=- (2)hmn-.Ii <_ e.

Next, we observe from (6.14) that

(6.20)
Ijl2(m-1) Ijl2(m-l)

Ijl- / k- <- ij[ / p

for (j,k) E M3(p). Also, we observe from (6.10) and (6.11) that for IJl 2 p, the
expression on the right-hand side of the inequality in (6.20) in majorized by p-.
Therefore we have that

[j12("-)
Ijl e’ / ke -< P- for (j, k) e M3(p).

Consequently, we obtain from (6.15), (6.18), and this last inequality that

4K2

nlimIn(3)(p) -< pl/m"
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But this fact coupled with (6.13), (6.16), (6.17), and (6.19) give that 1-n-In <_ 2.
Hence, (6.12) is established and the proof of Lemma A is complete.
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Abstract. The objective of this work is to study the existence of positive and T-peri0dic
undulatory solutions of the form u(x, t) u(x c(t)) to the equation

Ou
Au + b(t)Vu + f(u), x e ,

Ot

where b b(t) is T-periodic and the reaction term f f(u) is supposed to satisfy f(u) <_ 0 for
0 < Uo <_ u. The waves are analyzed in bounded domains Q wherein they are subject to special
homogeneous Dirichlet conditions. The average # of b(t) over the interval (0, T) and the size of 9t are
observed as bifurcation parameters. The one-dimensional version of this Dirichlet problem is deeply
and geometrically studied by means of chains of travelling waves to the equation ut uxx + f(u),
which connect (infinitely many in some cases) zeros of f(u).

Key words, travelling waves, subsolutions, supersolutions, semilinear elliptic equations, vari-
ational methods, phase space analysis

AMS subject classifications. 35K57, 35B10, 35J65, 34B15, 34A26

1. Introduction. In this work we analyze the existence and some properties of
bifurcation of a certain kind of periodic undulatory solution to semilinear parabolic
equations, with periodic transport terms, with the specific form,

Ou
(1.1) 0-- Au + b(t)Vu + f(u).

In (1.1)

u: R--+ R,
(x,

where 9t C Rn is a bounded domain (i.e., an open connected set), A and V stand
n 02for the usual Laplacian A i=l and gradient V 0

0xl,’", 0x. n-dimensional

operators, respectively. We will sume that

b" RR
t

is a continuous and periodic function with period T > 0 and average # f[ b(r) dT.
As for f f(u) it will be assumed that it belongs to a certain general kind of C
nonlinearities (see 3.1).
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The main objective of the work is to study the undulatory solutions

(1.2) x e n, t e

where c c(t) is a C periodic function with period T > 0. Notice that the solutions
with the form (1.2) are those profiles which are stationary regarding the mobil reference
frame,

x-
tP=t.

However, a suitable choice of c(t) must be made.
The study of periodic undulatory solutions to reaction-diffusion systems has been

a very active research area in recent years. The plane wave fronts, i.e., solutions with
the form w(x, t) u(kx ct) u(O), k e R, Ik[ 1, and c e R, have been perhaps
the most studied. In this case the periodicity of the wave comes from the character of
u as a periodic function of 0 (a free oscillation of an ordinary differential equation).
See for instance [Ba-P], [Co-H-M], [Du], [Fr-S,89], [Ko-H,73], [Ko-H,75], and the books
by Murray [M] and Fife IF]. However, it should be remarked that the dimension of
the variable x is not preserved in the phase y kx- ct of the plane wave fronts,
except when x R. Therefore, these kinds of waves are incompatible with any types
of boundary conditions. If x E R, u(x -. ct) iscalled a travelling wave (see [F]) and
their role as asymptotic states to parabolic equations (1.1) has been widely analyzed
(see JAr-W,75], IF-M,77], IF-M,81], IF], and [He] for the cases b(t) 0 and t R).

Wave solutions with an n-dimensional phase y (as those of type (1.2)) have already
been considered in the literature. For instance [A-A], [Be-L,83], [St] deal with w(x, t)
u(x- ct), X,C Rn and b(t) 0 in (1.1). However, in [Fr-S,84], [S-F,87], and IS]
a new aspect, exhibited by the more general kinds of waves u(x, t) u(Kx- ct),
with K an n n matrix, c R, was studied. Namely, the possibility of subjecting
those waves to boundary conditions when they are observed in bounded domains
C Rn. In those references, boundary conditions of Dirichlet and Neumann type

were defined on a certain piece F of the boundary 0 and the bifurcation properties
and asymptotic behaviour of the corresponding problems were analyzed under the
assumptions b(t) 0 or b(t) constant. It should be remarked that such boundary
value problems (BVPs) lead to the analysis of semilinear elliptic BVPs in cylindrical
domains of Rn (the unboundedness being caused by the condition t R). In the
context of waves such types of cylindrical BVPs have been considered in [G] and more
recently in IV] and [Ca-M-S].

In the present work the compatibility of the waves (1.2), w(x,t) u(x- c(t)),
with certain kinds of boundary conditions defined in bounded domains t is studied.
However, such boundary conditions will be defined in a time T-periodic varying piece
Ft of the boundary OFt, and the corresponding.BVPs will be lead again to semilinear
elliptic BVPs in bounded domains for the phase y x- c(t), rather than in
cylindrical ones. Notice that the T-periodicity is an intrinsic property of w(x, t) in
(1.2). As for the applications, it should be remarked that the study of waves (1.2)
under periodic convection has been suggested by several reaction-diffusion models
related to respiratory phenomena occurring in living beings (see [B], IN-N-B], [Sh-A-
S]). Specifically, the reacting substances (hemoglobin and hemoglobin compounds) are
periodically pumped into the chemical reactor (the lungs’ capillarities) in the model
considered in [Sh-A-S]. Fluid dynamics and combustion theory also provide a natural
source of models where the waves of type (1.2) under periodic convection could be
observed [Li].
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The organization of the material and the main results in the work are now de-
scribed. The study of the boundary conditions to be imposed to the waves w(x, t) is
performed in 2. This study entails a careful analysis of the geometry of the boundary
0t of the domain gt {y x -c(t)/x E f, t R} of the phase y to connect
with a periodic region Ft C OFt. Precise conditions to determine Ft are also given in 2.
The homogeneous Dirichlet conditions are introduced in 2.2 and the corresponding
BVP for the waves (1.2) to equation (1.1) is stated there as follows:

Ow Aw + b(t)Vw + f(w) (x, t) e t x R,-57
(DW) w(x, t) u(z c(t)),

w(x,t) --O, t R,x Ft.

In this work the existence and other qualitative properties of positive solutions
w w(x, t) to (DW) are studied in detail. It is important to remark that the analysis
of (DW) leads to the following semilinear elliptic problem:

Au+#Vu+f(u)=O in C,(D) u 0 on OG,

where u(y) is the wave w(x, t) observed in the phase y, G t (the domain of the

phase), and #- - f[ b(a) da. Thus, the results in this work are also concerned with
the existence of positive solutions to (D) and its bifurcation properties regarding
and the domain G.

An important role in the work is played by the one-dimensional version of (DW),
which is introduced in 2.2 and leads to the one-dimensionM version of (D)

+#uv+f(u)=O, ye (-b,b),(D)I

The main results of the paper are concerned with the one-dimensional Dirichlet prob-
lem for waves w(x, t) and will be summarized below. Observe that the equation in
(D) is that satisfied by the travelling wave solutions u(x, t) u(x #t) to semilinear
diffusion equations of the form

Ou
(1.3) 0--- uxx + f(u).

Therefore part of the results in this paper give existence and other qualitative prop-
erties of travelling waves to equation (1.3).

The statements of the results, the definitions to be used, and the class of non-
linearities to be considered are given in 3. Regarding f f(u) we will assume
that f(u) < 0 for u greater than certain Uo. In addition we assume the positivity
of f f(s) ds for certain u ul > 0. However we should remark that f(u) will be
allowed to have infinitely many zeros in u > 0. The main features concerning the
n-dimensional (DW) can be described as follows. (DW) does not admit positive solu-
tions in any bounded domain gt provided I/z[ is greater than a certain positive value
#1, which only depends on the nonlinearity f. On the other hand, it is possible to
find domains t where (DW) exhibits positive solutions, provided I#1 is not too large.
These facts motivate the introduction of the parameter #o which is the largest [#1 so
that (DW) has a positive solution w(x, t) in some domain ft. The precise expression
for #1, the positivity of tto, as well as an optimum a priori estimate for all positive
solutions to (DW) are stated in Theorem 1, whose proof is postponed until 4.
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The main results of the work focus on giving a geometrical interpretation of the
value #o. This is done for the one-dimensional (DW). First, #o is identified as the
propagation velocity of a monotone travelling wave when f(u) is the logistic or the
bistable nonlinearity (see Theorem 2). Actually, this result remains valid if the nonlin-
earity f(u) exhibits a finite number of zeros. However, this is no longer true for general
nonlinearities f(u), in particular if f(u) exhibits infinitely many zeros. Therefore, ob-
jects more general than monotone travelling waves must be introduced for describing
#o. In Definition 2 of 3, the required generalization of travelling waves, the monotone
chains of travelling waves, is presented. In the main result of the work, Theorem 3,
#o is identified as the propagation velocity of a monotone chain to (1.3), which could
connect infinitely many zeros of f(u). Properties of continuity and monotonicity of
monotone chains are stated in Theorem 4. The proof of Theorem 3 is based upon
phase space analysis and the strategy consists of two steps. First, we study the one-
dimensional (DW) when # 0. Then we study the perturbation of this problem to
positive values of #, 0 < # < #o. Regarding the first step, existence and multiplicity
results of solutions to (DW) are contained in Theorem 5. To describe the structure of
the set of solutions to (D), with # 0, it is also important to take into account certain
distinguished zeros for f(u), which are defined here as critical zeros (see Definition
3), together with their associate invariant stable and unstable manifolds (see Defini-
tion 5). That kind of zero, when isolated, coincides with the standard saddle points
(see [C-HI). As for the second step, a study of the perturbation of those manifolds is
required to analyze the existence of solutions to (D) for 0 < # < #o. The precise con-
cept of perturbation needed for the work is introduced in Definition 6. Actually, the
properties of perturbation of the unstable manifolds of critical zeros are the required
information for the existence of solutions to (D), # > 0. However, the perturbation
of stable manifolds is considered here for the sake of completeness. In fact, a sharp
version of a well-known result due to Kannel (see IF]) concerning the perturbability
and monotonicity of invariant manifolds is presented (see Proposition 1 and Lemma
3). The main technical results for the proof of Theorem 3 show the relation between
the existence of solutions to (D), the perturbability of unstable manifolds, and the
formation of monotone chains. Roughly speaking, it is shown that the progressive loss
of solutions to (D) when # > 0 increases (see Propositions 3 and 4) is caused by the
monotone chains generated by perturbation of unstable manifolds in the presence of
infinitely many zeros for f(u). On the other hand, a characterization of perturbability
of unstable manifolds is given in Proposition 2 (Examples 3.1 and 5.1 furnish situa-
tions of nonperturbability). The proofs of Theorems 3 and 4 are contained in 6. A
preliminary version of these theorems without proofs was presented in [S-F,89].

2. Boundary value conditions for the undulatory solutions.

2.1. The domain of the phase: Structure and smoothness proper-
ties. Let us begin with finding out the equation for classical solutions to (1.1) with
the form (1.2), i.e., w(x,t) u(x- c(t)) u(y). Since it will always be assumed in
this work that b b(t) is continuous and b(t + T) b(t) for all t E R (T-periodicity),
then b(t) can be written in the form

b(t) # + bo(t),

Rwhere # f[ b(a) da is the average of b(t) and the average of bo(t) is zero.
Thus, the waves (1.2) satisfy the equation,

(2.1) Au + (# + bo(t) + c’(t))Vu + f(u) 0
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or, equivalently,

(2.2) + ,w + 0,

provided that the choice c(t) Co-f: bo(a) da has been made. Remark that c(t) is also
T-periodic and unique up to an additive constant Co. Notice also that the existence
of the waves (1.2) requires that selection of c(t). In (2.1) and (2.2) derivatives are
computed with regard to the phase variable y.

Now, let us study the domain of the phase of the waves. It will be assumed that
the spatial variable x belongs to a bounded domain (open and connected) Ft c Rn.
We are interested in permanent (see IF]) waves, i.e., we want w(x, t) to be defined for
all x E t and t E R, as is usual in the theory of reaction-diffusion systems. Therefore,
the phase y x- c(t) runs the domain

tE[0,T]

where ,t - c(t) {y e Rn/3x e t with y x- c(t)}. On the other hand,
every regular solution u u(y) to (2.2), y , defines a wave w(x,t), x
t R, by mens of the identity w(., t) uia,t ( restriction). Moreover, remark
that the perturbation U(yo), Yo , propagates with T-periodicity in . In fact,
x yo + c(t) is the propagation path nd c’(t) is the propagation velocity. This shows
the undulatory nd T-periodic character of the solutions w(x, t) to (1.1) of type (1.2).

Now we re going to prepare the wy to endow the waves (1.2), w(x, t), with
boundary conditions. The first step consists of finding subregions Ft C 0 (0 the
boundary of ) so that

t[0,T]

This equality must be taken as the definition of the family {Ft}tE[O,T], which turns
out to be necessarily T-periodic in t. Thus the knowledge of {Ft}tE[O,T] permits us to
define certain kinds of boundary conditions on Ft C c9. The rule is to consider the
same type of boundary condition in c9 regarding the equation (2.2) (see [Fr-S,84]
and [S-F,87] for related ideas).

Therefore, it is important to analyze the structure and regularity of OFt and give
analytical rules to determine {Ft}te[O,T] in 0t. A necessary condition for determining
Ft, together with some basic properties of t, are given in the next result. We recall
that a bounded domain c Rn is said to be C and to be located on one side of its
boundary 0t (see [W]) if there exists a finite open covering {Ui}l<i<N and a family
of C functions pi U -- R, V(x) : 0 for all x E U, such that A U {x
Ui/ai(x) < 0}, OtNU {x U/a(x) 0}, and (R\Ft)AU {x U/i(x) > 0}
for each 1 < < N.

LEMMA 1. Let be a bounded domain of R, b R --. R a continuous T-
periodic function, and c(t) as introduced above. Then the following hold:

(i) Ft Ute[0,T] ,t is a bounded domain of R.
(ii) t Ute[0,T] t,t (A the adherence of A).
(iii) A certain point y Ot if and only if 3x Ot, t [0, T] such that y

x c(t). In other words,

{x e aa/x- e

for each t [0, T].
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(iv) Assume that ft is a C domain. With the notation introduced above

(2.3) if a point x e Ft i e {1,... ,n} such that Vi(x).c’(t)=0.

Remark 2.1. (a) The proof of points (i)-(iii) is straightforward and that of (iv) is
standard and is not given for the sake of briefness.

(b) The structure of Ft could undergoe strong variations depending on the geom-
etry of ft. In this sense, the one-dimensional case exhibits a particular behaviour (see
2.3). The situation is better described by the following example.

Example 2.1. Let ft Be be an open ball centered at (0, 0) with radius e > 0.
Let us take c(t) (cos t, sin t). Then Ft { (e cos t, e sin t), (-e cos t, -e sin t)} for
0 < e _< 1 and t
piece of 0ft collapses to (0, 0) at e 1. If e > 1, then Ft { (-e cos t,-e sin t)} for
t E [0, 2r] and

(c) Condition (2.3) is not sufficient, in general, to ensure that an x OFt belongs
to Ft. For instance, Example 2.1 with e > 1 exhibits points in 0ft satisfying (2.3) and
not lying in Ft.

In the next result, some conditions on c(t) and ft are given to show that Ft is
characterized by (2.3). As a consequence of the proof, the smooth character of the
domain ft is. also .shown. For the sake of simplicity, we will only consider the case
where ft is a ball in Rn. In this case 0ft is the so-called tubular surface around the
curve 7(t) -c(t) (see [Do]). However, the same study can be developed for bounded
smooth enough domains f C Rn.

It will be assumed that 7(t) -c(t) defines a Jordan curve of class C such that
the condition

(2.4) { d7 dn-l/ }dt dtn-1
is linearly independent for every t [0, T]

is satisfied. By performing the change t s, s(t) f Ildt dt (1" the euclidean
norm, s the arc length), it is well known that (2.4) entails the existence of a mobil
orthonormal reference E8 {tl (s),..., t(s)} at every point of the curve 7. Moreover,
the so-called Frenet Formulae follow from (2.4), i.e.,

dti
d- -ki-l(s)ti-l(S) + ki(s)ti+l(s), 1 <_ <_ n

where the functions k-1 0, kn =- O, and the so-called curvature functions kl,. kn-1
are positive everywhere (see [K1]).

LEMMA 2. Assume that 7(t) -c(t) defines a Jordan curve in R, n >_ 2, which
satisfies (2.4) and has arc length A > O. Let ft be the open ball BR(O). Provided that
the condition

(2.5)

holds for every S, So e [0, A) and - (a2,... ,cry) e Rn-1 with 1, then, for
each R > 0 such that R < inf[o,h] k1-1(.), the set f is a C bounded domain whose
boundary is given by

(2.6) 0aw y e R /y -4- e [o, A), R
i=2
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Remark 2.2. (a) The Jordan curve hypothesis on (t) is clearly needed to avoid
self-intersections of 0. On the other hand, it can be checked that (2.5) holds if
R < inf[0,A] k1-1(’) is small enough. For a two-dimensional curve 7(t), (2.5) means
that /(t) does not meet any interior tangent circle with radius R except at the tangent

bpoint. For instance, if /(t) (acost, bsint) (an ellipse), (2.5) holds for 0 < R <
(b) The estimate 0 < min[o,A] k1-1(.) in Lemma 2 is optimum (recall that pl (t)

kl-l(t) is the curvature radius of (t) at t, see [Do]). For instance, consider any plane
Jordan curve (t), t e [0, T], so that (t) A + r(cost, sin t) for 0 < tl < t < t2 and
certain tl,t2, t2- tl 5, r > 0 and A (al,a2) E R2. Assume in addition that
p(t) > r for t It1, t2] (see Fig. 1). Then for BR(O), R r, the boundary 0fl
of t has a corner point in A.

FIG. 1.

(c) We remark that under the hypotheses of Lemma 2, the sets Ft are character-
ized by the condition (2.3).

Proof of Lemma 2. First, let us prove that can be written as

e + e [0, h), < R
i--2

where K (a2,..., an) E Rn-1. In fact, it is clear that the right-hand side of the
equality is contained in . On the other hand, if y gt then y BR(’/(8o)) for some
So [0, A). Thus, the distance d(y, ) from y to the trace 7 of /(s) satisfies d(y, ) < R.
The periodicity of /(s)implies that s* e (-e,A + e)such that d(y,/)=
Hence,

d
(e.7)

ds

Therefore, (2.7) implies that y- 7(s*) Ei2 ait(s*) for certain

Obtaining the desired expression for 0t2 is a little more complicated. Observe
that 0t {y E R2/y (- cos s e cos s, sin s e sin s)} in Example 2.1, > 1.
Thus 0gt does not agree with the expression (2.6).

If y 0t2, point (ii) in Lemma 1 and the same argument employed above give
d(y, /) R. As in (2.7), s* [0, A), Rn-1 with I1 R such that y /(s*} +
-=2 aiti(s*). On the other hand, y provided that y 7(s*)+ Ein__2 aiti(s*)
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for some s* E [0, A) and Y E Rn-l, lyl- R. If such y t then 3So s* such that
n

O"oy- "(So) + =2 ati(so) for certain o ), Iol < R. This implies

where y e Rn-l, Il-- R. This contradicts (2.5).
Let us now prove the smoothness of 0t. By the compacity of it is sufficient

to find a neighbourhood U(yo) of every yo Of and a C function " U(yo) - R
with the properties introduced just before the statement of Lemma 1. To accomplish
this, for a fixed yo 0 let us write

n

+ oTt ( o),
n--2

with Yo (a’) E B-1 (B-1 the ball with radius R > 0 and center O in Rn-1).
Define the map

n--1T :(-e, A) BR_--- Rn,
(s, a) y T(s, a) (s) + E=2 at(s).

T is locally invertible at (So, Co). In fact,

[OT OT OT ]dT so ao col -- Oa2 Oa

Since,

(1 a2k)t + E(Ti_lki_l 7i+lki)ti -- Tn_lkn_ltnOs
i--3

OT
t, 2 <_ <_ n,

then

OT OT 1detcol Os’ Oa2"" Oan (1 akl(So)) >_ 1 Rkl(So) > O.

By using the inverse function theorem, 5 > 0 such that, if we set V(so, Co) (So, So + ) l-[in__2 (a -5, a’ + 5), then U(yo) T(Y(so, Co)) is a neighbourhood of Yo
and G T- is a well-defined C function. By writing G(y) (s, a) with s G1 (y)
and a G2(y), it is sufficient to define (y) IG2(y)l2- R2. This completes the
proof of Lemma 2.

2.2. Boundary value conditions for the undulatory solutions. Let us now
define the homogeneous Dirichlet and Neumann problems for the undulatory solutions
(1.2), w(x,t)= u(x- c(t)), to (1.1).

A wave (1.2), w(x, t) u(x- c(t)), is said to satisfy the homogeneous Dirichlet
condition in the domain t C Rn provided that

w(x, t) 0, Vt R, Vx
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A wave (1.2), w(x,t) -u(x- c(t)), satisfies the homogeneous Neumann condition in
t C R’ if the relation

0w
(x, t) 0, Vt R, Vx r0

holds (v v(x) stands for the exterior unit normal to 0fl at x 0).
Thus, the homogeneous Dirichlet problem for the waves (1.2) is defined

+ b(t)W + f(), (, t) e ,
(DW) w(x, t) u(x c(t)),

w(x, t) O, t R, x

Similarly, the homogeneous Neumann problem for the waves (1.2) consists in solving,

+ (t)w + f(), (, t) e a a,
(NW) (, t) ( (t)),

(x, t) 0, t e R, x e ft.
In the present work we will restrict ourselves to analyzing positive and clsical s
lutions to the Dirichlet problem (DW). According to 2.1 it will always be sumed
that the necessary choice d(t) -bo(t) h been made. Therefore, it will always be
sumed in the work that a wve (1.2), w(x, t) u(x- c(t)) u(y), is a solution to
(DW) if and only if u(y) solves

(D) { + ,W + f() 0, e a,
u 0, y 0.

We should remark that a similar study could have been developed for the Neumann
problem or even for another kind of homogeneous boundary condition. On the other
hand, it is also possible to define and study the notion of weak solution (in the Sobolev
spaces sense) to (DW) and (NW). However, the consideration of these facts is beyond
the scope of the present work.

The main results of this paper concern the one-dimensionM version of (DW). For
this re,on, the special features eibited by this problem deserve a separate section.

2.3. The one-dimensional Dirichlet problem. In the one-dimensionM ce
is an open interval, (-a, a), a > 0. However, in general, the sets Ft are either

empty or are {a} or {-a} for finitely many t e [0, T]. More specifically, the constant
Co in 2.1 will always be chosen so that M max[0,T] --c(t) min[0,T] --c(t), M > O.
Observe that this choice amounts to a phe translation in u(y) and the equation for
u(y) is invariant under phe translations. After this normalization, (-a-M, a+
M) and the boundary sets are Ft {-a} for t M and Ft {a} for t M2, where
M {t e R/c(t) M} and M2 {t e R/c(t) -M}. Thus, the one-dimensionM
(DW) can be written as

+ (t) + f(), (, t) e (-, a) a,
(DW) (, t) u(x (t)),

(-,t) 0, teM,
w(, t) O, t e M.

The classical osigive solutions go (DW) are precisely he clsical solugions to he
problem

() {((+ ,+))+I()=0.= 0. e (-. ).
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where y x c(t) designates the phase. To obtain a geometrical description of the
behaviour of a solution to (DW), assume that the profile of a positive solution u(y) to
(D) is as in Fig. 2a, being c(t) as in Fig. 2b.

,-c(t)
’a-M -a a a+M y

FiG. 2.

This implies that M {ti + kT/k e Z}, 1, 2. The behaviour of w(., t) is given by
the restriction u(.)l(0, where I(t) (-c(t) a, c(t) + a). A sketch of the wave along
a period t [0, T] is given in Fig. 3.

0

w(x.t)

O,t,

2

0

_u(x.t)

2

Fro. 3.

t=T

Remark 2.3. In the study of (DW), i.e., of (D), it is sufficient to consider #
nonnegative. In fact, a positive u(y) solves (D) in fl (-a, a) with # # < 0,
provided that (y) u(-y) solves (D) in fl with # -# > 0.

3. Statement of the main results. First let us introduce the hypotheses
required for the nonlinearity f(u). It will always be assumed that f :R --. R is a
C function that satisfies

(i) f(0) 0,
(U) (ii) Uo > 0 such that f(u) < 0 for u >_ So,

(iii) Bu > 0 such thatf f(s) ds > O.

As is usual in the literature, the following functions associated with f(u) will be used
in the work:

(a.1) V(u) f(s) ds, (u, v) -v +. V(u).
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Let us also introduce two parameters associated to f(u) for later reference. They are

VM max V(u) and UM min{u E R+/V(u)= VM}.
[0,+)

Observe that u UM is a zero of f(u).
Remark 3.1. (a) The hypotheses (Hf) on f(u) are usual in the literature of pos-

itive solutions to semilinear elliptic and parabolic equations. See for instance [Am],
[Be-L,83], ILl, [R], [Sm-W,86], [Sm-W,87]. As it will be seen later, the class of non-
linearities f(u) satisfying (Hf) considerably enlarges the kind of nonlinear terms f(u)
considered in the theory of travelling waves to semilinear parabolic equations, as those
in JAr-W,75], JAr-W,78], IF-M,77], IF-M,81], IF]. For later use it is worthwhile to men-
tion two outstanding examples in that class, i.e., the logistic (or Fisher’s) nonlinearity

fl (u) u(1 u),

and the bistable nonlinearity

f2(u) -u(a u)(1- u), a

which have also been deeply studied in the dynamical theory of semilinear parabolic
equations (see [He], [Sm]). However, in the literature of travelling waves quoted above,
the discrete character of the set of zeros of f(u) plays an important role. It should
be remarked that (Hf) allows f(u) to exhibit infinitely many zeros in the results of
travelling waves to the equation

(1.3)
Ou
0---[ uxx + f(u)

contained in this paper (see Theorem 3).
(b) The condition (i) is usual in the literature. With regard to (iii), observe that

it is a necessary condition for the existence of positive solutions to the problem (D)
with # 0 and gt starshaped relative to some point. This is a consequence of the
Pohozaev’s identity [P]. In the one-dimensional case of (D), (iii) is still necessary even
when # # 0.

(c) The condition (ii) is responsible for an interesting phenomenon, namely, the
fact that no positive solutions to (DW) exist in any bounded domain , provided
that the average # is larger in modulus than a certain critical value #o. We study
this phenomenon extensively in this paper. It is possible, however, to have positive
solutions if I#1 is small enough and gt is conveniently large. To state these facts
precisely in the next result, it is suitable to introduce the following value, associated
to a bounded domain t c Rn:

#o()- sup {r > 0/There exists a positive solutioIl tO (DW) }inforsome#Rn;0_< I#l-< r

THEOREM 1. Let b R - R be a continuous and T-periodic function with
average #. Let us write b(t) # + bo(t) and choose c(t) such that c’(t) -bo(t). Let
f(u) be a C function satisfying (Hf) and assume that t is a bounded domain of Rn

so that t is a smooth enough domain. Then,
(a) The problem (DW) admits nonnegative classical solutions w(x, t) u(x-c(t))

which satisfy the estimate

Ilw(’,t)ll, < UM, Vt [0, T].
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(b) #1 > 0, #1 not depending on , such that #o() < #1 for every bounded
domain gt C Rn. In other words, (DW) does not admit positive solutions in gt provided
that I#1 >- #1. Moreover,

where g(u) f(u)- f’(O)u.

4 (f’(0)+ [0,M]sup

(c) Let us keep bo(t) fixed in the expression for b(t) and consider # .e R as
a parameter. For a fixed point Xo E Rn consider also the family of domains f
Xo + A(f {Xo}), where f {Xo} {x Xo/X e f} and e R+. Then there exists

> 0 such that
0 < o() for each .

Moreover, for every , there exists r(A) > 0 such that (DW) admits a positive
solution in for each p R, 0 ]p] r(A) po(), and A .

Remark 3.2. (a) Parts (b) and (c) of Theorem 1 motivate the introduction of an
important parameter for the problem (DW). In Definition 1, bo(t) is kept fixed while
p R is observed as a parameter. Notice that the domain does not depend on

DEFINITION 1. The largest existence value Po for positive solutions to (DW) is

defined as

(3.2) o sup Po(),

where the supremum is taken over all bounded domains . R.
The condition (ii) is crucial for part (b). For instance, the problem (DW) with

f(u) u, m 1, admits positive solution w(x,t) in certain domain D
(-a(p), a(p)) for each positive , i.e., Po +. On the other hand, Theorem 1 holds
under slight variations of (HI). For instance, keep (i) and (iii) in (HI), and replace
(ii) by,

(ii)’ u > 1 > 0 such that f(u) < O.

Then the conclusions of Theorem 1 hold for the solutions to (DW) which satisfy in
addition 0 < w(x, t) < u, x , t R.

(b) 1 is positive. Indeed, (u) for u 0 and (0) 0 is continuous in
u 0. Since (UM) + if(O) 0 then Pl 0, but (iii) in (H) implies the existence
of Up [0, UM] with (Up) > 0. Thus Pl > 0. Observe that part (b) in Theorem 1
implies that Po , while prt (c) asserts that Po > 0. It is possible to show the
equMity ,o pl in the one-dimensional (DW) with f(u) f(u).

In the next two results a geometrical description of the constant po. in (3.2) is
given. The following concept is key: Assume that f(u) in equation (1.3) satisfies
f(0) f(1) 0. A monotone travelling wave (MTW) to (1.3), which connects
the zeros u 1 and u 0 of f(u) with propagation velocity c > 0, is solution
w(x, t)- u(x- ct)= u(y) to (1.3)which satisfies

(a) 0 < u(y) < 1, u’(y) < O, Vy e R,
(b) 0; 1.

For f fl(u) a well-known result due to Kolmogoroff et al. (see IF]) ensures the
existence of MTWs with propagation velocities c c > 0 (c is the minimum propa-
gation velocity). As for f f2(u), the existence of MTWs with unique propagation
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velocity c > 0 is well known (see [F-M,77]). A first result, identifying #o with c and
c is stated now.

THEOREM 2. Let b" R -- R, b(t) it + bo(t), be a continuous and T-periodic

function with average it. Define M max[0,T] f bo(s) ds.
(A) The problem (DW) with the nonlinearity f f2(u) has the following properties:

(a) The constant ito in (3.2) satisfies ito c. For litl >- ito the problem (DW)
does not admit positive solutions in any domain t (-a, a).

(b) Let us assume that litl < ito. Then, there exists To > 0 and a(it) > 0 for
each litl < ito such that

(i) for a >_ a(it) there exists at least a positive solution w(x, t) u(x- c(t))
to (DW) in -(-a, a). Moreover,

(ii) If M < To then inf[0,o] a(it) > 0. Furthermore, (DW) does not admit
positive solutions in (-a, a) provided that 0
(B) The problem (DW) with f fl(u) has the following properties:

(a) The constant ito c. For litl >- ito (DW) does not admit positive solutions
in any domain (-a, a).

(b) Assuming that I#1 < ito there exist To > 0 and a a(it) > 0 such that
(i) for a >_ a(it) there exists a unique positive solution w(x, t) u(x c(t))

to (DW) in (-a, a). Moreover,

lim I]w(",’)ll,aR- 0.
a--.()+

(ii) if M < To then inf[0,o] a(it) > 0. Furthermore, (DW) does not admit
positive solutions in (-a, a) for 0 < a <

Remark 3.3. (a) In parts (A) and (B)two different kinds of bifurcation phenom-
ena are shown regarding the domain (-a, a). In the cse of f2(u), the positive waves
appear spontaneously when a crosses a(it). As for f (u) they bifurcate from 0 at the
critical value a(it) of a.

(b) The constant ito has been identified in Theorem 2 as a propagation velocity
in the problem (D), provided the nonlinearities are f(u) f(u), i= 1, 2. The proof
is bsed upon phase space analysis, in which the formation of MTWs to (1.3) in the
rnge 0 < u < 1 plays an important role (see 6). However, when f(u) is so general as
in (Hf) the possible existence of infinitely many zeros of f(u) in the interval (0, UM)
could cause the appearance of complex phenomen in the structure of the MTWs to
(1.3). For instance, infinitely many MTWs, connecting infinitely many zeros of f(u),
with the same propagation velocity c, could be exhibited by the equation (1.3) (see
Example 3.1 below nd Example 5.1 in 5). Therefore, to identify the constant ito for
general f(u), a convenient extension of the concept of MTW is required. That is the
objective of the next definition.

DEFINITION 2. Let

(a.a)
=v,

dv -cv- f(u)

be the equation of the solutions w(x, t) u(x ct) u(y) of (1.3), x, t e R, c e R,
and let 0

_
Ul < u2

_
UM be two zeros of f(u). A chain of monotone travelling

waves (CW) to (1.3) which connects u to u2 with propagation velocity c is defined as
a set C(c) c R2 with the following properties:
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(i) C(c) C [0, +(x)) x (-x, 0] and (ui, O) E C(c), i= 1, 2.
(ii) C(c) is an invariant set regarding (3.3) with the form

C(c) {(u, v)/v g(u),a

_
u <_ b}

for some numbers 0 <_ a < b and some continuous real function g(u) defined in the
interval [a, b].

Remark 3.4. Notice that Definition 2 is given in terms of orbits rather than
solutions of (3.3). Obviously, the orbit of a MTW to (1.3) together with its a- and
w-limit sets give the simpler example of a CW. On the other hand, it is implicit in the
definition that a CW consists of the union of the orbits of (possibly) infinitely many
MTWs, together with their limit sets. Observe that the only possible limit set of such
an MTW into a CW is {(z, 0)} with f(z) 0. Finally, standard ordinary differential
equation (ODE) arguments show that u u_ and u u+ defined as

u_(resp., u+) min (resp., max) C(c) N ([0, +x) {0})
are the first and the last zeros of f(u) connected by C(c) with propagation velocity c.
A more complex example of a CW follows.

Example 3.1. Consider E Co(R), 0 _< (x) _< 1, supp [-, ] such that
Define fo(U) u(1 u)(u 1/2).(x) 0 for Ix[ _> 1/2 and (x)- 1 for Ix _< .

By taking f(u) fo(U) in the equation (3.3), it is known (cf. IF]) that there

exists c _> 2v/sup[0,1] f(u)/u >_ 0 and an MTW connecting (u, v) (1, 0) to (0, 0)
with velocity c, for each c _> c. On the other hand, we claim that every MTW to
equation (3.3) with f fo, which connects (1, 0) to (0, 0) with velocity c, generates
an MTW to (3.3) with f e2fo exhibiting the same properties but having velocity
ec. In fact, observe that u(y) solves

+ + o,

provided that U(z)- u(ez) solves

u"(z) + + fo(U(z)) o,

with c* c.
By using this remark, it is possible to build up nonlinearities f(u) that exhibit

interesting CW connections. In fact, let {n}n_>l be a positive decreasing sequence
such that En=l n < +c. Let us choose 1 1 and define {u}n_>0 as follows" Uo 0,
u -u_l + , n N. Define u nl n. Observe that limu -u.

Let us define

heN.
n n--

Observe that supp fn [Un_l, Un]. Finally, let us introduce

First, observe that f Co(R). Its first zero with maximum energy is UM u (see
(3.1)). On the other hand, for each pair of points (un, 0) and (un-1,0) the equation
(a.a) with f(u) exhibits MTWs connecting them with propagation velocities c, for each

On the other hand lim en 0. Therefore, for each fixed c > 0 therec >_ #n enCo.
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exists a CW, C(c), connecting u+(c) u to u_(c) inf{u,/c >_ emC; m >_ 1}.
Notice that C(c) also contains the orbits of all those MTWs quoted above, which
exist provided c >_ enCy. Finally, the zero u_(c) is nonincreasing regarding c. For
c >_ max{enC} there exists a CW, C(c), connecting u+(c) uo to u_(c) 0 and all
the zeros of f(u) in the interval [0, uo] (see Fig. 4).

(c) (c)

Another interesting example of CW is given in 5 (see Example 5.1).
With the concept of a CW in mind, it is already possible to furnish an interpre-

tation of the constant #o associated to (DW) for general nonlinearities. In this sense,
Theorem 2 is sharpened in the next result.

THEOREM 3. Assume that f(u) is a C function satisfying (Hf). Consider the
largest existence value #o associated to the problem (DW). Then the following alter-
natives hold:

(i) Either equation (1.3) exhibits a CW, C(c), which connects a zero u u+ of
f(u), U_b e [0, UM], to the zero u_ 0 with propagation velocity c Po, or

(ii) equation (1.3) exhibits a sequence {Cn(cn)} of CWs such that (a) Cn(cn)
connects a pair of zeros of f(u), u_ u < u+ u+; u, U+n e [0, UM], (b) the
sequences {u} and {Un+} are decreasing and limu 0, and (c) the propagation
velocities sequence {Cn} is increasing and lim Cn #o.

Some additional uniqueness and monotonicity properties of the CWs are given in
the next result. The following convention will be used. It is said that two CWs to
(1.3) satisfy C _< C’ if V(u, v’) E C’ such that 3v _< 0 with (u, v) E C then v _< v’. If
C <_ C’ and v < v’ for some pair (u, v) C, (u, v’) C’ we will put C < C’.

THEOREM 4. Assume that the function f(u) in equation (3.3) is of class C.
Then,

(i) if Ul < u2 are two zeros of f(u) in [0, ec) then, for every c >_ O, there exists
at most a unique CW, C(c), connecting Ul to u2;

(ii) if C(c) and C’(c’) are two CWs to equation (1.3) with velocities c < c’, then
C(c) < C’(c’) provided that their last zeros satisfy u+(c’) <_ u+(c).

Finally, let us introduce some results describing qualitative properties about the
one-dimensional (DW) with zero average # 0. The results are, to some extent, a
partial continuation to general f(u) of those contained in Theorem 2. However, the
study of the same properties for # positive is beyond the objectives of this work.

To state the next result, it is convenient to mention a few facts concerning the
problem (DW) with # 0. In this case, the equation in (D)I,

+ 0,

is conservative. In fact, every solution w(x, t) u(x- c(t)) u(y) to (DW) with

# 0 makes constant the energy E(u, v) (see (3.1)), i.e., E(u(.), u’(.)) . However,
not all values of 3 are energy values of solutions to (DW). For instance, such values/3



PERIODIC WAVES TO SEMILINEAR DIFFUSION EQUATIONS 185

must belong to [0, VM) (see 4). On the other hand, a number a e [0, VM) could not
be the energy of any solution to (DW). These are just the values introduced in the
next definition.

DEFINITION 3. A number E [0, VM) is said to be a critical value for the energy
Y(u) f f(s) ds if the number,

us min{u/u > O, V(u) }

is a zero off(u), i.e., f(us) O. We will also say that us is the critical zero associated
to o.

The set of critical values associated to certain f will be designated by . Thus, the
information about the solvability of (DW) is contained in [0, VM) . The structure
of [0, VM) and other features about (DW) are discussed in the next result.

THEOREM 5. Assume that f f(u) satisfies (Hf) and b: R -- R is continuous,
T-periodic, and has average it O. Then,

(i) if [0, VM) is a critical value of V(u) then there exist no solutions to (DW)
in any domain t (-a, a) satisfying E =_ a.

(ii) let c [0, VM) be the set of critical values of V(u). Then [0, VM)- can
be written as the union of a countable family of disjoint open intervals In (a, a+n ),
i.e.,

[0, VM) (I) U
nN

(iii) assume that there are infinitely many intervals in statement (ii) and set
M max[0,T] f b(s) ds. Then, there exist To > 0 and a sequence {an}, an >_ O, such
that

(a) the problem (DW) admits a positive solution in a domain (-a, a), a > 0,
provided that there exists n N such that a >_

(b) if M < To then an > O for everyn N, and the numberao inf{an} is
positive. Moreover, (DW) does not admit positive solutions in a domain t (-a, a)
when 0 < a < ao.

(c) ’N N, a(N) > 0 such that (DW) admits at least N positive solutions in
a domain - (-a, a) for every a > a(N).

4. The n-dimensional case: The proofs of Theorems 1 and 5.

Proof of Theorem 1. Let us begin with part (a). First, recall the equivalence
between (DW) and (D). From part (ii) of (H)j, a direct computation implies that
every positive solution u C2() D C(gt) to (D) satisfies the estimate

(4.1) 0<_ u(y) <_ Uo Vy E gt.

Since 0 and Uo are, respectively, lower and upper solutions to (D), the
existence of two nonnegative weak solutions 0 <_ (y) _< (y) _< no, y , follows
from Theorem 9.4 in [Am]. Moreover, and are, respectively, the minimal and the
maximal nonnegative solutions to (D). From that inequality, the smoothness of the
nonnegative solutions up to the boundary of follows from a well-known bootstrap
argument (see [Am], [R]) provided 0 is of class C2+a, OZ [0, 1). Since it could
happen that (y) (y) 0, Vy gt, the existence of positive solutions will be
studied later.

To prove the estimate by u UM, the first zero of f(u) maximizing the energy
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V(u), consider first the one-dimensional case of (D)

(D) u + ttu + f(u) O,
=o.

If u(y) is a positive solution to (D)I then (u(y), v(y)) (u(y), uy(y)) solves (3.3) and
(i) u(y) >_ 0, [Yl-< b, (ii) (u(:t:b),v(+b))= (0, v:), v_ < 0, v+ > 0. Assume, by
contradiction, that u, -" max]ul_<b u(y) >_ UM. Then (U(yo),V(yo)) (urn, 0) for
a certain Yo E (-b, b). Since (UM, 0) is a critical point to (3.3) then, by uniqueness,

dEUM < u,. In addition, since -#v2(y), the function E(y) E(u(y), v(y)) (see
(3.1)) decreases. Thus, u(yl) UM and v(yl) < 0 for a certain Yl E (yo, b). However,
E(yo) V(um) <_ V(UM) VM < E(yl), which is a contradiction. Therefore,
[u(y)[ < UM Vy (-b, b) for every positive solution to (D)I.

For the proof of the estimate in the n-dimensional case, consider the special
solutions to (2.2), u+(y) u(k. (y yo)) u(O), k Rn, [k[ 1, defined in the ball
BR(Yo). u(O) solves

(4.2) uoo+f(u)--O, Oe (-R,R),

provided k-# 0. Take Yo RN and Ro > 0 so large that ft c BR(Yo). As it will be
seen in the proof of Theorem 5, there exists R >_ Ro such that a positive solution UR(O)
to (4.2)exists in (-R,R)and satisfies UR(=l=R)= 0. Therefore, u+(y)- uRR.(y--yo)
is an upper solution to (D). If u(y) is a positive solution to (D), the previous one-
dimensional estimate for UR(O) gives 0 _< u(y) <_ u+(y) < UM, Vy E Ft, aS wished.

Let us now.prove part (b). The problem (D) can be written in the form,

(4.3> { -Av + (L if(0)- ,(y,v,,))v=O in t,
v 0 on 0gt,

where v(y) eu(y), g(v) f(v)- ff(O)v, so g(v) o(v) as v 0, and g(y,v,#)
eg(e-v)/v. Assume that u(y)is a nonnegative solution to (D). Since the estimate
in part (a) holds we obtain

(4.4) ()a f,(O), suP[o,.] _)__< (]: )f’(O) g(y, v, #)

for each y G . Hence, via the maximum principle and (4.4), the unique nonnegative
solution to (4.3) is v -0, provided that the following inequality holds:

Therefore, the same conclusion holds for u(y).
Finally, let us show part (c). To begin with, consider the case if(0) > 0. As

usual, define ,I(Q) aS the principal eigenvalue of-A subject to homogeneous Dirich-
let conditions in the bounded domain Q c Rn. Designate by 1(’, Q) the positive
associated eigenfunction. By using eq)l(Y, w), e > 0 conveniently small, as a lower
solution to (4.3) (see [Am]), it is seen that the inequality

(4.5) O<
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provides a sufficient condition for the existence of positive solutions both to (4.3) and

(D), when I#1 < v/4f’(0) Since suP[0,M] u-- _> 0 observe that v/4f’(0) _< #1.
Consider now the problem (D) in the domains t At, A > 0, and set (t)

[.J[0,T] t), --c(t). Then ), C (gt,) so 0 < 1((gt)) < l(t). Since
then (DW) admits positive solutions in t provided that

4>
(4f’(0)- I1 ,)

and 0 < I1 < 4f,(0). To obtain the desired result it is sufficient to take

V//l(f’t)/f’(O) and r(A) V/4(f’(0) ,1 ())/,2.
As for the case when if(0) _< 0 let us introduce the auxiliary problem

-Au + A9 Ju A2f(y, #, u) in Q(4.6)
u 0 on OQ,

where Q c Rn is certain domain, f(y,#,u) ef(e-u), and the C function= f in [0, UM] while -- 0outside (--e, UM+), e > 0, and _> 0 for u_< 0.
Note that from the estimate in part (a), (4.6) is equivalent to (4.3) and hence to the
problem (D), provided A- 1 and Q-

We claim the existence of > 0 and 0 < r(A) < #1 for each/ such that (4.6)
admits a positive solution Uo(y, A, #) in Q provided that I#1 < r(A). The conclusion
in part (c) follows from this claim as it is shown now. In fact, assume without loss of
generality that 0 E and choose Q B(0) c t. Then Q B(0) c
for each A >_ A. On the other hand, observe that fio(y,A,#) Uo(,A,#) solves
(4.6)=1 in Q B(0) and, from Hopf’s maximum principle Op
This fact and Theorem II.3 in [Be-L,80] allow us to assert that the continuous function

Co(U, ,,),
o,-()

0,

y e Ba(0),
e (a) B(0)

defines a nonnegative lower solution to (4.6)x=1 in the domain (tx). Therefore, (D)
admits a positive solution in (fx) for each A _> A and I#1-< r(A), as wished.

Finally let us prove the claim. The essential ideas in the variational argument
employed are similar to those in [R], therefore the details will be omitted. Consider
the problem

(4.7) minimize , O(A #, u)
u w (Q)

where

b(A, #, u) - IVul 2 + dy (y,

1(/, #, it)- 2(I)2(, it), ) > O, I/zl #1,

and where Q(y, tt, u) f f(y,#,s) ds. Now, assuming that Q c Rn, n >_ 3, then
O2 is weakly continuous in Wol’2(Q), while (I) is always weakly lower semicontinuous
in W.ol,2(Q) (see Chapter 4 in [C-HI). On the other hand, positive constants K2 and
K3 exist such that (I)1(/,# u) > K2Iul 2 and 12( )1 < Ilwo,(Q) for eachW2,(Q)
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u e Wo’2(Q). Therefore, (4.7) is equivalent to

minimizellwo,.(Q) < R @(A, #, u),

for a certain R > 0 (11 ). Thus, classical variational arguments [R] imply
the existence of a solution uo(y, , lz) to (4.8), which is also a weak solution to (4.6).
Actually, by a bootstrap argument and the estimate in part (a), uo(y, A, #) is a classical
solution to (4.7). The choice of f(u) together with the maximum principle imply that
Uo(y,A,#) >_ 0 in Q. On the other hand, it is possible to construct a function
e Wo’2(Q), lUlw2,2(Q) <_ R such that 42(0, ) > 0 (see Theorem 1.13 in [R]). Thus,

there exist > 0 and 0 < r(A) < #1 for each A >_ , such that (A,#,) < 0 for
]#1 -< r(A). Therefore the solution Uo(y, A, #) to (4.7) is positive in this range of the
parameters. Finally, see lAb-R] for the details of the proof of the case n 2. [

Proof of Theorem 5. First, let us prove (i). If w(x,t) u(x- c(t)) u(y)
solves (DW) and it is positive in f (-a, a), then (u, v) (u(y), uy(y)) is a solution
to equation (3.3) with c 0. Moreover, u(=ka =k M) 0, 0 < u(y) < UM for

lYl < M + a, and the orbit F of (u(y), v(y)) meets {u > 0} in a unique point (Uo, 0).
Thus, E(u(.), v(.)) =- Y(uo) which implies Uo mirt{u > O/V(u) V(uo)} and

u du
(4.9) a + M V/2(V(uo) V(u))

If V(uo) a were critical then f(uo) 0. Since f is C this would imply that the
integral in (4.9) diverges, which is not possible.

As for (ii), note that @ c {Y(u)/Y’(u) 0} and then Sard’s theorem implies
that the .Lebesgue measure I1 0. Thus, [0, VM]\@ is nonempty. Moreover, as a
consequence of the continuous dependence of solutions to (3.3)c=0 on initial conditions
and parameters, (0, VM)\’ is open. Thus, well-known topological properties of the
real line R imply that (0, VM)\@ has a countable quantity of connected pieces {In},
In (a,a+), i.e., (0, VM)\ U In. Moreover, Sard’s theorem again implies that

To prove point (iii) it is necessary to introduce u as u; (resp. u+) max (resp.,
min){u/V(u) a;(r. a+)}. For a e (a;,a+) the solution to (3.3)c=0 starting at
(u(0), v(0)) (0, x/-) reaches, at first time, the negative semiaxis {v < 0} in finite
time y- T(a). Previously, its orbit Fa meets {u > 0} at (u, v) (u(a), 0) with
Y(u(a)) a (see Fig. 5). Thus

u() ds
T(a) 2

V/2(a- V(u))
ds.

FIG. 5.
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Therefore w(x, t) u(x- c(t)) is a positive solution to (DW) in (-a, a) where
T() M and M max fb(s) ds. Since T(a) :> 0 for a e (a,an+) anda 2

lima__. + T(a) lima_,a+_ T(a) +x, the continuity of T(a) implies that Tn
minae(a,+ T(a) > 0. This implies that (DW) has at least two positive solutions in

f (-a, a) provided a > an max{0, T_ M}.
We claim now that To inf Tn > 0. That fact will imply inf an > 0 provided

To > M, as desired. To prove the claim, write T, T(V(n)) for some fin E (u,u+)
and set fi lim inf n >_ 0. Assume, by contradiction, that To 0. We claim that

0. Otherwise,

(4.10) lim 0,

for a certain subsequence {nl} of {fin}, with limfin 0. On the other hand,

TM ds > 2n > o, VnEN.

v()However, 0 accumulates zeros of f(u) and then lim_,0+ - 0. This contradicts
(4.10) and the claim is proved. On the other hand, since fi > 0 we arrive at

ds

This fact together with V(u) < V() for u (0, ] also lead to a contradiction.
Finally, the points (a)-(c) in part (iii) are now straightforward consequence of the

discussion developed above.
Remark 4.1. As a consequence of the nice results contained in [Sm-W,81] (see

also [Sm]) it follows that the bistable (DW)=0, i.e., f(u) f2(u), has exactly two
positive solutions in f (-a, a) provided that a > al and T1 > 2M.

5. Perturbation near critical zeros: Generation of chains. In the present
section, the definitions and preliminary facts to prove the results concerning the one-
dimensional (DW) are introduced. We should recall that solving (DW) in f (-a, a)
is equivalent to finding positive solutions to (D) in f (-a- M, a + M) (see 2).
Thus, a solution u(y) to (D)I defines a solution (u(y), v(y)) (u(y), uy(y)) to (3.3)c=z
whose orbit F meets {u > 0, v 0) at a unique point (u, v) (u, 0). On the other
hand, the orbit F can be described in terms of the orbital equation associated with
(3.3) (see the equation (5.1) below). Finally, recall that it is sufficient to study (DW)
for nonnegative # (see Remark 2.3). For later use, some of those facts are summarized
in the next definition.

DEFINITION 4. A point u > 0 is said to satisfy the condition (S)z, # _> 0, if
there exists a solution v(u), v e C([0, ul))NC([O,u]), to the equation

dv f(u)
du v

such that v(l/1) 0 and v < 0 in [0, ?1).
Remark 5.1. (a) By using ODE arguments we can show that if u satisfies

then the unique orbit F to (3.3)c=, passing through (u, 0) is such that the intersection
F+ F N {u > 0) can be written as F+ ((fi(y),(y))/y e (-a,a)), where (y)
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solves (D)I in t (-a,a). Moreover, (y) v(t(y)) for Yl _< Y _< a and certain

Yl E with (yl) Ul.

(b) A certain u satisfies (S)=0 provided it satisfies (S), # > 0. In fact,
since E(u, v) decreases along solutions to (3.3), then Vo(U) -2(V(Ul) V(u)) <
v(u) < 0 for u [0, u]. A more elaborate argument proves that u also satisfies (S)p
for each p [0, p].

In the proof of the existence of an MTW to (1.3) in the logistic (f fl ()) and
bistable (f f2(u)) cases, n outstanding role is played by the zero u 1. It generates
a saddle critical point (u, v) (1, 0) to equation (3.3) whose unstable manifold (see
[C-HI) generates the MTW when c increases from c 0 to c c or c c (see IF],
IF-M,77]). In the next definition, the concept of saddle point is slightly extended to
accomplish the objectives of the present work (compare with [C-HI).

DEFiNiTiON 5. Let u [0, UM] be a critical zero of f(u). The unstable (resp.,
stable) manifold W3(u) (resp., W:(u)) associated to the critical point (u,v)
(u, 0), with regard to equation (3.3)=0, is defined as

w3(,)(., w(,))
{(, ) a/0 ., v -(;., +)2(v(.) v())}.

To describe the process of CW generation, a suitable notion of perturbable mani-
folds is .needed. Indeed, complex CWs arise in some cases when the unstable manifold
W3(u,), associated to a critical zero u u,, which accumulates zeros of f(u) from
the left, is perturbed from c- 0 to c > 0.

DEFINITION 6. Let u [0, UM] be as in Definition 5. The manifold W2(u)
(resp., W(u,)) is said to be perturbable to > 0 g e > 0,5 > 0 and a unique
ottio v+(, u) (., v-(, )), it o () . a (o, ).
addition, v+(u,) (resp., v-(u,)) must satisfy

(i) v+(u,p) (resp., v-(u,p)) >(resp., <)
(ii) lim,.(_) v+(u,) (resp., v-(u,p)) 0.

If W2(u) (resp., W3(u)) is perturbable, the stable (resp., unstable) manifold asso-
ciated to (u, v)= (u, 0) regarding the equation (3.3),,, e (0, ), is dCned as

w2(..)(., wt(..))
{ (u, ) e a/(,) ., v +(, ) (., v- (, .)) }.

Remark 5.2. (a) The manifolds W(u) and W3(u) are perturbable provided
that the critical zero u u is isolated from the left (see Chapter 4 in IF]). More-
over, a result due to Kannel (see IF]) establishes that both Wy(u) and W(u) are
monotonic with respect to p.

(b) It will be shown later that W2(u) is always perturbable. (see Proposition
1). However, if the critical zero u accumulates zeros of f(u) from the left, W3(u)
may not be perturbable. More precisely, a monotone chain C(p) is generated when
W3(u) is not perturbable. Let us now give an example describing that situation.

Example 5.1. Let us proceed as in Example 3.1 to construct a suitable f(u) in the
equation (3.3). To accomplish this, let us choose similar sequences {e,}, {un}, {f,}
but now taking fo(U) -u(a- u)(1 -u)(u- ), 0 < a < , (u) being the same
function as in Example 3.1. Now, in addition to {Un}, f(u) has another sequence
{w} of zeros, where w a and w, w,_ + , for n k 2.

If we consider u u lira u, as the critical zero, then W3(u) is not
perturbable. In fact, if W3(u) were perturbable, then for each p > 0, p 0,
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there would exist a negative solution v(u,#) to (5.1), u -5 <_ u < u, such that
lim_.(_) v(u,#) 0. Now, let v(u,#,) be the solution v(u) to (5.1) such that
v(u) -. Then, v(u, #) > v(u, #, ) V > 0 and u e [u -5, u] (see Fig. 6).

FIe;. 6.

However, that behaviour of the family {v(., #, e)}>0 is not possible. In fact, arguing
as in Example 3.1, it can be shown that the behaviour of equation (5.1) in the strip
Un-1 <_ u <_ u, is the same as that of (5.1)_ in the strip 0 _< u <_ 1, but with the

nonlinearity f fo(U). Observe that (5.1) (or equivalently (3.3)) with f fo(U) is
an equation of bistable type. Therefore, there exists a unique c > 0 such that the
equation (1.3), with f fo(U), admits an MTW connecting u 1 to u 0 with
velocity c c (see IF-M,77]). This fact implies that (1.3) with f(u) as constructed
here exhibits an MTW C(#n), connecting Un to Un-1 with velocity #n enC,. On
the other hand, a careful analysis of the equation (5.1) in the strip un-1 _< u < un
reveals the existence, for # arbitrarily small, of a family of solutions v(u) of (5.1)
with the following properties (see Fig. 7)"

(i) 3n(#) E N such that V n _> n(#), Vn(U < 0 for u < u _< u,
(ii) Vr(U) 0 and lim Vn(?.tc) O.

n+l

n

FIG. 7.

The existence of {v(u)} with properties (i) and (ii) is not compatible with that of
{v(u, #, e)}. Therefore W3(u) is not perturbable.

Finally, observe that Example 5.1 shows an explicit case where option (ii) in
Theorem 3 holds. In fact, observe that #n Cen is decreasing, while C(#) moves
toward the left when it takes the values it in the increasing sense. Observe that the
largest existence value ito for this f(u) is ito c1 (see Fig. 8).

5.1. Perturbability of W. The next result asserts that, under quite general
conditions, W (us) is always perturbable.
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FIG. 8.

PROPOSITION 1. Let f(u) be a C function with critical zero u us > O. Assume
that

f(u) O((u- u)2), as u

Then, W (u) is perturbable to every # > O. Moreover, v v+( ., It) is defined in the
interval [0, us] and is increasing with respect to #.

Remark 5.3 (a) Condition (5.2) holds provided that d_ exists at udu2
(b) Proposition 1 furnishes new information when us accumulates zeros of f(u)

from the left and f(u) exhibits, infinitely many times, both signs in u < us. Under
those conditions, our result sharpens a well-known result due to Kannel (see Lemma
4.14 in IF]), which arrives at the same assertion under the more restrictive requirement

f(u)(u us) <_ O, u e (us e, us).

Proof of Proposition 1. We will assume that u us accumulates zeros from the
left. First, let us prove the existence for each It > 0, of a solution v(u) to (5.1) such
that

(5.3) V(Zt) E C([0, zt(])f C1([0, c)), v(t) > 0 for 0 <_ u < us, and v(u,) O.

However, that is equivalent to proving the existence of a solution (u(y), v(y)) to (3.3)
such that (u(0), v(0)) (Ul, Vl), ul, Vl > 0, and limy_.+(u(y), v(y)) (us, 0) with
v(y) > 0 for 0 _< y. In fact, (u(y), v(y)) will meet backward {u 0, v > 0} in some
point (0, v+) at a certain negative time Yo. Thus, the orbit F of (u(y), v(y)) in {u > 0}
will give the desired solution v(u).

To find out the initial position (Ul, vl), let us define the set

w e < _< e

where Vo(U) V/2(a V(u)), V(u,) a, and Vl(t) V/2(’ V(t)) with 0 < c < 7.
Then W is a Wazewsky set (see [Co]) regarding (3.3)u. Since the strict exit points set
W- of W is W- E1 E2 {(u,v) e W/v -Vo(U)} {(ua, v)/O < v Vl(a)}
(see Fig. 9), W- is not connected. Thus, Wazewsky’s theorem (see [Co])gives the
existence of the desired point (Ul, v).

Now, we claim that if vi(u) are solutions to (5.1), 1, 2, which satisfy (5.3),
and 0 x < 2, then 0 < vi(u) < v2(u) for-0 u < u. Indeed, the uniqueness,
monotonicity, and perturbability properties of W2(u) follow from that fact.

To prove the claim we first show that a solution v(u) to (5.1), which satisfies
[5.3), is also C in the interval [0, u]. In fact, Vo(U) 2(a- Y(u)), i.e., W(u),
is C in that interval and v’(u) -0 (recall that u accumulates zeros of f(u)). The
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FIG. 9.

last assertion follows from the limit

(5.4) lim f(u) O.

However, since ua accumulates zeros of f(u), (5.4) is not obvious and its proof is
delayed until Lemma 3 below. Finally observe that 0 < Vo(U) < v(u) in [0,u,).
Hence,

f(u) f(u) [0,+ < Vo( )
e

Thus v’(u) - and v(u) is C up to u u.
On the other hand, set w(u) v2(u) Vl(U) and A, ,2 ,. om (5.1) we

arrive at

du VlVe

which implies that the function g(u) w(u)exp {-: I(s) ds} 0 < Ul < ua is

decreeing. Since

I() ds converges . Thus, 9() is bounded andthen the integral f
lim(_) 9(u) 0. Therefore, w(u) > 0 in 0 u < u.

LEMMA . Under the ssmptions of Proposition 1 ssme that
ltes zeros 4 f() from the le. Then, the limit in (g.4) holds tre.

Pro@ Since is a critical ero for f(), then f f(s) ds V() V() > 0
for (0, ). om he fact tha accumulates eros of f() from the left,
follows that 0 is the unique possible value for the limig in (g.4).

Let us define a() (u where F() f f(s) ds. Then, (.4) is equivalent
o lim G() 0. Note hat the clsical L’H6pial ruIe cannot be used in ghis

case. To show the existence of the last limit consider the sets

U+ (resp., U-, U) {u/O < u < ua, f(u) > (resp., <,

Then, it is sufficient to show that

(5.5) lim G(u) 0 and lim G(u) O.
u6U+ ,u---u uEU-

=) 0}.
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To prove the first limit, define W(Uo) max{u’ E U/u < Uo} for every Uo U+.
Since f(u) > 0 in the interval (W(Uo),Uo] then F(uo)- F(w(Uo)) < F(uo). Thus,
Cauchy’s mean value theorem gives the existence of (Uo) e (W(Uo), Uo) such that

G(Uo)-" f2(u) < f2(u)- f2(w(u)) 2f((Uo))f’((Uo))
F(uo) F(uo) F(w(uo)) -f((Uo))

Since f(u) is C, that means that the first limit in (5.5) holds true. The second one
is proven in a similar way.

5.2. Perturbability of Wu: Chain of waves formation. The relation be-
tween the perturbability of the unstable manifold Wus (us) and the generation of CWs
to equation (1.3), will now be studied in detail. Let us be a critical zero for f(u). It
will be said, for short, that u us is perturbable when W(us) be perturbable.

Our first objective will be to characterize the perturbability property for critical
zeros u us.

PROPOSITION 2. Assume that f(u) satisfies (H)l and let u us be a critical
zero of f(u). Then, us is perturbable if and only if the following condition holds:

(5.6)
3# > 0 and {un} C (0, us), lim un us, such

that Vn N, u Un satisfies condition

Proof. (a) Necessity of (5.6). Assume that (5.6) does not hold for # e (0, e),
e > 0. We will arrive at a contradiciton.

First, observe that the set U f-l((0, +oc))N (0, us) is open. Thus it has, at
most, countable many connected pieces {I,}, In (u, U+n). Since u us is critical
then limu lim Un+ us. Moreover, Vn e N, f(u) O.

Fix # E (0, e) and take n N large enough so that no point in In (u, U+n) sat-
isfies (S). Then, Vw e In the solution (u(y), v(y)) to (3.3) starting at (u(0), v(0))
(w, 0) reaches {u > 0, v 0} at (u, v) (w-, 0) in finite time or limy_+o(u(y), v(y))
=(w-,0). In both cases0<_ w-_< u <w.

Next, consider an increasing sequence {Wm} C In with lim Wm U+n Designate
by v gm (u) that piece of the orbit to (3.3) passing through (u, v) (win, 0), which
is contained in {v

_
0}. Observe that gin(u) is defined in the interval [wn w,].

Moreover, {wn} is decreasing and limw wn, with wn <_ u (see Fig. 10). Note
also that Vm e N, [w, Wm] C ITS+l, Wm+l], and gm+l (u) < gm(U), for every
u e [w, w,]. Finally, let us introduce the sequence of functions jim(U), u e [Wn, U+n],
as follows:

I gm (U) if Wn
_

U Wm,
gm(U) --. 0 if U e [Wn, U]\[Wn, Wm].

Since us is perturbable, the solution v- (u, #) quoted in Definition 6 exists .and v- (u, #)
< 9m(U) for every u e [wn, Un+]. Therefore, the limit hn(u) lim 9,(u) exists for every

On the other hand we claim that ha(’) e C([Wn, U+n])VCl((wn, U+n)). Moreover,
the graph of v =hn(u) in the interval (wn, Un+) is a piece of an orbit of the equation
(3.3)u. In fact, by using the equation (5.1)u it follows that 9m hn in the topology of
C ([a, ]), for every [a,/3] c (Wn, u+ ). Thus, the orbital character of v hn (u) follows
from applying the continuous dependence on initial data and parameters (see [Cp],
especially Theorem 3) to equation (5.1)u. In addition, since hn(wn) hn(u+n) 0
it is easily seen that hn(u)is continuous at u wn and u Un+ (note that (5.1)u is
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singular at v 0). Then, Dini’s theorem and the continuity of hn(u) in [Wn, Un+] imply
that the limit 9, -. hn is uniform in that interval. Thus, v h(u), u E [wn, u+], is
an orbit, or a piece of an orbit, of the equation (3.3)u. Moreover, v-(u,#) < hn(u) in
[wn, u+] (see Fig. 10).

FIG. 10.

Finally, choose 5 > 0 and no E N such that v-(., #) is defined in [us- 5, us], and
In c [us- 5, us] for each n >_ no. Let us define the set A which consists of the points
(u, v) with u [us -5, u] such that v-(u, p) v h(u) provided that u In for
some n no, or v-(u,p) v 0 if u I for M1 n N. A creful anMysis of the
boundary 0As of A5 reveMs that A5 is strictly negatively invariant regarding (3.3)
(see [Col). That is, A5 c Or(As) and A5 Ou(Ah) for small y 0, where Ou stands
for the flow of the equation (3.3). In addition, since div (v,-pv- f(u)) -p < 0
then (3.3) is dissipative, which contradicts the fact IAI < lOy(Ah)[ for y 0 small
(IA[- the Lebesgue measure of A). Thus, the necessity of (5.6) is proven.

(b) Sucency of (5.6). Assume that (5.6) holds and, for each n e N, let v(u)
be the negative solution to (5.1), associated to u (see Definition 4). Let us now
introduce the decreasing sequence of functions gn(U) e C([0, u]) defined s

v(u), 0 u u,
g(u)=

O, u < u u.

If v(u, 5), 5 > 0, designates the solution v(u) to (5.1) such that v(u)= -5 then
g(u) > v(u, 5) in 0 u u, for ech n N and 5 > 0. Thus, the function
g(u) lim gn(U) inf g(u) satisfies the last inequMity for u e [0, u), with g(u) O.
Moreover, arguing as in part (a) we determine that g(u) e Cl([0, u)) and solves
(5.1) in [0, u) (cf. Theorem 3 in [Cp]). Since g(u) > v(u, 5) for each 5 > 0, then
g(u) e C([0, u]) and g g uniformly in [0, u].

Define now v(u, p) suph0+v(u, 5) in [0, u]. By using again the arguments of
part (a)it follows that v(u,p)solves (5.1) in [0, u], with v(u,p)= 0. Moreover,
v(u,p) g(u) < 0 for 0 u < u. Thus, every solution v(u) to (5.1) which
satifisfies (i) and (ii) in Definition 6, must satisfy in addition the inequality

e [0,

We claim that v(u, p) v(u) g(u) for u e [0, u]. Otherwise the set

for e > 0 small enough, hs A] 0. That is not compatible with the dissipative
character of (3.3), (see part (a)). Therefore, there exists unique solution v-(u,)
v(u,p) to (5.1) which satisfies (i) and (ii) in Definition 6. Now, by using Remark
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5.1(b), the argument given here for the existence of v-(u, #) can be repeated to prove
the existence of v-(u, #) for 0 < # <_ # and ua is perturbable, as wished.

The next result describes the behaviour near nonperturbable zeros us. It is useful
to explain how the perturbation of that kind of zero generates a CW of (1.3) (see also
Proposition 4 below).

PROPOSITION 3. Assume that f(u) satisfies (H)f and let u us be a nonper-
turbable critical zero of f(u). Then o > 0 such that V# E (0, o) there exists a per-
turbable critical zero u u(#) of f(u), 0 < u(#) < us, such that limt‘__.0+ u(#)
Moreover, no point in the interval u(#) < u < us satisfies the condition (S) for
<#.

Proof. Since u us is a nonperturbable critical zero for f(u) then it accumulates
zeros of f(u) from the left. Otherwise, us would be isolated from the left and Kannel’s
result (see Lemma 4.14 in IF]) would imply the perturbabilty of us. On the other hand
(see the proof of Theorem 5 for the notation) since a is a critical value for Y(u), a
subsequence {aL } of {az } exists such that lim a+ a with an1 < a for all n e N.
Rename {an+ } as {a+ } and let u+ be the critical zero associated to a+. Following
Definition 3 we have limu+ us. Recall that, from the proof of Theorem 5, f(u) > 0
in u < u < Un+. Thus, direct computations show that u+ is perturbable for each n.
Therefore, Vn N, 3#n > 0 such that (5.6) holds for 0 < # < #n. For # > 0 small
enough, let us define the set

St‘(u) {u/O < u < u,, and u satisfies condition (S)t‘ }.

St‘ (us will be omitted for brevity) is a nonempty open set which is bounded from
above. If we denote u(#) sup St, then it is easily seen that f(u(#)) 0. Thus
u(#) is a zero for f(u) which is also critical (see Definition 3). Finally, since u(#) is
perturbable (see Proposition 2) then it holds that u(#) < us. Observe that no point
u e (u(#), us) satisfies condition (S) for all

Remark 5.4. Let us analyze two situations of nonperturbability with different
behaviours regarding the CW formation. In both Examples 3.1 and 5.1 us u
is nonperturbable. In Example 3.1, u(#) Un-1 for 0 < # < #n-1 (recall that
#, ce), and no point in the interval (u-l, u) satisfies (S)t‘ due to the existence
of a CW, C(#), which connects um to Un-1 with velocity 0 < # < #-1 (see Fig. 11).

ua /n Un UM

FG. 11.

In Example 5.1 we have again u(#) Un-1 for 0 < # < Pn--1- However, condition
(S)t‘ now fails in (u(#n_l),u) for other reasons. In fact, CWs to (1.3) only occur
with velocities 0 < #m Co(m #m--1 and connect Um to urn-l, where Un-1 <_
tm--1 tm too.

The arising of CWs to (1.3) due to perturbation of Wu (us) at perturbable critical
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zeros us is described in the next result. Recall that (see Definition 6)

< <

provided that it > 0 is small enough, say 0 < # < e. However, to handle the pertur-
bation of W for # > 0 large, it is convenient to extend the function v-(.,
not small. To accomplish that, let v(u, #, 5) be the solution v(u) to (5.1), such that
v(u) -5, 5 > 0. Then,

v-(u, #) sups-.0+ v(u, #, 5), #

However, even when # is not small, we can still define for u E [0, us] the function

g(u, #) min{0, sups--.0+ v(u, it, )},

provided that the supremum is defined at u E [0, us] (that is just the case when it is

small). Otherwise we will set g(u, it) O.
PROPOSITION 4. Let u us be a perturbable critical zero for f(u). Define

it(us) sup {it > O/g(u, it) < O, for all 0 <_ u <

and u(u) -inf {u _> O/g(u, it(us)) -0}. Then,

c < <

is a CW to (1.3), which connects the zeros u us and u u(u) with propagation
velocity c it(us). Moreover, the unstable manifold W3(u is strictly increasing and
depends continuously on it.

However, the perturbation process ofW for it > 0 exhibits special features when
the value it ito, i.e., the largest existence value for the problem (DW) (see (3.2)), is
reached. That behaviour is precisely stated in the next result. Recall the definition of
the set in (5.7).

PROPOSITION 5. Let us be a perturbable critical zero for f(u), and let ito be the
largest existence value for the problem (DW). Then,

(i) it(us) </to implies that u u(u) is a perturbable critical zero with u(u) > O.
Mo  ow , c (0, <_ <

(ii) it(us) -/to implies that u(u) O.
The proofs of Propositions 4 and 5 are a direct consequence of the ideas contained

in the present section and do not involve special arguments to be explicitly required
for the continuity of the exposition. Therefore, they are omitted.

6. The one-dimensional case: The proofs of Theorems 2-4.

Proof of Theorem 2. The proofs of parts (A) and (B) are similar. Thus, it is
sufficient to give that of (A) to show the main ideas and techniques involved. Recall
that there is no loss of generality if it is assumed that it _> 0 (see Remark 2.3).

To prove (a), let us first describe the problem (DW),=0. Following the notation
of the proof of Theorem 5, observe that a unique interval In exists. Namely, I1
(u{-,Ul+), where u{- (2(1 + a)- v/n(1 + a)2- 18a)/3, Ul+ 1. Indeed, only
unique critical zero exists, UM Ul+ 1 with energy VM (1/2 --a) (recall that
0 < a < 1/2). For # 0, the set S (u{-, Ul+) (see (5.7) and Fig. 12(a)).

For it >_ 0 and Ul 8, designate by T(ul, it) the time 2a employed by a solution
of (3.3) in reaching {u 0, v < 0} after starting at {u 0, v > 0}, travelling into
{u _> 0}, and meeting {u > 0, v- 0} at (u, v) -(ux, 0) (see Remark 5.1(a)). Observe
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that
u d8

01

Now, let us study how the set St‘ is perturbed when # E (0, e) and e > 0 is small
enough. Observe that (0, 0) and (1, 0) are saddle critical points for (3.3)t‘. Let v-(u, It),
0 _< u _< 1, be the stable manifold associated to (1, 0) and let v-(u, it), 0 <_ u <_
u-(it), be that piece of the stable manifold of (0, 0) (see [C-HI), that is contained in
the semiplane {v _< 0} (see Fig. 12(b)).

(A) ()
FIG. 12.

From Proposition 4 we have that v-(., #) is increasing with respect to #. From an
argument similar to that given in the proof of Proposition 1, it follows that v-(., It)
is decreasing in the interval [0, u-(It)]. Notice that u" (0) u-. Since f’(o) > O,
then the behaviour of the orbits to (3.3)t, near (a, 0) together with Proposition 4
imply that u(uu) 0. Thus, Proposition 5 asserts that It(Uu) c Ito, which
implies the existence of a TW which connects UM 1 to u 0 with velocity c.
Moreover, from the uniqueness of the stable manifold associated to (0, 0) it follows
that v(u, Ito) v(u, Ito) for 0 <_ u <_ 1. Finally, the set ,.qt‘ (u-(It), 1) for
e (0,
To prove b) observe that T(-,It) is continuous and positive in St‘. Standard

ODE results ensure that lim_u-(t‘)+ T(u, It) limu_,l_ T(u, It) +oc. Therefore,

Tt‘ infx,T(. It) > 0 for each # E (0, Ito). We now claim that Tt‘ > To > 0 for2
0 _< It < Ito. In fact, following the notation of Remark 5.1(a) define L(ul, #) a yx
for every u ,qt‘. Then,

ul du
L(u,It) v(u)"

Now, fix u e (u-, u+). Since u- (#) is increasing in It then u St, if 0 <_ It < (ul),
for a unique/5(Ul). Moreover, ul u(ft(ul)). From the above expression for L we
have that L(Ul, It) is increasing for 0 <_ It < /5(Ul). Standard ODE results imply
again that limt‘-_,p(ul)_ L(ul It) +c (see Fig. 13) Since L(u 0) T(u,,0) for
every u- < Ul < u+, we conclude that

Tt‘ infs, T(., It)> - >0 v, e (0,,o).

By choosing a(It) Tt‘ M we arrive at the conclusions of part (b).
Remark 6.1. For f(u) f2(u)it was proven in [Sm-W,81] that T(.-,0) has a

unique local extreme at a certain ft. Therefore, (DW) has at least two solutions in
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(o)

(A) (B)
FIG. 13.

(-a, a) for a > a(#) and # > 0, while the number of solutions is exactly two
when it 0 and a > a(0).

Proof of Theorem 3. First, it can be assumed that UM is perturbable. Otherwise,
it is sufficient to work with the pertubable critical zero UM(it), 0 < it < Co, whose
existence is given by Proposition 3. In the last case recall that
UM and u satisfies (S)p} c (0, UM(it)), for it _< /5 < ito.

The strategy of the proof consists in applying recursively Proposition 4 to generate
two sequences {Un} and {itn}, which take the zero u UM as starting point. More
precisely, we set Ul tM, itl it(tM) and u, u(un-1), itn it(Un) for each
n _> 2. Thus, {u} defines a decreasing sequence of peturbable zeros of f(u), while

itn is increasing. Moreover, Vn E N.there exists a CW, C(it), which connects u to

un+ with velocity
Observe that both sequences {un} and {its} could possibly be finite. Indeed, the

conclusion of part (i) is obtained when there exists no E N such that Uno O. In this
case (see Proposition 5).ito-1 ito. Therefore, there exists a CW to (1.3) C(ito),
which connects the zero u+ max C(ito) N {(u, 0)/0 <_ u <_ UM} to u 0 with
velocity

Assume now that {Un} is nonfinite. In that case, un > 0 for every n and Proposi-
tion 5 implies that it, < it+l < ito, Vn N. Since {u} is decreasing then the limits
u lim un, it lim it exist and satisfy u _> 0, it <_ ito.

We claim that u 0 implies it ito. In fact, the inequality it < ito would
give the existence of some satisfying condition (S) for some it (its, ito). Thus,
Vn N we would get 0 < < u, which contradicts the fact limu -0. Therefore
it must coincide with ito. Observe that option (ii) in Theorems3 is obtained under
that asumption.

Next, consider the case where u > 0. First, we will prove that V(u) > 0
(observe that V(u) _> 0). If fact, designate by v-(u, it) the unstable manifold
associated to u un and designate also g(u), the restriction of v-(u, it,) to the
interval [0, u]. If we assume that V(u) 0 then we arrive to the inequalities

< < o < <

for each n e N. Observe that g(u) limgn(U) satisfies g(u) -V/-2V(u). However,
that is not possible. In fact, the set I {(u, v)/v g(u)} should be an invariant set
for the equation (3.3)u=. On the other hand, the energy E(u, v) 0 for (u, v) E I.
This contradicts the fact d__E_E _itv2(y) where the derivative is computed over ady
solution (u(y), v(y)) of (3.3)=. Therefore, Y(u) > O.

Let us study the case where u > 0 and it ito. If we keep the notation of the
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preceding paragraph for the functions g,(u), it will be shown that C {(u, v)/O <_
u <_ u, v g(u)} where g(u) lim 9n(U) is a CW which connects u u to u 0
with velocity tto. Thus, we arrive to the conclusion of part (i) in this case. In fact,
observe that C is an invariant set for the equation (3.3). On the other hand, the
inequality

-V/2(V(un) V(u)) < 9(uoo) < O, Vn e N

implies that g(u) O. In addition, 9(0) 0. Otherwise, g(0) < 0 and g
min{u/u > O, 9(u) 0} would be a perturbable critical zero, with unstable manifold
v v-(u, #) 9(u) defined in [0, g]. Thus, due to the fact #c #o, Proposition 5
prohibits the existence of such a perturbable zero g. Therefore, 9(0) 0.

Finally, let us analyze the case u > 0 and # < /to. First, let us show that
u u is a critical zero for f(u) (see Definition 3). In fact, u un is a critical zero
for every n. In addition, it is clear that V(u) infneNV(u,). Thus V(u) <_ V(u)
for 0_< u_< u. We claim that V(u) < V(u) for 0 <_ u < u. Otherwise, a
point g E (0, u) with V(g) V(u) would exist. If, as in the preceding paragraphs,
we consider the sequence gn(U)l,, v-(u,#,)l,. i.e., restricted to the interval
[g, u], and argue in a similar way we arrive again at a contradiction. Thus, V(u) <
V(u) for 0 _< u < u, i.e., u is a critical zero. Now, consider again the sequence
9(u) but defined in the whole interval [0, u], and set again g(u) lim gn(U) in that
interval. We claim that g(0) < 0. Otherwise, C(#) {(u, v)/O <_ u <_ u, v
g(u)} would define a CW which connects the zeros u u to u 0 with velocity
#. Thus, no point u E (0, u) could satisfy the condition (S), for # _> #, i.e.,
S,(u) for # _> #. However, from the construction of the sequences {Un} and
{#n} and Proposition 5 it follows that the condition (S)u with # _> # can only be
satisfied by points u (0, u). Therefore, no point in the interval (0, UM) can satisfy
(S), for # >_ #, which means that # >_ #o (see (3.2)), which is a contradiction.
Thus, g(0) < 0.

Since g(0) < 0 then 1 min{u > O/g(u) 0} is a positive and perturbable crit-
ical zero for f(u) with unstable manifold v-(u, #o) g(u), 0 _< u < gl. Moreover,
C(ttoo) {(u,v)/gl <_ u <_ u,v g(u)} defines a CW which connects uo to ?1
with velocity c-

On the other hand, since 21 is perturbable then the argument developed at the
beginning of the proof can be repeated again, taking now u gl as the starting
point instead of UM. Thus, a decreasing sequence of perturbable critical zeros {ul}
is generated again, together with an increasing sequence of values of #, {#1}, with

#o < #1 for each n N. In addition, there exists a sequence of CWs, {C(ttl)}, which
to U with velocity cconnect u un U+l #n" If {ul} is not finite, i.e., u > 0

for every n N (so option (i) in Theorem 3 does not hold in the first approximation),
limthen we arrive at a new value #1 lim #1, #1 _< #o, and a new zero u

0 Ucx < 1.
In this stage of the proof we can obtain the conclusions of Theorem 3 in two

ways, namely, if ul 0 or provided that u > 0 and # #o. If neither of those
situations occurs, i.e., uo > 0 and tt < #o, a positive perturbable zero 0 < 2 < u
is obtained. The proceeding can be started again at g2 to obtain new sequences of
positive perturbable critical zeros {U2n}, # values {#2n} and CWs {C(#2)}. If neither
point (i) nor (ii) holds we again get a new perturbable critical zero 0 < g3 < u.

Finally, assume that the proceeding is repeated infinitely many times without
achieving the points (i) and (ii) in Theorem 3. That means that two sequences {u},
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(#} will have been generated and 0 < u and # </to for each n E N. However,
it is implicit in the discussion developed above that limu --0. Therefore, by using
Proposition 5 as above (see the case u 0 implies # #o) we get lim #n

uk#o. Therefore, we can construct a decreasing sequence of perturbable zeros ( n },
lim Un 0, with associated # values {#k }, lim #k #o, and a sequence of CWs

k to the zero k with velocity{c(#k) }, such that C(#kn) connects the zero Un Un
C #k. This implies that point (ii) in Theorem 3 holds. Thus, the proof of Theorem
3 is completed.

Remark 6.2. Observe that the unique possible option in Theorem 3 is (i) when
u 0 is an isolated zero.

Proof of Theorem 4. To prove the point (i) let us consider two CWs, C1 and
C2 of equation (1.3), which connect the zeros 0 < u < u2 <_ UM of f(u) with
velocity c. Then, there exist nonpositive functions v gi(u), gi C([ul, u2]) such
that C {(u, v)/u <_ u <_ u2}, i= 1, 2 (see Definition 2).

On the other hand, observe that the functions gi(u) are C and solve the equation
(5.1) in {u/gi(u) < 0} (see the proof of Proposition 5). If D designates the set
D {u/g (u) : g2(u)} and D is nonempty, let (a, b) be some arbitrary connected
piece of D. By the uniqueness of solutions to (5.1) we arrive at gi(a) gi(b) O,
i= 1, 2. Assume, for instance, that gl(u) < g2(u) for u (a, b). Then,

is invariant for (3.3)c. That is not compatible with the dissipativeness of (3.3)c when
c > 0. If c 0 it is straightforward to show the equality C1 C2. Thus, C1 C2 in
any case.

As for the point (ii) let us write C(c) { (u, v)/u_ (c) <_ u

_
u+ (c), v gi (t) }

and C(c’)= {(u,v)/u_(c) <_ u

_
u+(c’),v g2(u)}. The assertion of point (ii)is

equivalent to showing that the set {u/g2(u) < g(u),u_(c) < u < u+(c’)} is empty.
First, observe that Wff(Uo) < dd--u(Uo provided that C and C meet at (Uo, Vo). Let
(a, b) be a connected piece of that set. Since the function g(u, #) (see Definition 1)
is increasing in #, the equality g(b) g2(b) 0 is excluded. On the other hand, if
g (b) g2(b) < 0 then the preceding observation implies -u (b) > u (b), which is not
possible. Therefore, that set is empty and the proof is concluded.

Remark 6.3. Consider the equation (3.3) with the nonlinearity f(u) efo(U) +
fo(U- 1), where fo(U) is as in Example 5.1 and 0 < e < 1. A careful analysis
of this example reveals that the conclusion of point (ii) in Theorem 4 is false when

<
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ANALYSIS OF THE DOMAIN INTEGRAL OPERATOR FOR
ANISOTROPIC DIELECTRIC WAVEGUIDES*

H. P. URBACH

Abstract. The domain integral equation for guided electromagnetic waves in anisotropic inho-
mogeneous guides is formulated. The spectral properties of the noncompact integral operator are
analysed and the existence of guided modes is proved for lossless nonmagnetic media.

Key words, dielectric waveguide, anisotropic, guided wave, domain integral operator, semi-
Fredholm
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1. Introduction. The determination of the propagation constants and field dis-
tributions of guided electromagnetic waves in open cylindrical dielectric waveguides
is important in telecommunications technology and in integrated optics. In this pa-
per we consider guides consisting of lossless, nonmagnetic, generally anisotropic and
inhomogeneous materials.

Several equivalent mathematical formulations of the guided wave problem can be
derived from Maxwell’s equations by eliminating different components of the electro-
magnetic field. Neither of these formulations is an eigenvalue problem of standard
type. For instance, by eliminating the axial field components one obtains an eigen-
value problem with the propagation constant as eigenvalue, but the operator in this
formulation is not normal. On the other hand, in the case of lossless materials formu-
lations exist in which the operators are self-adjoint, but then the propagation constant
is not an eigenvalue but enters the problem in a more complicated way.

In spite of the fact that there exists a vast amount of literature on computational
methods for dielectric waveguides, the existence of guided modes in waveguides of
arbitrary cross-section has been proved only recently. By analysing the partial dif-
ferential equations for the magnetic field, Bamberger and Bonnet [4] proved that for
lossless isotropic media there exist at least two linearly independent guided modes.

In this paper we study the so-called domain integral equation for the electric
field. This equation is obtained by applying the method of Green functions to the
vector Helmholtz equation for the electric field. The propagation constant appears as
parameter in the kernel of the integral operator. The determination of guided waves
is then equivalent to tuning the propagation constant such that -1 is eigenvalue of
the integral operator.

Guided waves are often computed by applying the finite element method directly
to the partial differential equations (see, e.g., the reviews of Saad [9] and Rahman [8]).
However, the domain integral equation is in many cases more suitable for numerical
computations (Bagby [2], Baken [3], Pichot [7]) and therefore it is appropriate to
study the integral operator mathematically.

The operator occurring in the domain integral formulation of the waveguide prob-
lem is an interesting example of an integral operator which is symmetric and bounded
but not compact. By using a characterisation of semi-Fredholm operators proved in
Schechter [10], we show that the nonpositive part of the spectrum of this operator
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1994.
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FIG. 2.1. Cross-section fl of a waveguide in a plane x3 constant.

consists of a countable set of negative eigenvalues of finite multiplicity with 0 as unique
accumulation point. By applying the mini-max principle to the negative eigenvalues
the existence of at least two linearly independent guided modes that propagate in the
same axial direction is obtained.

2. The domain integral formulation. Let t2 be the bounded open cross-
section of a cylindrical waveguide that is parallel to the x3-axis of a Cartesian co-
ordinate system (Xl,X2, X3) (see Fig. 2.1). ft may be disconnected, in which case
several waveguides with parallel axes are present. The boundary 0 is assumed Lip-
schitz.

All materials are nonmagnetic with magnetic permeability #0. The guide consists
of a lossless, in general inhomogeneous and anisotropic dielectric. For given frequency
w the electric permittivity in point (xl, x2) of Ft is given by a positive definite hermitian
tensor ([1 (xl, x2) of rank 2, of which the components are bounded measurable functions
on Ft. We introduce the numbers ([1,max and ([1,min by

(x, x)V V
(2.1) ([1,max sup max

(,,) vc\{o} V.

([I(Xl, x2)V V
(2.2) ([1,min inf min

(,,) vc\{o} V.

The bar denotes complex conjugation and bold letters are used for vectors in C3.
The exterior of the guide consists of a single homogenous isotropic dielectric with

permittivity ([2. It is assumed that

(2.3) ([1,min ([2,

and that for some open set t c t2

(2.4) inf min
([1 (Xl, x2)V" V

(l,X)e vc\{o} V. > ([2.

In some cases (2.4) holds with f/ and then (2.3) and (2.4) are equivalent to

([1,min > ([2- However, in other applications the permittivity in the guide varies con-
tinuously from a value strictly larger than ([2 to the value ([2 on the boundary of the
guide. This is an example for which ([1,min ([2 and, to include it in the analysis, we
use the assumptions (2.3) and (2.4) instead of ([1,min > ([2.
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Let the permittivity tensor e on R2 be defined by

x2) / el(x1, x2) for (Xl, x2) E -,
(Xl

e2I for (Xl,X2) e R2\12.

In what follows we will use the symbol e2 for both the number introduced above and
the tensor e2I. The meaning will be clear from the context.

For given time frequency w we seek time harmonic solutions of the source-free
Maxwell equations of the form

(2.6)
(Xl,X2,X3, t) Re{E(xl,x2)ei(x3-wt)},

(xl,x2, x3, t) Re{H(Xl,X2)ei(Zx3-t)},

for some , where g and 7-/ are the electric and the magnetic fields, respectively.
Substitution of (2.6) into Maxwell’s equations yields, after elimination of the magnetic
field,

co2poeE curlz curlzE O,

where curlz is the differential operator obtained from the curl by replacing Oq/OX3 by
multiplication by i. Hence, with respect to the Cartesian coordinates (xl, x2, x3)

OE---iE2Ox2

curlzE + iE
OXl OX2

The operator in the left-hand side of (2.7) will be denoted by A}"

(2.9) A(E) w2#oeE curlz curlzE.

It will be considered as operator in L2(R2)3 with domain

(2.10) D(A) {E L2(R2)3; curl curlE L2(R2)3}.

It is easy to see that A} is a densely defined closed operator with A as adjoint. In
particular, for real the operator A} is self-adjoint.

We conclude from (2.7) that the problem of determining all time harmonic elec-
tromagnetic waves of the form (2.6) is equivalent to determining such that 0 is in
the spectrum of A}. For isotropic guides it is well known [6] that for real with

-W(#oe.)/ <_/ <_ w(#oe)/, there exist nontrivial solutions of (2.7) (see Fig. 2.2).
The fields E(Xl, x) and n(zl, z2) of these so-called propagating radiation modds are
not in L2(R)a. In addition there exist for all purely imaginary solutions of (2.7) of
which the fields also are not in L(R)a. These waves are called evanescent radiation
modes. Finally, for a finite number of real/ with w#0e2 < < co2#0el,max there
exist solutions of (2.7) that are in D(A}). These solutions propagate a finite amount
of energy in the xa-direction and this energy is confined to the waveguide and its
immediate surrounding. Therefore, these modes are called guided modes. The exis-
tence of guided modes was proved for isotropic guides in [4]. For > co2#0el,max the
operator A can be shown to have a bounded inverse, hence for these , (2.7) does
not have nonzero solutions.
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Im

FIG. 2.2. The set of ’s corresponding to propagating radiation modes, evanescent radiation
modes, and guided modes.

It is anticipated (Marcuse [6]) that the propagating radiation modes, evanes-
cent radiation modes, and guided modes together form a complete system. For slab
waveguides the completeness of the modes is trivial because the waveguide problem
can be formulated as an eigenvalue problem for a self-adjoint operator. In the case of
waveguides of bounded cross-section, however, this is not possible and it seems that
completeness has not been proved rigorously.

In this paper we study the guided modes and we therefore always assume that 7
is real and satisfies

(2.11) f2 > w2#02.
The other inequality satisfied by propagation constants of guided modes, 32 <
w#0el,mx, will follow from the analysis.

We use the domain integral formulation of the problem. To derive this we first
write (2.7) as

(2.12) A (n) -w2#0(e e2)E.

The operator A has constant coefficients and can thus be analysed using the Fourier
transform. Let (E) be defined by

(E)(I, 2) / / exp[-2i(lXl + 2x2)]E(xl, x2)dxldX2.(2.13)

By applying the Fourier transform to A (E) G, one obtains the matrix multipli-
cation

(2.14) A (1, 2)(E)(, 2) ()(1, 2),

where A: (, 2) is the matrix

(2.15) A:(I, 2) 4-212 w2,0e2--4-2--2 2-2#
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Its determinant is given by

(2.16) D({1, 2) W2#oe2{4rc2({ + {22) + 2 W2#oe2}2,
and since/32 > w2#oe2 it follows that the matrices A({1,{2) are invertible for all
({, {2). The inverse is

(2.17)A(1,2)_
1 42{ w2"0e2 4212 21

[w2,02 D( 2)11/2 4212 42--w2"02 22
21 22 2_w2g02

The inverse of the operator A is then

(2.s) A () =-1 ().

This is a bounded linear operator L2(R2)3 L2(R2)3 because it is in the Fourier
domain given by multiplication by the bounded matrix-valued function (,2)
A (1, 2) -1. Using (2.18) it follows that (2.12) is equivalent to

Now by assumption (2.3), the tensor e(x,x2)- e2 is positive semidefinite for all
(Xl,X2), hence its square root is well defined. We define the field

(2.e0) ( )/E,
which has support contained in , and we introduce the operator T L2()3

L()3 by

(. r( .0( 1/ o 5 o ( )/,

where is identified with the field obtained by extension of P to N by setting it
equal to ero in the complement of . Then (2.19) implies

(. r;(l, on a.
Hence, if N is the electric field of a guided mode with propagation constant , then

defined by (2.20) is eigenfield of the operator T} with eigenvalue -1. Conversely,
if L()a is eigenfield of T} with eigenvalue -1, then N given by

(2.23) E :-w2,0 (n2)
-1

[( 2)1/2F]
is the electric field of a guided mode with propagation constant . Note that for real, T is a symmetric operator. The operator in the right-hand side of (2.19) is not
symmetric and this is the reason for introducing T.

By computing the Fourier transforms (2.18), (A)- can be written as a matrix

of convolution operators in L2() with highly singular kernels that are derivatives
with respect to x and x2 of the function K0 ((2_ w2poe2)l/2(x + x)l/2), where
K0 is the modified Bessel function of order 0. We will use expression (2.18) in terms
of the Fourier transforms, however.

We conclude that the determination of guided modes is equivalent to finding
values for such that -1 is eigenvalue of the operator T. The fact that the domain

integral equation is an equation for the field F with support in and is an equation
to be satisfied on makes it very suitable for numerical computations. In 3 and 4
we shall derive properties of the operator T and its spectrum.
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3. Lack of compactness. T/ is a bounded symmetric operator in L2(Ft)3 but
it is not compact. If T/ were compact then the quadratic functional

would be continuous for weakly converging sequences in L2(I).3. We shall show that
the functional does not have this property. The argument leading to this conclusion
applies to all permittivity tensors and all cross-sections that were introduced in 2.
Hence, the operator T/ is never compact, not even when the waveguide has smooth
permittivity tensor and smooth boundary.

Let

(3.2) div/F
OF1 + + iF3Ox

Its Fourier transform satisfies

9 (divzF) 27rilg(F1) + 2ri2(F2) + i/39V(F3).

By using (2.17), (2.21), and (3.3) one can derive

(T/(F),F) --x)2].to ((ff)-I o. [(-2)1/2F], 7" [(-
(3.4) pl (F) p2(F),

where p and p are nonnegative continuous quadratic forms on L2()3 defined by

1

" div/ (- 2)1/2F s(ll) -ld1 d2(3.5) pl(F)-

and

(3.6) p2(F) w2#0 ." (e e2)1/2F s(ll) -1 dl d2

with

(3.7) (11) 4r1<01: + 7: -oVo, I1- ( + )/-
When considered as function of G (e- e2)1/2F, the right-hand side of (3.6) is
the square of a norm which is equivalent to the norm on the space H-I(R2)3 (or
W-1’2(R2)3). Because is a bounded set with Lipschitz boundary, a well-known
imbedding theorem (Adams [1]) implies that the inclusion L2()3 H-I(R2)3 is
compact. Hence, p is continuous for sequences that converge weakly in L2()3.

However, pl is not continuous for weakly converging sequences. To show this we
assume that (0,0) is in the interior of the set of property 2.4). Choose R such
that the disc with center (0, 0) and radius R is contained in . Let (r, ) be polar
coordinates. It follows from assumption (2.4) that for (x + x)1/2 < R the matrices

e(xl,x2)- e2 are invertible. For integer n, let fn(r) be functions with support in
(0, R) such that

(3.8) If(r)lr dr 1,
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and

(3.9) lira f 0

weakly in L. Let the vector fields F be given by

(3.10) F (e e2)-/2f,(r),
where is the unit radial vector. Then F L2(t)3 and

(3.11) lira r 0,

weakly in L2()3.
We remark that for an arbitrary function h(r) and integer the Fourier transform

of the function h(r)exp(i) can be written as

(a.l) [h(r) exp(iu)](O, ) (-i) J(Or)h(r)r dr exp(iu),

where 0, are polar coordinates in the ourier plane and J is the Bessel function of
order u. By using ghe identity of Parseval it follows from (.12) that

(3.13) J(2r)h(r)r dr odo [h(r)12r dr.

Now
ld(3.14) div(fn) rr [rfn(r)],

and by using (3.12) one finds after a partial integration

(3.15) " [div(fn)] (0,) 47r2ao Jl(2ror)f(r)rdr.

Hence,

(3.16)

where

(3.17)

In the last equality we used (3.12). Now, as functional of fn (r) exp(i99), the right-hand
side of (3.17) is the square of a norm.that is equivalent to the norm on H-I(R2).
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Since limn__, fn(r)exp(i) 0 weakly in L2(R2) and the supports of these functions
are contained in a bounded set, it follows that

(3.18) lim q(f) O.

On the other hand, by using (3.13) with u 1, the first term on the right-hand side
of (3.16) becomes

12i J1 (2ror)f(r)r dr O do
2r Ifn(r)12r dr 2r.
2 2

Hence,

271"
(3.20) lim pl(Fn)=--.

n--cx 2

This shows that pl is not continuous for sequences that converge weakly in L2(f)3.
Hence, T is not compact.

4. Spectral analysis of the integral operator. We first determine the spec-
trum of A for fi2 > w2#02. As mentioned in 2, A with domain (2.10) is a

self-adjoint operator in L2(R2)3. Let A be a real number. The operator A II
has constant coefficients and reduces in the Fourier domain to a matrix multiplication
with matrices (2.15) in which the number w2tt0e2 is replaced by w2tt0e2- I. It follows
from (2.16) that the determinants of these matrices are

(4.1) (w2#o2 I) [42((2 + (22) + 2 w2#o2 + A] 2

The spectrum cr(A) is the set of all , such that for some value of 2 + 22 the
polynomial (4.1) vanishes. Hence,

(4.2) a(A) (-oc, w#0ee 21 U {w2#0e:}.

If I W2#o(2 then (A II)(E) 0 is equivalent to curlz curlzE 0. Hence
A w2#o2 is eigenvalue with infinite-dimensional eigenspace

(4.3) grad {gradz E HI(R2)},

with gradz the operator obtained from the gradient by replacing differentiation with
respect to x3 by the multiplication by i. On the other hand, for A # w2#oe2,
(A: AI)(n) 0 implies that divan 0. Then every component of n satisfies
the scalar Helmholtz equation with wavenumber k (w2#oe2 2 A)l/2 in two-
dimensional space and the eigenfields are divergence-free Vector plane waves. There-
fore, the eigenspaces corresponding to the negative part of the spectrum (4.2) together
span the space of vector fields that have vanishing divergence

(4.4) 7-/div, {F E L2(R2)3 divzF 0}.

One has the orthogonal decomposition

(4.5) L2(R2)3 7-/grad, (9 T/divo.
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The spectrum of the inverse of A is given by

1
,0 U(4.6) a (A5)-1 -2_w2#062 w2#062

Hence, the numerical range of (A2)
-1

is the interval

[ 1 1 ](4.7) -32 w2#062, w2#062
Since

(4.8) (T(F),F)--w2p0 ((A2) -1

[(6-62)1/2F], (6-62)1/2F)
it follows that the numerical range of T is contained in the interval

[ d2]-t621,max--M2t062 61,max--62](4.9) M2t062 62

Hence we have

(4.10) a c
2 _w.#062 62

To proceed with the spectral analysis of T we shall apply a characterisation of
semi-Fredholm operators proved in Schechter [10]. Recall that a bounded operator T
is called semi-Fredholm if it has closed range and its kernel has finite dimension. If
in addition its cokernel is finite dimensional, then T is called a Fredholm operator.
It is clear that for self-adjoint operators there is no distinction between-Fredholm
and semi-Fredholm operators. For a compact symmetric operator T the operators
T- AI are for all nonzero A Fredholm, but for operators that are not compact this is
not true. However, T has the property that for all negative A the operator T AI
is Fredholm. In the proof of this statement we shall use a characterisation of semi-
Fredholm operators which we formulate next. We call a seminorm [.[ compact with
respect to the norm of a Hilbert space ?-/if every bounded sequence {xn} in ?-/has
a subsequence {Xnk } such that limk__, limt__,o [Xnk x, 0. Then we have the
following result (Schechter [10]).

THEOREM 4.1. Let T be a bounded linear operator in a Hilbert space TI. T is
semi-Fredholm if and only if there exists a constant C > 0 and a seminorm I.I which
is compact with respect to the norm on Tl, such that for all x E

(4.11)

We apply this theorem in the proof of the following proposition.
PROPOSITION 4.2. T AI is Fredholm for all A < O.
Proof. We have

(4.12)
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where (3.4) and the fact that Pl

_
0 and A < 0 have been used. Hence,

(4.13) IIFII <_ IIT(F) AFII + , p2(F)
1/2

As remarked in 3, p2 is a quadratic form that is continuous for weakly converging
sequences in L2(f)3.. This implies that the second term on the right-hand side of
(4.13) is a seminorm which is compact with respect to the norm of L2(Ft)3. Hence,
by Theorem 4.1, T M is Fredholm. D

We conclude therefore that the negative part of the spectrum of T, if not empty,
consists of eigenvalues with finite-dimensional eigenspaces. In fact there exist infinitely
many negative eigenvalues.

PROPOSITION 4.3. T has a countable set of negative eigenvalues.

Proof. Proposition 4.2 implies that every negative element of a(T) is eigenvalue
with finite-dimensional eigenspace. Using

(4.14)

(T(F), F) -022#0
pl (F) p2(F),

(3.5), and (3.6) we see that (T(F), F) < 0 for all F in the set

(4.15) X(t) {F E L:()3 divz[(e 2)1/2F] 0 on Ft, (e e2)l/2F 0}.
Using property (2.4) we see that this set has infinite-dimensional span and therefore
there must exist a countable set of negative eigenvalues. [-!

We can now show that the lower bound of the interval (4.10) is not in the spectrum
of T. If it would be in the spectrum, then it would be an eigenvalue. Let F be a
normalised eigenfield corresponding to this eigenvalue and put

(( 2) 1/2
(4.16) (

(1,max 52) 1/2
F.

Then IIGII _< 1 and

(4.17)

-1

Because -1/(/32 -w2#oe2) is the lower bound of the numerical range of the operator

(A)-1 (see (4.7)) and because G is in L2(R2)3, we conclude that -1/.(/32 w2#oe2)
is eigenvalue of (A)-1 with eigenfield G. This contradicts the fact that eigenfields
of (A2)-1 corresponding to the negative part of the spectrum are plane waves, i.e.,
they are not in L2(R2)3. Hence the lower bound of the interval (4.10) is not in the
spectrum of T.

PROPOSITION 4.4. The negative eigenvalues are isolated and 0 is the unique
nonpositive accumulation point of the spectrum.

Proof. To prove this we assume that A < 0 is accumulation point of a(T). Let
{An} be a sequence of negative eigenvalues which converge to A and let {Fn} be a
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corresponding sequence of normalised eigenfields. Then by using estimate (4.13)
1

[IF F.[I _< [IT(F F.)

+ p2(Fn F)

There exists a subsequence, which we assume to be equal to the original sequence,
such that limlimp(-) 0. Then (4.18) implies that N is a Cauchy
sequence in L()a. But this contradicts the Net that is an orthonormal system
in g()a. This complees the proof.

We summarise the spectral properties of the operator T, with > 0e, in
the following theorem.
Toag 4.. The spectrum of T} satisfies

(r) ( 20l’max-20g2 gl’max-g2](4.19) C
-0e e

The egative part of the spectrum consists of eigeevales with fiite-dimesioeal
eigeesfaces, sch that

2
(4.20) 0el,max

wo
with 0 as unique accumulation point

(4.21) lim An 0.

The positive part of the spectrum of T is more difficult to characterise than the
negative part. The positive spectrum may be (partly) continuous with electric fields
that are not in the domain of A. In any case, the positive spectrum is not empty
and is also not a countable set of eigenvalues with finite-dimensional eigenspaces and
with 0 as only possible accumulation point, because then Theorem 4.5 would imply
that T would be a compact operator. The characterisation of the spectrum of T as
given in Theorem 4.5 suffices for the determination of the guided modes in the next
section.

5. Guided modes. By combining the results of 2 and 4 we see that the deter-
mination of guided modes is equivalent to determining with 2 > w2tt0e2, such that
one of the eigenvalues of the operator T is -1. In the following the eigenvalues are
always numbered in increasing order and counting their multiplicities. To emphasize
the dependence on and on e we denote the nth eigenvalue by A().

According to the mini-max principle we have

(5.1) A(fi) min max R(F),
W(Ct) FEW, (f)\{0}

where the minimum is taken over all n-dimensional subspaces of L.2(ft) 3 and where R
is the Rayleigh quotient
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First we recall the following result.
LEMMA 5.1. Let A and B be positive definite matrices and let A- B be positive

semidefinite. Then B-1 A-1 is positive semidefinite.
Proof. B- A- is positive semidefinite if and only if I-B1/2A-1B1/2 is positive

semidefinite. Therefore, it is sufficient to show that all eigenvalues of B-
are >_ 1. Let A and V # 0 be such that B-/2AB-1/2V AV. Then AW BW,
where W B-1/2V. Since AW. > BW.V we see that

Next we prove the following result.
LEMMA 5.2. Let 1 be the cross-section of a waveguide that is contained in and

let be its positive definite permittivity tensor. We assume that is identical to 2 in
the exterior of ’ and that ’ has the properties (2.3) and (2.4) on t’. Furthermore,
we assume

6’(Xl, x2)V. V (Xl, x2)V. V

for all V E C3 and all (Xl,X2). Then

(5.4) A (/)_> A()

for all n and all/ with/2 > w2#02.
Proof. We first assume additionally that -2 is positive definite on Fff, i.e., that

we have ,min 2. Then (5.3) implies that - e2 is also positive definite on and
by Lemma 5.1 we have

(/(Xl,X2)- (2)-Iv.V ((Xl,X2)- 2)--lv.x,

for all (x,x2) E and all V C3. Furthermore, both

(’(xl,x2) e2) -1/2 and ((Xl,X2) (2) -1/2

exist and are measurable and bounded on t and hence the mappings

G (’- 2)-/2 G and G (e (2) -1/2 C_

are isomorphisms of L2(’)3 onto itself and from n-dimensional subspaces of L2(t’)3

onto n-dimensional subspaces of L2()3. Hence,

r)/ (/) min max

((n2)- ((), ()
min max w2#0
w(a,) aew(a,) ((e’- e)-l/eG, (e’- ee)-/eG)

> min max w2po ((A)-I(G), G)

min mx
w(u,) FeW(U’) (F, F)

> min max
w(u) FeW.(U) (F, F)
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where the first inequality follows from (5.5) and the fact that we may assume that

((A2)-1(C), G) < 0, and where the last inequality is a consequence of f c f.
Hence (5.4) is proved under the additional assumption that e,min > e2.

The general case can be reduced to the previous one by replacing the tensors
and el on ft’ and ft by

(5.9) e + gI and el + I,

respectively, where is a positive number. By the proof just given, the eigenvalues
corresponding to the modified tensors satisfy (5.4) for all positive . Hence, by passing
to the limit - 0, Lemma 5.2 follows for the general case.

With this lemma we can prove Theorem 5.3.
THEOREM 5.3. There always exist two guided modes that propagate in the same

axial direction and that are linearly independent as electromagnetic fields. The prop-
agation constants satisfy 2 < .d2#01,max.

Proof. If E is the electric field corresponding to propagation constant 3, then
the field (El, E2,-E3)T corresponds to -/. Hence, it is sufficient to consider guided
modes corresponding to positive /, i.e., the modes (2.6) travel in the positive x3-
direction. Because of assumption (2.4) there exists a disc ’R with radius R that is
contained in and such that

inf min
e(xl, x2)V. V(5.10) eR,1

(xl,x2)eaR VeC V. xr
We define the piecewise constant permittivity function eR :R2 H [0, c) by

/ eR, for (Xl,X2) e R,
(5.11) R(XIX2)

e2 for (x,x2) C R2\ftR.

For the isotropic, homogeneous circular waveguide fR with permittivity eR,1, one
can derive transcendental equations linking the propagation constant
to the eigenvalues A(). These equations are listed in the appendix. We only need
the property that the smallest two eigenvalues coincide,

(5.12) A() ,R(),

and that

(5.13) lim A(3)
(oe2)1/

By applying Lemma 5.2 with R instead of 2 and with eR instead of d, we obtain
the inequalitites

(5.14) ,() _< ,(),

for all n and all > w(#0e2) /2. Hence

(5.15) liminf (/) -o, for n 1,2.
lw(/-t0e2) 1/2

Furthermore, by Theorem 4.5 we have for all n and/ > w(#0e2) 1/2

(5.16) -() < A(),
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-1

-3

-4
4.2 4.4 4.

(p,m -)
FIG. 5.1. The smallest three eigenvalues )1() (marker q-), /k2(fl) (marker x), and

(marker o) for a homogeneous isotropic rectangular waveguide with dimensions 2tim x lttm and
with refractive index nl 1.1. The exterior region has refractive index n2 1.0 and the wave-
number in vacuo k w(#o0) 1/2 4.18880 (#m) -1. The dashed curve is the function T(fl) and
’the continuous curve is the smallest eigenvalue Al(fl) A2(fl) (counting muliplicity) of the largest
circular waveguide contained in the rectangular guide, with refractive index nl. It is seen that the
third mode of the rectangular waveguide does not intersect the line -1 and hence it is not
guided. The eigenvalues of the rectangular guide were computed by applying the Galerkin method to
the domain integral operator.

where

022O(l,max a2202
f12 022p02

Hence

(5.18)

for all n. Because the operator T depends continuously on fl > 02(#02) 1/2, so
do its eigenvalues and therefore (5.15) and (5.18) imply that A(fl) and A(fl) both
intersect the line A -1 at least once (see Fig. 5.1). It is clear that for positive
fl, points of intersection only occur for w(#0e2) 1/2 < fl < w(#oel,ma) 1/2. Hence to
complete the proof it only remains to show that the modes are linearly independent
as electromagnetic fields.

In case the values of fl in the .points of intersection are identical, the corresponding
two fields are eigenfields of the same operator T and hence they are linearly inde-
pendent. In case the fl are different, the fields are eigenfields of different operators
and then the linear independence requires a proof. Now, as has already been pointed
out in the introduction, the axial components E3 and H3 of the electromagnetic field
can be eliminated from Maxwell’s equations to obtain an eigenvalue problem for the
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remaining four components El, E2, H1, and H2 with/3 eigenvalue

E1 0
E2 0(5.19) (/3I- B) H1 0
H2 0

Here B is the operator

(5.zo) B

E1 #0H2
E2 w -#oH1
H1 -eE2
H2 e.E1

Because the electromagnetic fields of guided modes satisfy (5.19), we conclude that
when the propagation constants differ, the electromagnetic fields are also always lin-
early independent. Hence Theorem 5.3 is proved.

Although formulation (5.19) may at first sight seem relatively simple because
it is in terms of an ordinary eigenvalue problem with the propagation constant as
eigenvalue, it is actually difficult to study because the differential operator B is not
normal.

It should be noted that for n 1 and for n 2 only we have

(5.21) liminf A(/3) -c.
/3w(toe2)l/2

For n _> 3 this lim inf is a finite negative number which, depending on the values of
the permittivity and on the geometry of the cross-section, can be smaller or larger
than -1. This can be verified explicitly for the case of the circular waveguide. Then,
by choosing a circular waveguide that encloses the waveguide with cross-section
and has homogeneous isotropic permittivity eR,1 with R,1 > El,max, the eigenvalues
A(/3) can be estimated from below by the AR(/3) and thus the liminf in (5.21) is
finite for n > 3 also in the general case. If the lim inf is smaller than -1 for a certain
n, then for all m < n the curves An(/3) intersect A -1 at least once. Note that the
proof of Theorem 5.3 implies that whenever two eigenvalue curves A(/3) and A(/3),
with n m, intersect A -1, the corresponding guided modes are always linearly
independent as electromagnetic fields, whether the propagation constants are equal
or not.

Numerical calculations suggest that the eigenvalues are increasing functions of
/ > 0(].t0(2) 1/2, but this has not been proved. It would be interesting to have a
general proof because then we could conclude that each curve of eigenvalues
yields at most one guided mode with positive/3. Furthermore, the test whether the
lim inf in (5.21) is smaller than 1 would not merely be a sufficient but also a necessary
condition for that curve to yield a guided mode.

In addition to the mini-max principle (5.1) the following characterisation of the
eigenvalues is useful:

(5.22) A(/3) min (T(F), F)Fn_1, [[FII_I

where 7-/,_+/- is the orthogonal complement in L2()3 of the (n- 1)-dimensional space
of eigenfields corresponding to the smallest n- 1 eigenvalues (counting multiplicities,



DOMAIN INTEGRAL OPERATOR FOR DIELECTRIC WAVEGUIDES 219

of course). It is interesting to note that the existence of a solution of minimization
problem (5.22) can be inferred directly from expression (3.4) for the quadratic form
(T(F), F), without using a priori knowledge about the spectrum of T. In fact, by
(3.4)

(T(F), F) p (F) p2(F),

where pl, p2 L2(t)3 - [0, cx) are continuous convex quadratic forms. The functional

P2 is in addition continuous for sequences that converge weakly in L2()3. Hence both
pl and -p2 and therefore also the functional on the left-hand side of (5.23) are lower
semicontinuous for sequences that converge weakly in L2()3. The set in (5.22) in
which the minimum is sought is compact with respect to the weak topology. Hence,
the existence of a solution to minimization problem (5.22), and thus of an eigenfield of

T, follows from the general theorem that a lower semicontinuous functional attains
its infimum on a compact set.

Characterisation (5.1) is particularly useful to deduce properties of numerical ap-
proximations. When for every fixed fl an eigenvalue A,(fl) and the corresponding
eigenfields are approximated by applying the Galerkin method to the domain integral
equation, then (5.1) holds also for the discretised problem, provided the minimization
over the n-dimensional spaces is restricted to subspaces of the finite-dimensional space
used in the Galerkin approximation. It is thus evident that in the limit of increasing
Galerkin base spaces, the computed eigenvalues approximate the exact eigenvalues
from above. The convergence of the corresponding normalised eigenfields can be de-
duced from decomposition (5.23) of the quadratic form (T(F), F), using the fact that
pl is a nonnegative bounded quadratic form and that p2 is compact. By employing an
appropriate iteration scheme to solve A(fl) -1, the guided modes are determined.
Hence, the Galerkin method applied to the domain integral equation always yields
a converging algorithm. This is in contrast to the finite-element method applied di-
rectly to the partial differential equations. In the latter case the condition that the
field has vanishing divergence has to be taken care of in the discretised equations be-
cause otherwise it can happen that the algorithm does not converge [8]. More details
on computational aspects of the Galerkin method can be found in [12].

Appendix. Eigenvalues for the isotropic circular waveguide. Let R be
a disc with radius R and let e R2 - [0, cx) be the piecewise constant permittivity
given by

(A.1) (Xl,X2) / el for (Xl,X2) e R,

e2 for (Xl,X2) E R2\R,

where 1 and e2 are positive constants with (1 > 2. Let/ satisfy (2.11). Let < 0
be an eigenvalue of T for the circular waveguide and let F be the eigenfield

(A.e)

Using definition (2.21) of T, it follows that

(A.3)

where ell is given by

(A.4)
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Hence, F is eigenfield of the guided mode with propagation constant/ of the circular
waveguide with permittivity ell,1 2 + (el -e2)/IAI and with a cladding having
permittivity 2. The guided modes of the circular waveguide are computed in many
textbooks (e.g., [5], [11]). We give the equations that link the propagation constants
/ to the dielectric constant of the guide elI,1 and hence to the eigenvalues A. Let
U R (022t0[A[,1 --/2)1/2 and w R (D2 0.)2t062)1/2. Then for some m 0, 1, 2,...

(A.5) {[1+
where

R + + 0,

( w2 )(1 1)
2

(A.6) T(u, w)- 1 + R2 w2tto2 - +

with J, and K, Bessel and modified Bessel functions, respectively. The eigenfields
corresponding to the solutions of (A.5) for given m depend on the angle variable
through the factor exp(i m) or exp(-i m ). For m _> i this means that there always
exist two linearly independent fields corresponding to the same solution pair/, A of
(A.5). By using an approximation of K:I (w) for w 0, it can be shown that for m 1
there exists for every/ with w2ttoe2 < 2 < w2#01 a solution A of (A.5), such that
if/2 $ w2#oe2 then A -- -c [5], [11]. Furthermore, this solution is the smallest
solution for all . Hence it is equal to the lowest two eigenvalues )1 () )2() when
counting multiplicities.
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WHEN THE LONG-TIME BEHAVIOR IS INDEPENDENT
OF THE INITIAL DENSITY*
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Abstract. This paper investigates dynamical processes for which the state at time is described
by a density function, and specifically dynamical processes for which the shape of the density becomes
largely independent of the initial density as time increases. A sufficient condition (weak ergodic
theorem) is given for this "asymptotic similarity" of densities. The processes investigated are in
general time dependent, that is, nonhomogeneous in time. Our condition is applied to processes
generated by expanding mappings on manifolds, piecewise convex transformations of the unit interval,
and integro-differential equations.

Key words, asymptotic behavior, Frobenius-Perron operator, invariant density, expanding
mapping, integro-differential equation
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Introduction. A central feature in much of ergodic theory is that there is an
invariant density or an invariant measure to which other initial densities are attracted
as time evolves. The classical example is the Boltzmann equation and the celebrated
H-theorem, which says that the process evolves to the state described by the den-
sity which maximalize the entropy. However, in some cases where there may be no
stationary density, the long-time behavior is nonetheless independent of the initial
distribution. For example, processes that vary in time do not in general have a sta-
tionary distribution. Results concerning the asymptotic behavior of such processes
are often called weak ergodic theorems. One of the main problems of the weak ergodic
theory can be summarized as follows. Consider a sequence of operators P1, P2,... on
a function space L(X) and the ratio

P,P,- Plf(x)qn(X)
PnPn-l "-[?i--) for f, g e L(X).

Find conditions under which {q,(x)} converges to a constant. In the case of linear
operators P, answers to this question were given by many authors, see for example
[G-K-R] and [C]. A systematic treatment in the special case where P are nonnegative
matrices can be found in [Se]. The nonlinear case was considered in IF-K] and IN].
These results were obtained in general by quite sophisticated methods in which some
topological, geometrical, and analytical properties of the space X and generators P
played an important role. A particularly useful technique is related with Hilbert
projection metric and its extensions [B].

A different method for studying the asymptotic behavior of the quotient q,(x)
was proposed by D. Ruelle in his study of ergodic properties of the lattice gas [R1]. In
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some places, his arguments are close to ours. In particular, he uses as in our proof of
Theorem 1 the consecutive evaluation of qn(x) by a sequence of constants. However,
as a whole, the Ruelle proof is based on the specific, delicate properties of the Gibbs
measures. Further, in his case, the invariant measure always exists, which allows him
to obtain a result corresponding to our formula (1.4).

Our approach is based on a relatively simple lower-bound technique. This method
has two advantages. First, we do not need to assume any compactness conditions.
Second, in applications a lower bound can be explicitly constructed due to the special
properties of systems under consideration.

The paper is organized as follows. In this introductory section we show two
examples which illustrate the notion of asymptotic similarity. The precise definition
of this notion and the formulation of our main result--a convergence theorem--are
given in 1. The next section is devoted to the proof. Section 3 contains an application
to processes defined by expanding mappings on manifolds. In 4, we study processes
defined by piecewise convex transformations on the unit interval. Finally, in 5, we
show an application to integro-differential equations.

We now proceed with the examples.
Example 1. Assume that our state space is the interval [0, 1] and that the system

under consideration evolves as follows. We have a sequence of transformations

0,1,2,...,

where [ai, bi] are subintervals of [0, 1]. (This is basically a time-dependent process in
which Fi is applied at time i.) We assume that Fi are C functions with derivatives
that satisfy

(0.1) IF(x)[ >_ A > 1 for x e [ai, bi]; 0, 1, 2,...,

where A is a constant independent of i. Given an initial point x0 E [0, 1], we define

Xn+l Fn(xn) if xn e Jan,

If Xn [an, bn], the process terminates and xj is not defined for j > n. Now assume
that x0 is not fixed but is a random variable with a density distribution function f0.
Then the densities f, of x, are defined by the formula

A /F: fn(X) dx for A c [0, iI, A measurable.(0.3) fn+l (x) dx
I(A)

This formula becomes obvious if we observe that Xn/l is defined and belongs to A if
and only if xn FI(A). Setting Gi F/-1, we immediately obtain from (0.3)

(0.4) fn+l(X) n 0, 1,...,

where denotes the derivative. Now choose two strictly positive continuous initial
functions f0 and go and consider the corresponding sequences of distributions fn and
g. It is easy to show that the sequence of quotients

(0.5) qn(X)
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converges uniformly to a constant. In fact, from (0.4) it follows that

(0.6) qn(x) go(pn(X))’

where 99n Go o...o Gn-1. Further, according to (0.1), we have IGI _< -1 and
consequently, by the chain rule, I1 < A-n. Thus, the length of the intervals 99n([0, 1])
is at most A-n. Since the sequence of intervals 99n([0, 1]) is decreasing, i.e.,

n+l([0, 1]) gn(Gn([O, 1])) C n([0,

it has a unique common point, which we denote by x,. This in turn implies that n(x)
converges to x, uniformly in x and, finally, due to (0.6),

lim q(x) fo(x.)
uniformly in x.

n go(x.)

Observe that the sequences {f} and {gn} converge uniformly to zero.
Example 2. Now let our state space be the unit circle S1. (We obtain S from [0, 1]

by identifying the endpoints 0 and 1.) Let F S --+ S (i 0, 1, 2,...) be a sequence
of C2 transformations satisfying the inequality IF[(x)l _> > 1 (x E S1, 0, 1,...),
which is analogous to (0.1). We define our dynamics by X+l F,(xn) (n 0, 1,...)
starting with an initial x0 E S1. This time, however, the process never stops. As
before, the corresponding sequence of densities fn is defined by condition (0.3). To
find a more explicit formula, observe that the inequality F[(x) 0 implies that every
point x S has a finite number of counterimages which are functions of x. Thus

F/-l(x) {Gil(X), Gik(X)},

where ki is the number of primages of each x for the function F1. In a neighborhood
of x, every inverse function Gi,j of Fi is C2 and satisfies the inequality IGjl <_ ,-.
Using these functions and condition (0.3), we immediately obtain

(0.7) f,+ (x) ]G’y(x)if,(Gnj(X)).
j--1

Once again we may study the quotient (0.5). We will prove that it converges to the
constant

(0.8) f3 fo(x) dx
go(x) dx"

However, this cannot be done immediately. In the simplest case, where Fn F are
the same for all n, the convergence qn(x) c is equivalent to the fact that, under the
dynamical system (F, S), densities evolve asymptotically to an invariant density--the
classical result of ergodic theory ([Re], [Ro], [Li]). We will come back to this example
in 4 when our main result, Theorem 1, will be proved. Here we can explain only
why the limit of the quotient an(x), when it exists, must be equal to (0.8). This is
due to the special property of the mapping f ---. fn+l given by the formula (0.7).
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Namely, it preserves the integral. Writing (0.5)in the form fn-t-l(X) ---qn(X)fn(X) and
integrating, we obtain, under assumption q(x) --. c, equality (0.8).

1. The asymptotic similarity. Let X be a nonempty set. Let B(X) denote
the space of all real-valued bounded functions f X I with the supremum norm.
Let L L(X) be an arbitrary fixed linear subspace of B(X). For example, X might
be a compact space and L could be the space of continuous functions on X. Let
L+ L+(X) denote the subset of L consisting of the strictly (uniformly) positive
functions, i.e.,

L+ (f E L" inff >

We assume that L+ is a nonempty set.
A linear operator P" L - L will be called positive if P(L+) c L+. Observe that

a positive operator is monotonic, i.e., Pf <_ Pg whenever f _< g. By linearity, it is
sufficient to verify that P positive implies Pf >_ 0 when f _> 0. To prove the last
property, fix an f >_ 0 and choose an arbitrary h E L+. Then n-lh + f L+ for
n 1, 2,..., and consequently

n-1Ph + Pf P(n-lh + f) L+;

in particular, n-lph + Pf >_ O. Passing to the limit as n - x, we have Pf >_ O.
Furthermore, a positive operator is always bounded. To see this, again choose an
h L+ and set a inf h and/- sup Ph. We have

analogously

This implies

Our goal is to study a family P(t,s) (t >_ s; t,s e T)(P)) of linear positive
operators. We will say that P(t, s) is a process if P(s, s) I (identity) and

(1.1) P(t, r)P(r, s) P(t, s) for t _> r _> s; t, r, s

and if the domain T(P) is a subset of the real line which contains a sequence converging
to +oc. In applications, T(P) is either the set of nonnegative integers or the hMf-line

I+ [0, c). We say the process is positive if P(t, s) is a (linear) positive operator for
all t _> s in T)(P).

We now are ready to state our main result.
We will say P(t, s) is an eventually uniformly positive process if P(t, s) is a positive

process and there is a subset L0 C L+ that is dense in L+ and a constant a > 0 such
that, for every f L0 and s :D(P), the inequality

(1.2) P(t, s)f > a
IIp(t,s)fll
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holds for sufficiently large t, that is, for t _> to to(f, s). We will say that P(t, s) has
the property of asymptotic similarity if, for every f E L, g E L+, and s :D(P), there
is a constant c- c(f, g, s) such that

(1.3) lim
t---+cx

P(t,s)f
P(t,s)g

-c

THEOREM 1. Every eventually uniformly positive process has the property of
asymptotic similarity.

The proof will be given in the next section.
Now consider two special cases when P(t, s) is generated by an operator or by a

continuous semigroup.
When P L - L is a positive operator, then

P(n, rn) P-’, n _> rn

is a process whose domain consists of nonnegative integers. Conditions (1.2) and (1.3)
now simplify to

pnf
(1.2’)

iip,fll
>_ o for n >_ no(f)

and

lim -g C f g

respectively. Assume now that P has a positive eigenfunction, i.e.,

Pf,-Af,

for some A > 0 and f, L+. Then according to (1.3r),

/-npnf f*Pf f,pnf c(f f,)f/nf pnf

Since A-Pf depends linearly on f and f, is positive, the functional a(f) c(f, f,)
is uniquely determined and linear. Thus we have

(1.4) lim IlA-P,f (f)f,I] 0 for f e L.
n---(x

This shows that, for large n, the shape of the functions Pf is nearly the same and
the amplitude changes in a geometrical progression.

Now let pt L --+ L, t +, be a continuous semigroup. Thus, we have

p0 I (identity); ptl +t2 gt.+t. ptl pt for tl, t2 _> 0

and

limllPtf-fll=0 forfEL.
t-0

We define a process P(t, s), setting

P(t, s) pt-s for t >_ s _> 0.
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Again, conditions (1.2) and (1.3) reduce to

pnf >a for t >_ t0 (f)(1.2") iipnfl

(13"). t--.lim 11Ptj c(f,

Assume that for some to > 0 the operator pro has a positive eigenvalue correspond-
ing to an eigenfunction f, E L+. Following [L-R], we can find an explicit formula
describing the behavior of gtf. Define 7 (l/t0)log . According to (1.4), we have

(1.5) lim Ile-’.top=tof a(f)f, 0 for f e L.

Substituting f ptf, into (1.5), we obtain

(1.6) ptf, a(ptf,)f, for t >_ 0.

Due to the continuity of ptf,, with respect to t, the function fl(t) a(Ptf,) is
continuous. From (1.6), it follows that fl satisfies the Cauchy equation

fl(tl -- t2) fl(tl)fl(t2) for tl _> 0; t2_>0.

Thus is an exponential function. From (1.6), it follows also that/(t0) e"to. Thus
(t) e’ and (1.6) admits the form

(1.7) ptf e.tf

Now we may repeat the argument used in the discrete time case and write

f,Pf f,Ptfe-’tptf etf ptf

and, according to (1.3"), we finally obtain

(1.8) lim Ile-’tPtf a(f)f O,

with a(f) c(f, f,), which is the desired formula.

2. Proof of the convergence theorem. The proof will be given in several
steps.

Step I. First observe that, for every f L and g L+, the inequality

where a and b are constants, implies

P(t,s)f
a < < b for t >_ s; t, s 7:)(P).P(t, s)g
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To verify this, multiply the first inequality by g, apply operator P(t,s), and then
divide by P(t, s)g.

Step II. We now show the following extension of inequality (1.2). If the number
a is replaced by an arbitrary a < a, then (1.2) holds for every f E L+. To prove this,
fix a < a. For given f E L+, choose an e > 0 such that

a’_<a, <1

and a 5 > 0 satisfying

< 5 < inf f.inff-5-
Since Lo is dense in L+, there is an ] e Lo such that IJf- fl[ -< 5. We therefore have

<___ < 6 <,
f- inff-5-

and, according to Step. I,

P(t, s)f
1

P(t,s)f
fort>_ s; t, s e 7:)(P).

Now let to to(f, s) be chosen such that

P(t,s)f > a fort>t0
IIP(t,s)fll

Then, finally,

P(t, s)f P(t, s)f/P(t, s)f P(t, s) f_ > 1
a > a’ for t >_ to.

liP(t, s)fll liP(t, s)fll/llP(t, s)]ll liP(t, s)/ll 1 +
Step III. Let r be an arbitrary real number satisfying r >_ 1/(a’)2. We claim that,

for every f, g L+ and s T)(P), there is a tl tl(f, g, s) such that

P(t,s)fP(t,s)f < r inf for t(2.1) sup
P(t, s)’----- P(t, s)g

To prove this, choose to(f, s) and to(g, s) according to Step II and set tl max(t0(f, s),
to(g, s)). We have

sup
P(t, s)__f < sup P(t, s)f < (o’) -1 inf P(t, s)f < r inf

P(t, s)f for t _> tl.P(t, s)g inf P(t, s)g a’ sup P(t, s)g P(t, s)g

Step IV. Choose r > 1 according to Step III. Assume that f, g E L+ and

where a, b are constants. Fix an s 7)(P). We claim that there is a t2 t2(f, g, a, b, s)
and constants a. and b, such that

P(t,s)f(2.2) a, <_
P(t, s)g <- b, for t _> t2
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and

(2.3)
1 ) (b- a)b, a, < 1- -r

To prove the claim choose a number 5 such that

(2.4) 0<5<min a,
2(r_l)

and define p a 5. Then f pg E L+. Applying inequality (2.1) to f pg and g,
we obtain

P(t, s)(f pg) < r inf
P(t, s)(f pg)

for t > t2,(2.5) sup
P(t, s)g P(t, s)g

where t2 t2(f- pg, g, s). Now set

a, inf
P(t2, s)f b, sup

P(t2, s)f
P(t2,s)g’ P(t2, s)g"

Applying the result of Step I to functions P(t2, s)f, P(t2, s)g and to the operator
P(t, t2), we obtain immediately

a, < P(t, t2)P(t2, s)f <_ b, for t > t2.P(t, te)P(tg.,s)g

From this and the chain rule (1.1), inequality (2.2) follows immediately. Moreover,
(2.5) with t t2 implies

b, p < r(a, p),

which, according to the definition of p, gives

b,-a+5 < r(a,-a+5).

Using this and the inequality b- b, < r(b- b,), we obtain

b a < r(b a) + r(a, b,) + (r 1)5.

(b- a) the last inequality impliesSince, by the definition of 5, we have (r- 1)5 _<
(2.3).

Step V. For any f, g L+ and s D(P), define

P(t,s)fP(t, s)f b(t) supa(t) inf
P(t, s)g P(t, s)g

From Step I and the chain rule (1.1), it follows that a(t) is an increasing function of t,
b(t) is decreasing, and a(t) < b(t). Moreover, using the result of Step IV, we can find
a sequence T1 < T2 < which converges to infinity and

( 1)b(-n) a(’n) < 1 r (b(s) a(s)).
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This implies
lim (b(t) a(t) 0

and proves condition (1.3) in the case when f E L+.
Step VI. Now let f E L be arbitrary, g L+, and s 79(P). In order to prove (1.3),

in this case it is sufficient to show that there exist fl, f2 L+ such that f fl f2.
To verify this, write

fl f + kg, f2 kg,

where

inf g"
The proof of Theorem 1 is completed. I-!

Analogous results for processes that are homogeneous in time (semigroups) were
proved in [Ru] and [L-R]. These proofs were based on an additional assumption that
X is a compact metric space.

Remark 1. From the chain rule (1.1), it follows that it is not necessary to verify
condition (1.2) for all s :D(P). It is sufficient to check it only for s sufficiently large,
say s >_ so and f E L0. In fact, for s < so and f L+, we have

P(t,s)f P(t, so)fo
liP(t, s)fll liP(t, o)fo

fort_> s,

where f0 P(so, s)f L+. Then, applying Step II to the process P(t,s) with
s _> so, we obtain

P(t, so)fo > c’ for t >_ to(fo, s).IIP(t, so)foll

3. Expanding mappings. Using Theorem 1, we can easily finish the proof of
the asymptotic similarity for the process described in Example 2. Instead, however,
we will study a more general situation when the process is defined by : sequence of
mappings on a compact manifold. The circle -considered in Example 2 is a simple
model of such manifold.

Thus, let X be a compact connected smooth (C) manifold of dimension 5 with
a Riemannian metric 11" 11. By p and # we denote the distance and the measure
corresponding to this metric. Let a C2 mapping F :X --+ X be given. We define two
numbers, the exponential factor AF and the second-order bound/F.

The factor AF is defined by formula

(3.1) /F inf
I111

where the infimum is taken for all x S and T, 0. Here, as usual, T denotes
the tangent space to X at the point x and dF(x) denotes the differential of F at x.

The geometrical meaning of AF is evident. If AF > 0, then the mapping F is
locally invertible and every point x
number independent of x. For every fixed x0, there is a neighborhood Uo such that

(3.2) F-I(x) ((l(X),..., Gk(X)} for x e Uxo,

where Gi are smooth functions of the same order of regularity as F. (Thus, in our
case, they are C2.) When AF > 1, the mapping F is called expanding. In the special
case when X S (unit circle),
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The parameter/F is defined by formula

(3.3) flF sup]gradldetdF(x)ll.
xEX

In this definition, det dF(x)l is the bsolute value of the determinant of dF(x). Ob-
serve that we do not assume that the manifold X is oriented, and thus only the
absolute value of this determinant is well defined. The symbol grad fl denotes the
length of the gradient of f.

The geometrical interpretation of fir is a little more complicated. Namely,
detdF(x)l is approximately equal to the ratio #(F(U))/#(U), where U is a "small"
neighborhood of x. Thus, fir measures how quickly this ratio can change when x
moves. If X S1, then fir sup IF’I.

Now assume that Fn X --. X is a sequence of C2 mappings (n 0, 1,...) with
/kFn > 0. The Frobenius-Perron operators Pn corresponding to F are defined by a
formula analogous to (0.3), namely,

(3.4) /APfd#--/F: fd#
I(A)

for A c X, A measurable.

Using (3.2), it is easy to derive the explicit formula for P, namely,

(3.5) Pf(x) E Idet dGi(x)lf(Gi(x)),

where Gni are the inverse functions to F defined in a neighborhood of x.
The process P(n, m) is defined by the product

P(n,m) Pn-"" Pm+lPm for n > m > 0, P(n, n) I for n _> 0

on the space C(X) of all continuous functions on X.
THEOREM 2. If all AF > 0 and in particular all Fn are locally invertible and if

(3.6) lim inf AF > 1, sup/F <
n--,c n

then P(n, m) has the property of asymptotic similarity. Moroever, the constant c in
condition (1.3) is equal to fx f d#/ fx g dtt.

Proof. Fix an integer n and consider an inverse transformation Gi of F. Then

(dF)(ai(x))dG(x) I

and

I(det dFn)(Gni(X))ll det dGni(X)l 1

for x belonging to the domain 7)(Gni) of Gi. Since the manifold has dimension 5,

(3.8) IdetdFn(X)l > (AF) and IdetdGni(y)l < |,-:--} for y E 7:)(G).
\AFn]
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Calculating the gradient of (3.7), we obtain

det dGn(X)l(grad det dFnl)(Gn(x))dGn(X)
-I(det dFn)(Gn(X))lgrad det

From this and inequality IvdGni(X)[ < A-1lvl it follows thatFn

I(det dFn)(Gn(X))llgradl det dGn(X)l
< A-1Fldet dGn(x)ll(gradl det dFnl)(Gn(x)) I.

Omitting the arguments to simplify notation, condition (3.3) defining/F finally im-
plies,

where we are using the abbreviations AF An and/gn --/n. Furthermore, writing

Jn det IJ] Igradl det

the second part of (3.8) and the last inequality become

Now, using formula (3.5) for the Frobenius-Perron operator, we have

Pnf Jn(f o Gnu).

Define the "regularity" of f for f > 0 to be (see [P-Y])

]grad f(x)lReg (f) sup
zx f(x)

We may easily evaluate the regularity of Pnf. Namely,

(3.9)

Hence, Reg (Pnf) < + Reg (f) Let mo be such that A infn>,o An > 1 and+
let/ sup fin. An induction argument yields the inequality

1 flReg (P(n, re)f) <_
An-,

Reg (f)+ As(A_ 1)
for n _> m _> too.

Set k 1 +//(A(A- 1)). Then for every strictly positive f e Cl(X) and every
rn >_ too, there is an no -no(f, m) such that

(3.10) Reg (P(n, m)f) <_ k for n _> no.
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The last inequality implies that

P(n, m)f(y) < ekp(x,Y) P(n, m)f(x)

for arbitrary x, y E X. Thus, in particular,

(3.12) P(n, m)f(x) > e_kd
IIp(n, rn)fl]

for n _> no,

where d supx,yex p(x, y). A straightforward application of Theorem 1 shows that
P(n, m) exhibits asymptotic similarity. Now let g E CI(X) be strictly positive. From
(3.11), it follows that

P(n, m)g(x) % ekg min P(n, m)g < #(X) P(n, m)g dp.

Since P(n, m) is the product of Frobenius-Perron operators which preserve the inte-
gral, we have

fx P(n, m)g d# /x g d#,

and consequently

P(n, m)g(x) < P(X) g dtt for n > no.

This evaluation and (1.3) imply that

lim liP(n, m)f cP(n, m)gl[ 0

for f C(X), g e CI(X), g > 0. The last condition, in turn, implies

(3.13) lirn (Ix P(n, m)f d# c /z P(n, m)g d#) O.

Since the operators P(n, m) preserve the integral in this example, they are uniformly
continuous in the space of integrable functions on X. Thus, by an approximation
argument, (3.13) holds for every integrable f and g. But due to the preservation of
the integral, condition (3.13) reduces to

f d# c /: g d# 0,

which completes the proof. H
Remark 2. A close look at the proof of Theorem 2 shows that, in fact, we have

proved a more general result. Namely, in order to derive (3.10) from (3.9), it is
sufficient to assume that

(3.14) H An--(:X:) and supE 5+1n--1 n
i1"--



INDEPENDENCE FROM INITIAL DENSITY 233

and consequently, Theorem 2 is proved under assumptions (3.14), which are essen-
tially weaker than (3.6). In particular, (3.14) can be satisfied even if infinitely many
transformations F, are not expanding but the remaining expand sufficiently strongly.

The asymptotic properties of expanding mappings were first studied by A. Rnyi
[Re] on interval [0, 1]. In fact, he studied them on S1, since he assumed that the values
at x 0 and x 1 are the same. The results of Rnyi concerning the existence of an
ergodic invariant measure were extended to manifolds by A. Avez [A], K. Krzyewski
and W. Szlenk [K-S], and Z. Zrzy2ewski [Z]. The last authors proved that every C
expanding mapping F has an invariant density f, and that the sequence of iterates
pnf, where P is the Frobenius-Perron operator for F, converges uniformly to f,.

Our Theorem 2 generalizes the convergence part of their results to the case when
the densities are transformed by a sequence of transformations.

4. Piecewise-convex transformations. The main purpose for proving Theo-
rem 1 was to establish a criterion implying asymptotic similarity, a criterion that is
applicable to processes which fluctuate with time. Such an application was shown in
the previous section. It is interesting, however, that even in the case when the process
is described by one transformation and thus is homogeneous, we still get new results.
In this section, we apply Theorem 1 to an old problem related to the existence of in-
variant measures for piecewise convex transformations. This problem also dates back
to A. Rnyi [Re], who prove the existence of an absolutely continuous ergodic invariant
measure # for the so-called r-adic transformations where r > 1 is not necessarily an
integer,

(4.1) Fr rx(mod 1).
This system. (Fr, #)is exact (V. A. Rochlin [Ro]). From this and the characterization
of exact systems of M. Lin [Li], it follows that, for every density f, the sequence of the
iterates {Pf}n of the Frobenius-Perron operator P of F converges strongly (i.e.,
in the L norm) to the density f, d#/dx. Our goal is to show that, for a class of
piecewise convex transformations, this convergence is uniform. This seems to be quite
unexpected, since the limiting density, in general, is not continuous. In particular, it
is not continuous for the transformation (4.1) if r is not an integer. In our treatment,
the functions are defined at not just almost every but at every point, so the uniform
convergertce will include the points of discontinuity of f,.

For simplicity, we will restrict ourselves to transformations F which are piecewise
C1. Recall that a real-valued C function F defined on an interval A is convex if and
only if its derivative F’ is nondecreasing on A.

Let F be a given transformation on the half-open interval [0, 1) into itself. We
will assume that F satisfies the following conditions:

(i) there is a partition 0 a0 < < a 1 such that for each integer the
restriction Fi of F to half-closed interval [ai-1, ai) may be extended to the closed
interval [ai-1, ai] as a convex C function;

(ii) F(ai-) O,F’(ai-1) > 0 for i= 1,...,r; and
(iii) F([0, al))= [0, 1),F’(0)> 1.
We denote by P the Frobenius-Perron operator corresponding to F. As usual,

(4.2) / Pf(x)dx / f(x) dx for A c [0, 1), A measurable.
JA JF-(A)

An elementary calculation shows that Pf may be written

(4.3) Pf(x) E G(x)f(Gi(x)) for 0 _< x < 1,
i--1
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where

Gi(x) {.aiF/-l(x) for x E F([ai-l,ai)),
for x E [0, 1) F([ai_l, ai)),

and G(x) denotes the derivatives from the right so G 0 outside F([ai-1, ai)).
The functions G are decreasing and are continuous from the right. Thus, if f is

decreasing and continuous from the right, then Pf has the same property.
The following properties of the operator P given by formula (4.3) were proved in

1 The set

S U F-n({a""’ar})
n--0

is dense in [0, 1).
2. If f lie,d) is a characteristic function of an interval [c, d) with the endpoints

c and d belonging to S, then there exists an integer no no(c, d) such that Pnf for
n >_ no is a decreasing function on [0, 1).

Consider now the space L, of all continuous from the right, piecewise-constant
functions defined on [0, 1) and such that the points of discontinuity belong to S. In
other words, L, consists of the functions obtained by taking linear combinations of

l[c,d), Ci, di S.

Let L be the closure of L, in the supremum norm topology. Due to property 1, the
space L in particular contains all continuous functions f" [0, 1) - It(. We define on L
the process P(n, m) P=-’ for n _> m _> 0.

THEOREM 3. The process P(n, m) exhibits the property of asymptotic similarity.
Proof. Let Do denote the subset of L, which contains all normalized densities,

i.e., all the functions satisfying

(4.4) f(x) dx 1, f(x) >_ 0 for 0 _< x < 1.

Since P is a Frobenius-Perron operator, it preserves these conditions and P(Do) C Do.
We shall use the following property of Do, proved in [L-Y].

3. There exists a number M _> 1 (independent of f) such that

(4.5) P’f(x) <_ M

for every f Do and n sufficiently large, n >_ no(f).
According to 2, we may also assume that pnf are decreasing on [0, 1). Using

this, we may evaluate pnf from below. Observe first that every decreasing function
g D with g(0) <_ M satisfies

1 1
(4.6) g(x)>_

2M
forO<_x<_

2M"

In fact, suppose not and let g(xo) < 1/2M for an xo <_ 1/2M. Then

01 j0
x x1 g(x) dx g(x) dx + g(x) dx

1 1<_ xog(O) + (1 xo)g(xo) < M + 2M
M+I
2M
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which contradicts the fact that M >_ 1. We may now extend our evaluation to the whole
interval [0, 1) by the use of formula (4.3). Fix f E D0 and choose an m >_ no(f).
Define g pmf. From (4.3), it follows that

Pkg(x) >_ [infGl]kg(Gk(x)) for 0 _< x < 1,

where Gk is the kth iterate of G1. Since G1 (0) 0 and

C(x) _< G(0)= 1/F(0) < 1,

the integer k may be chosen such that G(x) <_ 2- for all x e [0, 1). Consequently,
(4.6) implies

(4.7) pkg(x) > 5, where 5 [inf(G)]k
2M

Observe that k does not depend on the choice of f. Define n k+no(f). For n _> n,
we have P’f pkg with g pn-f. Since n- k _> no, we may apply inequality
(4.7), which gives

(4.8) P’f(x) >_ 6 forn>_n(f), O <_ x < l.

From (4.5) and (4.8), it follows that, for every f Do,

pnf(4.9)
ilpnfl

for n _> hi(f).

Now define, as in 1, L+ {f L inf f > 0} and L0 L+ L,. It is evident that
L0 is dense in L+. Further, if f L0, then Af Do for some > 0. Thus (4.9) is also
valid for every f E L0, completing the proof.

We are now going to show that the operator P has a fixed point in the set L+. To
make this statement precise, we need to emphasize a subtle difference between formulas
(4.2) and (4.3). For every given integrable f, formula (4.2) defines the function Pf
almost everywhere. Formula (4.3) with given f defines Pf(x) at each and every point
x [0, 1). We have proved Theorem 3 for the "precise" P defined by (4.3), and we
want to find a fixed point f, which satisfies

(4.10)
r

f,(x) Z G(x)f,(G(x)) Pf,(x)
i--1

at every point x [0, 1). Thus the classical technique of ergodic theory related with
definition (4.2) is not helpful. In particular, we cannot use results proved in [L-Y] and
[So], which assure the existence of an invariant density for a large class of piecewise-
convex transformations, because the invariance there is understood as the equality
f Pf almost everywhere.

Let f Do be an arbitrary function. We know that g pal f satisfies

5<_P’g(x)<_M forn_>0, 0_<x<l

and that the functions Png are continuous from the right and decreasing. Define

n

j--1
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The functions gn are again continuous from the right and are decreasing. They admit
the values from the interval [5, M]. According to Helly’s theorem (see [Lo] p. 12, Thm.
1.2.1), every bounded sequence of monotonic (decreasing or increasing) functions de-
fined on an interval of the real line contains a pointwise-convergent subsequence. Thus
from gn we can select a subsequence g which converges to a decreasing function g,.
Further, since

2M
IPg,(x)- g(x)l <_ for 0 <_ x < 1,

n

the function g, is a fixed point of P; that is,

(4.11) g,(x) G(x)g,(G(x))
i--1

is satisfied in every point x E [0, 1). We don’t know, however, if g, is continuous from
the right. Define

f,(x) g,(x + 0) lim g,(y).
y--x
y>x

Passing to the right-hand limit in (4.11) and observing that G are continuous from
the right, we finally obtain (4.10).

It is evident that the function f, has the following properties: it is decreasing,
continuous from the right, and satisfies

/o5 <_ f,(x) <_ M, g,(x) dx 1.

The last inequality is the consequence of the Lebesgue dominated convergence theo-
rem. Thus, according to (1.4) with/ 1, we have

(4.12) [IP’f a(f)f,l[ O forfEL.

Since P preserves the integral and f, is a normalized density, we have

a(f) f(x) dx.

It should be emphasized that the convergence (4.12) holds, in particular, for every
continuous bounded f and that the limiting function is in general discontinuous.

5. Integro-differential equations. In previous examples, time was discrete
and the operators were generated by one-to-one transformations. We now present
an application of Theorem 1 to a continuous-time system generated by an evolution
equation of the form

(5.1)
du

Au + Q(t)u fort>s
dt

with the initial condition

(5.2) u(s)- f.

For simplicity, we will consider only the case when u assumes its values in the space
of continuous functions.
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Let X be a metric space and # a finite Borel measure on X. Further, let L C(X)
be the space of all real-valued bounded continuous functions on X with the supremum
norm. We assume that A in (5.1) is the generator of a continuous (Co) semigroup
pt, t >_ O, of positive linear operators on C(X) and that Q(t), for t _> 0, is a family of
integral operators given by formula

Q(t)f(x) Ix K(t,x, y)f(y)#(dy),

where K :]+ X X I+ is a continuous kernel. More specifically, we make the
following assumptions:

1. The semigroup gt satisfies condition (1.2") and, in particular, it has the
property of asymptotic similarity.

2. For some value to > 0, the operator pro has an eigenvalue A > 0 corresponding
to an eigenfunction f, E C+(X).

3 The functions

ko(t) inf{K(t,x, y) x, y e X}

and

satisfy

kl (t) sup{K(t, x, y)" x, y e X}

(5.4) lim inf
ko(t)

t-, kl(t) > 0.

We define the process U(t, s) by assuming

u(t, f

where u is the solution of (5.1) and (5.2). Under our assumptions, u(t) is uniquely
defined for t _> s and strictly positive for strictly positive f. Thus U is a positive
process.

The process U(t, s) may be considered as a perturbation of P(t, s) pt-8 since
the generator A of gt is perturbed by the family of integral operators Q(t). An im-
portant property of this perturbation is described by the following theorem.

THEOREM 4. IrA and Q(t) satisfy conditions 1-3, then U(t,s) exhibits asymp-
totic similarity.

Proof. Our main tool is the classical variation of constant formula for (5.1) using
Q(t)u Q(t)U(t, s)f This formula gives

(5.5) U(t, s)f pt-sf + Pt-rQ(r)U(r, s)I dr.

Let , and f, be as in formula (1.7). Define

k0(t) kl(t)fl0(t)
sup f,’ fll (t) inf f,

and fix an f C+(X). Then

o(t)m(f)f, <_ Q(t)f <_ l(t)m(f)f,,
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where

re(f) --/:( f dp.

Using (5.5) and the second inequality (5.6), we obtain

"t

U(t, s)f <_ pt-sf + Pt-r[/l(r)m(U(r, s)f)f,] dr.

Since pt-rf e’r(t-) f., this gives

U(t, s)f <_ pt-sf + e’(t-r)l(r)m(U(r, s)f) dr f,.

Analogously, using the first inequality (5.6) we obtain

U(t, s)f >_ pt-f + e(t-)o(r)m(U(r, s)f) dr f,,

and from this

(5.7) U(t, s)f(x) >
I{U(t,s)f[I

e-’(t-)Pt-f(x) + e’(-")o(r)m(U(r, s)f) dr f,(x)

e-’(t-)llPt-fl[ / e’(s-r)/l(r)m(U(r,s)f)dr IIf,

Since pt satisfies condition (1.2"), we have

Pt-f(x) >_ a for t >_ to(f,s).(5.8)
iipt_f[

Assume that so is so large that

0(r) inf f, ko(r) > 1 inf f, ko(t)
lim inf -:

l(r) s--up?: kl(r) 2 sup f, t--c ]l(t)
for r >_ so.

From this definition of 5 and (5.7) and (5.8), it follows that

U(t,s)f(x) min f,
for s _> so and t >_ to(f, s).

According to Remark 1, this completes the proof, rl

Observe that if a semigroup pt, t >_ 0, of positive operators satisfies condition
(1.2"), then so does e-BtP for arbitrary real 3. Further, if A generates pt, then
A- 3I (I identity) generates e-ZtPt. Thus, applying Theorem 4 to the equation

du
(5.9) d-- + u Au + Q(t)u,

we obtain the following result.
COROLLARY 1. If A generates a semigroup pt, t > 0, satisfying conditions 1 and

2 and if the family of integral operators (5.3) satisfies 3 then the process generated
by equation (5.9) and condition (5.2) has the property of asymptotic similarity.
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We close this section by showing a specific example of equation (5.9). Consider
the integro-differential equation of the form
(5.10)

o (t,x) foOt + a(x) Ox + Zu(t, x) g(t, x, y)u(t, y) dy, 0 < x <_ 1, t >_ O.

We assume that the coefficient a(x) is a C function and that

(5.11) a(0) =0, a(x) > 0 for x > 0.

We also assume that the kernel K in (5.10) satisfies condition 3 with X [0, 1].
To prove that equation (5.10) generates a process on C([0, 1]) having the property of
asymptotic similarity, it is sufficient to verify that the semigroup pt generated by

dyA: =-a(x) -x y e c,[0,

satisfies conditions 1 and 2. This semigroup is given by the equation

(5.12) Ou(t,x) Ou(t,x)
Ot + a(x) Ox

0 with u(0, x) f(x)

or more explicitly by formula

Ptf(x) u(t,x) f(q(O;t,x)),

where q(t) (t; to, zo) is the solution of the ordinary differential equation ’ a()
with the initial condition (to) xo. Due to assumption (5.11), we have

lim (0; t, x) 0

uniformly for 0 _< x _< 1. Consequently,

lim
Ptf(x)

lira f (cp(O; t, x) f(O)
t--. ptf(y) t--. f(q(O; t, y) f(O)

=1

for every f e C+(X), and the convergence is uniform. This implies (1.2"). Then 2 is
satisfied with f, _= 1 and A 1.

A result analogous to Theorem 4 was proved in [L-R] for homogeneous in time
processes with X being a compact space. The proof presented here is much shorter.
This is due to the fact that our main tool--Theorem 1--does not require any com-
pactness assumption.

Theorem 4 can be easily generalized. We may replace, for example, the space
C(X) by a different subspace of B(X) (bounded functions on X), and we could relax
the assumption of the continuity of the kernel. We stated our result in a less general
form for the sake of simplicity and to show its close relation to the results proved in
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A CENTER-UNSTABLE MANIFOLD THEOREM FOR
PARAMETRICALLY EXCITED SURFACE WAVES*

LAWRENCE TURYN)

Abstract. When fluid in a rectangular tank sits upon a platform which is oscillating with
sufficient amplitude, surface waves appear in the "Faraday resonance." Scientists and engineers have
done bifurcation analyses which assume that there is a center manifold theory using a finite number
of excited spatial modes. We establish such a center manifold theorem for Xiao-Biao Lin’s model
in which potential flow is assumed but an artificial dissipation term is included in the system of
partial differential equations on the free surface. We use interpolation spaces developed by da Prato
and Grisvard, establish maximal regularity for a family of evolution operators, and adapt the center
manifold theory of Chow, Lin, and Lu.

Key words, parametric resonance, center manifold, surface waves, interpolation spaces, max-
imal regularity

AMS subject classifications. Primary, 76B15, 35G25, 34C45, 34G20; Secondary, 70J40,
35Q35, 47D06, 46B70

1. Introduction and summary. Consider a rectangular tank filled with an
incompressible homogeneous fluid to a depth h. If the base of the tank is made to
oscillate, then what will be the behavior of the fluid? As long ago as 1831, Faraday
observed fluid oscillations at one half the frequency of the base, so this phenomenon
of parametric excitation is known as Faraday resonance. This and other historical
references can be found in Benjamin and Ursell [3] and Miles and Henderson [18].

LiB [15] has established a mathematical formulation for this problem. As long
as the amplitude of the excitation is sufficiently small, he has obtained (i) global
existence and uniqueness and (ii) an approximation result which justifies a truncation
to a finite number of modes. His model assumes potential flow and includes on the free
boundary terms for surface tension and artificial viscosity. The latter is to some extent
physically meaningful because LiB showed that at high wave numbers his artificial
viscosity produces dissipation proportional to the square of the wave number and
proportional to the total kinematic energy, i.e., the dissipation is consistent with that
produced by kinematic viscosity.

On the other hand, several authors, e.g., Gu and Sethna [14], Holmes [13], and
Silber and Knobloch [23], have analyzed bifurcation equations assumed to hold on a
finite-dimensional center manifold corresponding to some neutrally stable mode(s). If
there is friction in the system, this is only possible if the amplitude of the excitation
is not required to be sufficiently small.

The purpose of this paper is to establish the existence of a local center manifold
theorem for this problem. We introduce virtually no new mathematical techniques
but instead apply a variety of results established by other authors.

Our mathematical formulation is due to LiB [15]. The velocity potential, as
a function of the shape of the free surface and the potential on the free surface,

* Received by the editors May 25, 1993; accepted for publication (in revised form) April 15,
1994.

Department of Mathematics and Statistics, Wright State University, Dayton, OH 45435. This
research was partially done while the author was visiting the School of Mathematics, Georgia Institute
of Technology, Atlanta, GA 30332.
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is substituted into Bernoulli’s equation on the free surface. We use this functional
relationship from Lin’s paper, albeit in a time-independent version, in Theorem 6.1
below. Our techniques diverge from Lin’s in that we then consider the problem as an
ordinary differential equation in function spaces of space dependence rather than as
an implicit equation in a Hilbert function space of both space and time dependence.

For our approach, we use a variation of constants formula in interpolation spaces,
as in da Prato and Grisvard [8], Sinestrari [25], and da Prato and Lunardi [9], which
gives "maximal regularity." Unfortunately, we could not use the methods of Henry
[12] for our nonlinear problem, although we do mimic his methods for periodic, linear
problems. The actual local center manifold theorem that we obtain is an application
of Chow, Lin, and Lu [7], or we could have used the result of da Prato and Lunardi
[9], which is also in the style of Henry [12, Chap. 6]. The method of Liapunov-Perron
obtains an invariant manifold as a graph of a function defined by an integral operator.

The paper is organized in this way: In 2, the physical problem and a model for
it are presented along with a linearization about the fiat surface, i.e., undisturbed,
solution. In 3, a semigroup of bounded linear operators is explicitly presented and
shown to be analytic. In 4, a brief description is made of a well-known general method
for defining interpolation spaces in which our semigroup has a maximal regularity
property. In 5, we return to linear, time-periodic problems and show in Proposition
5.2 that there is a family of evolution operators which define integral operators with
a generalization of the maximal regularity property for autonomous problems. We
show that our linearized, time-periodic problem can be analyzed in this way. These
generalizations are the only "new" results we have; all the other work in this paper
consists of applying the work of other authors to our specific problem or, in the case
of Lin’s paper, taking a result in its entirety. In 6, the nonlinearities of our model
are found to be nice enough viz. the integral operators of 5; here a result of Lin
is essential. In 7, we adapt a center-unstable manifold theorem and an exponential
attractivity theorem of other authors to our nonlinear, time-periodic problem. In 8,
we mention a result of a sequel in preparation. We have calculated an approximate,
local-center manifold for an example involving the (3, 2) and (2, 3) spatial modes.

In fact, experiments of Simonelli and Gollub [24] provide examples where there are
a small number of unstable modes. As an aside, when we examined their experimental
data for the onset of instability [24, p. 479, Fig. 4(a)] and used a theoretical result for
the damped Mathieu equation from Turyn [27, i], we came to the conclusion that the
artificial viscosity term -#V2xU in equation (2.5) of our paper would have # about two
to three times the kinematic viscosity, 2.948 centipoises, of n-butyl alcohol at 20C.
This suggests that, although this artificial viscosity is consistent with dissipation of
kinetic energy as in Lin [15, 6], the mechanism may not be so simple.

Our original intention was to discuss regions more general than rectangular tanks,
e.g., cylindrical tanks. We ran into difficulties in 6 when discussing boundary condi-
tions to be satisfied by the nonlinearities. We .hope to understand this better in the
future.

2. The physical problem and its linearization. Let D be a bounded open
domain in 12, with coordinates x. We will define the smoothness we require of its
boundary OD later. The moving coordinate z is fixed with respect to the oscillating
container, with the positive axis pointing upwards. The free boundary is SF z
v(x, t) and we denote

v tv(t):= {(x, z):-h < z < v(x, t),x e D},
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with outward unit normal n. We assume the velocity field V is the gradient of a
potential (x, z, t) which satisfies

2.1) { V2 0 in Fry,
t) on z t),

(2.3) 0 on 0av \ SF,

where V (Vx, ). The latter boundary condition states that the normal velocity is
zero on the sides and base of the container.

On the free boundary the potential and the shape v satisfy the "kinematic"
condition

(2.4) vt z Vx" VxV onSF,

where subscripts denote differentiation, and Bernoulli’s equation

1
(2.5) Ct -/V n (g a(t))v IVI 2 + #V2u on SF,

where atmospheric pressure p0 0, density p 1, is the coefficient of surface
tension, g is the acceleration of gravity, the parametric excitation a(t) is the effect of
the oscillating base of the container, and we have added an artificial dissipative term
proportional to V2u, as in Lin [15]. Specifically, we have c(t) a(d2/dt2)cos(wt),
where a is the amplitude of the oscillations of the base of the container.

On the free boundary, u(x, t) (x, v(x, t), t), so ut Ct + CzVt, etc. Denote
w(x, t):= Cz(X, v(x, t), t), so that w N(v)u is a linear operator on u which depends
nonlinearly on v. In Theorem 6.1, we will borrow from Lin [15] a result on the smooth
dependence of w on u and v, in suitable function spaces of spatiM dependence.

Denote by the operation of taking the mean over the domain D, i.e., D[f]
fD f" First, we modify the model so as to have the property [u] 0 preserved in time;
the property Iv] 0 is automatically preserved. Second, we replace the nonlinear
surface tension term--/V n, where n (-VxV, 1)/V/1 + IVxVl 2 on the free surface,
by /V2v, its linearization about the undisturbed solution v 0. In Lin’s paper one
finds both modifications; however, in his paper the second modification is done purely
for convenience. In fact, because his spaces K(r, s) satisfy K(r, O) c_ K(r, 2) for r > 2,
he can treat the nonlinear surface tension term as easily as its linearization. In our
formulation, it seems we must make this second modification, otherwise the spaces E
and F, described in 4, will not be suitable in 6 for f F E. It is not clear if this
second modification is acceptable viz. physical experiments, for small oscillations.

In terms of v, u, w these modifications of (2.4) and (2.5) yield

(2.6) vt w + M1 (v, u),
ut /V2xV + #V2u (g a(t))v + M2(v, u) [M2(v, u)],

where
Ml(v, u) WlVxVl 2 VxU. Vxv,

11
[VxU[2 + w2M2(v, u) -ff E (1 + IVxvl).

OuWe take as boundary conditions 8- 0 on OD, which follows from (2.3), and
o__ 0 on OD The latter is somewhat controversial; in fact, one could argue that
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instead of an artificial dissipation term #V2 in equation (2.5), one should introduce
damping in the boundary conditions. This has been brought to my attention by M.
Silber. Recently, Simonelli and Gollub [24] have described experiments in which the
free surface is at right-angle contact with the sidewalls of a rectangular container,
and this is consistent with ov 0 on OD. Douady [10] has described experiments in
which the free surface is pinned at the boundary, i.e., v 0 on OD, by the use of
felt on the walls of the container. It appears that this boundary condition cannot be
accommodated by our abstract framework.

To linearize equations (2.6) and (2.7), we need only replace w by N(O)u in equa-
tion (2.6) and replace M1 and M2 by 0. To this end, let A --AN denote the
Neumann Laplacian on the complex Hilbert space L2(D) (u
with domain 7:)(A) {u e 2(D)" Au e 2(D),o-0 =0on OD}. Throughout, assume
that D C_ R2 is bounded and open and has the uniform Cm regularity property, as in
Adams [1, _p. 67], with m as large as needed later. It is well known that A"
,2(D) --* L2(D) is a strictly positive definite, self-adjoint linear operator with com-
pact inverse. Let {a2n} be the eigenvalues of A and Ca Cn (X) be the corresponding
orthonormalized eigenfunctions; without loss of generality, 2 _< a _< As in Henry
[12] or Pazy [21], one can define the fractional powers Af, which in this situation are

4/closed linear operators with domain X := {u e ],2(D) -n=l
From now on we will write -:n instead of n=l and denote un (u, Cn)L2(D). XZ is

a Hilbert space when given the inner product (u, v) n an tn;n.
From inspection of (2.1)-(2.3), Lin [15, 4] obtained the explicit result that

N(O)u E tn tan h(tnh)unr)n for u E tn)n.
n n

It follows that for any/, N(0) X/ --. XZ-(1/2) is a bounded linear operator. In fact
N(0) is close to being At2 (--AN)l/2. To be precise, N(0) A/2 / A, where

Alu- E tn(tanh(tnh)- 1)UnCn.
n

Since 0 < an --+ c as n -- cx), A1 X -- X is a bounded linear operator. Thus, the
linearization of (2.6)-(2.7) about u v 0 is

(2.8) d- u u u

where

(0 ( 0(2.9) B--
-/d -#A Bl(t)- _(g_(t))i 0

Our plan for the rest of the paper is, first, to analyze the semigroup of linear
operators etB on spaces which will be suitable for subsequent analysis; second, to
express the solution of (2.8) in terms of a family of evolution operators; third, to
establish a local existence and uniqueness theorem for the nonlinear problem (2.6)-
(2.7); and finally, to establish a local center manifold theorem for (2.6)-(2.7).

3. The semigroup etB. First, we analyze the semigroup etB on the Hilbert
space X := XZ XZ-(1/2), for all/ >_ 1/2. We will be more specific about / when
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discussing the nonlinear problem in 6. Other choices of X are possible but less
convenient for our subsequent analysis of :D(B), :D(B2), and the nonlinear problem.
Choose :D(B) XZ+(1/2) x XZ+(1/2), which is itself a Hilbert space. From (2.9)
B" :D(B) C X - X is a closed, densely defined linear operator. In addition, B has a
compact resolvent, as one can see by explicit calculation of (AI-B)-’. as the operator
norm limit of natural finite-rank operators. The spectrum of B consists of those
which are eigenvalues and thus solve, for some n 1,

A +A+ 0.

For future reference, we note that 0 a(B). Let

1
(--, 6n), 6n :: [2 111/2.

The corresponding eigenfunctions of B are

-27 ) "
Por convenience, assume 0 for all n. If 0 for a single , the forms of etB and
Bet would be altered, but the results, (a.a) and Nllowing, would not be affected. By
diagonaliing B in each of the subspaces spanned by

after much calculation one finds that

where Vn (V, Cn) fD n,n (, Cn), and

(3.2) C ("(:)-1 1 ) (_X()_II _1
-7 _+- C :=

n n

"= notes that b c use
n ,limng 1 and, in fact, 1 2 and 0 < 1 for all n, so (3.1)
and (3.2) will be convenient for subsequent analysis.

The norm on X XZ x X-(1/2) is given by

+

so one sees immediately that (3.1) defines a C, i.e., strongly continuous, semigroup
eB of bounded linear operators on X. We note that, because
consists of two infinite sequences of real numbers tending to - and possibly a finite
number of complex conjugate pairs of eigenvalues {A}no, all with Re A < 0,
so {eB}0 is uniformly bounded. We calculate that

n
n



246 LAWRENCE TURYN

so there exists a constant M such that

(3.3) IItBet’l[ < M for t _> 0.

In addition, etB is differentiable for t > 0 and 0 a(B). It follows from Pazy [21,
Thm. 2.5.2] that (i) {etB}t>o is an analytic semigroup of bounded linear operators on
X and (ii) -B is a sectorial operator, in the sense of Henry [12].

4. Interpolation spaces for autonomous problems. Throughout this sec-
tion, 0 is a fixed real number, 0 < 0 < 1.

In the approach of Henry [12] to nonlinear problems and invariant manifolds,
for a problem do Bw + f(w) w E X, if -B is a sectorial operator generating-an analytic semigroup etB, then one defines Xp D((-B)p) and hypothesizes that
f Xp X for some 0 5 p < 1. Unfortunately, the nonlinear problem of ours
has a specific nonlinearity which does not allow this approach. From Lin [15], we
know that our nonlinearity takes H (D) x H (D) into H-1 (D) Hr-1 (D) as long
as r > 2; see Theorem 6.1 below. It seems that if X X#I x X#., whenever we
choose/71,/2 > , in order to have H-I(D) x H-I(D) C_ X, it follows that to have
Xp C Hr(D) x H(D), one must take p 1. For example, the calculations of Chen
and Triggiani [5] and Rodriguez-Bernal [22] confirm this for many choices of/1,/72;
the details are omitted except to note that one can introduce x v and y A1/2u
and define operators

A= A3/2 and B= ( 0 I )-/A -#A2/3

In addition, the form of etB leads one to suspect that, for all choices of/1 and/2, one
must take p- 1.

We can use another approach using interpolation spaces, as in daPrato and Gris-
vard [8] and many others, including Butzer and Berens [4], Sinestrari [25], daPrato
and Lunardi [9], and Angenent [2]. We will denote E DB(O), to be defined below,
and F DB(0 + 1) {w e T(B) Bw e DB(0)}, and we will show in later sections,
first, that the linear periodic problem (2.8) has some nice properties with regard to
these spaces E and F and, second, that the nonlinearities in problem (2.6)-(2.7) take
F into E nicely. The outstanding property of the spaces E and F is "maximal reg-
ularity," which has been put to good use by daPrato and Lunardi [9] to establish a
center manifold theorem for autonomous problems.

We follow the exposition by Angenent [2] of the daPrato and Grisvard construc-
tion [8]. Suppose E0 and E1 are real Banach spaces with E1 densely included in E0
and B E1 -- E0 is bounded and linear. Considered as an unbounded operator on
E0, we assume that B generates an analytic semigroup etB. Throughout this section,
0 is a fixed real number, 0 < 0 < 1. We define E0 to be a space of traces, i.e., initial
values, of a certain class of functions

Yo := {y e C((O, 1]; El)Iq C1((0, 1]; Eo "limtl-(lly’(t)llEo + Ily(t)llE)- o}
t$o

with norm

Specifically,

sup tx-(llY’(t)llE + IlY(t)IIE).
O<t<l

Eo := {w w y(0) for some y c: Yo}
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with norm

Ilwllo inf{llyllo y e Yo, y(O) w}.
It is known that Eo is a Banach space with this norm and that Eo DB(O) as
defined in daPrato and Lunardi [9]. Similarly, between the spaces E1 and E2 :=

E1 (B) {W E El gw El}, one can define El+o. If E0 X and E1 T(B),
then E2 T)(B2), EI+O DB(O-t-- 1), and T)(B2) C_ DB(O + 1) C_ D(B) C_ DB(O) C_ X,
as in daPrato and Grisvard [8] and Sinestrari [25].

These interpolation spaces are defined by using continuous functions, so in the
general theory of interpolation, Eo c_ (E1,Eo)o,. The interpolation in Lions and
Magenes [16] uses L2 functions and can be notated )1-0,2.

One should note that, in our problem, E0 X and E1 D(B) are spaces of
functions of x D, as are DB(O) and DB(O--k 1); the time variable appears only in
the definition of these spaces as initial values of functions of a time variable.

Because B generates an analytic semigroup etB, there exists w,M such that
IletBIIL(X) <_ Met, where L(X) denotes the space of bounded linear operators from
X to X. It is known that

(4.1) Ill’BIlL<z> < Met

and that -B is sectorial on Z, for any choice of Z being X, D(B),DB(O), or DB(O+ 1),
although it might be necessary to increase M.

In our specific problem, the spectrum of B consists of { n }n>_l, where

1

Because 0 < tl 2 "’’, there exists w < 0 such that Re or(B) < w and there
exists M > 1 such that (4.1) holds with that w < 0.

In our problem, we take Eo X XZ XZ-(1/2) and E1 D(B) XZ+(1/2)
XZ+(1/2). One can calculate that E2 D(B2) {w e D(B) Bw e 7)(B)}
XZ+I XZ+I A {(v, u) ",/v + #u X+(3/2)}. The latter expresses an "interaction
condition." One can observe that interpolation commutes with the operation of taking
direct products, so that

Eo (X+1/2 x X-I-1/2,X x Xl-l/2)O,oo
(XZ+l/e, XZ)o, + (XZ+I/, XZ-1/z)o,o.

We recall that XZ :D(AZ) where A- --AN on L2(D).
It is known from work of Grisvard [11] that, regarding 0 < fl < 1,

X/
/2Z(D) n {u" o -0 on OD}, <<1

where H (D) is the Sobolev space Ws,2(D) and, as before, a indicates "mean value
zero. Put loosely, in XZ the boundary condition -0 applies if it makes sense,
i.e., if VxUlaD makes sense as a trace of a distribution on OD. For 1 < fl < 2,

X {u X-1 ANU X-l}
n {’u" Ou 0 on OD},

2 n {u OnOU OAUon 0 on 1</<1/4}OD}, }</<2
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It is known from daPrato and Grisvard [8, 6.1] that

(X+I/2, X)o, c_ {u e X Au E h2}

and

(4.3) (X+l/2, X-1/2),oo

_
{u X-1/2 AZ-1/2u h22}.

Here h(D) stands for a Nikolsk’ii space, as in Nikolsk’ii [19], [20], Slobodeckii [26],
and Adams [1]. These spaces are actually a subclass of the Besov spaces. The only
property of these spaces we will use are the continuous imbeddings

(4.4) Hs(D) hs(D) H-(D)

for any > 0. We will use the property that interpolation preserves bounded linear
operators in order to avoid the need for detailed examination of the Nikolsk’ii spaces.

For the moment, we leave our specific operator B and specific space X and return
now to the general situation. We denote E Eo DB(O) and F El+o DB(O+ 1).
The maximal regularity property mentioned above is as follows:

for all f e C([0, T); E), e(’-)Sf(s) ds e C([0, ’]; F).

Proofs can be found in daPrato and Grisvard [8], Sinestrari [25], and Angenent [2],
among others. We apply results of this sort to our specific operator B and space X
in Propositions 4.1 and 4.2 below.

Many proofs of existence of invariant manifolds explicitly or implicitly involve
weighted spaces; see, for example, Chow, Lin, and Lu [7] and van Gils and Vander-
bauwhede [28]. For a Banach space Z, a , r/E I, define

C((-oc, hi; Z)= {f’f continuous on (-oe, a] and

where its norm is

Similarly define

<cr

Cn([a, oo); Z)= {f’f continuous on [a, oc) and Ilfllo,,+,z < o},

where
Ilfl[o,,+,z supeotlf(t)lz.

Recall that in our problem I]etBIIn(z Met, for some w < 0 and M _> 1, from
(4.1), where Z is any of X, 19(B),DB(O),DB(O + 1). Here, 0 is a fixed real number
with 0 < 0 < 1. We apply two results of daPrato and Lunardi [9, pp. 118-120] to our
specific B and X to get the following propositions.

PROPOSITION 4.1. With B as in (2.9), X XZ XZ-(1/2), :D(B) XZ+(1/2)
X/+(1/2), and M,w as in (4.1), choose any such that w + < O. Then there exists

K+ g+(,w,a,O) such that f(.) f e(’-)Bf(s)ds defines a bounded linear oper-
ator .+ C([a, oo);E) -- C([a, oo);F) with I]+1[ < K+, where E- DB(O),F
DB(O + 1).
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PROPOSITION 4.2. With B, M and w, as in Proposition 4.1, choose any rl such
that w-rl < O. Then there exists K_ K-(rl, w, a, 0) such that

f(.) f e(’-s)Bf(s) ds

defines a bounded linear operator _" C,((-oc, a]; E) -+ C,((-oc, a]; F) with I1_11 <_
K_, where E- DB(O) and F- DB(O + 1).

These two propositions express a maximal regularity property useful for the proof
of the existence of an invariant manifold for an autonomous problem. In the next
section, these two propositions will imply similar properties for a periodic problem.

5. A family of evolution operators for equation (2.8). Given two normed
linear spaces Z1 and Z2, L(Z1, Z2) denotes the space of bounded linear operators with
the operator norm.

In this section, we establish a new result for periodic problems considered in the
framework of interpolation spaces.

DEFINITION. A family of evolution operators {O(t, s)} consists of bounded linear
operators on a space Z for t >_ s satisfying (I)(s, s) I, (I)(tl, s)O(s, t2) (I)(tl, t2) for
all tl >_ 8 >_ t2 in IR, and {O(t, s) t >_ s} is strongly continuous in (t, s) with values
in L(Z).

Assume -B is sectorial on a Banach space .and t - Bl(t) - L(Ep, E) is
HSlder-continuous with exponent < 1. The work of Henry [12, 7.1] shows that the
solutions of

{ dw Bw + Bl (t)w, }(5.1) w(s)- wo E

are given by w(t) O(t, s)wo, where {O(t, s)} is a family of evolution operators which
satisfies

(5.2) (I)(t, s) e(t-s)B + e(t-r)BBl (-)O(-, s) dr

for t _> s. Moreover, if gl(’) iS periodic with period T, then O(t + T, s + T) (I)(t, s)
for t > s.

In our particular problem (2.8), we can take p 0, i.e., Ep E.
For the periodic problem (5.1), one can define the period map U(t) O(t / T, t).

In our problem, B has compact resolvent on X. The same argument, approximation
in the uniform operator norm by a sequence of finite rank operators, shows that B has
compact resolvent on 7)(B). By interpolation, we see that B has compact resolvent
on E DB(0), where we fix any 0 E (0, 1). From Henry [12, 7.2], the nonzero
eigenvalues of U(t) are independent of time t and constitute all of the spectrum of
U(t) with the exception of 0, which is in the continuous spectrum of U(t) since it is a
compact operator.

PROPOSITION 5.1 (Henry [12, Thm. 7.2.3 et seq.]). If all of the characteristic
multipliers of the problem (2.8), i.e problem (5.1) in our specific case, are of modulus
less than 1 and bounded away from 1, then there exist M >_ 1 and & < 0 such that

(5.3) II((t,s)IIL(E,Ep) <_ M(t-s)-PeC(t-8), for t > s.

Proof. It suffices to show that t H Bl(t) [0, T] --+ L(Ep, E) is HSlder contin-
uous. Looking at (2.9) we see that t - Bl(t) [0, T] -+ L(A’) and t -+ Bl(t)
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[0, T] L(I)(B)) are Hhlder continuous, so the desired result follows by interpolation
of bounded linear operators. [:l

PROPOSITION 5.2. Assume that B1 (.) is periodic with period T, BI(.) [0, T]
L(Ep, E) is Hhlder continuous, and (5.3) holds, apart from any assumption as to the
sign of v. If l is chosen so that ; + < 0 and &-7 < O, then, for all a E , the map

f(.) -/_" (I)(., 8)f(8) ds

defines a bounded linear operator

c,((-o0, E) o1; F)

and the map

f(.) ((., s)f(s) ds

defines a bounded linear operator

+ Cv([a cx)); E) Cv([a oe); F).

Here, E DB(O) and F DB(O + 1), as in 4.
Proof. We prove the result for _; the result for + can be proved similarly. Fix

any f 6 Cv((-x, hi; E) and define u(.) f- (., s)f(s) ds. From (5.2),

u(t) e(t-s)Bf(s)ds + e(t-r)BB(T)((T,s)d’f(s)ds.

The first term is in C,((-oo, hi; F), by Proposition 4.2, with

Rewrite the second term as

e(t-s)s B(T)((T, s)f(s) ds dT := e(t--r)"g(T) dT.

Using Proposition 4.2 again, to complete the proof it will suffice to show that g
C((-oo, a]; E) and that there is a constant C, independent of f, such that Ilgllv,,-,E <--
CIIfllv,,_,E. We have for all T A a, denoting m- max0<<T IIB (T)IIL(Ep,E),

e-W" ]/r_ Bl (T)((T, s)f(s) ds

_
mM ( s)-,e(-8)e-V(-S)e-vs[f(s)lE ds_
mMllflin,,_,E (T s)-Pe(-n)("-s) ds.

Since p < 1, f__roo (T s)-Pe(-v)(r-s) ds < oo, and the proposition is proven.
In our problem we will only use p- 0, i.e., Ep E.
COROLLARY 5.3 (to Proposition 5.1). For the linear homogeneous periodic prob-

lem (2.8), if I111oo max0<<T Ic(t)l is sufficiently small, then the zero solution
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v =_ u =-- 0 is exponentially asymptotically stable in Z, where Z is any of the spaces
X, I)(B), E, and F.

Proof. Problem (2.8) defines O(t, s), which can be considered as a block diagonal
matrix ((I)n(t, s))=l, where On(t,s) is a 2 2 principal fundamental matrix for the
problem

(5.4) ()) ( 0

It will suffice to show that the characteristic multipliers #,j,j 1, 2, n >_ 1 of (5.4)
(i) go to zero as n -+ oo for all Ilall and (ii) have modulus less than 1 for all n if

IIcll is sufficiently small.
Fix an n and denote Cn #tC2n, an (9/2n + g)an tan h(anh). Rescale the time

variable by T ct and apply Grhnwall’s inequality to (5.4) with c 0 considered as
a perturbation of (5.4) with a 0 to conclude that

where Xn := 0, if C2n _< 4an, and Xn "= n, if C2n
_
4a, where (n :---- 1/2 V/C2n- 4a,

and m is a constant uniformly bounded in n. Results (i) and (ii) follow from easy but
tedious asymptotics in (5.5), using

6. The nonlinearities in equations (2.6)-(2.7). Fix a e (0, 1) and denote
E DB(0),F Ds(0 + 1), where B is in equation (2.9). We can write equations
(2.6)-(2.7) abstractly as

(6.1)
dw
dt

(B + B1 (t))w + f(w),

where f(w) (fl(w), f2(w)), w (v, u). The purpose of this section is to show that
f" F E is C, using a result of Lin [15].

Recall that

f (v, u) wlVxvl VxU. VxV,

(6.3) f2(v, u) M2(v, u) [M2(v, u)], mean value over D,

1 1
w2(1 + iVxV[2.Me(v, u) - [Vxul + ),

and
w N(v)u Cz(X, v(x, t), t)

is constructed from the solution of equations (2.1)-(2.3).
THEOREM 6.1 (Lin [15, Thm. 4.3, "fixed t" part of the proof]): Fix any r > 2.

For sufficiently small IV[H(D), the map (v, u) N(v)u Hr(D) x Hr(D) Hr(D)
exists and is Cc.

The proof consists of mapping the region tv "= {(x,z) -h < z < v(x),x e D}
diffeomorphically to 0 v[--0 and solving a perturbation of Laplace’s equation in
Ft0. The diffeomorphism exists because ]VlH(D is small and r > 2; the perturbation
is small because [VlH,-(D is, SO the implicit function theorem can be applied. The
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proof uses a result of Zolesio [29] on multiplication of elements of Sobolev spaces of
fractional order.

To show f" F -+ E is C, we use the following theorem.
THEOREM 6.2 (daPrato and Grisvard [8, Thin. 2.4]). Suppose 0 < 0 < l, f"

X1 -+ X2 is Frdchet differentiable and flY1 Y1 --+ Y2 is uniformly Lipschitz, where
lq --+ Xi are continuously imbedded Banach spaces. Then f (Y1,X1)e; --+ (Y2,
X2);oo is continuous.

COROLLARY 6.3. Suppose 0 < < 1, E DB(O),F DB(O-+-1), /X1 i8 an
open neighborhood of 0 E 2)(B) and b12 is an open neighborhood of 0 e 2)(B2). If
f H1 c 9(B) - X and flu. "H2 c T)(B2) --+ T)(B) is C, then so is f l c F -+ E,
for some 1? an open neighborhood of 0 F.

COROLLARY 6.4. Suppose 0 < 0 < 1,E DB(0),F Dt(O + 1),X XZ
X/-(1/2),:D(B) Xfl+(1/2) x X+(/2), r- and r > 2. If the region D is a2
rectangle, then there is an open neighborhood of 0 F such that f defined by (6.1)-
(6.2) satisfies f" 1 -- E is C.

Proof. First of all, if fl r-__A1 then :D(B) c /r(D) x /;r(D) and 2)(B2)2

(XZ+ x XZ+) A {v, u) "yv + #u e Hz+(a/2)} C/+I(D) x/+(D). By Theorem
6.1, for sufficiently small 5 > 0, f maps//1 {(v,u) e )(B)’lv[y(D < 5} into

H-I(D) Hr-l(D), in fact, it maps into/-l(D) x -l(D) because clearly [f2] 0
and [f] 0 is noted in Lin [15, 6]. Again the result on multiplication_of Zolesio_ [29] is
used. Likewise, f maps H2 {(v, u) e 2)(B2)’lvlYi+(D) < 5} into H(D) x H(D).
The only thing remaining is to check that f(v, u) satisfies any boundary conditions
required to have (i) f(v, u) e XZ x Xfl-(1/2) X when (v, u) e :D(B) XZ+(1/2)
Xfl+(/2) and (ii) f(v, u) e X/+(1/2) x X/+(/2), when (v, u) e :D(B2).

The only boundary conditions which might need to be satisfied are of the form-Acfj 0, integer i > 0, j 1 or 2. Recall that fl r. For example, if > r > 2,
then Xfl-(1/2) /r-2(D), XZ /-1 (D), XZ+(/2) -/;r(D)Cl {u" gg, 0 0naOD}.
Another example is if } > r > 25-, then XZ-(1/2) =/;r-2(D),XZ -/;r-l(D) Ci {u"

a OD}. Another example toon--u- 0 on OD}, and Xfl+(1/2) --/r(D) C {u" 8-g 0 on

note is that, if > r > , XZ+(I/2)-/;r(D) ;q {u" 8- 0, 0 on OD}.
In our problem, D is a rectangle, say D {x (Xl,X2)" 0 < xj < gj,j 1,2}

for some g,g2 > 0. The eigenfunctions are Cn(x) cos(wa,nXl)COS(W2,,x2), where
w21, + w22,n 2n. Because of this explicit information that the Cn’S are even functions

of both Xl and x2 with respect to 0, we see that for r > 2, u, v, w H(D) are even
functions in Xl and x2 and that

fl WIVxV]2 Vx?.t" VxV ( "-(D),

1 1
w2(1 + iVxl /-}r-1M2 - IVxl + e (D),

f2 M2- [M2
are even functions of X and x2. Again, the result on multiplication of Zolesio [29] is
used. This implies that 0Aifj 0 on OD whenever it makes sense in terms of
trace of a distribution. It follows that (i) f satisfies the boundary conditions to be
in X XZ x Xfl-(1/2) whenever (v, u) e I)(B) Zfl x Xfl-(1/2) and (ii) f satisfies
boundary conditions to be in D(B) XZ+(I/2) x XZ+(1/2) whenever (v, u) /)(B2)
(Xfl+l X Xfl+l) ((V, t): "yV -}- ]_tt e H+(3/2)}.

This completes the proof of Corollary 6.4.
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THEOREM 6.5. For the nonlinear periodic problem (2.6)-(2.7), if/ __.. >
there is a neighborhood bl of 0 E F DB(O + 1) C T)(B) X+(1/2) x Xf+(1/2) in
which there is existence and uniqueness of solutions, locally forward in time.

We note that if/ > 1, i.e., r > 3, the solutions are classical, i.e., C2(D) x C2(D),
by the Sobolev imbedding theorem. Theorem 6.5 can be proven by a standard use of
the contraction mapping theorem, along with Proposition 4.1 and Corollary 6.4.

We also have the following theorem.
THEOREM 6.6 (linearized stability). For the nonlinear periodic problem (2.6)-

(2.7), if > 1/2, then (v, u) 0 F is exponentially asymptotically stable in the sense
F, I1 11 := ma 0< <v I (t)l

Theorem 6.6 can be proven in the usual way, using Proposition 4.1, Corollary
5.3, and Corollary 6.4; see, e.g., the proof of daPrato and Lunardi [9, Thm. 2.2]. The
restriction "locally in F" is due to the same restriction in Corollary 6.4.

7. A local center-unstable manifold theorem for problem (2.6):-(2.7).
As usual, we fix a (0, 1).

DEFINITION. A Ck local center-unstable manifold in Z for a T-periodic problem,
i.e., periodic with period T,

(7.1)
dw
dt

(B + Bl(t))w + f(w),w e Z

is a set of the form

J4 { (t, + h(t, 1))" 1 e Ul (t), t ]}

_
]t Z,

where for all t, Z Z1 (t) ( Z2(t),bll(t) is a neighborhood of 0 Zl(t)h(t, .) ://1 --Z2(t) is Ck, h(t, 0) 0, d.h(t, O) =_ O, where d denotes a Frdchet derivative, and A/[ is
invariant forward in time t for (7.1).

We note from the proof of Corollary 5.3 that, for the linear problem (2.8), there
are at most finitely many unstable modes, corresponding to characteristic multipliers
of modulus greater than 1, no matter how large Ilall := max0<t<T la(t)l. We assume

(H)
a is such that (2.8) has a positive finite number of characteristic multipliers

greater than or equal to 1.

Correspondingly, there is for each t 1 a finite-rank projection P1 (t) on the Hilbert
space A’; we denote P2(t) I- Pl(t). In an abuse of notation we use P (t) to denote
the restriction of Pl(t) to E DB(O) or F DB(O + 1); the latter are not Hilbert
spaces, but the linear operators Pl(t) are still uniformly bounded in t, by interpolation.

In fact, one can choose P(t)so that the evolution family {O(t,s)Pl(s)} satisfies

O(t, s)P1 (s) Pl (t)O(t, s), t >_ s.

Moreover, because dimPl(s)E < oc for all s, the evolution family {O(t,s)Pl(s)}
can be extended to satisfy

O(t, s)P (s) P1 (t)O(t, s),

(t,  )P1  )P1
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for all t, s, T; in an abuse of notation, we have not bothered to renotate this extended
family. Recall that < oc. By hypothesis (H), there exists M1 _> 1,021 } 0 such that

(7.2) IIg2(t,s)PI(s)IIL(E,F) <_ Mle-l(t-s) for t _< s.

IlO(t,s)Pl(s)lIi(E) <_ Mle-l(t-s) for t _< s,

i.e., backwards in time. In fact, since all of the characteristic multipliers of q)(t +
T, T)P (t) are of modulus greater than or equal to 1, one may choose positive Wl as
close to 0 as desired, although perhaps at the expense of increasing M. Because of
estimate (7.2) and the fact that dim Pl(s)E < oc for all s, one has a backwards
maximal regularity result, as in daPrato and Lunardi [9, Thin. 2.4].

LEMMA 7.1(corollary to Proposition 5.2). Assume that B(.) is periodic with
period T, BI(.)" [0, T] -. i(Ep, E) is Hb’lder continuous, hypothesis (U) holds, and 7
is chosen so that w 7 < 0, where COl i8 a8 in (7.2). Then for all a E 1, the map

f(.) H (., s)P (s)f(s) ds

defines a bounded linear operator

E) F).

By hypothesis (H) and the definitions of P (t) and P2(t), we have that there exists
M2

_
1, & < 0 such that

IIO(t,s)P2(s)IIL(E,F <_ M2e(t-8), for t >_ s

by Proposition 5.1.
LEMMA 7.2 (corollary to Proposition 5.2). Assume that BI(.) is periodic with

period T, B (.): [0, T] - L(Ep, E) is HSlder continuous, hypothesis (H) holds, and 7
is chosen so that 7 < O, where ( is as in (7.3). Then for all a I, the map

f(.) /’_ O(.,s)P2(s)f(s) ds

defines a bounded linear operator

_" Cv((-oc, a]; E) - Cv((-oc, a]; F).

To help in what follows, here are some comparisons of notation in related papers.
Chow and Lu’s [6] -a- 7,- + 7, correspond to our w,&, and their 7, C(-,X)
correspond to our 7, Cv((-c, a]; F). Chow, Lin, and Lu’s [7] a and -/ correspond to
our w and &, and their /and Ej(-/,X) correspond to our -7 and Cu((-oc, a];F).
DaPrato and Lunardi’s [9, proof of Thm. 3.1] Wl and -it correspond to our & and 7.
Chow and Lu’s [6] condition/+ (k-1)7 > 0 corresponds to our condition &-k7 < 0.
Chow, Lin, and Lu’s [7] spectral gap conditions a < /_< k7 </ correspond to our
conditions w + < 0, 7 < 0, & k7 < 0, & < 0, and hypothesis (H). DaPrato and
Lunardi’s spectral gap condition 1 < 0 _< A2 and Wl / it < 0 correspond to our
conditions & < 0, hypothesis (H), and &-7 < 0.

THEOREM 7.3. Assume (H). For any integer k >_ 1, there exists a local center-
unstable manifold All of dimension for the nonlinear periodic problem (2.6)-(2.7)
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and hence for a model of the Faraday resonance. If we fix 0 < 0 < 1, r > 2, then
J4 C F, where F DB(O + 1) C D(B) Xr/2 Xr/2 C I(D) (D). If
r + 0 > 3 then the solutions are classical.

Proof. Fix any r > 2 and 0 < 0 < 1 and define E DB(O),F DB(O+
1). Fix any a E I. Use Lemma 7.2 to define a bounded linear operator /_, and
use Lemma 7.1 to define a bounded linear operator/+. The that one chooses is
determined by the Wl in Lemma 7.1 and & in Lemma 7.2. One chooses < 0 such
that &- kr] < 0 and Wl-7 < 0. By Corollary 6.4, there is a neighborhood of
0 E b/ C F such that f b/ E is Ca. The proofs of Chow and Lu [6, 3 and 4]
for autonomous problems and Chow, Lin, and Lu [7, Lem. 3.1 and 3.2 and Thm. 3.3]
for nonautonomous problems work just as well. First, one defines a bounded linear
operator T Cv((-oc, a];E Cv((-c,a];F by f(.) fO(.,s)Pl(s)f(s)ds +
f- (., s)P2(s)f(s)ds. After making the usual cutoff function alteration of f to get
a function with sufficiently small Lipschitz constant, the solution of the integral
equation

99(t) (I)(t, a)l + (t, s)Pl(s)((s)) ds + (I)(t, s)P2(s)(ga(s)) ds

is denoted by (t; a, 1) for t _< a, 1 5/1 (a). The function h which gives the integral
manifold A/[ is then defined by

h(o’, 1) (o’,s)P(s)’(q(s;o’,l))ds (o; o’,1)-1.

See also daPrato and Lunardi [9] for autonomous problems. The conclusion about
when the solutions are classical follows from (4.2)-(4.4) and the fact that F D(O+
1)- {w e D(B)" Bw e D(0)}.

We note that, as usual, .M may depend on k and the choice of the cutoff function
used in the proof. If, in addition, P1 (t + T) P1 (t), then h(t+ T, 1 h(t, 1) follows
from (t + T, s + T) (t, s). So, if the lineariation has only decaying modes and
simple periodic solutions, then we get a periodic center manifold.

THEOREM 7.4 (exponential attractivity with asymptotic phase). For ny in-
teger k >_ 1 the local center-nstable manifold 3d for problems (2.6)-(2.7) is lo-
cally ezponentiall attractive, i.e., there exists a neighborhood bl of 3d sch that, if
w(t) (v(t), (t)) is a solution of (2.6)-(2.7) which ezists for t e [cr, oc) and sch
that (t, w(t)) e bl for t e [a, oe), thee there ezists solution w*(t) of (2.6)-(2.7), (a,
w*(a)) .M, sch that Iw(t) w*(t)l --, o as t o, ezponentill.

Pro@ If necessary, by taking 5/smaller than in Theorem 7.a, one can make the
Lipschit constant of f as small as one needs. The proof is then similar to that of
Chow and Lu [6, Thm. 5.1]; again, one uses the integral operators

The hypothesis that (t, w(t)) E 5/ for a _< t < c ensures that the solution of
(2.6)-(2.7) also satisfies the problem with a cutoff of f.

8. An example. We mention in passing a result of a sequel in preparation. For
a square tank, Silber and Knobloch [23], following experimental work of Simonelli and
Gollub [24], studied excitation of the (3, 2) and (2, 3) spatial modes. We were able to
calculate an approximate, local center manifold which reduces the dynamics to that
of a periodic system of ordinary differential equations

xq(t, x, y) }9 yq(t,y,x)
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where q(t,x, y) a(t)x2 / b(t)y2. Here, x, y correspond to the center directions for
the (3, 2) and (2, 3) spatial modes.
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THE REGULARIZATION OF LINEAR
DIFFERENTIAL-ALGEBRAIC EQUATIONS*

LEONID V. KALACHEV AND ROBERT E. O’MALLEY, JR.:

Abstract. Differential-algebraic equations naturally arise in numerous important applied con-

texts, e.g., electrical circuits, constrained dynamical motion and fluid dynamics. The authors show
how the structure of the solution space for some typical problems can be illuminated through the
introduction of various regularizations which often can be given natural physical interpretations.
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1. An index-one problem. Consider the constrained differential equation

(1.1) 00 A(t)Uo + B(t)Vo + f(t),
0 C(t)Uo + D(t)Vo + g(t)

consisting of a linear differential system for the m-vector U0 and a linear constraint
relating U0 and the n-vector V0. If we make the strong assumption that

(1.2) the matrix D(t) remains nonsingular,

we can solve for

Vo -D-I(CUo - g),

and there simply remains the linear differential system

(1.4) o (A- BD-1C)Uo + (f BD-lg)

for U0. The standard existence theory for linear ordinary differential equations (cf.,
e.g., Coddington and Levinson [5]) implies that if the coefficients A, B, f, C, D,
and g are continuous functions on some bounded interval of, say, t >_ 0, then the
solution space for this so-called index-one differential-algebraic equation (or DiE)
(1.1) will be m-dimensional, being parameterized, for example, by the m-components
of the initial vector U0(0). Problem (1.1)-(1.2) is usually called index-one because
one differentiation of the algebraic constraint in (1.1) provides 0 and t}0 as explicit
functions of U0, V0, and t.

Such DiEs and their nonlinear generalizations arise in many practical, important
contexts, ranging from the Navier-Stokes equations to Euler-Lagrange equations and
to Kirchhoff’s laws. Constant coefficient problems were classically solved through
the use of matrix pencils (cf. Gantmacher [8]), bu.t more general DiEs were seldom
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studied very thoroughly. DAEs have, however, been of substantial recent interest to
the numerical analysis community (cf., e.g., Brenan et al. [2], Hairer et al. [14], Hairer
and Wanner [15], and Griepentrog et al. [13]). Our study indicates how regularization
can effectively reveal the solution structure for DAEs. Following the general approach
of Tikhonov and Arsenin [33], we will define a continuum of problems P for small
positive e values and determine the DAE’s solutions as limiting solutions ofP for e --+ 0
(for, say, t > 0). This relates to earlier analytical and numerical studies involving such
regularizations by Campbell [3], Lbtstedt [22], Knorrenschild [20], Hanke [16], and
Eich and Hanke [7], but our approach is more closely based on singular perturbation
theory (cf., e.g., O’Malley [26]). Some further nonlinear generalizations are contained
in Kalachev and O’Malley [19].

One way to regularize problem (1.1) is to consider it as the limit of the singularly
perturbed (m + n)-dimensional linear system

(1.5)
it Au + Bv + f,

-Di Cu + Dv + g

as - 0. Rewriting this as

(1.6)
it Au + Bv + f,

-D-1Cu v D-lg

emphasizes that the small positive parameter was introduced in (1.5) in a manner
to achieve the appropriate asymptotic stability for (1.6), which implies fast initial
dynamics where v generally decays rapidly like a constant vector multiple of the scalar
function e-t. The well-known Tikhonov-Levinson theory for singularly perturbed
initial value problems (cf. Smith [31], O’Malley [26], and Vasil’eva et al. [35]) directly
establishes that (1.5) has an (rn / n)-dimensional solution space, parametrized by any
prescribed bounded initial vector

with solutions having the asymptotic form

(1.7)
Uo(t) +
Vo(t) + Zo(t/ ) +

on fixed bounded intervals 0 _< t _< T, where

U0

satisfies the original DAE (1.1) (and therefore (1.3) and (1.4)) and where

(1.8) /0(7-) e-r[v(0)4- D-l(O)C(O)u(O)+ D-l(0)g(0)]

is the decaying solution of the vector initial layer problem do --/30, /30(0) v(0)dT"
> 0. We note that this limiting initial layer.V0(0) on the stretched interval T

correction /30(T) will be trivial when the initial value for v(0) is consistent with the
constraint C(0)u(0) + D(0)v(0) + g(0) 0, so/30.(0) 0. Otherwise, the solution of
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(1.6) will feature nonuniform convergence in the v variable at t 0, i.e., an initial
Heaviside function discontinuity in the c -. 0 limit. One way to solve the original
DAE is to numerically integrate the regularized problem (1.5) using a stiff integrator
for a sequence of small c > 0 values. (Using the perturbation term -D(0) may be
computationally preferable to that used in (1.5), since one won’t then need to calculate
D-l(t) for all t > 0 of interest. Then, however, the t interval must be restricted so
that -D-l(O)D(t) remains stable.) More simply, one can just integrate the nonstiff
rnth-order initial value problem for U0 (cf. (1.4)) with U0(0) u(0) and use (1.3) to
obtain V0.

We note that the artificially introduced parameter e may often by provided a
physical interpretation (see below). Indeed, when a DAE (1.1) results from the neglect
of rapid transients in a dynamic model, - may represent the size of the smallest
neglected decay rate.

2. A pure index-two problem in Hessenberg form. More challenging DAEs
than (1.1)-(1.2) arise when the matrix D(t) in (1.1) is identically zero, when it has
fixed positive rank r less than n, or when it involves isolated turning points where
D(t) becomes singular or changes rank. We will first consider the "pure" index-two
situation when D(t) =_ 0 and then the case when 0 < r < n. Specifically, let us first
consider the DAE

(2.1)  r0 A(t)Uo + B(t)Vo + f(t),
0 C(t)Uo +

in the situation that the number rn of differential equations is not exceeded by the
number n of constraints and that the n n matrix

(2.2) C(t)B(t) remains nonsingular

for all t > 0. We will also assume somewhat more smoothness than before. The
classical approach to solving (2.1)-(2.2) involves differentiating the constraint with

respect to t to yield C(AUo + BVo + f) + U0 + t 0 and solving this equation for
V0. Since the remaining problem for U0 is like the index-one problem (1.1)-(1.2), it
is natural to call (2.1)-(2.2) an index-two problem. See Gear and Petzold [10] and
Griepentrog et al. [13] for comparisons of various index concepts. Very crudely, the
index is the number of differentiations necessary to convert a DAE to an ordinary
differential equation in standard form.

Here, let us consider the regularized problem

f 7 Au + Bv + f,
(2.3)

-CBv Cu + g,

where the scaled vector -eCBv is used as a slack variable, so the given constraint
need only be satisfied in the limit as cv - 0. Eliminating

1
(2.4) v --(CB)-I[Cu + g]

leaves us with the singularly perturbed differential system

et [-B(CB)-IC + eA]u B(CB)-lg + ef
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for u. We note that an alternative procedure (cf. Kalachev and O’Malley [18]) would
be to differentiate the constraint in (2.3) to obtain a singularly perturbed differential
system for u and v. Both approaches suggest more impulsive initial behavior for v
than for u.

The Tikhonov-Levinson theory does not apply for the singular singular-perturba-
tion problem (2.5) because the limiting Jacobian matrix

(2.6) --Q(t) =_ -B(CB)-IC

generally has a constant rank n < m. Note that Q is a projection onto the range
of C since Q" Q, CQ C, and rank Q <_ rank C. We can, nonetheless, seek an
asymptotic solution to the initial value problem for (2.5) in the form

(2.7) ) v(t, ) + ),

where the outer expansion

must naturally satisfy (2.5) for all t > 0 as a formal power series in e, while the initial
layer correction a(T, e) must be a decaying solution of the homogeneous initial layer
system

dc
(2.9) d- [-Q(e’) + eA(e)] c

> 0 thereby providing any necessary nonuniform convergence near t 0 ifon ;
c(0, e) u(0)- U(0, e) is nontrivial (cf. Vasil’eva and Butuzov [34], O’Malley [26],
and Vasil’eva et al. [35] for treatments of such singular problems).

Equating coefficients termwise in (2.5) implies that the terms of the outer expan-
sion must successively satisfy

(2.10)

0= -QUo- B(CB)-lg,

Io AUo -QU1 + f,

51 AU1 -QU2,

etc.

Introducing the complementary rank-(m n) projection

(2.11) P(t) =- I- B(CB)-IC

to Q, note that CP 0 and PQ 0. We can naturally seek any m-vector z by first
finding Qz, then Pz, and finally z as their sum. We observe the widespread use of
more general projection matrices in Griepentrog et al. [13] and in other earlier work
cited. Indeed, the direct use of a matrix pseudoinverse of C is naturally suggested by
the formulation (2.1).

Note that (2.10)(a) implies that

(2.12) QUo -B(CB)-lg,
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R4

I C3 C C2 R5

while multiplication of (2.10)(b) by P yields Po PAUo + Pf. Substituting Po
(/SUo) -/bUo and replacing Uo by PUo + QUo finally provides the linear differential
equation

(2.13) (bUo) (PA + b)(PUo) + Pf -(PA +
for the projection PUo. This implies an (m- n)-dimensional solution space for the
DAE (2.1)-(2.2), since it remains only to integrate the differential system (2.13) for
PUo using an arbitrary initial vector P(0)U0(0). Then, we will have

(2.14) Uo PUo- B(CB)-lg.

Since CUo -g, (2.4) implies that we must still determine the original vector V0
-(CB)-ICU1. Note, however, that (2.10)(b) now specifies QU1 f / AUo- o. But
CP 0 implies that CU1 CQUI, so

(2.15) Vo -(CB)-C(f + AUo
-(CB)-IC[(A- PA- )(PUo-B(CB)-g) + (B(CB)-g)" + f Pf].

To get the limiting solution then requires us to use both derivatives / and (Qg)’.
Integrating the nonstiff m-dimensional system (2.13) for PUo would seem far easier
numerically than trying to directly integrate the singularly perturbed initial value
problem (2.5) to obtain U0 as its limiting solution for t > 0 (since the limiting state
matrix -Q(t) has rn n zero eigenvMues as well as n stable ones).

The limiting initial layer correction is necessarily given by

(2.16) C0(T) e-Q(O)[u(O) + B(O)(C(O)B(O))-lg(O)],

since co(7) must be a decaying solution of d_ -Q(0)ao with co(0) u(0)-dT
Uo(0) already known. Thus, ao(’) Q(0)ao(-) and P(0)ao(-) -= 0, i.e., ao remains
completely in the n-dimensional stable eigenspace of Q(0). This again shows that we
can take

(2.17) P(0)U0(0) P(0)u(0)

to be arbitrary. Moreover, a0(’) will provide the initial Heaviside jump for u, unless
s0(T) 0 because the initial value for u(0) is consistent with the constraint, i.e.,
Q(0)u(0) -B(O)(C(O)B(O))-g(O). It will, in turn, imply an initial delta-function
impulse -(C(0) B(0))-IC(0)(0(t) for v. Allowing such inconsistency is particularly
important for systems with switching (cf. Opal and Vlach [28]) and for stabilizing
numerical drift off constraints. It is important to emphasize that the rapid motion in
u is orthogonal to the constraint, i.e., in the range of Q(0).

Example 1. Consider the simple linear electrical circuit pictured in Fig. 1 above.
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For simplicity, let the capacitances Cj, the resistances Rj, and the input current
I all have unit values and, for now, let the resistance r be zero. The voltage-current
relations and the Kirchhoff voltage and current laws provide us the DAE:

j ij, j 1, 2, 3,

v i, k 4, 5, 6,

vj Vj+3, j 1, 2, 3,

(2.18) V + V2 V3,

il + i3 -- i4 + i6 1,

and

i9. + i4 i5 0.

Thus, we have three differential and nine algebraic equations for the twelve unknowns
it and v, g 1, 2,..., 6. We naturally eliminate vk and ik, k 4, 5, and 6, as well as

i2 and i3. This leaves us the DAE

(2.19)
nv + Bil + f,

0-- BTv,

where

A- 1 -1 0 v- ve B- and f- 0
-1 0 -1 V3 1

Since BTB 3 > 0, this problem is of the form (2.1)-(2.2) with C BT, and we
therefore proceed to consider the slack variable regularization

(2.20)
Av + Bil + f,

-3il BTv

for an artificial small parameter e > 0. Since we can rewrite the present constraint as

v + v2 + 3eil v3, we can physically interpret our regularization as corresponding
to the introduction of a small resistance r 3e in the circuit in series with the
first capacitor or, for example, a resistance e in series with each capacitor. This
regularization coincides with the common technique (from Chua [4] and elsewhere) of
introducing small parasitics and determining the network’s solution through a limiting
process.

Our regularization procedure reduces (2.18) to solving the singular singularly
perturbed system

with the limiting Jacobian matrix -1/2BBT having rank one and one stable and two
zero eigenvalues. We naturally seek an asymptotic solution of (2.21) in the form

(2.22) v(t, +
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where the outer expansion satisfies V ’jo V.eJ and the initial layer correction
a 0 as T _t __, c. Since the outer expansion will solve (2.21) termwise, we will

successively need 1/2BBTVo O, 1/2BBTV1 AVo + f- t}o, etc. The first condition
requires that

(2.23) Vlo / o V3o,

so it simply restricts the limiting outer solution Vo (Vlo Y2o /0)T
straint, while the second condition requires the componentwise equations

to the con-

Vx + V Va -tlo,

V + Vx V31 Vlo Vo

-Vii V21 + V31 -Vlo V3o / 1 73o.
Eliminating V3o (through (2.23)) and then Vii + V21 Vl provides us the differential
equations l}jo -o+1/2, j 1 and 2, for Vlo and Vo. Imposing the initial conditions
for vl (0) and v2(0), we then have

y,o(t) 5 + v(O)- 5

Vo(t) g + (o)- g
and

yo(t) g + (o) + .(o) g -.
We cannot generally expect the initial value V30(0) to agree with the prescribed v3(0),
so there is a need for an initial layer correction term a0(T). Later terms Vk(t) in the
outer expansion can be readily determined successively, up to specifying the initial
values Vlk(0) and V2k(0), but they will not be physically relevant.

If the initial conditions are consistent, i.e., v3(0) vl(0) + v2(0), there is no
need for a0(T) a(T, 0). Otherwise, we will have a nontrivial limiting initial layer
correction do(r) (0 0030(T))T determined through the resulting scalar problem

dT --C30, C30(0) V3(0) V30(0). Thus,

(2.26) o() -/((o) (0) :(o))

provides an initial Heaviside jump in V3 in the limit e 0.
The slack variable constraint il -Wi-(Y + a) =_ I(t, e)+ 1/4(r, ) implies the

limiting current

1(1) 1( 1)e_t1 1
(VII -" V21 V31) " VlO Vl (0)(2.27) Io =-- --BTV1 --for t > 0 and the initial layer correction

(2.28) -1o -= a3o
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which features an initial delta function impulse whenever the initial voltages are incon-
sistent with the constraint. This reflects the rapid initial charging of the first capacitor
when the series resistance r is small.

Example 2. If we linearize the Navier-Stokes equations about an incompressible
flow with mean velocity (U 0 0)T and introduce the moving coordinate x Ut,
we obtain a system of the form

(2.29)

(cf. Criminale and Drazin [6]). Note that the latter equation enforces irrotationality.
If we next Fourier transform our variables in , y, and z by, for example, setting

(, g, 7, t) fffu(, y, z, t)ei(+ZY+’z)d dy dz,

we obtain a DAE of the form

din
g2 7),2 iCT+ F(a g, 7, t),-y( ( + + ).-

0 iCm,

whereto ( @)T, C- (a /3 7), andF (F1 F2 F3)T. We regularize this
problem by introducing the scalar slack variable

(2.31 -e iCm,

which finally implies the singular singularly perturbed system

(2.32)
dm
-y( (-crc +( + + "?)5 + F(, ,., t).

Again, we would expect to find a solution in the composite form

(2.33) rn(t, e) M(t, e) + (,

where r - 0 as T _, oc. The primary physical interest is to obtain the limiting
outer solution M0. The solution of (2.29) could ultimately be obtained by taking the
inverse Fourier transform.

A physical interpretation of the regularization parameter can be obtained by
realizing that introducing e in (2.31) allowed us to approximate the incompressible
solution by a slightly compressible solution. This, then, corresponds to the penalty
function method, which has been extremely valuable numerically and analytically (cf.
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Hughes et al. [17] and Temam [32]), where 1 is a Lam parameter. We note that such
a DAE would also be obtained from the Navier-Stokes equations through appropriate
discretizations (cf. Gresho et al. [12]).

3. A more complicated index-two problem. A higher index DAE can also
occur such that the matrix D(t) in (1.1) is transformable to a block diagonal form
of fixed positive rank r < n. Specifically, let us suppose that a smooth nonsingular
matrix R(t) exists so that D can be decomposed as

(31) D(t) R(t) ( (t) O ) R-l(t)
0 0

where E(t) remains a nonsingular r r matrix. (Allowing nontrivial Jordan blocks in
the nullspace of D(t) might naturally be considered later.) If we use the corresponding
splitting

(3.2) y0(t) n(t)

the index-two DAE (1.1) will be transformed to the form

(3.3)
bo A(t)Uo + B(t)Xo + C(t)Yo + f(t),
0 D(t)Uo + E(t)Xo + g(t),

0 F(t)Uo + h(t)

(with different coefficient matrices than before). Note that transformations such as
(3.2) are common in the singular perturbations literature (cf. Wasow [36], O’Malley
[25], and Kreiss et al. [21]). Their numerical implementation is, however, nontrivial,
often being carried out through orthogonal transformations.

We will assume that any such preliminary transformations have already been
made and shall assume that (3.3) holds with

(3.4)

m >_n-r > O,

where the r r matrix E(t) and the (n.- r) (n- r) matrix

F(t)V(t) both remain nonsingular.

Our earlier analysis indicates that we should anticipate having an (rn- n + r)-
dimensional solution space for (3.3)-(3.4) which could be obtained by using the regu-
larization

(3.5)

t Au + Bx + Cy + f,

-eE Du + Ex + g,

-eFCy Fu + h

or, equivalently, the singular singularly perturbed system

(3.6)
et [-C(FC)-IF + eA]u + eBx C(FC)-lh + el,

-E-Du x E-g,
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which can be solved using the projection matrix C(FC)-IF and its complement to
determine the limiting u, x, and y vectors.

The classical way to solve (3.3)-(3.4) is to solve (3.3)(b) for

(3.7) Xo -E-IDUo E-lg

and to differentiate (3.3)(c) to get

0 F(AUo + BXo + CYo + f) + .Uo + ] O.

Solving for

(3.8) Yo -(FC)-[(FA + )Uo + FBXo + Ff + ],
there simply remains the DAE

(3.9)

for U0, where

50 .4(t)Uo +
o F(t)Uo + h(t)

A(t) A- BE-D- C(FC)-[FA +- FBE-D]

and
b(t) =- f BE-lg C(FC)-I[-FBE-lg + Ff + l"

Because FA / tb 0 and Fb + 0, it follows that the constraint (3.9)(b) defines
an invariant manifold for the differential equation (3.9)(a).

We will use a new method to attack (3.9) which is also successful for nonlinear
generalizations (cf. Kalachev and O’Malley [19]). Specifically, we will introduce a
scaled Lagrange multiplier A(t) through the singularly perturbed DAE

f t(t) A(t)u + b(t) + FT(t)A,
(3.10)

--eA F(t)u + h(t).

Note Gear’s effective introduction of such a multiplier when e 0 [9] and Lubich’s
progress for analogous nonlinear problems [23]. Equivalently, we will examine the
singular singular-perturbation problem

e [-FT(t)F(t) + eA(t)]u + [-FT(t)h(t) + eb(t)],

for which the limiting Jacobian -FTF has rank n- r. If we seek an outer power
series expansion

(3.12) U(t, e) E Uj(t)eJ
j=O

for (3.11), we successively need

(3.13)
FTFUo + FTh 0,

FTFUI JtUo o + b,

etc.
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It is now convenient to directly introduce the rank-(n- r) projection matrix

(3.14) Q(t) =_ FT(FFT)-1F

(noting that FTFQ FTF, QFTF FTF, and rank Q _< rank F) and to denote its
complement by

(3.15) P(t) =_ I- FT(FFT)-IF.

Note that (3.13)(a) implies that

(3.16) QVo

SO

(3.17) Uo PUo FT(FFT)-Ih.

Multiplying (3.13)(b) by P implies that P(AUo-o+b) 0, so U0 will be determined
through the resulting differential equation

(Uo) (PA + )(PUo) + Pb- (PA + 9)FT(FFT)-lh

for PUo using arbitrary initial conditions P(0)U0(0) P(0)u(0). Since P has rank
rn n + r, the solution space for (3.3)-(3.4) is clearly of dimension m n + r. An
initial impulse in the range of Q(0) will be necessary if u(0) is inconsistent with the
constraint Fu / h 0. A straightforward numerical integration of the nonstiff initial
value problem for (3.18) provides a practical method to obtain solutions (3.17) of the
DAE (3.3)-(3.4). We note that Ascher and Lin [1] and Petzold et al. [29] discuss the
relationship of related regularization techniques to Baumgarte stabilization and trust
region methods.

4. Index-three problems.

4.1. An example. For the DAEs considered thus far, the constraints we have
been concerned with coincided with the algebraic equations. For higher-index DAEs,
"hidden" constraints occur in addition to the obvious explicit ones. A well-known
index-three example in Hessenberg form (el. Brenan et al. [2]) is

(4.1)
fo Wo + f(t),

Vo Vo + g(t),

Vo h(t).

Providing the nonhomogeneous terms are sufficiently smooth, the unique solution

(4.2)

Vo h(t),

Uo i (t)
Wo f(t)

is obtained by backwards substitution. Note that no initial conditions are needed.
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If we differentiate (4.1)(c) once to get 10, we find the resulting hidden constraint

(4.) u0 + (t) =/(t).
We will now attempt to regularize the DAE (4.1)-(4.3) by using a Lagrange multiplier
A to account for the original constraint and by using a slack variable w in the hidden
constraint. Thus, we consider

i=w+ f,

(4.4)
5 u + g + ,

-v + h,

w=-u-g+.
Eliminating and w yields the two-dimensional singularly perturbed system

(.) ’ - + + f,

e5 eu+ eg- v + h.

Its limiting solution will have the form

(t, ) Go(t) + o(t/) + 0(),
(a.)

v(t, ) Vo(t) + o(t/) + 0(),

where the outer limit satisfies Uo(t) -g + it and Vo(t) h, the decaying initial layer
term CO(T) e-(u(O)-Uo(O)) is nontrivial unless we have the consistent initial value

u(0) -g(0)+ h(0), and 0(T) e-[v(0)- V0(0)] is decaying, but nontrivial, unless
we have the consistent v(0) h(0). Since w -(u + g it), (4.6) implies that

(4.7) w(t,e)
l (t)--c0 +O(1),

i.e., w generally involves a delta function impulse at t 0. Thus, the constraints
provoke initial jumps in the constrained quantities.

4.2. A more general problem. In previously considering the DAE

bo A(t)Uo + B(t)Xo + C(t)Yo + f(t),
(4.8) 0 D(t)Uo + E(t)Xo + g(t),

0 F(t)Uo + h(t),

we assumed that the matrices E and FC both remained nonsingular. Let us now
make the assumption that

rn >_ 2(n- r) k, that the r r matrix E(t)
is nonsingular, and that there is a nonsingular matrix

(4.9)
S(t) such that FC_ S(t) ( H(t) 0/S_l(t)0 0

where H(t) is a k k matrix of full rank.
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If we differentiate (4.8)(c) and introduce

Zo=S() ( z )Wo
we obtain a hidden constraint

(FA + Z)Uo + FBXo + FCS Wo +Ff+/=0.

Multiplying by S, it takes the form

f 0 GUo + LXo + HZo + ,
(4.10)

0 KUo + MXo + k.

Solving (4.8)(b) for X0 and (4.10)(a) for Z0 finally gives us an index-two DAE of the
form

50 (t)Uo + 5(t)Wo + ](t),
(4.11) 0 (t)Uo + (t),

o F(t)Uo + h(t),
provided we also assume that

(4.12) the matrix F(t)C(t) remains nonsingular.

Here K =_ K ME-D and C consists of the last n r k columns of CS. Using a
Lagrange multiplier and a slack variable for (4.11), as we did for (4.4), we can readily
determine the (m-2n+2r+k)-dimensional subspace of solutions for (4.8)-(4.9)-(4.12).

Detailed study of the canonical forms for higher-index DAEs, as well as their
solution structure, could be carried out further. It would be quite analogous to the
study of singular arc problems in optimal control (cf. Moylan and Moore-J24], O’Malley
and Jameson [27], Saberi and Sannuti [30], and Geerts [11]). Our use of a regularizing
parameter is analogous to the frequent introduction of a cheap control cost for both
analytical and numerical study of singular arcs.

4.3. A final example. Consider the motion of a particle which slides under
gravity on a moving, but never vertical, plane

(4.13) a(t)x + b(t)y + z d(t),

with a normal constraining force proportional to a scalar M0. Newton’s laws then
imply the system

+ a(t)Mo 0,

(4.14) + b(t)Mo O,

" + M0 g.

Introducing the position Uo (x y z)T and the corresponding velocity V0 0, we
can conveniently rewrite (4.14) as the DAE

(4.1)
o= o o po- r Mo+ h

0 -(E 0)Po + d,
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where

E (a b 1), and h (0 0 g)T. Differentiating the constraint provides us the
additional "hidden" constraint

(a.) (k E)Po h.

We will regularize the DAE (4.15)-(4.16) by considering

(4.1)
(0)9:

O0
p ET m--

0- -(E O)p + d,

(1 + a2 + b2)m (k E)p- t,

(o)A+ h

since

ET EET 1 + a2 + b2 > O.

Rewriting (4.17) as t v-ETA, -ETm+h, , Eu-d, and e(1 +a2+b2)m-
u + Ev t. Thus, we finally obtain the singularly perturbed differential system

(4.18)
e_ -ETEu + v + ETd,

ET
v -1 (Eu + Ev t) + h.

+ a2 +
It is a singular system because ETE has rank 1. We nonetheless seek a solution

(4.19)
(t, ) u(t, ) + (-, ),

v(t, ) v(t, ) + (-, )

with exponentially decaying initial layer corrections a and .
To proceed further, we note that

(4.20) Q
ETE

l+a2+b2

is a projection such that QET ET and EQ E. Equating coefficients in (4.18), we
find that the first two terms of the outer expansion must satisfy

(4.21)

0 -QUo +
ETd

l+a2+b2’

5o Vo=-QU1 + 1 +a2/b2’1 +a2Wb2

Ek
1 + a2 + b2U QVo + l+a2+b2’

Ek
1 + a2 + b2

Vl QV1 + h.
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(4.21)(a) and (c)imply that

(4.22)

ETd
Uo PUo +

l + a2 + b2

and

(PUo +Vo PVo,-
1 +a2 +b2

ETd ET
l+a2+b2)+ l+a2+b2’

where P is the complementary projection to Q. Multiplying (4.21)(b) and (d) by P
then yields the linear differential system

(4.23)

(bUo) 9(PUo) + PVo + 1 + a2 + b2’

bET (PUo) + [9(PVo) +(byo)
l + a2 + b2 - l + a2 + b2 + Ph.

Since the initial values for PUo and PVo are arbitrary, the solution space for (4.13)-
(4.14) will be four-dimensional. Moreover, u will feature an initial jump if u(0) is
inconsistent with the given constraint, i.e., E(0)u(0) d(0), while v will have an
initial jump and M0 will have initial delta-function behavior unless v(0) satisfies the

hidden constraint/(0)u(0) + E(0)v(0) /(0).
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STABILITY AND CONVERGENCE OF EXTENSION SCHEMES TO
CONTINUOUS FUNCTIONS IN GENERAL METRIC SPACES*

E. LE GRUYER? AND J. C. ARCHER

Abstract. For any E, E general metric spaces, we formulate the concept of stability of an
extension scheme ( continuous mapping from some closed subset of E into E, t() continuous
and extending ). We show that, when E IR, stable extension schemes always exist and that the
classical extension schemes in the literature are instable. We also show that, when E is complete,
any stable extrapolation scheme ( mapping from some discrete and closed subset of E into E,
() continuous and extending ) has a unique extension to a stable extension scheme: this result
establishes a link between the problem of extrapolation, which usually refers to numerical analysis,
and the problem of extension, which also concerns pure mathematics.

Key words, stability, convergence, extension of functionals
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1. Introduction. This paper concerns the extension of maps, from some subset
of a metric space E into some metric space E, to continuous maps from E to E.
We consider schemes, such as Tietze’s scheme, which accomplish such extensions. In
particular, we are interested in the stability of extension schemes: heuristically, an
extension scheme to continuous functions, from E to E is said to be stable if a small
alteration of a datum (, x) ( continuous map from some subset of E to E’, x E)
has a small impact on the value $()(x) of the extension $() of .

In this article, we give a mathematical formulation of this heuristic concept of
stability by introducing the following three notions: DV-stability (DV data value),
which controls errors in -values; gt-stability, which controls errors in x; and DS-
stability (DS data site), which controls errors in the domain of . Aside from
formulation, DV-stability and t-stability have been known for a long time. As far as
we know, DS-stability appears for the first time in [1].

Our first main result (Theorem 3.3) states that, when E IR, stable and con-
vergent extension schemes exist for any metric space E. Here the starting point is a
paper by Mc Shane [5] We highlight this result by showing the instability of some
extension schemes in the literature [2]-[5], [7], [8]. In fact, we do not know of any
other stable extension scheme with the exception of the above result and the case
E-IRo

In numerical analysis, one is interested in the extension of maps whose domain
(the set of data sites) is discrete and closed, in particular finite. In this case data sites
are called poles, such an extension is called an extrapolation, and the corresponding
extension scheme is called an extrapolation scheme. With this precision of terminology,
our other main result (Theorem 5.1) states that any stable extrapolation scheme
extends to a unique stable extension scheme. This result shows that the problem of
finding stable extrapolation schemes (only such schemes have an interest in numerical
analysis) cannot have an elementary solution.

2. Notations, moduli of continuity. (E,d), (E’, d’) denote any two metric
spaces.
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In this paper a total (resp., a partial) mapping from E to E is a mapping from
E to E whose domain is E (resp., a subset of E).

H(E) denotes the set of nonempty subsets of E.
A(E) denotes the set of discrete and closed nonempty subsets of E.
Ft(E,E’) denotes the set of ft-continuous partial mappings (see Definition 2.1)

from E to E whose domain is an element of H(E).
:D(E, E) denotes the set of f-continuous partial mappings from E to E whose

domain is an element of A(E) (see Remark 2.1).
We define C(E, E) as the set of total continuous mappings from E to E.
For x E E, A E II(E), d(x, A) denotes the usual distance from x to A:

d(x, A):= inf{d(x, a) a e A}.

Let 5 denote the (generalised pseudo) Hausdorff distance on H(E).
for A, B G II(E),

5(A, B)"= sup \aeA(sup d(a, B), suPbeB d(b, A))
(in restriction to closed bounded nonempty subsets of E, 5 is a distance).

The symbol denotes restriction to.
For 99, partial mappings from E to E’, A a nonempty subset of dom(99)Adom(),

d(99, ) denotes the usual (generalised) distance from

d(99, ) := sup{d’(99(a), (a)) a e A}.

In this paper, a modulus of continuity (resp., a weakly concave modulus of con-
tinuity) is a mapping w from IR+ to IR+ which satisfies

w(0) 0 and w is continuous at 0,
w is increasing: hi <_ h2 W(hl) _< w(h2),
w is subadditive

Vhl, h2 G ]R+, w(hl + h2) _< w(hl)+ w(h2) w(h)
is decreasing)resp.,h h

DEFINITION 2.1. We say that a partial mapping 99 from (E,d) to (E’,d’) is
f-continuous if a modulus of continuity w exists which satisfies

(1) Vx, y e dom(99), d’(99(x), 99(y)) <_ w(d(x, y)).

PROPOSITION 2.1. Let 99 be a uniformly continuous partial mapping from E to
E’. Then 99 is ft-continuous if and only if c, IR+ exist such that, for any h IR+,
any x, y dom(99), d(x, y) <_ h == d’(99(x), 99(y)) <_ ch +/. In particular, if 99 is
bounded and uniformly continuous then 99 is f-continuous.

Proof. Necessity follows from a result by Stechkin which asserts that. for any
modulus of continuity w, a weakly concave modulus of continuity exists such that
w _< <_ 2w. Sufficiency follows from a lemma by Mc Shane [5, p. 389]. l-i

Remark 2.1. Any partial mapping from E into E’ whose domain is an element of
A(E) is continuous but not always ft-continuous function f(n)"= n2, n an integer,
is a simple example of a (uniformly) continuous function that is not -continuous.

Let 99 f(E, E’). When dom(99) is disconnected (it is the general case in exten-
sion theory), the usual definition of the modulus of continuity of 99 does not apply.
We need a slightly stronger definition.



276 E. LE GRUYER AND J. C. ARCHER

DEFINITION 2.2. For 99 E (E, EI), we define the weakly concave modulus
Of continuity of 99 as the infimum of the weakly concave moduli of continuity w which
satisfy (1).

The existence of follows from Stechkin’s result. This outer definition is imme-
diately seen to be equivalent to the following inner one:

:= sup{,a,b a, b e dom(99)}

where

d’(99(a), 99(b)) for a = b,(2) ,a,b(h) := inf(h, d(a, b)) d(a, b)
,a,b(h) := 0 for a-- b.

We close this section with two properties of weakly concave moduli of continuity
which will be essential to the proof of Theorem 3.3.

PROPOSITION 2.2. 1. Let 99, (E, E’) with the same domain A. Then

o IIn% < 2d(99, ).

2. Let 99 e (E, E’), A, B c dom(), A, B e II(E). Then

Proof. 1. Let h IR+. From Definition 2.2, we have

I(h) (h)l sup ,,b(h) sup ,a,b(h)
a,bEA a,bEA

sup I,,b(h) ,,b(h)l
a,bA

But, from (2), we have

I,,(h) --,a,b(h)l <_ Id’((a), (b)) d’((a),
<_ d’(cp(a), (a)) + d’(cp(b), (b))
_< 2d(, ).

2. First we note that, for any h >_ 0, wlA(h) <_ (h) <_ (cx). Thus, if
5(A,B) cx, we have IA--IB IIIR+ -< 257(5(A,B)). Otherwise, set :=

8(A, B) + e (e > 0) and let h E lR+. Without loss of generality, let us assume that

IB (h) _< IA (h). For each a e A, we choose b(a) e B such that d(a, b(a)) <_ . We
have

sup "p,al,a2(h)- sup ",b(al),b(a2)(h)
al,a2A a,aA
sup I,a,(h)---,b(l),b()(h)l.

a,a.A

For the sake of simplicity, from now on, we set bl :-- b(al), 52 b(a2), and

p,al,a2 (h) I,a,. (h) ,b,b. (h)l.

We must bound 5,al,a (h).



STABILITY AND CONVERGENCE OF EXTENSION SCHEMES 277

First case. h >_ d(al, a2), h >_ d(bl, b2). In this case we have from (2)

6,al,a2(h) Id’((al), (a2)) d’((bl), (b2))1.

Thus

5,al,a2(h) <_ d’((al), (bl)) -- d’((a2), (b2)) _< 2(5).

Second case. h <_ d(al, a2), h _< d(bl, b2). In this case, (2) gives

5,al,a(h) h
d’((bl), (b2)) d’((a), (a2))

d(bl,b) d(a,a2)

We write ,a,a2 (h) nl -- t21 where

tl :-- h(d(al, a2) d(bl, b2)) d’((bl), (b2)) + d’((al), 99(a2))
2d(a,a2)d(bl,b2)

A2 := h(d(al, a2) -+- d(bl, b2)) d’((bl), (b2)) d’(99(a1), (a2))
2d(a,a2)d(bl,b2)

Since, in our case, h _< inf(d(a, a2), d(b, b2)) and since, in any case,

Id(al, a2) d(b, b2)1 _< sup(d(al, a2), d(b, b2)),

we have

h
Id(a’ a2) d(b, b2)1 < 1.
2d(al,a2)d(bl,b2)

Using the weak concavity of, we obtain

,A1. (h,d(al,a2)-d(bl,b2),)
__

(h,d(al,a2)-d(bl,b2)])2-( a2 -1 b2)

Since h _< inf(d(al, a2), d(b, b2)) and ]d(al, a2)- d(bl, b2)1 _< 2, we obtain

To bound IA21, we have

d(a1, a2 + d(bl, 52 )
Thus IA21 <_ Id’((b),(b2))-d’((a),(a2))l <_ 2(5). Definitively, 5,al,a(h) _<
4() in this second case.

Third case. d(bl,b2) <_ h <_ d(al,a2) or d(al,a2) <_ h <_ d(b,b2). Without loss
of generality, let us assume that d(a, a2) <_ h <_ d(b, 52). Statement (2) gives in this
case

d’(cfl(a)’ 99(a2)) d(b;ib2) d’(99(b1)’ 99(b2))
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We write ,al,a2 (h) IA3 + A41 where

A3
d(bl, b2) h
d(b,b2) d’((a),(a2)),

h
A4 d(bl, b2) (d’((al), (a2)) d’((bl), (b2)).

We have immediately IA41 G 2,(6).
Since

IA31 < d(bl,b2)- h
d(bl, b2) (d(al,a2)),

we obtain, using the weak concavity of , again,

iA31< - (d(al,a2)(d(bl,b2) h) )
Now, in our case, we have d(bl,b2)- h <_ d(bl,b2)- d(a,a2) <_ 25. Thus [A3[ <_
2(5). Finally 6p,al,a2(h)

_
4(()in this third case.

As e > 0 is arbitrary and is continuous, the stated conclusion follows. []

3. Extension schemes.
DEFINITION 3.1. We call C-extension (resp., C-extrapolation) scheme from E

to E any mapping

$ a(E,E’)(resp., T(E, E’)) -- C(E,E’) 99 (99)

which satisfies

(3) Vx e dom(99), (99)(x) 99(x).

We give the following definitions for C-extension schemes. Similar definitions
hold for C-extrapolation schemes.

DEFINITION 3.2. Let be a C-extension scheme from E to E.
(i) We say that reproduces the constants iff

V99 e dom($), 99 constant == $(99) (the same) constant.

(ii) g is said to be DV-stable iff a positive constant C exists such that for any
99, E dom($) with the same domain A, we have

(4) d((99), ()) _<

(iii) g is said to be -stable iff a positive constant C exists such that, for any
99 E dom($),

(5) e() <_ C.
(iv) $ is said to be DS-stable iff a positive constant C exists such that, for any

99 e dom($), any A, B c dom(99), A, B e H(E),

(6) d($(]A), ’$(IB)) _< C,(5(A, B)).
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(v) $ is said to be strongly convergent iff a constant positive C exists such that,
for any 99 E (E, E’), for any A C dom(99), A E H(E),

(7)

The smallest such C (which are attained), in (4)-(7), are called the constants of DV-
stability, f-stability, DS-stability, strong convergence.

Let us remember here the usual definition of a convergent scheme $ is said
to be convergent if, for any total -continuous function f from E into E, for any
F e H(E),

lim dF($(flA) f) O.(8)
AeA(E),5(A,F)--*O

Remark 3.1. It is easy to check that the univariate piecewise linear extrapola-
tion scheme is a DV-stable, Ft-stable, DS-stable, strongly convergent C-extrapolation
scheme. The constants of DV-stability, strong convergence, DS-stability are resp., 1,
2, 2. The constant of f-stability is smaller than 2 (this constant is 1 if we use concave
moduli of continuity in place of weakly concave ones).

The following proposition contains elementary formal consequences of above de-
finitions. Here, $ denotes any extrapolation or extension scheme from E to E.

PROPOSITION 3.1. 1. If
reproduces the constants.

2. If $ is DS-stable or -stable, then $ is strongly convergent.
Proof. 1. The proof of part (1) is obvious.
2. The result is immediate if $ is DS-stable. Let us assume now that $ is f-stable

and let 99 e Ft(E, E’), A e II(E), A c dom(99), x e dom(99). For any > 0, we choose
y G A such that d(x,y) <_ d(x,A)+l. Since y E A, A c B and since $ is an
extrapolation (or extension) scheme, we have

Thus

d’($(lA)(X), (x))

Applying the f-stability of $, we obtain

d’($(99[A)(X),

The result follows since is continuous and r/ is arbitrary and since the above
inequality holds for any x

Now, we turn to the first main result of this paper. Our starting point is the
following result by Mc Shane [5] (see also [8, p. 63, footnote]).

THEOREM 3.2. Let (E, d) be any metric space and w be a modulus of continuity.
Then, for any partial mapping 99 from E to lit which satisfies

(9) Vy, z e dom(99), 199(Y) 99(z)1 -< w(d(y, z)),

the mapping A/[(99) defined, for any x E, by

(10) M(99)(x) sup{99(a)- w(d(x, a))’a e dom(99)},
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extends 99 and satisfies

(11) Vy, z e E, IA/ (99) (Y) A/l(99.)(z)l _< w(d(y, z)).

This scheme A/, restricted to those 99 which satisfy (9), is -instable and DS-
instable; see 4.6. We can however adapt (10) to obtain a stable C-extension scheme.

THEOREM 3.3. Let (E, d) be any metric space. Let us define a scheme as

follows. For 99 t(E, IR), x E,

(12) $(99)(x) "-sup{99(a)-(d(x,a))’a e dom(99)}.

Then is a C-extension scheme which is -stable with 1 as constant of -stability,
DV-stable with a constant of DV-stability smaller than 3, and DS-stable with a cons-
tant of DS-stability smaller than 6. Moreover, for bounded 99, we have, for any x E E,

(13) inf{99(a) a e dom(99)} _< $(99)(x) <_ sup{99(a) a e dom(99)}.

Proof. Let 99 gt(E, IR). Since, by the definition of, we have

199(Y) 99(z)l _< (d(y, z))

for any y, z dom(99), Mc Shane’s theorem applies. Therefore $ is gt-stable with 1 as
a constant of gt-stability.

Now let 99, Ft(E, IR) with the same domain A. From (12) we have, for any
xEE,

1(99)(x) $()(x)1 _< sup{199(a ,(d(x, a)) (a) + (d(x, a)) a A}
_< sup{199(a -(a)l’a A}
+ sup{l,(d(x, a)) e(d(x, a)) a A}.

Now, using Proposition 2.2(1), we have

sup{(d(x, a)) (d(x, a))l a A} <_

Therefore $ is DV-stable with a constant of DV-stability smaller than 3.
Now we prove the DS-stability of $. Let 99 E Ft(E, IR), A, B be nonempty subsets

of dom(99), and x E. Without loss of generality, let us assume that

<

If 5(A, B) c, let b e B. From (12), we have

18(991A)(X) $(991)(x)[ <_ sup{199(a) 1(d(x, a)) 99(b) + 1-(d(x, b)) a e A}.

Now, for any a A, we have

sup{199(a 99(b)1,, (d(x, a)),-gl. (d(x, b))} < (oc).
Therefore, in this case, we obtain g(991A)(X) g(991B)(X)] <_ 3(5(A, B)).

If 5(A, B) < o, let us set 5 5(A, B)+ ? (? > 0). For each a E A, we choose
b(a) B such that d(a,b(a)) <_ 5. From (12) we have

< sup{199(a) ,ln (d(x, a)) 99(b(a)) + 1, (d(x, b(a)))]}
aA

< sup{l(a)-(b(a))l’a e A}
+ sup{[ls (d(x, b(a))) ,1 (d(x, a))]" a A}.
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By definition of, we have
Now, setting h := d(x, a), k d(x, b(a)) we have

I1 (k) 1(h)l -< Ils (k) 1(h)l + Ils (h) ,(h)l.

Since1 is subadditive, we have

I1 (k) 1(h)l <1 (Ih 1) <1(5) < (5),

and, using Proposition 2.2(2),

I,B (h) IA (h)l -< 4(5).
Since 7 > 0 is arbitrary and since is continuous, we infer that $ is DS-stable with
a constant of DS-stability smaller than 6.

Finally, let us assume that 99 E ft(E, IR) is bounded. By (12), we have $(99)(x) _<
sup{(a) a E dom(99)}. Now let 7 > 0 and choose b A such that

99(b) _> sup(99(a) a dom(99)} 7.

We have, from (12) again,

(99)(x) _> 99(b) (d(x, b)).

Now, by definition of we have

(d(x, b)) _< sup{99(a) a e dom(99)} -inf{99(a) a dom(99)}
<_ 99(b) -inf{99(a) a E dom(99)} + 7.

Therefore g(99)(x) >_ inf{99(a) a e dom(99)}- 7. The result follows since 7 is
arbitrary.

Remark 3.2. Henceforth, we denote by g the g described in (12). We also
define, for 99 gt(E, IR), x E,

(14) +(99)(x)"--inf{99(y)+ (d(x, y)) y e dom(99)}.

It can be seen that + satisfies Theorem 3.3, that -(99) _< +(99) for any 99 E

a(E, IR), and that -(99) < +(99) for most of 99 a(E, IR).

4. Study of the stability of some C-extension schemes in the litera-
ture.

4.1. We begin with the scheme T yielded by the proof of Urysohn-Tietze’s
extension theorem from Dieudonn’s handbook [2, pp. 89, 90]. We need a description
of T(99) only for those 99 ft(E, IR) such that inf{99(x) x dom(99)} 1 and
sup{99(x) x dom(99)} 2:

T(99)(a) 99(a) for a e dom(99),

T(99)(x) := inf d-id--0-m() for x dom(99).
aedom()

Let us show that T is ft-instable in every metric space into which a compact
interval [c, ] of IR can be metrically embedded. It is sufficient to prove the result
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when E [1,2]. For A :-- {1,a,b,2}(1 < a _< b _< 2) and f := identity, we obtain
from the definition of 7"

(flA)(X) a(x a) for
a + b < x < a2 -I- b2

b-x 2 a+b"

Now, for any strictly positive integer n, let us set

3 1 3 1 3
an:=2 2n’ bn:=+nn’ An:={1,an, bn,2}, xn:=, yn "=

2 2an + bn
an + bn"

A calculation shows that

Yn Xn
1 1

6n2
and T(YlA,)(yn) T(yIA,)(xn -.

Thus 7" cannot be f-stable.

4.2. Now we consider the original proof of the Urysohn-Tietze extension theorem.
In the metric case, this proof induces a C-extension scheme L/which is DS-instable in
every metric space in which a compact interval [c, l (c </) of lR can be metrically
embedded. It is sufficient to prove the result when E [-1, 1]. Let us recall the
definition of/A() for qo E :D(E, E). Setting

A:={ 1}{xEdom()’-l_<q(x)_<- B:= x e dom() < (x) < 1

we first define

1 d(x, A) d(x, B)
go E------ E" x --- 3 d(x, A) + d(x, B)"

Noticing that -go) we can23- (qo 7)(E, E), reiterate this definition with 23- (q go) in
place of , producing gl in place of go, etc. Then/A() is defined as

_
1} B’={-1 -1/2+ 1},andf :=Now, letAe :={-1, z 3, z , 2, z

identity. Computer-aided computations show that

1

Since lime-0 5(Ae, Be) 0, we infer that/g cannot be DS-stable.

4.3. Valentine [7, p. 107] proved, in a way different from Mc Shane, that any
partial O-continuous function from a metric space (E, d) to IR can be extended
to the whole space by a function which has the same weakly concave modulus of
continuity. His proof is an adaptation of the proof of the Hahn-Banach extension
theorem; the axiom of choice is used via Zorn’s lemma. Now, using the axiom of
choice again, we can select such a for each o and therefore obtain an f-stable t7-extension scheme with 1 as the constant of O-stability. It is hopeless to try to prove
the DV-stability and the DS-stability of such a scheme.

4.4. Dugundji [3] proved that any continuous partial function q of closed domain
from a metric space to a locally convex linear space can be extended to a continuous
function on the whole space (it is, as far as we know, the strongest result abou
the extension problem to continuous functions). The construction of the extension
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needs a locally finite refinement of a certain covering of the open set complement of
dom(99). Since the construction of this refinement [6] uses the axiom of choice (via
Zermelo’s theorem), it is hopeless to prove the DS-stability of this scheme. Notice
that Dugundji’s extension scheme is linear.

4.5. When E IRd, d >_ 1, and E is any real Banach space, there exist linear DV-
stable and -stable extension schemes. This result, which holds in the more general
context of extension to cm-functions, is essentially due to Glaeser [4]. In fact, the
linear scheme described in Whitney’s original extension theorem [8] is DV-instable
and gt-instable but a slight modification of Whitney’s construction yields a linear,
DV-stable, and t-stable extension scheme. Both original and modified schemes are
DS-instable.

Excluding the univariate case, we do not know of any linear DV+t+DS-stable
extension scheme to continuous functions.

4.6. Let us fix a modulus of continuity w and consider the extension scheme
4 defined by (10) for partial functions 99 satisfying (9). It can be seen that J4 is
DV-stable with 1 as the constant of DV-stability and that, for any 99 satisfying (9),
any A, B e H(E), A, B c dom(99),

(5) dE(A(991A), jA(991U)) <_ 2w(5(A, B)).

Proofs begin as in Theorem 3.3 but Proposition 2.2 is useless. We notice that (15)
is not DS-stable and (11) is not t-stable. Heuristically, we can say that (15) (resp.,
(11)) is as far from DS-stability (resp., t-stability) as is far from w.

5. Link between stable extrapolation schemes and stable extension
schemes.

THEOREM 5.1. Let (E, d) be a complete metric space. Let us assume that is a
DS-stable C-extrapolation scheme. Then extends to a unique C-extension scheme

which is also DS-stable with the same constant of DS-stability. Moreover, if is
DV-stable and/or -stable, also is with the same constants of stability.

Proof. Let 99 e t(E, E’) and set g dom(99),

A(K) := {A e A(E)" A c K}, II(K):= {A e H(E). A c K}.

Let us choose a sequence (An)eIN of elements of A(K) such that

lim (An, K)-O.

Such a sequence exists because E is paracompact [6]. Using the DS-stability of $, the
sequence $(991A,)(x is, for any x E E, a Cauchy sequence. Let us denote the limit by
$(99)(x). Again by DS-stability of $, the sequence ($(991A))eiN converges uniformly
to $(99). Therefore $(99) is continuous. By DS-stability of $ once more, $(99) does not
depend on the sequence (A)elN. Choosing, for each a E K, a sequence (A)elN
such that a A,, for any n IN, we infer that

$(99) lim $(991A,)(a) 99(a)

because t is an extrapolation scheme. Therefore $ is an extension scheme.
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Now let A, B E II(K). Let us choose

(A)neIN, An e A(K) An C A, lim 5(An A)= 0,

(Bn)n]N, Bn e A(K) Bn c B, lim 5(B B)= 0.

We have

dE(E(IA),E(CplB)) <_

Since is DS-stable, we have

+

d’E(e(lA),(ls)) C-(6(An, Bn)) <_ C,(6(A,B) + 6(A,A,) + 6(B, Bn)),

where C denotes the constant of DS-stability of $. Letting n cx, using the
definition of $ and the continuity of, we obtain

d((lA),(l)) <- C(5(A, B)).

This last inequality means that $ is DS-stable and that $ and $ have the same
constant of DS-stability.

Now, let us assume that $ is fl-stable with D as constant of fl-stability and let
(g,g’), x, y g. Set A dom() and let us choose An A(E), AN C A,

limn--.o 5(An, A) 0. We have

d’(8(99)(x),$(cfl)(y)) <_

Since is ft-stable, we have

d’(,f.(lA,)(X),,f.(CplA,)(y)) <_ D’,(d(x, y)).

The f-stability of follows by letting n oc. The proof of DV-stability is
similar.

PROPOSITION 5.2. Let $ be an t-stable and DV-stable extrapolation scheme from
a compact metric space (E, d) to a complete metric space (E’, d’) in which any closed
and bounded subset is compact. Then $ extends to an f-stable extension scheme with
the same constant of -stability.

Proof. Let f (E,E’) and set A := dom(f). We have to define $(f) for
A II(E)\A(E). Since E is compact, elements of A(E) are finite nonempty sub-
sets of E. Let (An)neIN be a sequence of finite nonempty subsets of A such that
lim_.o 8(An, A) 0. Since $ is t-stable and DV-stable, sequence ($(flA))nlN is
equicontinuous and equibounded. Therefore, by Ascoli’s theorem, there exists a sub-
sequence (Bn)nelN of (An)neIN such that limn-.o 5(Bn, A) 0 and (oe(flB))nelN
converges for the supremun norm. It remains to check that the limit of this subse-
quence is the desired $(f) with the required property.

Remark 5.1. The use of Ascoli’s theorem does not allow us to say anything
about the uniqueness of the extension. In fact, we cannot expect uniqueness from
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the hypotheses of Proposition 5.2. A counterexample is as follows. For E a compact
infinite metric space, let us define an extrapolation scheme $: for
is -() (resp., +()) (- and + have been defined in Remark 3.2) if the number
of elements of dom() is even (resp., odd). Now, let us define two extension schemes
1 and 2 by

for E T(E, IR),
for e gt(E, IR)\T(E, IR).

Using Theorem 3.3 and since bY-stability and -stability involve only fixed sets of
data sites, $ is a DV-stable and Ft-stable extrapolation scheme and 1 and 2 are dis-
tinct (see Remark 3.2) DV-stable and ’t-stable extension schemes which both extend. This remark highlights Theorem 5.1 and, in fact, the very notion of DS-stability.
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CONVOLUTION OPERATORS FOR RADIAL BASIS
APPROXIMATION*

JEREMY LEVESLEY, YUAN XU:, WILL LIGHT, AND WARD CHENEY

Abstract. We construct a large class of continuous integrable functions on ]R to serve as

kernels for approximations to the identity. These kernels are associated with convolution operators
that produce approximations to arbitrary continuous functions on IR by linear combinations of
shifted and dilated radial functions.

Key words, radial basis, convolution, quasi-interpolation
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1. Introduction. A radial function on lR is any function of the form x H
([Ix[[), in which I1" is the Euclidean norm and is any real-valued function defined
on [0, c). A shifted radial function is a function of the form x -, ([]x vii), where v
is a specified point in lRn. The radial function is then sometimes described as being
centered at v.

It was discovered in the 1970s by Roland Hardy [Ha] that such functions were use-
ful in the interpolation of scattered data. For some time their use rested on empirical
results. It was observed, for example, that the surfaces produced by the interpolants
possessed very good visual qualities (Franke [F]). In addition, the interpolation ma-
trix seemed always to be nonsingular for the common choice of (the multiquadric).
The important papers of Micchelli [M] and Madych and Nelson [MN], as well as the
rediscovery of work by Schoenberg [S1]-[$4], showed that the observation about non-
singularity had a very firm theoretical basis.

Once the interpolation problem was better understood, there arose another im-
portant question as to the approximating power of shifted radial functions. Two
fundamental tools for studying this problem are convolution techniques (when the
centers can be arbitrary) and quasi-interpolation or interpolation techniques, which
work best when the centers are regularly distributed throughout lR. The regularly
distributed centers are assumed to be located on the scaled integer grid hn, where
h > 0. In this case, Fourier transform methods can be used, and results which measure
the quality of approximation offered by the set

in terms of some power of h are obtained. Major developments in this field are due
to Jackson and Buhmann [Ji], [Bu], and these results are often somewhat surprising.
Neither convolution nor quasi-interpolation can be used in a crude way, as most of
the common radial functions exhibit growth at infinity, whereas both these techniques
need functions which have rapid decay. However, if we did have sufficiently rapid decay
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at infinity, then the convolution method is as follows. Suppose that is continuous
and positive on [0, ). Assume also that

(1.2) J0 tn-ll(t)l dt < cx3.

Then for any f E Co(lRn) and any x,

(1.3) lim ck f (k[Ix YlI)f(Y) dy f(x).

(Here ck are certain coefficients depending on only.) This result is a classical theorem
on convolution in disguise. Indeed, if we set G(x) ([x[), we find that G is in
LI() since (by passing to polar coordinates),

G(x) dx G(v)[ dS-l(v) dr

(1.4)
n- (r)r- dr < .

The positivity of ensures that f G(z) dz 0. Hence -IG is a suitable kernel,
giving rise to the approximate identity Gk(z) -lknG(kz). Then by he classical
theory, G f f pointwise for each f C0(N). The convergence is uniform
on compact sets. Refer to [SW, p. 11] for further details. After approximating the
integral in equation (1.a) by a quadrature formula, one obtains approximations to f
of the form

j=l

Such functions are a linear combination of shifted, dilated radial functions. The shifts
are the v, and the dilation Nctor is k > 0. A byproduct of this analysis is that the
set of functions

is fundamental in C0(); i.e., its linear span is dense. In such assertions, the topology
of uniform convergence on compact sets is assumed to be in force on the linear spce

As we have already pointed out, when one considers the radial functions used in
practice one sees that (1.2) is far too stringent n assumption. For example, (1.2) is
clearly not satisfied for the multiqudric referred to previously, where (t) t2 + c,
c > 0. Because of this, one needs alternative methods of manufacturing kernels G G

LI(n). The technique of Jackson was to define G as a finite linear combination of
shifts of the radial function. Thus Jackson sought coefficients al,..., am in and
centers u,..., Um in such that the function G C(n) defined by

m

a(x) a (llx
j=l

satisfies G E LI(IRn) and fl= G # 0. One of the surprises of the theory is that this
apparently easy goal is often unattainable. In a manner which depends critically on
the parity of n, one often finds that G LI(]R) implies fn= G 0.
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Our procedure for creating a useful kernel from a given function is more general
than that of Jackson. First, we average (llx- tvll as v ranges over the unit sphere
Sn-- in ]Rn

(1.5) g(x, t) 02n--ll j_l (IIX- tvll) dn-l(v) (x e ]pn, t e ]R).

In this equation, dSn-l(v) represents the rotationally invariant measure on S-1 that
is consistent with Lebesgue measure in IR (via the standard polar coordinate system).
The symbol w_l represents the measure of S-. Equation (1.5) appears frequently
in the literature. See, for example, [Jo, p. 2], [SW, p. 38], [GS, p. 78]. It is readily
seen that g(x, t) is a radial function of x and an even function of t.

In the second step, we construct our kernel by putting

(1.6) G(x) ] g(x,t) d#(t) (x e ]n),

where # is a finite, signed, regular, Borel measure having compact support. By ma-
nipulating this measure we hope to produce a kernel G such that G E L(lRn) and

Our subsequent analysis will have the following features:
1. Very weak assumptions are made on . Roughly speaking, we assume that

1 --2 where x H 1(11x11) is in nl (][:n) and 2 has a power series form
for large values of its argument. See Lemma 3.1 for details.

2. Despite the significant increase in generality over Jackson’s approach, we still
find that G E L (JRn) often implies f G 0. Again, the parity of n plays
a role, indicating that the reason for this phenomenon is the compact support
of the measure #. See Theorem 4.7 for example.

3. We give very general conditions for f G 0. We suspect these conditions
are necessary.

Our analysis needs quite a few preliminary results. Some of these are technical
facts about hypergeometric functions. Such results are collected in 2. In 3 we
examine the possibility of the kernel constructed being in Ll(]ptn). Finally in 4 we
study f G. We conclude this section with some examples of cases when kernels with
nonzero integrals can be constructed.

2. The function h.
LEMMA 2.1. If and g are as described in 1, then, with r IIx]l and

(n- 3)/2, we have

(2.1) g(x, t) ---(,dn--20J._l [(r2 + t2 2rst)l/2] (1 s2) ds.

Proof. Fix x, r and t. Define

(s) (/) [(r2 -t- t2 2ts) 1/2] (-1

_
s

_
1).

By an equation in [Jo, p. 8] or equation (2.1) in [XLC] we have

g(x,t) --dn--l_l Sn_ [{IlXll 2 --2t(x,v} -t2]lVl12} 1/2] dn-l(v)

2n--1--1 S-I 2((X, Vl) dn-l(v)

C0n-20-11 (rs)(1 s2) ds.
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A central role in this paper is played by the function

(2.2) h(z) h(3, A,z) (1 + z2 2zs)Z(1 s2)ds (Izl < 1).

Here/3 c lR and A > -1. In this section, we shall prove that h is a hypergeometric
function and use that information to study the coefficients in its Maclaurin series. We
adopt the following standard notation for the Gauss hypergeometric function:

(2.3) F(a, b, c, z) E (a, k)(b, k) zk (Izl < 1)
k=0

(C, k)k!

In this equation, the Pochhammer symbols are defined by

(2.4) (a, k) a(a + 1)(a + 2)... (a + k 1) (k _> 1).

By convention, (a, 0) 1. See [AS, Chap. 15] for information about the hypergeomet-
ric function.

LEMMA 2.2. The function h is even and analytic in the open unit disk of the
complex plane.

Proof. With the substitution t -s in equation (2.2) we obtain

h(-z) (1 + z + 2zs)(1 s)’x ds

(1 + z 2zt)(1 t) )’ dt h(z).

Hence h is even. Since ) > -1, the factor (1- s) )’ is integrable. rthermore,
a singularity can occur in the integrand only when z 2zs + 1 0, i.e., when
z s + iv/1 s, s c [-1, 1]. These singular points lie on the unit circle, and hence
h is analytic in the open disk.

THEOREM 2.3. If IR and A > -1, then for [z < 1,

A _[_ , Z2(2.5) h(/ ,z)
r(: + 1)r(1/2)F(-Z - Z- , ).
r( + )

Proof. Make the change of variable s 2t 1 in equation (2.2) to obtain

/01h(,,X,z) 2 [1 + z 2z(2t- 1)](2 2t))’(2t)adt

fO(2.6) 2a+l [(1 + Z) 4zt]t)’(1 t) dt

t(1 t) dt.22A+l (1 + Z)2 1
(1 + Z)2

We shall now employ several formulm from [AS]. Each is valid in some neighborhood
of the origin, and the result of using them will be a representation of h that is valid
in a neighborhood of the origin. Formula 15.3.1 from [AS] is

r(c) j01(e.) (a,,,) r()r(- ) tb-l(1--t)c-b-l(1--tz)-adt"
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Employing equations (2.6) and (2.7) we have

(2.8) h(/3, A, z) 22x+1[F(A + 1)12
F(2A + 2) (1 + z)2F (-3, A + 1, 2A + 2,

Formula 6.1.18 from [AS] is

(2.9) r( )r (z + 1/2) 21-2Zv/- r(2z).

4z

(1 + z) 2

This leads to

22a+1[F(A + 1)] 2 F(A + 1)r(1/2)
r(2,x + 2) F(A + 1

Formula 15.3.27 from [AS] is

(2.11)
4z )F(a, b, a- b + 1, z2) (1 + z)-2aF a, a- b + , 2a- 2b + 1,

(1 + z)2

In (2.11) we set a - and b -A- - . Using equation (2.8), we are led to
equation (2.5), valid in some neighborhood of the origin. Since h is analytic in the
unit disk, equation (2.5) is valid in theunit disk. [3

In the future, we denote IF(A+ + by . It is not zero because the
Gamma function has no zeros, and its poles are at 0,-1,-2,..., whereas A + 23- > 1/2.

LEMMA 2.4. Let E ]R and let > -1. Let

h(,A,z) (1 +z2-2sz)Z(1-s2)ds= Ecj()z2J.
j=0

The condition cj() 0 occurs if and only if j >/3 E Z+ or j > +/3 + 1/2 Z+.
Proof. By Theorem 2.3,

(-/, j)(-A- 3- ,j)
( + ,j)j!

Since 7 # 0, we see that cj(/3) 0 if and only if (-/, j) 0 or (-A -/- 1/2, j) 0.
Since

(-,j) -(- + 1)(- + 2)..-(-/3 + j 1),
we have (-, j) 0 if and only if/3 {0, 1, 2,..., j 1}. Equivalently, j >/3 Z+.
The other Pochhammer symbol vanishes if and only if j > A +/ + 1/2 Z+. [3

LEMMA 2.5. Let F(a, b, c, x) =0Axk, where -c q Z+. If b # 1 then

(b- 1)-lF(a,b 1, c,x) E Ak,(k q-- b- 1)-ixk.
k=0

If i b IN, the singularity when k 1 b is removable.
Proof. The coefficients in (b 1)- iF(a, b 1, c, x) are

(a, k)(b 1, k) (a, k)(b, k 1) (a, k)(b, k)
(c, k)k!(b 1) (c, k)k! (c, k)k!(b + k 1)

Ak
k+b-1
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Since (b,k- 1) b(b + 1)(b + 2)...(b + k- 2), the zeros of (b,k- 1) are b
0,-1,-2,...,2-k. Thus if 1-b E iN, we have (b,k- 1) 0 for k _> 2-b.
The last nonzero term in the series will correspond to k 1 -b. This term is

(, k)(, k ) (, k)( , )x (’ )(-)-
(,k)! (,)k! (,)

The proof is thus completed.
LEMMA 2.6. Define Ak as in Lemma 2.5. If -c Z+ then

A xk ([x[ < 1).(2.12) c-lF(a,b,c + 1, x) E k + c
k--0

Proof. The hypothesis on c ensures that F(a, b, c, x) is well defined. The equality
asserted rests upon this identity between the coefficients of xk on the two sides

(a, k)(, k) (a, k)(, k)
(c + 1, k)k!c (c, k)k!(k + c)

LEMMA 2.7. Consider the hypergeometric function

(2.13) F(a, b, c, z) E Akzk (Izl < 1).
k--0

If the real part of (c a b) is positive, then the series converges absolutely on the
circle Izl- 1, and Gauss’ formula is valid

r(- - )r()(2.14) limF(a,b,c,x)
xT1 r(- a)r(- b)

Proof. See [AS, p. 556].
LEMMA 2.8. Let n >_ 2, c > -n, c/2, (n-3)/2. Define ck() as in

Lemma 2.4. Then these series converge absolutely

(z) (z)(2.15) E n + 2k’ n + a- 2k
k=0 k=0

Proof. By Lemmas 2.4 and 2.3, using ck c(/), we have

E cz2k h(, , z)
r( + 1)r()
r( + ])

Leta=-/,b=-A-/-21-,c=A+,andx=z2. Then

E CkXk 7F(a, b, c, x).

We note that c -Z+. Hence Lemma 2.6 applies, and we have

Ck Xk c_lF(a,b,c+ 1,x).Ek+c
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We note also that b 1. Hence Lemma 2.5 applies, and we have

E k + b_
xk (b- 1)-lF(a,b- 1, c,x).

Both of these last two series converge absolutely for Ixl 1 by Lemma 2.7. Hence the
series ck(k + c) -1 2 c}(n + 2k) -1 converges. Similarly, the series ck(n + a
2k) -1 converges. []

LEMMA 2.9. Define Ak by equation (2.13), and assume that 0 < c- a 1- b
and that -c Z+. Then

Ak Ak(2.16) E k + c 1 b- k"
k=0 k--0

Proof. Note that b 1. Hence, by Lemma 2.5,

(2.17) (1 b)-lF(a,b 1, c,z) E Ak(1 b- k)-izt (Izl < 1).
k=0

Since c- a- (b- 1) 2(1 -b) > 0, Lemma 2.7 applies, and we conclude that the
series in equation (2.17) converges absolutely when Izl 1. In particular, it converges
at z 1. Hence by Abel’s Theorem [W, p. 320],

1(1 b)-lF(a,b- 1, c, x) E Ak(1 b- k) -1.
k--0

Using Gauss’ formula in Lemma 2.7, we obtain

F(c + 1 a b)F(c) E Ak(1 b- k) -1.(2.18) (1 b)F(c a)F(c b + 1)
k=0

In exactly the same way, starting with Lemma 2.6 we obtain

F(c+l-a-b)F(c+l) =EAk(k+c)-1.(2.19) cF(c + 1 a)F(c + 1 b)
k=0

By using the identity xF(x) F(x + 1) we see that the left sides in equations (2.19)
and (2.18) are equal. [:l

LEMMA 2.10. Let n >_ 2, (n-3)/2, and > -n/2. Define cj(/) as in
Lemma 2.4. Then

E cj()(n + 2j) -1 E cj (fl)(n + 2fl 2j) -1.
j=0 j=0

Proof. Define a, b, c, and x as in the proof of Lemma 2.8. Then the assertion of
Lemma 2.8 is valid. The hypotheses of Lemma 2.9 are now fulfilled since

3 n
c-a=A++= +/>0,

1 n
1-b= l + A ++ - - +=c-a,n z,+.
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By Lemma 2.9,

E nk(k t_ c)-I E Ak(1 b k) -1.
k--0 k--0

Here Ak are the Taylor coefficients of F(a, b, c, x). Hence Ak -c(). Inserting the
values of c and b in the preceding series, we obtain the equation to be proved.

LEMMA 2.11. Let n >_ 2 and a > -n. Define ck() as in Lemma 2.4. Define

R(n,a)= E cj - n+2j n+a-2j
j=0

2jn--

For R(n, ) to be nonzero, it is necessary and sufficient that n+ E 2 IN and 2Z+.
Proof. If n + a 2Z+, then in the sum defining R(n, a) the condition 2j : n + a

is vacuous (and can be omitted). In this case, R(n, a) 0 by Lemma 2.10.
Assume, therefore, that n + a 2rn E 2Z+. Since n + a > 0 this means

n + a 2 IN. By Lemma 2.10 we see that

-R(n, a) c, - n + 2m n+a-2m

This is precisely the term in which we must cope with the removable singularity
mentioned in Lemma 2.5. As in Lemma 2.8, let a- -a/2, b- -A- a/2- 1/2, and
c n/2. Then we have

(a, rn) (b, m 1)(b + rn 1)(c,m)m!

Since 2m- n- a 2(b + m- 1) we have

(b,m- 1)

Therefore R(n, ) 0 if and only if (a, m)(b, rn- 1) 0. Recall that a Pochhammer
symbol (x,k) vanishes if and only ifx Z and 1-k <_ x _< 0. It follows that
(b, m- 1) : 0, because

b (-n- a + 2)/2 -rn + 1 < 1 (m- 1).

Thus we conclude that R(n, a) 0 if and only if (a, m) 0. This is equivalent in
turn to

(i) aZandl-m_<a_<0,
(ii) a 2Z and 1 rn <_ -a/2 <_ O,
(iii) aE2Zand0_<a<_n+a-2,
(iv)

3. The integrability of G. Recall from 1 that if a function has been pre-
scribed, we define a function G on ]Rn by the formula

(3.1) G(x) wn-2 [llxll 2 + t2 211xl.st] 1/2 (1 s2)dsd#(t).
2n--1
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Here # is a regular, signed, Borel measure having finite total variation and compact
support. Let a be chosen so that the interval I-a, a] contains the support of #. To
ensure the local integrability of G, we assume that E C(0, c) and that (r) O(r)
as r -- 0, for some 0 > -n.

Our analysis involves the moments of the measure #, defined by

./’n tJ d#(t) (j 0, 1, 2,...).mj

We also require the function h(z) h(,,,z) from equation (2.2), in which
(n- )/.

LEMMA 3.1. Let be a function as described above that is expressible for sujCfi
ciently large values of r in the form

In+a]

(3.2) (r)= E akr"-k+l(r)’
k=0

where ao 7 O, c e ]R, and 1(11x11) e LI(]R’). Let h, #, G, my, a, and cj be as above.
For G to be integrable it is necessary and sufficient that

(3.3) E akcj(a-k) ,=0 (0_<._<+[]).
kW2j--

Proof. The process that generates G from is linear and produces an integrable
function from 1. Hence, without loss of generality, we shall assume that for r > A,

Since G is a radial function

--12 Ji la(x)l dx

,() a-..
k=O

COn-1 r_llGo(r)l dr
dn--2

L Ifrn-1 ([r2 + t2 2rst]1/2)(1 s2)x dsd#(t) dr

In+c] a .
ak/ / (r2 + t2 2rst)(a-k)/2(1- s2) "x ds dtt(t)

’0= J-a J --1
dr

k=0 a r
dr

[n+a] oc

Ea ro-l/o- ;
k=0 a j=0

2j

d#(t) dr

[n+a]

k=0 j=0

dr

E rn+-l-E E acy
a-k

u=0 k+2j=u
2 m2j dr.



CONVOLUTION OPERATORS FOR RADIAL BASIS APPROXIMATION 295

It is straightforward to prove that

cj (a- k)<const.2 k2J<cnst’[n+c+l]2J-

Therefore, the double series in the penultimate line of the above calculation is abso-
lutely convergent if p is sufficiently large. This justifies the rearrangement of series in
the ultimate line.

Our calculation shows that G E LI(IRn) if and only if the coefficient of rn+-
is zero whenever n + 1 _> -1. This leads to equation (3.3). [:]

We shall require in our analysis the following result in linear algebra.
LEMMA 3.2. Define linear functionals L(x) -k+2j= akjxj, in which 0 <_ <_

N, k >_ O, j >_ O, aoo O, and akj 0 == aki 0 for i >_ j. Let s be the largest integer
x-N-2sfor which z_,k=0 lak8[ > O. The following properties of the x-vector are equivalent:

(1) L(x) O for O <_ <_ N; (2) xj O for O <_ j <_ s.

Proof. Assume that (2) is true. Then for each we have L(x) E+2j=,>8 ajx.
By the definition of s, a 0 if j > s and 0 <_ k <_ N 2j. Hence L(x) O.

Now assume that (2) is false. Let a be the first integer for which x : 0. Thus
N-2 [a > 0. Hence there is an index0 _< a _< s. By the definition of s, k=0

# E [0, N- 2s] for which a : 0. By the hypothesis on the array (ai), we have

a : 0. Let 3 be the smallest integer for which a : 0. Thus 3 _< # <_ N- 2s. Put
=/ + 2a. Thus _< (N 2s) + 2s N. Also a_, a : 0. If j > a, then- 2j < - 2a -/, and by the definition of/, a_j, 0. Since j > a, a_2, 0.

If j < a then by the definition of a, x 0. Consequently,

L(x) E akjxj

_
a-2j,jxj a-2a,axa azx 0.

k+2j--- j

Thus (1) is false. V1

THEOREM 3.3. For G to belong to LI(]R) it is necessary and sufficient that
m2j 0 for 0 j <_ s, where

n+[a]-2j

k=0

Proof. We intend to use Lemmas 3.1 and 3.2. Define

ak-acj 2
N=n+[c], and

We verify the hypotheses of Lemma a.2 in the present case. We have
0 because ao has explicitly been assumed to be nonzero, and c0(a/2) 0 by Lemma
2.4. To verify the other hypothesis, suppose that it fails. Let a 0, i > j, and
ak : 0. Then ak 0 and cj(-) O. By Lemma 2.4, c(-a-) 0 also, contradict-
ing the assumption aki O. By applying Lemma 3.2 to the system of equations (3.3)
we obtain the desired conclusion.

An alternative version of Theorem 3.3 can be obtained by establishing a different
formula for the parameter s. Having fixed n and a as above, we define

{ 0},(3.4) p max j Z+ "j <_ (n + a k)/2 and cy
2

(3.5) Q max{pk" 0 _< k <_ n + a and ak # 0}.
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LEMMA 3.4. S Q.
Proof. By the definition of Q, there is an integer k such that ak 0 and pk Q.

By the definition of pk, cpk (-) 0. Hence a,pk O. By the definition of s, akj 0
forj > s. Hencepk <_ s and Q <_ s. To prove that s <_ Q, we note first that by
the definition of s, z.=o laksl > 0. Select an index k E [0, n + a 2s] such that
ak8 O. It follows that ak 0 and cs(a--) 0. Since s _< (n+a-k)/2, the
definition of p yields immediately p >_ s. Since k
the definition of Q yields Q _> p. Hence Q

LEMMA 3.5. Define p(D) max{j E Z+ j <_ + and cj(D) 0}. Then

p() + fl- 1

if Z+,

if Z+ and + lN,

ifflZ+and +fllN.

Proof. As a consequence of Lemma 2.4 we know that cj (fl) 0 if and only if
(1) either(j>fleZ+)or(j> +fl-leZ+).

Consequently, cj() 0 if and only if
(2) (j>fleZ+)and(j> +-leZ+),

in which signifies logical negation. Thus we have the following formula for p(fl):
(3) P(Z) max{j e Z+’(j _< +Z)and (j > Z e Z+) and (j > +fl-1 e

If fl E Z+, then from (3) we have

The other two cases are treated similarly []

The point of this analysis is that we can now reformulate Theorem 3.3 in a way
which is usually easier to apply.

COROLLARY 3.6. The quantities Pk defined by equation (3.4) are given explicitly
by the formula

k)/e

Pk (n + a- k- 2)/2

[(n + a k)/2]

if o- k 2Z+,

if o k 2Z+ and n + a k 2 ]N,

if o k 2Z+ and n + o k 2 IN.

For G to belong to LI(]Rn), it is necessary and sufficient that m2j 0 for 0 <_ j <_ Q,
where Q is given in equation (3.5).

4. The integral of G. As discussed in 1, the two conditions required of a
mapping G lR" lR for it to be a suitable kernel are that G LI(]Rn) and that

f G(x)dx O. In 3, we elaborated on the first of these conditions. Now we address
the second. The main results are Theorems 4.7, 4.10, and 4.12.

We recall the manner in which a kernel G has been constructed from a function
e c(0,

(4.1) G(x) w-l-i /R,_ (llx tvll) dSn-l(v) d#(t)"
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Here # is a regular, signed, Borel measure on ]R having compact support and finite
total variation.

The first result indicates that there is a delicate balance between the two desider-
ata that G E L and fG 0.
Toa 4.. ppo that th ,,ton (llzll) n L(’). Thn

LI(]Rn). If fR d#(t) O, then ft G(x) dx O.
Proof. The function G is obtained by applying two averaging processes to the L

function x (llxll), and consequently G E L1. By the Fubini theorem we have

(4.2) ]i G(x) dx wn-l-l jR ,-1 jn (llx tvll) dx dSn-l(v)

dn--11 fR S’-1 /R (,,X]])dxdSn-l(v)d#(t)

This calculation proves the second assertion of the theorem. [:]

Theorem 4.1 indicates that if the function is "too nice," i.e., fR I(llxlI)l dx
c, then our procedure may lead to a function G having a zero integral.

With the aid of Lemma 2.1 we have, using Go(llxll) G(x) and go(llxll,t)
(x,t),

(4.3)

/0a(z) dz On-1 r’-lao(r) dr

-1 - o(,tl a.(tl

=Wn-2 rn-1 ([r2+t2-2rst]l/2)(1-s2)dsd,(t)dr

w_ lim f I(M, t) d(t),
M

in which we have introduced the abbreviations

(4.4)

(4.5)

I(M,t) k(r,s,t)dsdr,

k(r,s,t) r-l([r2 + t2 2rst]l/2)(1 s2).
LEMMA 4.2. Let 0 < t <_ a < M, where a is chosen so that supp(#) C I-a, hi,

and M is fixed. Let f(r,t) (r2 + t2 M2)/(2rt). Let k be as above. Then the
expression

(4.6) J
-1

8,[joM+t __1 fj;+__t _fl(r,t)l k(r, t)dsdr

is independent of t.
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Proof. Put e(r, t) max{-1, f(r, t)}. Then

M+t e rn-l_..r2([ -9 t2 2rst.1/2._1] )(J 82)A ds dr.
ao (r,t)

Change variables from s to v by setting v (r2 + t2 2rst)l/2;

M+t fmin(r+t,M)(4.8) J r2-2t2-n(v) Iv (r t) 2] [(r + t) 2 v2] v dv dr.
J0

Now reverse the order of integration;

(4.9)
M v+[ -t.-() [(v + t). r] [ (v t).]

Finally, change variables from r to w by r (v2 + t 2vtw)l/2;

(4.10) J (v)vn-i dv (1 w2)x dw.

In this argument the following identity is useful:

[v ( t)] [( + t) v] [( + t) ] [ ( t)]. o

LEMMA 4.3. Let -a <_ t <_ a and M > 4a. Let I(M,t) and J (= J(M)) be as

defined above. Then I(M, t)- J(M) does not depend on the values of in [0, M/21.
Proof. Note that I(M,t) is an even function of t Lemma 2.2. It is therefore

sufficient to consider t > 0. We have, as in the preceding proof,

I(M, t) k(r, s, t) ds dr

+ k(r,s,t)dsdr
JM-t JM

(ooM-t/l__ M+tfl M+t_f(r,t) M+t/ll)+f +f -f
JM-t (r,t) JM-t --1 JM

(r,t) J M-t J-1 JM

J(M) + L) k(r, s, t)d8 dr.(fat fj f___l(r’t)-- fj:
In both integrals on this last line, we have 0 _< t _< a, -1 _< s _< 1, and r _> M- t.
Hence the argument of satisfies

(r2+t2-2rst)l/2>_(r2+t2-2rt)1/2=lr-tI>_r-t>_M-2t
>_ M- 2a > M- M/2 M/2.
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LEMMA 4.4. Adopt all the preceding notation, and assume that mo O. If the
function G in equation (4.1) belongs to LI(]Rn) then its integral does not depend on
the values of in any bounded subset of (0, o).

Proof. Let I(M,t) and J(M) be as defined in equations (4.4) and (4.6). Let
supp(#) c I-a, hi. Since #(JR)--0, we have, from equation (4.3),

a(x) dx lim w_ I(M, t) d#(t)

lim wn-2 [I(M, t)- J(M)] d#(t).

By Lemma 4.3, if M > 4a, then I(M, t)- J(M) does not depend on the values of
in (0, M/2]. For sufficiently large M, this last interval contains any given bounded

subset of (0,
LEMMA 4.5. Let n >_ 2, c > -n, (t) t for t > O. Define I(M, t) by equation

(4.4) and let cj cj(/2). Then

I(M,t) =lt+

cj t 2
+M+

=o n +- 2j

Proof. Recall (from the proof of Lemma 4.3) that I(M, t) is an even function of
t. Write

I(M,t) k(r,s,t)dsdr.

The integrand can have singularities at r 0, t r, and s 1. When t 0, the
integrand contains the factor r-lr. This is integrable since n- 1 + > -1. Since
n 2, we have A -1/2; thus (1 s2)x is integrable. To treat the singularity at
r t, we write

I(M, t) lim + k(r, s, t) ds dr.
e,O

By using Lemma 2.4, we can compute the first summand on the right follows:

lim rn_t r r
s,0 -1

+ 1 2s (1 82)A dsdr

(lim h
c r

eo -, A, rn-lt dr

lim t rn- cjo
j=o

dr

s0 n + 2j t
j=O

tn+alimo
cj

xT n + 2j
Xn-b2j
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By Lemma 2.7, the series E cj/(n + 2j) converges. By Abel’s theorem [W, p. 320],
the evaluation of the limit above yields

tn+a E cj

n+2j
j=0

A similar analysis, appealing to Lemma 2.8 and Abel’s theorem, gives

lim k(r, s, t) ds dr cj Mn+ tn+
550 5 j=0

n + a- 2j M
2jnWa

Notice that by Lemma 2.4, cj 0 when 2j n +
LEMMA 4.6. Let f and k be as in Lemma 4.2 and equation (4.5). If t > 0 and

(t) t-n, then

lim k(r, s, t) ds dr O,

fM+t ff( ,t)lim k(r, s, t) ds dr O.
M--cx JM-t d-1

Proof. We assume that M > 3t. Then it is easily verified that -1 <_ f(r, t) <_ 1.
Also, in the integrals above, we have s _< 1, r >_ M- t >_ 2t > 0. Hence

1 + (t/r) 2s(t/r) >_ 1 + (t/r) 2 2(t/r) (1 t/r)2 >_ 1/4.
If we write

then we see that

k(r, 8, t) m--l(?2 -- t2 2srt)-n/2(1 s2) "x

r-1 [1 + (t/r) 2 2s(t/r)]-n/2(1 s2),
0

_
k(r, 8, t)

_
r-1(1/4)-n/2(1 82) A.

Hence, an upper bound for both integrals is

fM+t/1 fM+t /1k(r, s, t) ds dr <_ 2n r-1 dr (1 s2) ds O.
JM-t -1 JM-t -1

THEOREM 4.7. Let be an element of C(0, ) that can be represented as

(r)----- E akra-kWCx(r)’
k=0

where ao O, a e JR\Z, and 1([[" I[) e nl(]l:n). Assume also that G e LI(]Rn) and
Q > 0 (definition in equation (3.5)). Then f G O.

Proof. Since G e L, Theorem 3.3 implies that m2j 0 for 0 < j < s. By Lemma
3.4, s Q. Hence m0 0. By the definition of Q in equation (3.5), n + cr > 0. Since
aZ,n+a>0. Let0=-,andsetG-F+H, where

I-I(z) n-l_.l _ o(11 tvll) dS-l(v)

F(x) w-_ - i(llx tvl[ dS’-(v) d#(t).
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Since m0 0, it follows from Theorem 4.1 that f F 0. Now consider f H. Recall
that supp(#) c I-a, hi. Choose L so that L > 3a. By Lemma 2.1, equation (4.4), and
Lemma 4.5, we have, for M > L,

w_ f H(x) dx
02n--2 Jllxll<--M

rn--1 0(It2 + t2 2rst]l/2)(1 s2)dsdrd#(t)
a

ak
k--0 a

rn-1 (r2 + t2 2rst)(-k)/2(1 s2)dsdrd#(t)
-1

{/_ (a-k)[2n +1E ak Iris+"- d,(t) cy
2j

k=0 j=0
n+a-k-2j

j=0
n+a-k-2j a -- d#(t) }.

By Lemma 2.10 we have

2 ) n+2j
j=O

1

n+a-k-2j
=0 (0 <_ k <_ n+a).

Since H E LI(]Rn) the expression

cJ (-a- M-2J t2J d#(t)akMn+-kEn+a-k-2j
k=O j=0 a

cannot contain any positive power of M. Hence the highest term present has a negative
exponent since a is not an integer. Thus the expression under consideration converges
to 0 as M tends to c. It follows that

H- lim
M---,cx xll<_M

H=0.

LEMMA 4.8. Adopt the hypotheses of Theorem 4.7, except that now a Z. Define
m f ItlZ d#(t) and

R(n,/)= E cj - n + 2j n +- 2j
j=0

2jn+

Then there is an index such that

G(x) dx Wn-2amn+a-,R(n, a ).
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Proof. Proceed as in the preceding proof, and define

l(r) --(r)-an+r-n (r > 0).

Then we have G H + F + K, where

Then, by Theorem 4.1, f F 0, and by Lemma 4.6, f K 0. Note that when
c -n, H 0, and so we shall henceforward consider only the case c > -n. Now,

I(M) I H(X) dx

LM/_zLdn--2 01 (Jr2 -- 82 2rst]l/2)(1 82) A dsd#(t)dr
a -1

M a n+c-i

=w-2 L f- E ak L (r2 +t2-2rst)e--(1-s2)dsd#(t)dr
a k--0 -1

a nq-c--

:’n-’ i E ak’’’’+’- E c’ (c- k) 1
2 n+2ja k=0 j=0

2jTnWa-k

1
n +c- k- 2j

d#(t)

a nq-a--1 o

-t-Wn-2 f_ E akMn+a-k E
a k=0 j=O

2jTn-t--k

(-)
n +a-k-2j (-) d#(t)

n+c--I

n- a+_(, )

n+c--I o

+(Mn--2 E akMn+a-k E
k=0 j=0

2jTn-b-k

--g-)
M_2Jm2j.

n+a-k-2j

The penultimate step above utilizes Lemma 4.5.
Since G E L and

J G /H M--+oolim I(M),

we see that in the final equation for I(M), any term Mn+a-k-2J with positive ex-
ponent must have zero coefficient. The term with 0 exponent is missing because
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2j # n + a k. Hence only negative exponents occur, and all terms involving M are

either zero or converge to 0. Thus

n+c--I

/ G dn--1 E akmn+_kR(n, a k).
k--0

It remains to be established that this sum contains at most one nonzero summand.
Define

min{k’akR(n,a- k) 0}.
If there is no index k such that akR(n,a- k) O, then fG 0 and the proof
ends by setting 0. We assert that only the summand corresponding to k
can be nonzero. Since R(n,a-) 0, either a- is odd or a- is even and
negative, by Lemma 2.10. In any case, (a- )/2 Z+. Hence, by Corollary 3.6,
p _> (n + a 2)/2. By equation (3.5), Q _> (n + a 2)/2. By Theorem 3.3
and Lemma 3.4, we have m2j 0 for 0 _< 2j _< n +
The corresponding summand is 0 by the definition of . Next, let < k _< n + a 1.
Thenl_<n+a-k<n+a-. Ifn+a-kiseventhenmn+_=0. Ifn+a-k
is odd, then n and a- k are of opposite parity, and R(n, a- k) 0 by Lemma 2.9.
Thus in either case, the term akR(n, a- k)mn+-I is 0. []

We now apply the results of 3 and 4 to a number of examples. When we do not
make any explicit statement about
is assumed to have the form given in Theorem 4.7. An important feature of Theorem
4.7 is that we only make assumptions about the behaviour of "at infinity," and so
many of our results need no information about the behaviour of in any bounded
neighbourhood of zero. This is a substantial generalisation of the work of Jackson [Ji].
We begin with an easy case in which we can be completely prescriptive.

Example 4.9. Let E C[0, ), >_ 0, and (t) t for large t, where c < -n.
Then G E LI(IR) by Lemma 3.1. To have f G(x) dx 0 it is necessary and sufficient
that m0 # 0. (See the proof of Theorem 4.1 for this fact.)
The next two results encompass some of the examples mentioned by Jackson [Ji].

THEOREM 4.10. Let n and be odd, c + n > O. In order that G L1(jR) and

f G(x) dx 0 it is necessary and sufficient that m2j 0 for 0 < 2j < n + 2 and
m+#O.

Proof. By Lemma 2.11, R(n,c) # O. By hypothesis, a0 # 0. Hence by the
definition of (in the proof of Lemma 4.8), 0. By Lemma 4.8,

G(x) dx w------2aom+R(n, ).
dn--1

Since a 2Z+, and a + n 2 IN, we see by Corollary 3.6 that p0 (n + a 2)/2.
Also by Corollary 3.6 we have pk <_ po. Hence (by equation (3.5)), Q p0. In order
that G L1, it is necessary and sufficient that m2j 0 for 0 _< 2j _< 2Q. Hence the
condition mn+ # 0 is equivalent to f G(x)dx

Example 4.11. For the multiquadrics mentioned in the introduction, we let
(t) (a2 + t2)/2. For this function the asymptotic series has a 1. Hence in
odd dimensions we can obtain a suitable kernel and give a constructive proof of the
fundamentality of the set {x H (a2 + IIAx + yl12)/2 A IR and y E IR}. Similar
remarks pertain to (a2 + t2)k/2, k odd, k > -n.

We conclude with a result and an application of this result which leads to kernels
of a form not previously considered by other authors.
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THEOREM 4.12.. Let n and be even, 0 > > -n. In order that G E Ll(][n
and f G 0 it is necessary and sufficient that m2j 0 for 0

_
2j <_ n + 2 and

m+ # O.
Proof. Proceed as in the proof of Theorem 4.10. Since n / a E 2 IN and a 2Z+,

we have R(n,a) - 0 by Lemma 2.11. Again we find that f G = 0 if and only if
mn+ 0. In order that G L we must have m2j 0 for 0 <_ 2j <_ 2Q. Obviously
we require Q < n / a, so that we can stipulate mn/ 0 as a condition on it. By
Corollary 3.6, p0 (n + a 2)/2. Also pl [(n + a 1)/2] (n + a 2)/2, and in
general pk _< p0. Hence Q p0

Example 4.13. In dimensions n 4, 6, 8,... we can let (t) (a2 / t2) -1. For
this example, a -2. According to Theorem 4.12, a suitable kernel can be formed,
and we can prove constructively the fundamentality of the set of functions x (a2 /
IIAx yll2) -1
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ORTHOGONAL WAVELETS ON THE CANTOR DYADIC GROUP*
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Abstract. Based upon the shift operator as a dilation operator, multiresolution analyses are
built on the Cantor dyadic group. A regularity condition is given for wavelets and sufficient conditions
are given on scaling filters for regular orthonormM wavelets to occur. Examples of wavelets given
include the Haar functions and certain lacunary Walsh function series analogous to the compactly
supported wavelets of I. Daubechies.

Key words, orthogonal wavelets, locally compact Abelian groups, Cantor dyadic group
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1. Introduction. We wish to construct orthogonal wavelets on locally compact
Abelian (LCA) groups, resembling the familiar constructions of Y. Meyer [9] or S.
Mallat [8] on n-dimensional Euclidean space. We are interested in general groups, not
necessarily with Lie structure. Very general constructions have already been given of
wavelets on stratified Lie groups based on spline approximations [7] and of wavelet
bases for Hilbert spaces with unitary operators representing dilation and translation
[1]. In [8] and [9], orthogonal wavelets are built in terms of scaling filters. Conditions
are given there on scaling filters for multiresolution analyses (MRAs) to be generated
and for the orthogonality of wavelets. We shall define translation, dilation, and MRAs
in the setting of LCA groups. On the locally compact Cantor dyadic group, we shall
give a definition of the regularity of a wavelet and give sufficient conditions on scaling
filters for regular MRAs and orthogonal wavelets to occur. Our main result, Theorem
2.2, resembles [8, Thm. 2].

In 2, we describe the locally compact Cantor dyadic group. Our wavelets on this
group will include wavelets corresponding to the Haar wavelets on the line; 2th partial
sums of Walsh series are nth resolutions (approximations or resolutions at scale 2-) in
these wavelets. Another example of wavelets on the dyadic group consists of certain
iacunary Walsh series which are analogous to the continuous compactly supported
wavelets of I. Daubechies [2] in that they are generated by scaling filters consisting of
(Walsh-) trigonometric polynomials. See 3 below.

We now give our axioms for dilation and translation. These are similar to those
of [1], specialized to the case of the Hilbert space L2(G). In the case of G R, the
dilation is the usual x -- 2x, and the translation is the usual translation by integer
units. There is nothing special about requiring the dilation to be dyadic, but our
construction will be general enough to accomodate wavelets on the .locally compact
Cantor dyadic group as well as wavelets on the plane R2.

We let G be an LCA group with automorphisms p and a (inverse to each other),
Haar measure rn, and a subgroup A. We assume
(1.1.1) A is countably infinite and closed,
(1.1.2) G/A is compact,
(1.1.3) p(A)C_ A,

Received by the editors April 26, 1993; accepted for publication (in revised form) May 11,
1994.
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(1.1.4) m(p(E))= 2re(E) for all Borel E C_ G (so m(a(E)) 1/2m(E)),
(1.1.5) A/p(A) Z/(2).

We will call A a lattice subgroup of G, and p the dilation operator. (A simple
example is provided by G R, A Z, and p(x) 2x.) We also define the notation
for translation Tyf(x) f(x + y) for functions f on G.

We write p3 for the jth composition of p: if j < 0, we set pJ aj. Then let
Aj pJ(A). It follows from (1.1.5) that Aj/Aj+I .. Z/(2) for all j.

In this setting, we define a multiresolution analysis of L2(G).to be a sequence
(Vj)jez of closed subspaces of L2(G)such that
(1.2.1) Vj c_ Vj+I for all j in Z,
(1.2.2) UVj is dense in L2(G) and VVj {0},
(1.2.3) f E V if and only if pf f o p E Vj+I for all j E Z,
(1.2.4) f V0 if and only if nf V0 for all n in A; f V0 if and only if p’nf Vj,
(1.2.5) there is a function g E L2(G) such that {’,g’n A} is a aiesz basis of V0.

We say that a function f on G is A-periodic if -nf f for all n A.
See [6] for basic information about sampling of functions and approximations on

LCA groups.
We now consider resolution (or scale) filters. For e L2(G), we may define Vj to

be the n2-closure of the linear span of {(pJ (x)+ n)’n e A}, j e Z. We require that
Vj C_ Vj+I for all j E Z. In particular, we require V0 c_ V1. This entails

(1.3) (x) E cndp(p(x)+ n)
nA

for some choice of coefficients {c}. Under the Fourier transform, we have

(1.4) (w) mo(w)(a(w)).
We seek conditions on our "resolution filter" too(w) such that {’rn’n A} is an
orthonormM set and such that

converges to an L2(()-function such that (the inverse Fourier transform) produces
n MRA. Thus, we seek an analogue of Theorem 2 of [8]. Theorem 2.2 below is an
analogue of that theorem for the Cantor dyadic group.

2. The Cantor dyadic group. The Cantor dyadic group is D 1-I- Z/(2)
under the cartesian product topology, where Z/(2) is the integers modulo 2, that is,
{0, 1} with addition modulo 2. We will write an element of D as (xj)j<0, where
xj {0, 1} for each j. We make the index j range over the negative integers, so that
we may think of x (xj)<0 as x O.x-x_2x_3... a binary fraction expansion.
We may thus identify D with the unit intervM as a measure space by the map x

Ixl" D --. [0, 1], where Ixl -j<0 xj2J. This induces the Haar mesure on D.
We will actually work on the locally compact version of the Cntor dyadic group,

namely

G= H* Z/(2)

{(xj)jez’xj e {0, 1} for all j and xj 0 for all j > n, for some n e Z}.

(See Chapter 6 of [5].) So we may think of x XnX-l""XlXo.X-lX-2"", and
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we identify G with [0, oc) as a measure space by x -- Ixl G -- [0, oc), where

Ixl --jz xJ2j" Again, this induces the Haar measure on G.
Note that D is a subgroup of G, so D (x E G xj 0 for j _> 0}.
Let A c_ G be the lattice subgroup A (x E G xj 0 for j < 0}. Thus A

is countable and closed and G/A D is compact. Under the map x Ixl, A is
identified with the nonnegative integers in the half-line.

We now define the dilation p" G - G by p(x)j xj-1 for x G. We also define
a" G --- G to be cr(x)j Xj+l for x G. So p and a are topological automorphisms
inverse to each other. Let Aj pJ (A) for j > 0, let A0 A, and let A a(A) for
j < 0. It is easy to see that Aj/Aj+I is isomorphic to Z/(2) for all j in Z. Also, if
E c G is Borel, then m(p(E)) 2re(E), where m is the Haar measure.

The Pontryagin dual group of G is topologically isomorphic to G. We may
write

{w (wj)jez" wy e {0, 1} for all j and wj 0 for all j > n for some n}

and define ca(x) 1-[jez(-1)-l-xj for x (xj)j in G. This gives w e G as a group
character on G. Note the minus sign in the exponent in the subscript of w, so that the
product is actually finite.

We may consider dilation on just as on G; let a(w)j wj+l and p(w)j
for w (wj)j in . We find that the character p(w) evaluated at x (xj)j is equal to
w evaluated at p(x), i.e., w o p p(w). This is analogous to the situation for characters
on the real line; ei(2x)y ei(2y). We also find that the integers A in (defined just
as they are on G) correspond exactly to the set F of A-periodic characters on G. The
A-periodic characters on G, where G is identified with the real half-line under x
turn out to be exactly th Walsh functions.

We will use the notation W(x) w(x) for w e and x e G. If w e F, then
is an (ordinary) integer and Wo is identified with an ordinary Walsh function on the
real line. Here we will use the Paley enumeration; if we let rk(x) sign(sin(2r2kx))
be the kth Rademacher function, then the Walsh function Wn is the product of the
functions rk such that the kth bit in the binary expansion of n is a 1. (Note that the
least significant bit of the binary expansion of an integer occupies position zero. Thus
W1 is the function constantly equal to 1 on the interval 0 _< x < 1/2 and constantly
equal to -1 on 1/2 < x < 1.)

We will also use the notation W(w) w(x) for x G and w to write

characters on ; by Pontryagin duality, all characters on ( arise in this way.
It will be convenient to write for both G and specific elements as binary ex-

pansions. Thus, for example, by x 11.1 in G, we mean the element x (xj)j such
that xj 1 forj 1, 0,-1 and xj 0 otherwise.

See [3], [10], or [11] for development of the harmonic analysis of these groups. In
[11], the locally compact group G is an example of a local field, the 2-series field; in
[10, Chap. 9], G is treated under the name "dyadic field."

For the Cantor dyadic group, we give a regularity condition similar to that of
[8]. (Also compare Definition 2 of II.2 in [9]; we of course do not give a definition
involving bounds on the derivative since the Cantor dyadic group has no derivative
per se.)

DEFINITION 2.1. g E L2(G) is said to be regular if Ig(x)l <_ c(1 + Ixl) -2 for all
x G, for some constant c > O. (Recall Ix -jz xj2J for x G.)

We also define A {w " wj 0 for j _> k}. (This is analogous to the
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interval -2kr _< w _< 2kr in Lemma 2 of [8].)
We may now state our analogue of Theorem 2 of [8].
THEOREM 2.2. Let too(w) Y,eA hnW(w) be such that

(2.2.1) Ihnl O(1 + I?’tl2+e) -1 for 8o?Tte. e_ > O,
(2.2.2) m0(0)= 1,
(2.2.3) M(w) + M(w + 0.1) _= 1, where M(w) ]m0(w)[ 2,
(2.2.4) mo(w) :/: 0 on A_.

Define (w) Hk%l mo.(rk(02)) Then the function $(w) is an L2(4)-function.
The inverse Fourier transform (x) of (w) has the property that {- n e A} is an
orthonormal basis for a closed subspace Vo of L2(G). If is regular, then a regular
MRA (V)dez is produced.

The proof of this proceeds essentially as in [8], suitably translated, via analogues
of Lemma 1 and Lemma 2 of [8].

3. Wavelets on LCA groups. We return now to the general situation of 1.
Suppose we have an MRA (V)dez of L2(G). We shall show how orthogonal wavelets
may be constructed from this MRA. (This will be very similar to [8] or [9, Chap.
III, 2]. We will also present examples of MRAs and orthogonal wavelets on various
groups.

We know that V c_ V+I for all j. So, let Wj be the orthogonal complement of V
in gj+l, so Vj ] Wj Vj+ Let be the "father wavelet," whose translates span V0.
We seek , whose translates span W0 and are orthogonal, such that the translates of

are orthogonal to the translates of . Now and belong to V1, so

(x) E an(p(x)+ n)
nA

and )(X) E bn(p(x) q-n).
nA

Upon taking Fourier transforms, we find

4(w) mo(w)(a(w)) and (w) ml(w)(a(w)),
where

nA
and ml(od)-- E 1/2bnod(ry(n)).

nA

We may show that and obey the desired orthogonality conditions when

]mo( O if- O) ml q- O)
is a unitary matrix, where 0 is an odd A-periodic character, i.e., 0 is not A_l-periodic.

To make this matrix unitary, it is enough to let ml (w) W(w)mo(w + 0), where
W(w) w(k) for some k E A-1 \ A0 (k is a "half integer").

Taking inverse Fourier transforms of

+
we obtain

(3.1) (x) E(--1)sgn(n)--n(p(x) p(k)),
nA

where sgn(n) 1 if n is even (i.e., n e A1) or -1 if n is odd (n e A \ A).
It now becomes clear (as in the usual case) that

{2J/2(pj (x) n)" n e A, j Z}
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is, an orthogonal system of wavelets, for the MRA (Vj)jez.

Example 1. If we let G R, A-- Z, and p(x) 2x, we find that (3.1) becomes
equation (3.8)[9, Chap. III, 2].

Example 2. For G the locally compact Cantor group, (3.1) may be written

(3.2) (x) E "ff-(-1)lnl(P(X) + n + 1.0).
nA

If we set (x) 1I(x), where I is the "unit" interval in G given by I {x E G"
xj 0 for all j _> 0}, we find that (a(x)) (x) + (x + 1.0). Then our wavelet is

(x) (p(x)+

which is, of course, the Haar wavelet (when G is identified with the half-line under
the mapping x - Ixl). Note that the multiresolution analysis here can be described
without reference to the dual group as

V {f e L2(G)" f is constant on cosets of Dj },

where Dj is the subgroup of G consisting of all x G such that xi 0 for i _> j.

Example 3. We construct a different example of wavelets on the Cantor dyadic
group by defining the scaling filter

1 if w-1 w-2 0,
a ifw_l=0andw_2-1,

too(W)
0 if w-1 1 and w-2 0,
b if w-1 w-2 1,

where lal / Ibl 2 1.
This filter is actually the Walsh-trigonometric polynomial

mo coWoo.o + clWol.o -- c2W10.0 -- C3Wl1.0,where co (1 + a + b)/4, Cl (1 -- a b)/4, c2 (1 a b)/4, and c3 (1 a + b)/4.
It is easy to see that the hypotheses of Theorem 2.2 are met. Wavelets corre-

sponding to the compactly supported orthogonal wavelets of I. Daubechies result; in
fact, we find that

f(w) + af(0.1 + w) + abf(1.1 + w) + ab2f(ll.1 + w) + ab3f(lll.1 + w) +...

where f
So the scaling function becomes a lacunary Walsh series

(x) 1/2F(x)(1 + aWo.l(X) + abWl.l(X) + ab2Wll.l(X) + ab3Wlll.l(X) +...),

where F X/x1. If we identify G with the real half-line, we get the literal Walsh
function series

(x) (1 aWl abW3(x/2) + + (x/2) +...-X[o,1)(x/2) + (x/2) + ab2Wz(x/2) ab3W15
for x > 0.
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1.0 VI.I x 10.0

1.1 x 10.0

FIG. 1. The dyadic scaling function dp of example 3 (top) and the corresponding dyadic wavelet
(bottom), with a set equal to 0.8. The horizontal axis is the group G identified as the half real line;

as functions on the real line, and have discontinuities at dyadic rational points, indicated here
i. binary notation. (These plottings were generated using Maple V.)

Note that if a 1 and b 0, we recover the Haar scaling function (x) [0,1].
Plottings of these scaling functions for certain values of a are given in Figs. 1 and 2.

The corresponding wavelet is given by (3.2) as in Example 2. Viewed as a
function on the real half-line, we may write

(x) 2a0(Tl(2x))- 21(2x)/ 22(T3(2x)) 23(T2(2x)),

where Tn is the function representing translation by n in the sense of the group G. (So
the jth digit of the binary expansion of Tn(x) is the sum modulo 2 of the jth binary
digits of n and x. Thus, for example, Tl(X) equals x 1 if j _< x < j + 1 for odd j and
T1 (x) equals x / 1 if j _< x < j / 1 for even j.)
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I.i x 10.0

0.1 1.0
I.i 10.0

FIG. 2. The dyadic scaling function of example 3 (top) and the corresponding dyadic wavelet
(bottom), with a set equal to 0.99. Note that for a close to 1, these should approach the Haar

scaling function and wavelet. (These plottings were generated using Maple V).

Plottings of these wavelets are given below for certain values of a; for a close to
1, the wavelet approaches, the Haar wavelet.

Example 4. Our axioms (1.1.1)-(1.1.5) for dilations and translation appear to be
(in some sense) one-dimensional. However, wavelets based on these axioms can be
constructed on the plane or on Rn. See [4] for remarkable examples of wavelets on the
plane or on R2 based upon "matrix dilations". Their examples include the following:

Let G R2, A Z2 and p(x, y) (y, 2x); this choice of G, A, and p meet all the
axioms. Let to be the indicator function of the unit square 0 _< x _< 1, 0 _< y _< 1, so

((x, y)) (p(x, y) (0, 1)) + (p(x, y))
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and generates an MRA of L2(R2) as above. The "mother wavelet" is then

(x, 0)) (p(x,
1 if1/2<x<_l,0<_y<_l,
-1 if0 <_ x <_ 1/2,0 <_ y <_ l,
0 otherwise.

Of course, the axioms for dilation need not be dyadic on Rn. In fact, there may be a
system of more than one mother wavelet in more general constructions; see [1].

4. Conclusions. We note that the results of this paper bear generalization in a
number of ways.

We may seek to construct wavelets on other groups of tills sort, such as Vilenkin
groups (compact zero-dimensionM Abelian metric groups), or on local fields. This
presumably would require different frameworks for orthogonal wavelets; the structure
of the group as well as the structure of its group of automorphisms would determine
the possibilities, and we need not limit ourselves to the dyadic dilation of our axioms
here.

We also anticipate that our results for the Cantor dyadic group may be strength-
ened to provide wavelet bases for spaces beyond L2(G). For example, [3] already
provides a Littlewood-Paley theorem for the Cantor dyadic group (as well as a variety
of other groups), suggesting that our wavelets might be a basis for LP(G) for p > 1.

Acknowledgments. I wish to express my thanks for the helpful suggestions and
comments of the referee, in particular for the observation at the end of Example 2 of
3.
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ON Lp-THEORY OF STOCHASTIC PARTIAL DIFFERENTIAL
EQUATIONS IN THE WHOLE SPACE*

N. V. KRYLOVt

Abstract. It is shown that equations like

du (aJuxj + bux + cu + f) dt + (akux + ku + gk) dwkt > O,

with variable random coefficients and with zero initial condition have unique solutions in the Sobolev
spaces Wp2, p E [2, x), under natural ellipticity condition and under conditions that (i) a is uniformly
continuous with respect to x, (ii) a, u have bounded first derivatives in x and all other coefficients
are bounded, (iii) f E Lp, g Wp. A corresponding result in the spaces of Bessel potentials H is
proved, which implies that better differentiability properties of the coefficients and free terms of the
equations lead to the better regularity of solutions. Applications to equations with space-time white
noise are given.

Key words, stochastic equations, Bessel potentials, cylindrical white noise

AMS subject classifications. 60H15, 35R60

1. Introduction. Evolutional stochastic partial differential equations (SPDEs)
arise in many applications of probability theory and have been treated since long
ago (see [14]). An example of a linear second-order SPDE is given by the following
equation:

(1.1) du (aiJuxxJ + biux + cu + f)dt + (aikux + uku + g) dwkt t > O.

The main purpose of this article is to develop a theory of solvability of the Cauchy
problem for linear and some quasi-linear equations like (1.1) in spaces of summable
functions with exponent of summability p _> 2. If p 2, so that we are concerned
with solutions belonging to the Sobolev spaces W(d), such a theory does exist and
is rather complete and satisfactory (see, for instance, [14]). Some results concerning
the solvability of the first boundary-value problem in spaces like W(D), where D is
a smooth domain, can be found in [10] and [13]. Roughly speaking, the main tool
in W-theory is integration by parts. There are also approaches based on semigroup
methods [2], which work well for the equations with nonrandom leading coefficients
and again in the Hilbert-space framework.

One of inconveniences of W-theory is that W(d) C Cn-d(Id) only if 2n > d,
and one can prove that the solutions belong to W(]d) only if the coefficients are
n- 2 times continuously differentiable. Therefore, if we want to get the solutions m
times continuously differentiable with respect to x E ]d, we have to suppose that the
coefficients of the equation are more than m+d/2-2 times continuously differentiable
even if the free terms are of class C(]d). At the same time, W;(d) C cn-d/P(d)
if pn > d, and by taking p sufficiently large, one sees that the solutions have almost
as many usual derivatives as generalized ones. Actually, exactly for this purpose the
spaces W(d) with p >_ 2 have already been used in SPDE theory (see, for instance
[14]), but the corresponding results obtained again by integration by parts were not
sharp.

Another advantage of the W setting with p _> 2 can be seen in the case of very
popular equations with so-called cylindrical white noise (see, for instance, [15], [16],
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1994. This research was partially supported by National Science Foundation grant DMS-9302516.
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[19], and references therein). Although these equations can be included in the general
W-theory as particular examples for ny p >_ 2 (see 4), for p 2 we get only
the solutions summable to ny degree, and the solutions become continuous only for
p > 2. By the way, as in [14] we consider n positive and negative, but in contrast with
[14] we allow noninteger values for n. For general n we are working in the spaces of
Bessel potentials H(d), and in the case of equations with cylindrical white noise,
we take n slightly less than (-3/2).

Our main tool is the theory of spaces H(d), borrowed from [17], together with
a result from [9] which is n nalog of the so-called maximal regularity property of
stochastic convolutions in Hilbert spaces obtained by D Prato (cf. [1]).

The article is organized s follows: In 2 we investigate equations with constant
coefficients, which not only leads us to a class of equations which can be treated
but lso allows us to find a Bausch space 7-/(T) in which equations with variable
coefficients make perfect sense. These spaces play the same role as spaces Wp’2 in
the theory of parabolic second-order PDEs, and their properties, stated in 3, present
one part of our main results. Section 3 also contains other main results, two of
which are proved in 5. In 4 we consider n application of our main results to
equations with cylindrical white noise. In particular, we obtain an existence theorem
which extends corresponding known results (see [19]) to equations with random nd
variable coefficients. We also give a short proof of a generalization of a result from
[15] concerning the nonexplosion of solutions of a nonlinear SPDE.

We finish the section by introducing several notations to be used throughout the
paper.

Let (f, , P) be a complete probability space, (’t, t >_ 0) be an increasing filtra-
tion of or-algebras $’t c " containing all P-null subsets of f, and P be the predictable
a-field related to (S’t, t > 0).

We fix a separable Hilbert space H. By using a well-known procedure, we identify
the space of all bounded linear functionals on H with H. We lso fix numbers p >_ 2,
K, 5 > 0, and an integer d > 1.

Let w be an H-valued 9ct-dapted Wiener process with cowriance operator Q.
Define E as the set of all real-vMued linear functions e on Q/H such that ]elg "=

leQ/21H < ec. Obviously, E is a Hilbert space.
Denote Lp Lp(]t(d), I1" lip I1" ILL,,. In the cse of functions g g(x) taking

vMues in E, we write

II ll := II I l ll .
We will need the 8pace8 of Bessel potentiM8 (a]80 cM]ed the Sobolev 8paces with
fractional derivatives) H H(Rd) for all values of n (-oc, oc). We recall (see,
for instance [17]) that for integers n _> 0 the space H coincides with the Sobolev
space W W(It(d), and in general H is the closure ofC C(Id) with respect
to the norm

I1 11 , :: II(z-

Observe that by definition the set C i8 dense in H and by Theorem 2.3 (ii) of

[171 the latter i8 a subset of the space 7) of real-valued Schwartz distribution8 on
defined on C. It is also useful to note that I1" I,p -< I" I-,p for rn >_ n. We apply
the same definitions to E-valued functions g, specifically,
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Finally, for a stopping time T, we denote IO, T] { (w, t) 0 < t < T(w) },
n n nIIp (T) Lp(IO, T], 7), H), Hp ]Hip

n nIEp(7, E) Lp(IO, 7, V,H(]I(d,E)), IEp(E) IE(c,E), L... IE...
The norms in these spaces are defined in an obvious way. As is conventional,

elements of spaces like ]H[ are treated as functions rather than distributions or classes
of equivalent functions, and if we know that a function of this class has a modification
with better properties, then we always consider this modification. For instance, if we
take u E H and n- dip > 0, then u has a bounded continuous modification, but we
talk about supx u(x) instead of sup of this modification.

2. Equations with coefficients independent of x. In this section, we con-
sider equation (1.1) when b c uk 0 and the coefficients a and a do not depend
on x. Throughout the section, we fix real-valued functions aij (t) and E-valued func-
tions.a(t) defined for i,j 1,..., d on gt (0, c). Define

1
(t) (t)).

and assume that a and a are P-measurable functions, and in the matrix sense

(aij (aiJ) *, K(5ij) >_ (aij >_ (aij aiJ) >_

More precisely, our goal in this section is to investigate the equation

(2.1)
du(t,x) (aiJ(t)ux(t,x) + f(t,x)) dt + (ai(t)ux(t,x) + g(t,x)) dwt, t > O.

DEFINITION 2.1. Denote by the set of all I)-valued functions u (written as

u(t, x) in a common abuse of notation) on [0, c) such that for any e C,
(i) the function (u, ) is P-measurable,
(ii) for any w e and T e (0, oc) we have

T

(2.2) sup ](u(t,x + .), )12 dt < c.
xE

In the same way, we define T)(E) and (E) by considering E-valued linear functionals
on C (or bilinear forms (u, )(h), e C, h e Q1/2H) and replacing in (2.2)

DEFINITION 2.2. Let f, u , g (E). We say that the equality

(2.3) du(t, x) f(t, x) dt+ g(t, x) dwt, t > 0

holds in the sense of distributions if for any C, with probability 1 we have

(2.4) (u(t, .), ) (u(0, .), ) + (f(s, .), )ds + (g(s, .), ) dw8

for all t >_ O, where the last stochastic integral is understood as an It6 stochastic
integral of the E-valued function (g(s, .), ) with respect to ws.
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We will understand equation (2.1) in the sense of distributions. We start with
the following simple statement related to Definition 2.2.

LEMMA 2.1. Let f, u , g e (E). Define

Xt a(8) dws.

Then equality (2.3) holds (in the sense of distributions) if and only if (in the sense of
distributions) for the function v(t,x) u(t,x- xt), we have

dv(t, x) If(t, x xt) + cij (t)vxx (t, x) (gx (t, x xt), ai(t))E] dt

+ [g(t,x xt) vx(t,x)a(t)] dwt, t > O.

Proof. First notice that obviously v(t,x), f(t,x- xt), and (gx(t,x- xt),a(t))E
belong to and g(t,x- xt) vx(t,x)a(t) belong to D(E). Furthermore, for any

E C the function (u(t,x + .), ) has a stochastic differential in t for any x and
is infinitely differentiable with respect to x. Now our assertion immediately follows
from the Itb-Wentzellformula. The lemma is proven. El

LEMMA 2.2. Let f , g (E), Uo be a T)-valued function on t. Then the
following assertions hold.

(i) In there can exist only one (up to evanescence) solution of equation (2.1)
with the initial condition u(0, .) u0.

(ii) Let u satisfy equation (2.1) (in the sense of distributions). Let {t, t >
0} be an increasing family of a-fields Gt Jzt and assume that wt w) + w2),
where w() are Wiener processes such that w(1) is (Gt)-adapted and the process w(2) is
independent of (Gt). Assume that the processes a, f, a, and g are Gt-adapted, and that
there exists an n (-,) such that f ]H[’(T), g H(T,E) for any T (0, )
and

Ellu(0, ,)11 n,2 <

Then the function t(t,x) E{u(t,x)]t} is a solution of the equation

(2.5) dt (aiJt + f)dt + (ait + g)dw1), t > O.

Proof. (i) As always we can take f 0, g 0, and u0 =- 0, and by Lemma 2.1,
it suffices to consider only the case a 0. But then we are left with a parabolic
equation with coefficients independent of x, and the uniqueness of its solution in our
class of functions is a standard fact.

(ii) Actually, the statement means that there exists a solution g of equation (2.5)
such that for any C and t _> 0,

(g(t, .), ) E{(u(t, .), )]Gt} (a.s.).

To prove this version of our statement, we first notice that, according to [14], equation
(2.1) has a unique solution v in the space IE+I(T) for any T. Moreover, v is continuous
(a.s.) as an H-valued process and

(2.6) E sup IIv(t, .)[I,2 < oc VT <
t<T
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so that v is a -solution of (2.1). From (i), it follows that our function u belongs to
]I-]I+I(T) for any T, and (2.6) holds for u. Furthermore, in the sense of the nilbert
space H-1 with probability 1 for all t at once,

u(t) uo + [aiJ(s)ux,xj(s) + f(s)] ds + [a’(s)ux(s) + g(s)] dws.

By Theorem 1.4.7 of [14], or rather by its Hilbert-space counterpart, there exists an

H-valued, Gt-predictable function fi(t) such that for almost any t we have fi(t)
E{u(t)lt } (a.s.) and

t(t) uo + [aiJ(s)tx,xJ(s) q- f(s)] ds + [ai(s)tx,(S) + g(s)] dw1)

for almost all t and w. The right-hand side here is a continuous H-l-valued process;
therefore, we can and will take fi(t) to be a continuous process in H-1. We denote
this version of (t) by (t), and we show that is the function we need.

By construction, E and is a solution of (2.5). It remains only to observe
that, again by [14, Thm. 1.4.7], for any t the expression E{u(t)lGt } can be represented
by the right-hand side of (2.7) almost surely. The lemma is proven.

THEOREM 2.1. Take n ]R and let f ]E-, g IE(E). Then
(i) equation (2.1) with zero initial condition has a (unique) solution

u
T

(ii) for this solution, we have u C((O, oc), H) almost surely, and

(iii) for any A, t > O,

(2.9) E sup(e-P’llu(s,<, + It

where N N(d, p, 5, K, ).
To prove the theorem, we will invoke two lemmas. The first of them is the first

main result of [9]. Take an d-valued (standard) Wiener process Bt and define

Tth(x) Eh(x + Bt).

LEMMA 2.3. Let - <_ a < b <_ c, g Lp((a, b) Id, E). Then

d ab [at lVTt-sg(s")(x)12E dS]
p/2

dt dx < N Ig(t, x)lp dt dx,

where the constant N depends only on d and p.
LEMMA 2.4. Let ak O,aij (1/2)ij, n O. Then the assertions of Theorem

2.1 hold true. Moreover,
(iii)’ for any , t > O, we have

Esup(e-P)’llu(s,.)ll) / E s,’)ll ds
s<t
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(2.10) < N(d, p, , K, A)([le-Sfllp + Ile-Sgilp(t,E))H;l(t)

Proof. It is well known that there exists a continuous linear operator

p" H -+ (Lp)d+l

such that if h E H-1 and Ph (h0, z,..., zd), then h h0 + div and

(2.11) IIl]p + ]lh0]lp _<

Actually, one can take -grad (1 A)-lh and h0 h- div
Define (f0, f)= Pf. Then equation (2.1) takes the form

(2.12) (1)du -Au + fo + div] dt + g dwt

and we supply it with zero initial condition. We will prove that for arbitrary f0, ]i E
Lp, assertions (i), (ii) (with n 0), and (iii)’ hold for (2.12) in place of (2.1). Of
course, in (2.8) and (2.10) we take f f0 + div f.

We can certainly confine ourselves to the case in which

m

fo(t,X) E I(Ti--’Ti] (t)fOi(x)’ ](t,X) E I(Ti--I’Ti] (t)]i(x)’
i=1 i=1

(2.13)
m m

(t,x) (t,z), 9(t,z)=
j=l

where (hi) is an orthonormal basis in H of eigenvectors of Q, m < oo, ri are bounded
stopping times, Ti_l < T, and f0i, fi, gij C.

Set wta (hi, Wt)H,
m

(t, x) (s, x) (x)(tA’i tATi
i,j=l

u(t,x) v(t,x) + Tt-s -Av + f (s, .)(x)ds, Vt >_ O.

As easy to see the function u- v is infinitely differentiable in (t, x) and satisfies
the equation

1Oz 1Az + Av + f.0-7 - -It follows that for any x the function u(t,x) satisfies (2.12) almost surely. From
our explicit formulas and from the finiteness of f and g, it also follows that u
C([0, oo),H) for any n (and for any w), that u e , and that u is a solution of
(.1).
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Next, we want to obtain some bounds of norms of u. Let

t (t, X) Tt-sf(s, x) d8.

According to [12] (for any w),

(2.14) IIuIIL(+,H; <_ Y[If]lL(+,H; ).

Furthermore,

(2.15)

[; Elu Ull(t,x) dxdt.

To make some further transformations of this formula, we note that if zk zk(x) are
bounded B(ld)-measurable functions, then by It6’s formula applied to the increment
over [0, t] of

Tt_szk ds WrA

a function of r, we obtain (a.s.)

0 (wnk wn )Tt_zk dr + I(,](r) Tt_zk ds dw.

By using this for our particular g or by using the stochastic version of the bini
theorem, for ny t 0 and x d we get

T
k=l k=l

Hence by the Burkholder-Davis-Gundy inequality,

m

T k 2

being the eigenvalue ofQ corresponding to h, so that Ewl t, k 1, 2, a,
By plugging this into (2.1) and by applying Lemma 2.a, we obtain

Lv
0

This along with (2.14) gives us (2.8) for n 0.
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To prove (2.10) with a sufficiently large , it suffices to repeat the correspond-
ing arguments from [11] or [14] related to integration by parts in a formula for
lu(t,x)lPexp(-/pt), which one gets from equation (2.12) satisfied pointwise. One
might only observe that by denoting q p/(p- 1) and using the Hhlder inequality
and (2.11), one gets

+ Ill(s, )11 < NIIf(s, )J v 1
+ +  ll

From estimates (2.10) and (2.8), we conclude that u e THp(T). Finally, the
assertion about the arbitrariness of A in (2.10) can be easily justified by rescaling
arguments when instead of f,g, and w one takes (c2f, cg)(c2t, cx) and c-lwc2t and
gets u(c2t, cx) instead of u(t, x). The lemma is proven.

Remark 2.1. Although (2.14) holds for all p E (1, c), it follows from [9] that
(2.8) is not true if p < 2.

Proof of Theorem 2.1. Since one can apply the operator (I- A)n/2 to both sides
of (2.1), it suffices to prove assertions (i) and (ii) only for n 0. Furthermore, our
norms are translation invariant and T ]I-]I+I(T) C ; hence by Lemma 2.1, we need
to consider only the case a 0. As in Lemma 2.4, we can assume that f and g are
as in (2.13). In this case, as we know from [11] and [14], equation (2.1) has a unique
solution u which belongs to Cb([0, T] x ld) and C([0, T],L2) almost surely for any
T < . It follows that u E C([0, T], Lp) almost surely for any T < x.

Since the matrix a is uniformly nondegenerate, by making a nonrandom time
change, we can reduce the general case to the case 2a >_ I. In this case, define the
matrix-valued function d(t) *(t) >_ 0 as a solution of the equation 2(t)+I 2a(t).
Furthermore, without loss of generality, we assume that on our probability space we
are also given a d-dimensional Wiener process Bt independent of

Now consider the equation

dv(t,x)= [1A ( foo )] ( t )- v(t, x) + f t, x (s) dBs dt + g t, x (s) dB8 dwt

with zero initial condition. By Lemmas 2.4, 2.1, and 2.2, there is a function v pos-
sessing properties (i) through (iii) listed in Theorem 2.1 such that

in the sense explained in the proof of Lemma 2.2. We use this representation of u and
the already mentioned relation u C([0, T], Lp). Bearing also in mind the properties
of v and using the HSlder inequality, we immediately get all the needed properties of
u, thus finishing the proof of our theorem.
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Remark 2.2. By using the self-similarity of equation (2.1), one can obtain further
estimates from estimates like (2.9). For instance, bearing in mind that Hp Wp1, one
sees that for n- 1 and l/p, estimate (2.9) implies that

Esup{[lux(s, ")11 + [In(s, ")[[pP} < N(d,P,,K)et([If[lp(t) + IlgxllpLp(t,E) / [] [])..g..L(,E)-’P
s<t

Let us take a constant c > 0 and consider (c2f, cg)(c2t, cx), c--lWc2t, and u(c2t, cx)
instead of f, g, w, and u. Then from the last estimate, we get

the constant N taken the same as above. It follows that for c, t >_ 0,

E sup{I I(, ")11 + -1 lu(, ")11)
s<t

<_ Net/Ccp-2([If] p p p

Upon setting c2 t and considering (I- A)(n-1)/2U instead of u, we conclude that
under the conditions of Theorem 2.1 for any t > 0,

E(sup ]lux(s, ")llPn_l,p + t-p/2 sup Ilu( )1 p
," I-,}

s<t s<t

+ Ig t-/< N(d,P,5,K)t(P-U)/2(llfll-(t) I-(t,S) + Ilgl]p-(t,E))"
We will later prove a much deeper estimate than (2.9).
3. A Banach-space setting and main results. Here we state our main re-

sults, the first two of which are proved in 5. Fix a number T E (0, c) and a stopping
timeT<T. FornEand

(f,g) e J:(T) := ]I-]I(T) IE+(T,E),
set

DEFINITION 3.1. For a function u IE(T), we write u Tl(T) if there exists
(f,g) $--2(_) such that for any C, equality (2.4) holds almost surely for
a t < a (0, .) e L(n, H$). th a, dn U,o() U() {
(0,.) =0},

(3.1) I111(,-) IIll-(,-) + [l(f, g)[[.;-.(,-) + (E[lu(O, .)[[p,p)l/p.
Remark 3.1. Since ordinary and stochastic integrals are "incomparable," the

function u defines the couple f, g uniquely. Therefore, the norm in (3.1) is well
defined. In (3.1) we use such a restrictive norm of the initial value as



322 N.V. KRYLOV

only for simplicity. Actually, we will always get rid of the initial condition by con-
sidering u(t,x)- u(O,x) instead of u, and in (3.1) we could replace I[u(0, ")[In,p by
[]u(0, ")ll-2/p,p if instead of u(t,x) u(O,x) we take u(t,x) Ttu(O,x).

The following theorem contains some basic properties of the spaces 7-/(T). As
we will see in 5, assertion (ii) in this theorem is a simple consequence of Theorem
2.1. By using Theorem 2.1, it can obviously be obtained not only for p 2 but for
any p _> 2. However, for p > 2 the much stronger statement (iii) is available.

THEOREM 3.1. (i) The spaces 7-I(T) and 7-I,o(T) are Banach spaces with the
norm given by (3.1).

(ii) For any function u E TI’(T), we have u C([0,-],H-1) (a.s.) and

E sup I]u(t, .)112 < N(d, n, T) [ullt()n--l,2

(iii) /f p > 2, 1/2 > 3 > a > l/p, then for any function u e ?-l(T), we have
u e Ca-1/p([o, -],H-2z) (a.s.) and for any stopping time <_ T,

(.)
El]u(t A , .) u(s A 7, ")1 In-2Z,pp <_ N(d,,p,T)lt- slB-I/PllulI( Vt, s <_ T;

(3.3) Ellu(t, ")1 p < N(d, , a p, T)llull;([Ca-1/p([o,T],H-2f)
(iv) If a := n- dip > 0 and u e 7-I(T), then u e Lp(t (0, T),C(Id)), where

C(Id) is the Zygmund space (which differs from the ordinary HSlder spaces C(d)
only if is an integer). In addition,

E [[u(t, .)1.() dt < N(d, n, p, T)l[u[[p(r)"

(v) gm < n, n dip m d/q, and u e (T), then

(vi) g q 2 p > 2 nd 0 (0, 1), thee for
d d + 2(1 O)m<n+-- u v(r),q P

e L;/o((O, ), H?) (a..) ad

)ol(t, ,)1/ t < N(d,p, q, m, O,

In particular (take 0 p/q),

E ]u(t,.)],qdt g(d,p,q,n,m,T)]u()

q>p>2,
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Remark 3.2. Assertions (ii) and (iii) obviously imply that T/(T) C ]I-]I(T) and

Ilull( <_ N(d, n, T)llulln().

We are now going to state our main results concerning SPDEs. Fix n (-ee, oe)
and fix a number - [0, 1) such that - 0 if n 0, 1, 2,... otherwise > 0 and
is such that n] + is not an integer. Consider the general equation

(3.4)
du(t,x) [a(t,x)u(t,x) + f(u,t,x)]dt + [a(t,x)u(t,x) + g(u,t,x)]dwt,

where aij and f are real-valued and a and g are E-valued functions defined for w ,
t>0, xed +2 i,j=l, d.,uH

We make he following sumpions, where as in 2 we define

a (t, x) 1 (a (t, x), aj (t, x)) E.

Assumption 3.1 (coercivity). For any w , t k 0, x, A d, we have

KI k [a (t, x) (t,)] k l.
Assumption 3.2 (uniform continuity of a and a). For any > 0, i,j, there exists

a > 0 such that

(3.5) ]aiY(t,x) aY(t,y) + [ai(t,x) ai(t,y)I

whenever x- y] E , t k 0, w .
Actually, below we impose much stronger conditions on a.
Assumption 3.3. For any x d and e Q1/2H, the functions aiJ(t,x) and

a(t,x)e are real-valued predictable functions, and for any w and t k 0,.we have

aiJ(t, .) C"]+, ai(t,.) C’"++I(d,E).
Assumption 3.4. For any u H+2, the functions f(u,t,x) and g(u,t,x) are

predictable as functions taking values in H and H+l(d, E), respectively.
Assumption 3.5. For any t k 0,w, i,j,

[aiJ(t, ")l]c,-,+ + IIai(t, ")]IC,-,++(,E) K, (f(0,., .), g(0,., .)) (T).
Assumption 3.6. For any > 0, there exists a constant K such that for any

u, v H+2, t, w, we have

(a.) If(-, t, .) (, t, ") I.,, + (-, t, .) (, t, ")I .+,,

THEOREM 3.2. Let Assumptions 3.1-3.6 be satisfied and let

uo L(a, o, H$+).
Then the Cauchy problem for equation (3.4) on [0, 7] with the initial condition u(O, .)
uo has a unique solution u +2(T). For this solution, we have

I.l+() N(l(0,., .)()+ l(0,., .);+()+ (El.0I+,)l/),
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where the constant N depends only on d, n, /, p, 5, K, T, and the functions at and K.
To discuss the theorem we need the following lemma.
LEMMA 3.1. For real-valued (measurable) functions a on d, define

if n 0, supx la(x)l =: Ilalls if n O. Let E C be a nonnegative function
such that f (x) dx 1 and define k(x) k-d((x/k), k 1, 2, 3, We assert that
for any u H, we have the following:

(i) Ilaulln,p < Nl[u[In,p where the constant N depends only on d,p,n, and /;

(ii) Ilu (klln,p -< Ilull,p, Ilu u lln,p 0.
Proof. If n 0, +/-1, +/-2,... (and > 0), then one gets (i) by Corollary 2.8.2 (ii)

of [17]. If n is a nonnegative integer, then (i) follows from the Leibnitz rule (and the
fact that H W). For negative integers (and generally for negative n) (i) follows
easily by duality.

As for (ii), the first inequality follows from the Minkowski inequality and the
second one is derived as usual owing to denseness of C in H. The lemma is
proven.

Remark 3.3. Of course, by a solution to the Cauchy problem for equation (3.4)
on [0, -] with the given initial condition u0, we understand a function u 7-/+2(T)
such that for any test function C, almost surely one has

(u(t, .), ) (u0, ) + (aij (s, .)ux (s, .) + f(u, s, .), ) ds

+ (ai(s,.)u(s, .) + g(u,s,.),)dw, vt e [0,

where by Lemma 3.1 aiJux H, criu H+I(d,E) whenever u E H+.
Remark 3.4. Two main ideas in the proof of this theorem are quite standard. The

first one, reduction to equations with constant coefficients, will be seen very clearly.
The second one, which is somewhat hidden, actually, consists of the introduction of
the new unknown function v (I-A)"/u, which reduces the case of general n to the
case n 0. The equation for v is pseudodifferential, and we note that more general
pseudodifferential equations can be considered too.

Remark 3.5. By Theorem 14.2 of [5], for any u H+2 and m In, n + 2], we
have

lUl[m,p

_
Nltul 0 I,p,1/2,pllUl

where 0 (m- n)/2 and N depends only on d, n, m, and p. This shows that the last
norm in (3.6) can be replaced by []u- vll,++l,p once I1 < 1.

Remark 3.6. A typical application of Theorem 3.2 occurs when f(u,t,x)
bi(t,x)ux + c(t,x)u + f(t,x) and g(u,t,x) (t,x)u + g(t,x), so that (3.4) becomes

du (aiJuz,z + biu, + cu + f)dt + (aiu, + u + g)dwt.

To describe the appropriate assumptions, we take (0, 1) and denote

nb=n+/ if n>0, nb=O if n(--1,0],
n=n+l+/ if n>--l, n=0 if nE(--2,--1],
n=n+- if n>0, n=0 if n(--2,0],

n=--n--l+ if n<--l,
n=--n--2+s if n<--2,
n=--n--2+e if n_<--2.
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Assume that b, c,and are appropriately measurable and

bi(t, .) E Cnb, c(t,.) e CTM, ll(t,’) e Cnu(]d,E),

f(t, .) e H, g(t, .) e H+I(Rd, E),

Ilbi(t,.)llc + IIc(t,.)llc + Ilu(t,.)llc.(e,E) <_ K, (f(-,.),g(.,.)) e

where we understand the space C" as B(]d) if rn 0. It turns out then that the
assumptions of Theorem 3.2 about f(u, t, x) and g(u, t, x) are satisfied. To show this,
it suffices to apply Remark 3.5 and to notice that, for instance, if n _> -1, then
IluUlln+l.p <_ Nllulln+,p by Lemma 3.1; if n (-2,-1], then obviously Iluulln+l.p <_
IluU]lp <_ NI]ul]p NI]ul]n+l+(_n_l),p and-n-1 E [0, 1); ifn _< -2, then Lemma 3.1
yields IlllUllnWl,p

__
Ill/Ulln+2_el,p

_
Nllulln+2_el,p

_
Nllulln+2_e,p, where el e (0, e).

The terms lbiux ln,p, lcul In,p are considered similarly.
Actually, the above conditions on b, c, and u can be considerably relaxed if in

addition one applies deeper theorems about multiplyers from [17].
THEOREM 3.3. Assume that for m 1,2,3,.. we are given a, a,, f,, gin,

and Uom having the same sense as in Theorem 3.2 and verifying the same assump-
tions as a3,a, f,g and uo with the same constants 5, K,t%, and K. Let (hk) be an
orthonormal basis in H consisting of eigenvectors of Q and let Pm be the operator
of orthogonal projection of H onto Span (h,... hm). Let (x) be a real function of
class C such that (x) 1 if Ix] <_ 1 and (x) 0 if Ix >_ 2. Define k(x) (x/k)
and assume that for any k 1, 2, 3,... t

t, )}lln+l,p 0II k{aiJ(t, .) a (t, + II k{ai(t, ")

as rn --. oc. Finally, let Elluom -uollpnW2,p --+ 0 and

whenever u +2(T). Take the function u from Theorem 3.2 and for any m define
Um -+2(T) a8 the (unique) solution of the Cauchy problem for the equation

du,(t,x) [a(t,x)u,xj(t,x) + f,(Um, t,x)]dt

+ [am (t, X)Umx (t, x) + gm(u,, t, x)] dP,wt

on [0, T] with the initial condition Urn(O, ") UOm. Then Ilu- Urlln$+.(.) -- 0 as
m--- oo.

Proof. We have

d(u(t) urn(t)) [a(u u,),j + (aij a)u,x + (f(u) fm(u,))] dt

Pm)ux + (g(u) g.(u.)P.)] dwt+ [aimP,(u Um) + (a a,

f(u)- f,(u) --[f,(u)- f(u)] + If(u)- f,(u)],
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() a()p [() ()]P +()[- P.] + [() ()]p.,

o.io p. (a .)p. + ( p.).

Hence from our assumptions by Theorem 3.2 for any t >_ 0, we obtain

where

I (Elluo uol p lip1/2,p) + Ill(u)- fm(u)ll() + II(ay

+ I1(o- oS)u:, II;+:(.,-,E) + I1o+(I-

+ Ilg(])(I Pm)II]HI+I(T,E) + Ilg(’) g(u)ll/(,E).
We collect like terms in the last inequality and then apply Theorem 3.1. This yields

Ellu-u.ll p(TAt) < Nllu-uml+1, In+(^t <_ NIPm+N E[lu-ul pI/X,p(T/xs) ds,

where t _< T and N is independent of m. Gronwall’s inequality allows us to drop the
last term on the right. Next, we let rn go to infinity and use our assumptions. Then
we get

+ I1(o o)u, II/(.,E) + IIo(I Pm)’II/(,E) + IIg()(I P)II/(,-,E)}"
Here, by the dominated convergence theorem,

+(,E)

and the same is true for Ila(I- Pm)Ux, llH+lO.,E) (aux, e H+I(T,E) by Remark

3.3).
Next, by Lemma 3.1 for any v C and k 80 large that v( v, we have

(3.9)

where the constants N do not depend on m and k. Thus,
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and from the arbitrariness of v, we conclude that the left-hand side is zero for those
w and t for which u H+2. If we again apply Lemma 3.1, then we see that the pth
power of the left-hand side of (3.9) is bounded by an integrable function. This and
the dominated convergence theorem imply that

mlirn II(ay a)u,, I[() 0.

Similar arguments take care of the remaining term in (3.8). The theorem is
proven.

COROLLARY 3.1. Let Assumptions 3.1-3.5 be satisfied and take f(u,t,x) and
g(u, t, x) satisfying the conditions from Remark 3.6. Also take the functions from
Lemma 3.1 and define

(ak, b, ck, a, , f, gk) (a, b, c, a, , f, g) k.
Finally, define u +2(T) as solutions of the Cauchy problem for the equations

duk (aJuzz +bu + cu + fk) dt + (auz + ku + g) dPwt
with the initial conditions uk(O, ") Uo * . Then llu ukl[n+() O.

To show this, it suffices to apply Lemma 3.1, repeat our argument about (3.9),
and notice that

* *

COROLLARY 3.2. Let Assumptions 3.1-3.5 be satisfied and also let them be sat-
isfied for a p q, where q 2. Take f(u, t, x) and g(u, t, x) satisfying the conditions

from Remark 3.6. Then the solution u from Theorem 3.2 belongs also to +2(T).
Without loss of generality, assume p < q and let v be the solution of the same

initial value problem but belonging to +2(T) (such a unique v exists by Theorem
3.2). We have only to show that v u. In light of Corollary 3.1, we can suppose that
our assumptions are satisfied for any n. In this case, by Theorem 3.1,

tr

for any m 1, 2, a, It follows that

for any r 2 p. Take m 0 and r q here and define

=TAinf t" ]Uxx(S, .)] ds k

Then obviously u e (Tk). Since v lies in the same class, by uniqueness u(t, .)
v(t, .) for t Tk (a.s.). It remains only to observe that k T when k .

Our lt result concerns the maximum principle. Its proof is hbsolutely standard.
One needs only to apply Corollary 3.1 (along with statements (ii) and (iii) of Theorem
3.1) and the maximum principle from [14] or [11].

THEOREM 3.4 (maximum principle). Let Assumptions 3.1-3.5 be satisfied and
take f(u, t, x) and g(u, t, x) satisfying the conditions from Remark 3.6. Suppose that
for any w and t we have uo O, f(t, .) 0 (in the sense of distributions), and
g(t, .) O. Then the solution u of the Cauchy problem for the linear equation (3.7)
with the initial condition u(0, .) uo verifies u(t, .) 0 for all t e [0, T] almost surely.
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4. An application. In this section, we consider the one-dimensional equation
with space-time white noise. Thus d 1. Fix a number (0, 1/2] and define
n= - 3/2.

4.1. Let a(t, x) a(w, t, x) and b(t, x) b(w, t, x) be real-valued functions defined
on flx IR+ x IR. Assume that

(i) for any w and t, the function a is twice continuously differentiable with respect
to x and the function b is once continuously differentiable with respect to x and
]la]lc + IIb.I]c <_ K, K >_ a >_ 5;

(ii) for any x 1R, the processes a and b are predictable.
Suppose also that we are given measurable real functions f(t,x, u) and g(t,x, u)

on ftx I+ x N2 such that
(iii) for any x and u, the processes f(t,x, u) and g(t,x, u) are predictable;
(iv) for any co, t, and x, the functions f(t, x, u) and g(t, x, u) satisfy the Lipschitz

condition with the constant K with respect to u;
(v) E loT{Ill(t,., 0)11 + Jig(t,., 0)lipp} dt < oc for all T < c.
We also take an 9rt-adapted Wiener process Bt in L2 with unit covariance operator

(the so-called cylindrical Wiener process) and consider the equation

(4.1)
du(t,x) [a(t,x)u"(t,x) + b(t,x)u’(t,x) + f(t,x, u(t,x))] dt + g(t,x, u(t,x)) dBt,

which as always is understood in the sense of distributions. Specifically, by the solution
of this equation we mean a real-valued function u(w, t, x) of class such that for any

C, we have u L2([0, T],L2), T ) 0 almost surely, the process (u(t, .), ) is

continuous, and

(u(t, .), ) (u(0, .), ) + ((u(s, .), (a(s, .)(.))" (b(s, .)(.))’ + f(s,., u(s, .)))ds

+ (g(s,.,u(s,.))(.),dB),

for all t almost surely, where the last stochastic integral is a stochastic integral of the
L2-valued function g(t,., u(t, .))(.) with respect to

In order to apply Theorem 3.2, we have to find the corresponding objects H, E,
and wt and rewrite the equation in our terms. First of all, we make a standard
imbedding of Bt into a Hilbert space. To this end, we take an orthonormal basis

(k,k >_ 1) in L2 and define H to be the space of all formal series h k hk,
where h are real numbers such that ]hl/ :-- k k-(hk)2 < x. Observe that the
functions k := kl0k form an orthonormal basis in H. Next, let

k--1

Since E-k k-2(k, Bt)2 tk k-2 < x, the process wt takes values in H. Its
covariance operator Q can be found from the formula

t(hl, Qh2)H E(h, Wt)H(h2, Wt)g

k=l k=l k=l
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Hence

If h E H, then Q1/2h (as an element of H) is represented by a formal series which
converges in L2. Therefore, we sometimes identify Q1/2h with the corresponding
element of L2. In the following lemma, we also set

1 /0R(x) 2x/-lxl-(1-2)/2 t-(5-2)/4e-tx2-1/(4t) dt.

Observe that R is infinitely differentiable outside the origin, decreases exponentially
fast as Ixl --. oc, and behaves near the origin like Ix[ -(1-2)/2 if < (1/2) and log Ixl
if t0= 1/2.

LEMMA 4.1. (i) Let f L2,1oc. For C define (Gf, ) as a function on L2
by the formula

(Gf,)(h) (f,h)L. f fhCdx.

Then G: L2,1oc --* T)(E) and I(Gf, )IE Iif112"
(ii) If f e Lp, then Gf e H+I(E) and

(4.2)

Ilaf112,+,p R2 (y)f2 (x y) dy dx1
2/p

(NIIftlp2)/ (llfl122. IIRIIp2),

where N IRII22 < , and if p(1- 2e;) > 2, then

(4.3) /(-.) i-./(-:)Ilafll/l,p <_ N()llfll2 Ilfl

(iii) If f(t) is an L2,oc-valued predictable function such that

T

sup IIf(t)Ii._ull<_RII dt < oc VR, T e (0, c),
Y

then Gf(.) e (E) and for any T > O, e C, we have

(4.4) (f(t), dBt) (Gf(t), ) dwt (a.s.).

Proof. (i) As we have explained above, functions on L2 can be considered as
functions on Q1/2H; therefore, linear functions on L2 are linear functions on Q1/2H.
Next,

and the last expression equals Iif112. In particular, this implies that Gf 79(E).
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(iii) The relation Gf(.) e (E) follows from (i). By one of definitions, in the
mean-square sense, we have

(4.5)

(Gf(t), )dwt E (Gf, )(k)d(wt, (k)H E (Gf, )(k)k-1 dBkt
k k

E (Gf, )(k)dBkt E (f(t), Ck)n2 dBt
k k

It remains only to observe that the last expression coincides with the left-hand side
of (4.4) (a.s.).

(ii) We know that for any E C, we have

(I- A)(nT1)/2(x) (I- A)-(l+2)/n(x) jf R(x y)(y)dy.

This implies that for any h E L2, C,

((I A)(+I)/2GI, )(h) (R af )(h) := (af R )(h)

f(R , )hdx (R , (fh)) dx,

and (I- A)(’+I)/2Gf is a usual function on with values in E defined by

(I- A)(’+l)/2Gf(x)(h) R (fh)(x) (GI, R(x -.))(h).
By (i) (or as in (i)), it follows that

I(I- A)(+X)/2Gf(X)IE Ilfn(x-
We thus get the equality in (4.2). The inequality in (4.2) follows from the

Minkowski inequality. To prove (4.3), we use that R2(y) _< Nlyl2-1 and we minimize
with respect to s > 0 after the following computations:

+
JR

(y) (x-y) dy

2

The lemma is proven.
Remark 4.1. The method of converting integrals with respect to Bt into integrals

with respect to wt can be generalized. In [6] a similar construction is used in order
to reduce general (not necessarily continuous) stochastic integrals with respect to
martingale measures to integrals with respect to Hilbert-space-valued processes.

THEOREM 4.1. Take (0,1/2) and Uo Lp(,.o,H(pl/2)-a). Then for any

T, in the space (p/2)-(T), equation (4.1) with the initial condition uo has a unique
solution u. Moreover,

]IU]In/2-(T) <-- N(llf(’, ",
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where the constant N depends only on , p, , K, and T.
.41/2-Proof. By Lemma 4.1 (iii) for functions from, p (T), equation (4.1) takes the

form

du [au" + bu’ + f(u)] dt + (u) dwt,

where 9(u)(t, x) :-- G(g(t,., u(t,.)))(x). We will apply Theorem 3.2 to this equation.
Its assumptions concerning a and a are obviously satisfied. Next, if u E H+2, then
bu’ H+1 C H, u Lp, f(u) Lp C H. Furthermore, by Lemma 3.1 (cf.
Remark 3.6),

[Iblttlln,p

_
IIbt’ll_l,p

_
N[lu’ll-l,p

_
Nllullp- Nl[ulln+2_((1/2)_),p

]If(u)- f(v)l]n,p

_
llf(u)- f(v)ll <__ K]]u-

Consequently (see Remark 3.5), the assumptions of Theorem 3.2 concerning bu’+f(u)
are satisfied. To check the remaining assumptions about (u), it suffices to notice that
by Lemma 4.1 (ii) we have

IO(O)(t, ")] 1,+1,

_
N]lg(t,., o)ll,

IO(u)(t, .)- (v)(t, ")ll/l,p

_
IO(u)(t, .)- (v)(t, ")lip - Kiln(t, .)- v(t,.)llp.

The theorem is proven, v1

Remark 4.2. In order to apply the approximation theorem (Theorem 3.3) or
Theorem 3.4 on the maximum principle, it is useful to notice that if instead of wt we
take its approximations by Pmwt as in Theorem 3.3, then the corresponding equation
becomes

m

du(t,x) [a(t,x)u"(t,x) + b(t,x)u’(t,x) + f(t,x, u(t,x))] dt + g(t,x, u(t,x)) dBkt
k--1

This follows immediately from (4.5).
Remark 4.3. Additional information about HSlder continuity properties of the

solution is readily obtained from the properties of elements of 7-/listed in Theorem
3.1.

Remark 4.4. We could take a noise even "whiter" than Bt. Indeed it is not hard
to see that Bt above can be cylindrical Wiener process in H- with unit covariance
operator, where e (0, 1/2).

4.2. Take a, b, and g as in 4.1, and take a bounded real-valued :P B(R)-
measurable function c(t,x) c(w, t,x). Assume that g(t,x, u) 0 for u _< 0, fix a
number/k [0, 1/2), and define h(t,x, u)= g(t,x, u)u.

Theorem 4.1 can be easily applied to prove that the equation

(4.6) du (an" + bu’ + cu) dt + h(u) dBt

has a unique solution defined for all t if the initial condition u0 is nonnegative and,
say, is nonrandom and belongs to C. Furthermore, supt<_T,x [u(t,x)l is finite (a.s.)
for any T < oc. These facts for equation (4.6) considered on a finite space interval
with a 1, b c- 0, and h(u) ul++ and with zero boundary data were discovered
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in [15] with the help of a quite different approach. By using the maximum principle,
it is not hard to show that our assertion implies the result of [15].

To begin our investigation of (4.6), let us fix T e (0, oc) and take e (0, 1/2)
and p > 6 such that

1 3 1-- >0, r/:=l+A--- < 1.
2 p p

By Theorem 4.1 for any m 1, 2, 3..., the equation

(4.7) du, (au + bum + CUm) dt + h(u, A m)dBt

%/1/2-with the initial condition urn(O,.) uo has a unique solution um E ,p (T).
By Theorem 3.1 (iii) and since H C Cr-d/p whenever r- dip > 0, we have that
Um C([0, T] x ) (a.s.) and E[]um[]([O,T]xR) is finite. We need only to show that
for a constant r > 0 the expression E suphT,z Into(t, x)[ r is bounded by a constant
independent of m. Indeed, then, for large m with probability as close to 1 as we like,
the function um satisfies (4.6)on [0, T].
om Theorem 3.4 on the maximum principle (also use that h(um A m) Um,

where is a bounded function), we get Um O. Next take k(x) from Theorem 3.3,
multiply (4.7) by ke-gt, where g sup([a"[ + [b’[ + [c[), integrate by parts (that is,
use the definition of solutions), and take expectations. Then for any stopping time

T, we obtain

.))

(k, u0) + E (a’ + (2a’ b) + (a" b’ + c K)a, um)e-Kt dt

X 1/pE IlUm(t, ")lip dt,

E(k, Um(7, ")) <_ N + Nk-lIp E Ilu,(t,-)]]pP dt <_ N + M]-1/p,

where the last constant N is independent of m, k, and T and M is independent of k.
Since this inequality is true for any stopping time - _< T, with the same N and M for
any number r (0, 1),

Esup Ck(X)Um(t,x)dx <
g + Mk-1/p g

E sup u(t, x) dx
tT 1 r tT 1 r’

where the latter relation is obtained from the former one by the monotone convergence
theorem.

After this, for a := 2ap/(p- 2) and for any stopping time T T, by Theorems
3.1 (iii) and 3.2 and Lemma 4.1 (ii), we obtain

E]lum]l([o,]xa) N 1 + E sup IlGh(u A m)(t, )l p

tET

Y + WE sup{I]h(um)(t, .)I]]Ih(um)(t, .)](1-)}
g + WE sup{]u+(t, .) ulX(t, .)]i(1-a)},
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where the constants N are independent of T and m. Since this is true for any T < T,
by the well-known martingale inequality (see, for instance, Lemma 1.1 in [8]), for any
stopping time T < T and any number/3 E (0, 1), it also holds that

EllUm[}P[o,r]) <_ N + NE sup{[lu+(t, .)[Ig"z[lu+(t,
t<r

Take (1 -r/)(ap + 1) -1 and use the simple relations

Then it is seen that

E[lu-]lPc[0,r]xe) -< N + NEI]u] ’pz"
t<r

1-,
’C([0,r]xe) sup lit(t, )111

< N + N(EIIuI pIc([o,l))’(E sup Ilu(t, .)Ill) 1-" <_ N + N(EIIumlIPc([o,]))"
t<T

We emphasize that all constants N are independent of m and 7. Therefore, the last
inequality implies the desired absolute estimate of

Remark 4.5. If we first let p --, ec and then let T 1/2, then we see that p3 can
be made as close to 1 2A as we wish.

5. Proofs of Theorems 3.1 and 3.2. In this section, we prove our main results.
Proof of Theorem 3.1. We will prove assertions (ii)-(vi) only when u e 7-/,0(T).

The reader can easily obtain these assertions in the general case by considering
u(t, x) u(O, x) instead of u and making obvious modifications in our arguments.

Take u e 7-/,0(T), ], and g such that (2.3) is satisfied with ] and g instead of f
and g. Notice that on [0, 7], the function u satisfies the equation

(5.1) du (At + f)dt + 9 dwt,

n--2where f f- Au IEp (7). By Theorem 2.1, the equation

dv (Av + fit<r)dt + gIt<_r dwt

on [0, T] with zero initial condition has a unique solution v 7-/,0(T). The difference
u-v satisfies the heat equation on [0, 7] with zero initial condition. It follows that
u(t, .)= v(t, .) on [0, -], and by Theorem 2.1 (ii),

IIVlI(T) N(d,n,P)(llfll;-.()+ Ilgll;-<,E)) N(d,n,p)llull(),

The former inequality shows that we can confine ourselves to the case when T --= T.
The latter one allows us to consider solutions of equations (5.1) only and to prove our
assertions with II(f, g)lly$-(T) in place of IlUlIn,(T). Therefore, below we take T T
and take the function u 7-/,0(T as a solution of (5.1), and we notice at once that
assertion (ii) immediately follows from Theorem 2.1.



334 N.V. KRYLOV

(iii) We can and will suppose that n 2/. As in Lemma 2.4, it suffices to consider
the case of f and g as in (2.13). This will justify our later computations.

By one of imbedding theorems for the Slobodetsky spaces (see, for instance, [17]
or [3]), for any continuous Lp-valued function h(t) and s < t, we have

IIh(t) h(s)ll, < N(a,p)(t- 8)ap-1 /r2>rl
IIh(r2)- h(rl)ll,

drldr2Ir2 -rll l+cp

t-8 dy
(5.2) N(og,p)(- 8)ap-1 yl+ap IIh(r + Y)- h(r)]lPp dr.

Actually, the space Lp here can be replaced by any Banach space. We will also need
Theorem 14.11 from [5], which implies that for any h E Lp, E (0, 1], and y [0, T],

II-/"%hll I1(1 )1--/:%[( )-(1-)h]ll
<_ N(, p, O) i_o ll(I

/oI1(% I)hll <_ II[zx(I- A)-I](I- A)1-%[(1 A)h]lldv

_< N I1(1- ZX)-%[(1 ZX)hlllav

(.a) <_ N(e, p, O, r) v-1 dvllhllo,

We apply (5.2) to Ul and u2 :- u Ul, where u is introduced in Lemma 2.4. In
order to avoid repetitions of some arguments, we denote f(1) f, f(2) g, dw) dr,
and dw2) dwt. It is easy to see that

y

( + ) () (% )u() + % f(’)( + )z ?,-}-v

Therefore,

Ellu(r + y) u(r)ll N(Ai(r, y) + Bi(r, y)),

Ellui(t u(s)ll <_ N(t- s)ap-l(Ii(t,s) + J(t,s)),

where

Ai(r, y) EII(Tv I)u(r)ll g(r, y) E Tv_vf(i)(r + v) ()awr+v

P

Ii(t, s)
dy dy

y+,p Ai(r, y) dr, Ji(t, s) y+p Bi.(r, y) dr.

By using the Burkholder-Davis-Gundy inequality, the Hhlder inequality, and
(5.3), we get

B2(r, y) < NE v2-lvl-2flTvg(r + y v)I2E dv dx
d

-< N-1 I1(1 zx)-l/( + )11
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n--l,pJ2 < NE y2-(f-a)p
dr Ig(r + y v) llp dv

<_ WE
y2-(f-a)p

dv I}g(r)l p dr

N(t- s)(Z-)PE Ilg(r)llp dr,n--l,p

Bl(r,y) E vZ-lvl-ZTf(r + y v)dv dx
d

<- NYzp-IE Ilf(r + y v)l In-2,pp dv,

J1 (t, s) <_ N(t s)(Z-)PE [If(r)[ [-2,pp dr.

Finally, by again using (5.3) and results from [9] and [12], we conclude

Collecting all these estimates, we get (3.2) at least for r T (= -). In the general
case, it suffices to notice that instead of points t and s on the left in estimate (5.2),
one can obviously take any two points between them.

The proof of (3.3) goes exactly the same way, the only difference being that this
time we use the following consequence of (5.2):

]lh(t)- h(s)ll < N(a p) Ir2>rl(t- 8)ap-1
IIh(r2)- h(rl)llPP drldr2.It2

Assertions (ii) and (iii)imply (i) almost automatically. They also imply (iv) and
(v) in view of well-known imbedding theorems saying that under conditions in (iv) and
(v), we have H c Ca and H C H, respectively (see, for instance, Remarks 2.7.1/2
and 2.7.1/3 in [17]). From the same imbedding theorems and from the interpolation
theorem (Theorem 2.4.2)in [17], we have

IlUll.(O)_d/p+d/q,q <_ N(d,p, q, re(O), m(1), {)lltl Im(O),pl- iiii om(1),p

whenever 1 < p < q < (x, 0 e (0,1), re(O):= (1- O)m(O)+ 0re(l) : m(0), and
u E H. Theorem 14.2 from [5] shows that the case p q actually needs not to
be excluded. Note also that under the conditions in (vi), there is a such that
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1/2 >/ > lip and m _< k n 2/(1 0) dip + d/q. Therefore,

(/0 )E Ilu(t, ")l p/O dtm,q

To prove (vi) it remains only to apply the HSlder inequality and assertion (iii). The
theorem is proven.

To prove Theorem 3.2, we need some auxiliary constructions.
DEFINITION 5.1. Assume that for w E f and t >_ O, we are given operators

L(t,.)" H+2 -+ H, A(t,.) H+2 -+ H+I(Nd, E).

Assume that
(i) for any w and t, the operators L(t, u) and A(t, u) are continuous (with respect

to u);
(ii) for any u e H+2, the processes L(t, u) and A(t, u) are predictable;
(iii) for any w , t >_ O, and u e H+2, we have

IlL(t, u)lln,p -t-IIA(t,  )ll +l,p NL,A(1 +

where NL,A is a constant.
Then for a function u 7-/+2(T), we write

(L, A)u -(f, g)

if (f, g) e (T), and in the sense of distributions for t e [0, T], we have that

u(t) u(O) + (L(s, u(s)) + f(s)) ds + (A(s, u(s)) + g(s)) dws

Remark 5.1. By virtue of our conditions on L and A, for any u -I+2(T), we
have (L(u),A(u)) Z(T). It immediately follows that the operator (L,A) is well
defined on 7-/+2(T), and

[I(L,A)ulI=(T) (1 + NL,A)IlUlIN/.(T) + NL,AT1/p.

Observe that Ilu=ll,p NII(Z- for any u e g+1. This shows that,
in terms of Definition 5.1, Theorem 2.1 has the following version.

THEOREM 5.1. Let a and a satisfy the assumptions from 2. Define

Lu a3’axxJ Au aUx.
Then the operator (L,A) is a one-to-one operator from n+2(T) onto J:(T) and thep,O
norm of its inverse is less than a constant depending only on d, p, 5, and K (thus
independent of T).
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Next we prove a perturbation result. It needs a proof because we do not allow
to depend on T.

THEOREM 5.2. Take the operators L and A from Theorem 5.1, and let some
operators L1 and A1 satisfy the requirements from Definition 5.1. We assert that
there exists a constant E (0, 1) depending only on d, p, , and K such that if for a
constant K1 and any u, v H+2, t > O, w , we have

]JL(t,u)- Ll(t,v)]],,p + liAr(t, u)- A(t, v)[l+,

(5.4)

n n+2then for any (f, g) ffFp (T), there exists a unique solution u ’p,O (T) of the
equation

(L + L1, A + A1)u -(f, g).

Furthermore, for this solution u, we have

IlUlI+2(T <_ NII(LI(’,O + f, Al(’,0) +

where N depends only on d, p, 5, K, K1, and T and N is independent of T if K1 O.
Proof. Take u n+2(T) observe that (Ll(u) Al(u)) E ’(T) and by usingp,0

4n+2(T) as the unique solution of the equation (L A)vTheorem 5.1 define v "p,O

-(f + L1 (u), g + Al(u)). By denoting v Ru, we define an operator R" _/n+2p,0 (T)---+
7-/n+2(T) The only thing we have to establish is that for an integer rn > 0 (underp,0

control) the operator Rm is a contraction in +2(T)p,0
By Theorem 5.1, for t < T,

< NII(L (u) L1 (v), A (t) h (v))llp:(t)

_< NoePllu v It+.(t + NoK Ellu(s v(8)l In+p
l,p ds,

with the constant No depending only on d, p, 5, and K. This gives the desired result
if K1 0. In the general case, by Theorem 3.1 (or by Theorem 2.1),

Ellu(8) v()l pIn+l,p N1 I1, vl pI;+(),
where s _< T and N1 depends only on d, p, and T. It follows that for t _< T and
0 "= Nosp we have

where N2 depends only on d, p, 5, K, K1, and T. Hence, by induction,
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IR’u Rmvl P < E Ore_k
1 (Ti2)k p

k--0

1< 2toom max (TN2/O)k [+2(T)

This allows us to find a needed m, and the theorem is proven.
We finish our preparations by showing how Lemma 3.1 will be used.
Remark 5.2. To some extent, in what follows, the most important consequence

of sertion (i) in Lemma 3.1 is that for any a from the lemma there exists a new
norm ]. [n,p in H such that

]]au][, 2N]]a]lB]]U[,,

where N is the same constant as in Lemma 3.1. To show this, it suffices to observe
that for am(X): a(x/m) and urn(x): u(x/m), we have

Nam-/](I- A)/u] Na]](m:I- A)n/u]]

Alternatively, it would be sucient for our needs to know that

Unfortunately, the author could not find the last inequality in the literature, though
some very interesting information related to the subject can be found in [7].

Now we perform the main step in proving Theorem g.2. Below we suppose that
its assumptions are satisfied.

LMMA . 1. There eists e e(d, p, , , , K) > 0 sch that if T nd
(i) condition (a.g) is stisfied with this e for ll z, , t, ad ad
(ii) f d 9 are indepeedent of ,

then there ezists eiqe sol,floe +(T) 4 eqatio (a.4) Frtheore, forp,o
this solution , we have

where N depends only on d, p, , K, and T.
Proof. Define a(t) a(t, 0) and a(t) a(t, 0), take operators L and A from

Theorem 5.1 corresponding to a(t) and a(t), and let

Ll(t, u)(x) [aiJ(t,x) aiJ(t)]UxxJ(x), Al(t, u)(x) [ai(t,x) ai(t)]ux(x).

In view of Theorem 5.2, to prove existence and uniqueness, we have only to check
that if e in (3.5) is sufficiently small, then the operators L1 and A1 satisfy condition
(5.4) with as small e as we like and with K1 under control. Observe that by Lemma
3.1,

II[aiJ(, .) aiJ()]xxjlln,p

_
Nlla(t .) a(t, O)llOll+lluxlln,p,
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Since Iluxlln+l,p < N(lluxlln,p + Ilztlln+l,p) the lemma holds true if

]la(t,’)-a(t,O)l]c...+ +lla(t,’)--a(t,O)]lc,..++(,E) <_ o o(d,p,n,/,5, g) V t.

Next, observe that for a,(t,x)= a(t/m2, x/m), we have

liar(t, .)- am(t, 0)[Ic...+ E + 2m-[(lnl+)A1]K,

and an analogous inequality holds for a. It follows that for m sufficiently large, the
statements of the lemma are true if we replace a, a, wt, f, g, and T in equation (3.4) by
a, a, mwt/, m-2f(t/m2, x/m), m-g(t/m2, x/m), and m2T, respectively. After
this, it remains only to fix an appropriate m and make an obvious change of variables
in the above-mentioned modification of equation (3.4) (and use that I-A mI-A).
The lemma is proven.

Finally, we need the following result from [9], which in a sense is essentially covered
by Theorem 2.4.7 from [18].

LEMMA 5.2. Let 5 > 0 and let 4k E C, k 1,2, 3, Assume that for any
multiindex and x d,

sup ID"k(x)[ M(a),
xRg k

where M(a) are some constants. Then there exists a constant N N(d, n, M, 5) such
that for any f H,

IlCfllp < Nllfll;np
k

If in addition

then for any f E H,

Ik(x)l ,
k

IlfllP,p < N IlCfllpn,p
k

Proof of Theorem 3.2. First observe that by considering u(t, x)- uo(x) and using
Lemma 3.1, one easily reduces the general situation to the case u0 0. For an obvious
reason, we can assume that T T. In this case, define

iu aJ(t,X)Ux(t,x), Au a(t,x)u(t,x),
and let {k k 1, 2, 3,... } be a standard partition of unity such that for any k,
condition (3.5) is satisfied for x and y in the support of k with from Lemma 5.1.
Then by this lemma, for any u E q-cn+2(T) and for any k,p,0

< NllCk(n,h)ull:(T + N]l(unk + 2(akz, ux), uA)II:(T).

By summing up the pth powers of the extreme terms and applying Lemma 5.2, we
conclude that for any u ,,0 (T),

lU] 17-/’+2 (T)
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Actually, the last term in parentheses on the right can be dropped, which follows
from Gronwall’s inequality and assertions (ii) and (iii) in Theorem 3.1 (cf. the proof
of Theorem 3.3). Hence, the standard method of continuity (el., for instance, [4])
(when one considers (1 )5j + Aaj and Aw instead of aj and w and makes A vary
in [0, 1]) and the above a priori estimate as usual yield the existence and uniqueness
of solution for equation (3.4) when f and g are independent of u. To consider general
f and g, it remains only to repeat the proof of Theorem 5.2 taking f(u, t,x) and
g(u, t, x) instead of f + Ll(U) and g + Al(u) there. The theorem is proven. [:]

Acknowledgment. The author thanks S. Lapic for pointing out several mistakes
and misprints in the original version of the article.
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BEHAVIOUR IN THE LIMIT, AS p--, cx, OF MINIMIZERS OF
FUNCTIONALS INVOLVING p-DIRICHLET INTEGRALS*

ULF JANFALKt
Abstract. The purpose of this paper is to study the behaviour, as p cx), of minimizers of

functionals involving p-Dirichlet integrals in a bounded Lipschitz domain, C Rn. In the case
where fl is a convex ring it is proved that the minimizers converge monotonically and uniformly. In
the paper by T. Bhattacharya, E. DiBenedetto, and J. Manfredi [Limits as p c of Apup f
and related extremal problems, Rend. Sere. Mat. Univ. Politec. Torino, (1989), pp. 15-68], the
problem of torsional creep is studied. Here the situation is generalized by introducing a more general
functional and relaxing the boundary conditions. Various aspects of the Green function of the p-
laplacian are considered and it is proved that the Green function is not symmetric if p is sufficiently
large. Finally, it is proved that the extremals to the dual problem tend to zero in the mean as p cx),

outside a well-specified subset of .
Key words, p-harmonic, convex duality, variational solution, capacitary function, p-Dirichlet

integral, ridge, Green function

AMS subject classifications. Primary, 35J20; Secondary, 35B40

1. Introduction. In this paper we will investigate the behaviour and conver-
gence properties as p --, oc of sequences of minimizers of certain convex minimization
problems in 12 involving p-Dirichlet integrals. Throughout the paper F/ will be a
bounded domain in Rn with Lipschitz boundary 0.

The paper by Bhattacharya et al. [BDM] constitutes an important background
for this work. There the limits as p - oc of solutions to the equation Apu f,
where Ap is the p-laplace or p-harmonic operator, are studied in connection with the
problem of torsional creep. The limit process leads to the study of the operator A
which is obtained as a formal limit of the operator ip as p - c (see 2 for a more
detailed description of these operators). Note that A is not of a variational nature.
This leads to some complications in finding a suitable solution concept. In [BDM],
four different solution concepts are considered. These are classical solutions, absolute
minimals, viscosity solutions, and variational solutions. Their mutual relations are
also investigated. Classical solutions and absolute minimals have been studied in some
detail by Aronsson in two papers, [hrl] and [hr2], and among other things, it was
shown that classical solutions to the Dirichlet problem for Au 0 are in some sense
rare. Recently, Jensen has shown that absolute minimals are viscosity solutions of
Au 0 [J, Thm. 1.15] and that the Dirichlet problem for Au 0 has a unique
viscosity solution [J, Thin. 2.22, p. 70] provided the boundary values are in the space

Lip(0) {g C(O)" sup
Ig(x) -g(Y)l }x,yeoa da(x, y) < c

where dn denotes the distance within . This condition on the boundary values is
also necessary for an absolute minimal and a variational solution to exist. By [BDM,
Prop. 2.2, p. 27] variational solutions are viscosity solutions so the results of Jensen
thereby show that the solution concept’s absolute minimal, variational solution and
viscosity solution are equivalent. Here we will use the variational solution approach
since it is better suited for our purposes.

Received by the editors July 23, 1993; accepted for publication (in revised form) June 7, 1994.
Department of Mathematics, LinkSping University, S-581 83 LinkSping, Sweden.
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The paper is organized as follows. In 2 we consider variational solutions of the
limit equation, derived from capacitary functions for a particular type of condensers,
called ring domains. We prove monotone and uniform convergence of the capacitary
functions when is a convex ring. This also implies uniqueness of the variational
solution.

In 3 we generalize the situation in [BDM], e.g., we consider a slightly more general
functional and relax the boundary conditions somewhat. We also introduce a weight
function. We study the problem using methods from convex analysis. We derive a
dual problem and investigate the relation between the primal and dual problems. The
majority of the results we prove are related to those of [BDM] and so are the proofs.
We end the section by proving that, if # is a finite, positive Borel measure then the
family {Up}p>n of solutions of --ApU , U 0 on 0, has a unique limit as p c.

Section 4 deals with various aspects of the Green function for the p-laplacian. An
interesting detail regarding the Green function is that it fits into the setting of both
2 and 3. It is well known that the Green function is symmetric if p 2. We show
here that if p is sufficiently large then the Green function is not symmetric.

We finish this paper in 5 with a theorem concerning the asymptotic behaviour
of the extremals of the dual problems. We prove, roughly speaking, that the "mass"
of the solution to the dual problem concentrates on the set of uniqueness as p c

2. On the monotone convergence of capacitary functions in a convex
ring and a comparison principle. The variational equation

l IVulp-2Vu" Vdx 0, for all 99(2.1) C(),

also written div(IVulp-2Vu) 0, is the Euler equation for the p-Dirichlet integral

Ip(u) f ]Vulp dx (l<p<

The nonlinear operator associated with (2.1) is called the p-laplacian or the p-harmonic
operator and will be denoted by Ap. Any function u e Wto’cP() satisfying (2.1) will
be called p-harmonic. The equation Au 0 is obtained as a formal limit of ApU 0
as p - oe. To be explicit, suppose u is p-harmonic, u C2(), and Vu # 0; then

ApU

i,j=l

Thus, dividing both sides by (p- and letting p oe we get formally

i,j=l

In JAr2, Thm. 13, p. 4215] it was shown that if f C It? then the class C(f) is
too small to solve the Dirichlet problem

(2.3) Aou 0 in ,
u= g on
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if, e.g., gt is the unit disk and g is any nonconstant function satisfying g(x,y)
g(-x,-y) for x, y on the unit circle. Instead, an alternative solution concept, the
so-called absolute minimals, was introduced. In [BDM] the concept of a variational
solution was introduced. A variational solution of (2.3) is obtained by the following
limit procedure. Let g E WI’() be given. Denote by Up the unique solution in
WI’p(t) of the boundary value problem

f ApU 0 in ,
(2.4) e

Let m > n and put Gm {Up:p > m}. In [BDM, pp. 25, 26] it is shown that there
is an element u e WI’() and a sequence {Upk}= from Gm such that

(2.5) Upk u weakly in

(2.6) Up---u in C’(), for any A (0,1-
as Pk -+ oo. Following the terminology of [BDM] we will call any element uo ob-
tained in this way a variational solution of Aou 0. By [BDM, Prop. 2.2, p. 27]
variational solutions are viscosity solutions. Thus by [J, Thm. 2.22, p. 70], we get
that a variational solution is unique and it is easy to see that (2.5) and (2.6) hold
with Up replaced by Up (see the proof of Theorem 2.5).

In this section we will study the variational solutions obtained from capacitary
functions of a special type of condensers, called ring domains. By a ring domain
we mean a bounded doubly connected domain in R. Denote by K the bounded
component of R \ t and put D gt t K. We say that is a convex ring if D and
K are convex. Note that the definition requires that K is compact and contained in
the open set D. Further, a convex ring is not a convex set.

DEFINITION 1. Let 1 < p < and let K be a compact subset of the open set D.
The quantity

Capp(K,D)=inf{flVvlPdx vW’P(D) AC(D), v_> lonK}
D

is called the p-capacity of the condenser (g,D). A function u W’P(D), u > 1 on
K, such that

Capp(K, D) f IWl dx

D

is called a capacitary function with respect to p and (K, D). This is the definition of
capacity according to [HKM]. If p > n then the capacitary function with respect to p
nd (K, D) is equal to I on K. In [L, pp. 202-204], Lewis proves that the
function of a ring domain is unique and that it is p-harmonic in Q. The definition
of capacity according to Lewis is somewhat different but yields the same result. In
particular, the capacitary function of the convex ring ft D \ K is the same as the
capacitary function of the condenser (K, D). The following theorem is also proved
(see [L, Thm. 1, p. 204]).

THEOREM 2.1. Given a convex ring D \ K and a constant p, 1
let u be the capacitary function corresponding to p and t. Then u has a continuous
representative in W’p D such that
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(1) the set {x" u(x) > t} is convex for 0 < t < 1,
(2) u is real analytic in
(3) if u 0 and x E , then all normal curvatures at x of the level surface

{y u(y) u(x)} are positive,
(4) if u 0 then Vu is univalent in t and maps {x u(x) t}, 0 < t < 1, onto

a surface which is star shaped with respect to the origin.
In particular, Vu : 0 in Ft (see [L, Lem. 2, p. 207]). In R2 the regularity part of

Theorem 2.1 holds for any ring domain as follows from Theorem 2.2.
THEOREM 2.2. Let D \ K C R2 be a ring domain (not necessarily convex)

and let 1 < p < x3. Then the corresponding capacitary function Up is real analytic in

Proof. We first observe that being a ring domain implies that K is either a
continuum of positive diameter or a single point. If K is a single point and 1 < p <_ 2
then capp(K, D) 0 so that Up O. We can thus assume that capp(K, D) > 0. If
p 2 the result is classical. In the case p = 2 we first claim that up can be extended
continuously to K by Up 1 on K. For p > 2 this is obvious and in the case 1 < p < 2
we do as follows. By [M1, 9.1.2, Prop. 1, p. 392] we have for any continuum e that

capp(e, R2) d2-p

where d is the diameter of e. Let Br(x) be the disc with radius r centered at x.
Obviously, for every x E K and every r > 0 such that Br(x)C there is a continuum
K(x)CKfBr(x) such that r<diamKr(x)<2r. Clearly, Capp(K B(x),B2(x)) >
capp(K [B(x),R2) > Capp(gr(x),R2) and by, e.g., [HKM, p. 35] we have that
capp(B(x),B2(x)) Cpr2-p where cp>O is a constant. Hence, for every xeK the
Wiener-type integral

o

By [M2, Thm., p. 236] the claim follows (see also [HKM, 6.17, p. 114; Cor. 6.28,
p. 122]). For 0<t<l, put flt={xeD: Up(X)>t}. It is enough to show that VUp(X) 0
for every x (see [L, pp. 207-208]). Clearly, t is open. Further, t can have one
component only. To see this, let V1 be a component of t that intersects K and put
V2 t \ V1. Since Up is continuous on and Up 1 on K it is clear that K C V1.
This implies that V2 C F. By the comparison principle (see IT, p. 312]) we then get
that Up is constant on V2, which is impossible.

Suppose Xl is such that Up(Xl) t and VUp(Xl) O. Let N denote the order of
the zero of VUp at Xl, as defined in JAr3, p. 76]. Using JAr3, Thm. 4, pp. 83-84], we
see that there is a 5 > 0 such that (x) Up(X)- t has a representation in hodograph
coordinates valid for B {x Ix- xll < 5}. From this representation it is evident
that B5 can be split into 2N parts such that W is nonnegative in N parts, nonpositive
in N parts, and the parts where has the same sign have x as their only common
point. Since t has only one component this situation is obviously impossible. Thus
Vu # 0 on .

Before we proceed we need two more definitions.
i/l/ 1,pDEFINITION 2 (1) A function u oc () is ap-supersolution of Ap if-Apu >_ 0

in the weak sense, i.e., if

IVulp-2Vu V dx > 0
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for all E C(f) such that _> 0.
(2) A function u" f --+ RU{o} is p-superharmonic if

(i) u is lower semicontinuous,
(ii) u cx3 in each component of
(iii) for each bounded open set D, such that D c f and for each p-harmonic

function h C(D) the inequality u _> h on OD implies u > h on D.
In [HKM, pp. 136-138] it is shown that a p-supersolution is always p-superharmonic,

possibly after a change on a set of measure zero and that if the p-superharmonic func-
tion is in Wllo’p(f) then it is also a p-supersolution.

Lemma 2.4 relies heavily on Theorem 2.1(3). Therefore we digress a bit from
the main subject of this section and study the normal curvature of the level sets of a
smooth function. We will now derive the identity (2.7).

Let u be a C2 function on an open subset of Rn and suppose IVu(x)l - 0 for
some x. Put Ex {y "u(y) u(x)} and denote the tangent space at x by T(x). The
normal curvature, according to Lewis, of Ex at x in the direction of the unit vector
t T(x) is defined to be

..(x)K(t,x) IW(x)l

where the subscript t denotes differentiation in the direction given by t T(x). Then

n

tt t. V(t. Vu) tit.
i,j=l

For 1 < r < k < n define the n x n-matrix Ar,k (ai,j),j=l by ar,k 1, ak, -1,
and ai,j 0 otherwise, i.e., A,kVu(x) is a vector in R having -ux and ux as rth
and kth components, respectively. Thus Vu(x). A,Vu(x) O. Since Vu(x) 0
it follows that T(x) is spanned by {Ar,kVU(X)}lEr<kNn. This is easily seen if one
parametrizes the hyperplane y- Vu(x) O. Put

A,kVu(x)t, IA,Vu(x)l

if A,kVu(x) 0 and t,k 0 otherwise. Here, as before, 1 r < k n. With this
choice of tangent directions we obtain

n--1

IVu(x)l IA,kVu(x)12K(t,k,x)
r=l k=r+l

n-1 n

]A,Vu(x)let, Vtt,k.
r=l k=r+l
n-1 n

2uuxkxvx xrXkXk xvxk
r=l k=r+l

i=1 i,j=I
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Above, u and the derivatives of u that occur are to be evaluated at x. We have proved
the following lemma.

LEMMA 2.3. Suppose that u is a C2 function in a neighbourhood of the point
x E Rn and that Vu(x) # 0. Then

Note that the right-hand side of (2.7) is invariant under orthogonal coordinate trans-
formations.

We now have sufficient background to prove the following fundamental lemma.
LEMMA 2.4. Let t D \ K be a convex ring and suppose Capp(K,D) > O.

For 1 < p < , denote by Up the capacitary function corresponding to p and t. If
1 < Pl < P2 then Up2 is both pl-superharmonic and a pl-supersolution. Furthermore,
Up1 is both p2-subharmonic and a p2-subsolution. Hence Upl (x) < Up2 (x) in .

Proof. By Theorem 2.1, Up is real analytic and VUp(X) 0 for all x E Ft. Thus
the p-laplacian can be interpreted in the classical sense. Hence, by (2.2) we have

for all p > 1. When dealing with Up we add the subscript p whenever needed. By
Theorem 2.1, Kp(t, x) > 0. Since Up is p-harmonic we get by inserting (2.8) into (2.7)
that

(2.9)
n--1 n

IVUp(X)l E E IAr,kVUp(X)12Kp(tr,k’x) (P- llAup > 0,
r-- k--r+

for, all p > 1.
Now let pl < P2. Then by (2.8) and (2.9) we get

-ApUp. -[Vup=lp-4 ((p 2)A= + IVup.t2AUp,)
((w

--(P2- Pl)lVUp21p-4/\cxtpg. > O.

Consequently, Up2 is a pl-supersolution and therefore Up2 is pl-superharmonic. That
Up is a p2-subsolution follows directly from above by replacing pl by P2 and vice
versa. 3

By (2.5) and basic properties of p-superharmonic functions we get the following
consequences.

THEOREM 2.5. Let 9t D \ K be a convex ring and let f Wl’(t) be such
that f 0 on OD and f 1 on K. Then the boundary value problem

(2.10) { Au 0 in
u- f W’(a)

has a unique variational solution u. Moreover, Up u in C’() for any
(0, 1) as p --, c and up(x)/z u(x) as p c for every x e .

Proof Let Up be the solution to (2.4) and consider the set Gn {Up}p>n. By
Lemma 2.4 we have that Up is pl-superharmonic for any 1 < p < p. Let {upk }= C
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Gn be a sequence with limit element u as in (2.5) and (2.6). From Definition 2(2(iii))
it then follows that Up (x) <_ Up(X) <_ Ups (x) for all x E gt if p <_ p <_ pj. Thus,

(2.11) Up ---, u
nuniformly as p --+ cx since Upk u in C’(), A E (0, 1-). To see that this holds

for the entire net Gn, suppose on the contrary that there exists a sequence {Up}=l
with p > pl and a 6 > 0 such that

(2.12) Up-u I[co,x>_

for all k and some A (0, 1- ). The sequence {Up}=l is bounded in

(see [BDM, pp. 25-26]) and by the Rellich-Kondrachov theorem it has a subsequence
converging to a function uE in C’x(). It follows immediately from (2.11) that

which contradicts (2.12).
To finish the proof, take A (0, 1) arbitrary and choose k large enough so that

A < 1 . Clearly the above reasoning can be repeated and we deduce

ttp Ucx

in C,() for any
Remark. By [BDM, p. 29], a variational solution is also a viscosity solution. Thus

the uniqueness part of this theorem also follows from [J, Thm. 2.22, p. 70].
By applying Lemma 7.3 of [HKM, p. 132] we also obtain the following result.
COROLLARY 2.6. The variational solution u of (2.10) is p-superharmonic .for

allp> 1.

3. On the asymptotic behaviour of solutions to -ipU #. Let C Rn

be a bounded domain with Lipschitz boundary 0 F0 F where F0 F1 0 and
F0 0. Let be a Borel measure on such that 0 < p]() < and let f L()
besuchthat0<CfD<. Forn<p<anduW’P(),put

Jp(u) f(x)lVu dx ud#

and define the class/Cp {u e Wl’P(a) u 0 on F0}. Clearly/Cp is a closed
subspace of WI’P(t2) and hence it is itself a Banach space. Since the functions in/p
are continuous we can also assume that F0 is closed. Consider the problem :Pp: Find
Up E (p such that

Jp(up) inf Jp(u).
UEp

When treating this problem we adopt the methods of convexity as described in lET,
Chap. 1-4] and we can, without loss of generality, assume that D 1. By [Z,
Cor. 4.5.2, p. 195; Rem., p. 75] there is a constant C> 0 depending on p, n, and
the Bessel capacity of F0 (which is bounded away from zero as long as F0 , since
p > n) such that

(3.1) ]lUllp<-CIIVUllp, for allu
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and by the Rellich-Kondrachov theorem (see, e.g., lAd, Thm. 6.2, p. 144]) we have

for p > n. Thus, for p > n the functional Jp is coercive over )Up since

1

1. The problem Pp has a dual convex problem whichand strictly convex. Let +
we will denote P The dual problem is obtained using the method described in lET,
pp. 60-61]. We begin with another definition.

DEFINITION 3. Let V be a Banach space with dual space V* and dual pairing
(., .). For any convex functional J" V R define a conjugate functional J*" V* R
by

J*(v*) sup [(u, v*) J(u)].
uEV

Define functionals F’lp --. R, G" LP(f; Rn) R by

F(u)=- ud#, G(v)= flvlP dx,

so that Jp(u) F(u) / G(Vu). Using the above definition one easily derives

F,(u.) { 0 ifu* -# G* if+oc otherwise (r) fl-qlrlq dx

for u* e (/Cp)* and r e (LP(f;Rn)) Lq(f; Rn), respectively (see [ET, pp. 19-20,
p. 81]). The operator V’/Cp --, LP(f; Rn) has an adjoint operator

defined by

V*" (LP(f; R)) Lq(f; R’) --. (/Ep)*

<Vu, v> (u, V’v> for every u e/Cp and v e Lq(f; Rn).
According to lET, p. 61], the dual problem, P, can be written as follows: find
rq E Lq(D; R) such that

sup

is attained for r rq. For the supremum to be finite we must have that F*(V*r) is
finite, i.e.,

(3.2) fr. Vudx=-fud,
for all u e/Cp. Put/C {r e Lq(; Rn) (3.2) holds for r}. Then the final version
of the problem P can be written as follows: find rq lC such that
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Denote the infimum in T’p by inf Pp and the supremum in :P by sup
THEOREM 3.1. The problems Pp and P are uniquely solvable and

inf Pp sup P.
Let Up be the solution to T’p and rq be the solution to P. Then

-f,Vup[p-2Vup a.e. and f f,Vup[pdx= f fl-q[rq,q dx= f upd#.rq--

Proof. The existence and uniqueness of the two solutions, Up and rq, follow from
lET, Prop. 1.2, p. 35], since Jp and G* are coercive and strictly convex. The relation
inf Pp sup :P follows from lET, Thm. 4.2, p. 60]. By that theorem we also have
the following extremality relation: Let Up be the solution to Pp and rq be the solution
to P. Then

0 + +
> f VUp]p +

q f
]VUp$ dx > O.

a b R+Here, we have used the fact that ab + for all a, b i.e., Young’s inequMity
and the Schwarz inequality. Thus we have equality if and only if r[ fVUpp- and

r is antiparMlel to VUp. Hence, r -fVup[P-2VUp me. Since inf Pp supP we
immediately get

p q

which completes the proof.
By (a.2) and Theorem a.1 we conclude that p is a solution to the equation

for all p. Hence if we restrict to C it follows that p is a solution to the
problem

Actually, (a.a) contains implicitly a natural boundary condition and under suitable
smoothness sumptions one can show that Vp. u 0 on r, where u is the outward
normal.

In what follows we will study the limiting behaviour of solutions of (a.a) as p. The results we will prove in this section, apart from Theorem g.g, are slight
generalizations of Proposition 2.1 and Theorems 4.1 and 4.2 in [BDM] (Theorem
and Corollary a.4 here). The prooN are analogous but will be given for completeness.
We start with a lemma on the convergence of sequences of solutions to problem p.

LEMMA .2. Or p > n, let be the solution to problem . Then there eists
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(a) Upk u weakly in wl’m(’) for every m

_
1,

(b) i. X e (0,1),
II < 1.

k
cConversely, if {p }k=l is any sequence tending to such that {Upk}=l converges

weakly to u in wl’m(t) for some m > n, then the above statements hold.
Remarks. (1) In the case where f _= 1 and F0 0, the above lemma can be

found in [BDM] with essentially the same proof (see, e.g., pp. 26, 33-34).
(2) Observe that different subsequences may a priori yield different limits.
(3) By applying Mazur’s lemma (see, e.g., lET, p. 6]) and Cantor’s diagonalization

process, it is possible to obtain a sequence {Vk}=1 of convex combinations of {up }=1
such that vk - u strongly in WI"() for every m _>. 1. Further, vk is almost
optimal for Pp in the following sense: Given > 0 there exists a K such that IJp(up)-
Jp(vk)] < a for all p and k with k > p > K.

Proof. Let Up be a solution to (3.3) and put p fa f[VuplP dx. From Theo-
rem 3.1 we then deduce that

(3.4) p inf / fl-alrl q dx.

Now, let n < s < p, 7 + 1, and let rt be the extremal for :P. Then, by Hhlders
inequality and (3.4)

Hence, the function

is monotonically decreasing and therefore limp_. Sp exists and is finite. See [BDM,
p. 34].

Put t limp_ Sp. By Theorem 3.1 we have that Jp(up)
p- . Clearly, 3 > 0. Let m > nandput Gm= {Up" p >_ m} c wl’m().
Further, there exists a constant C, independent of m and p, such that

(3.5) - flVulm dx <_ <_ C, Vp >_ m.

Hence, from (3.1) it follows that Gm is bounded in w’m(t). By the Rellich-Kondra-
chov theorem (see, e.g., lAd, Whm. 6.2, p. 144]) the embedding

n
O<A<I

m

is compact. Thus, since w’m() is weakly sequentially compact, we obtain a se-
quence (Up}=, p // oc as k -- oc, that converges to a function u weakly in

nwl’m() and strongly in C,(), 0 < A < 1- , as k --, c. Furthermore, we claim
that Up -- u weakly in WI"I(t) for any ml > m. Suppose this is false. Then
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there is a functional t? E (Wl"l(gt)) and a subsequence {Upk }=, Pkl > ml, such
that I(g, Upk -u/I >_ 5 > 0. By (3.5) this subsequence is bounded in
and therefore contains a subsequence that converges to an element u weakly in
W1,m (ft). Since Up u uniformly and since this last subsequence is also a sub-

which is a contradiction.sequence of {Up}=, we immediately get that u u,
Thus Upk --+ uc weakly in W’’ (Ft) for all ml > m. Since the embedding of w’m(f)
into w’m(f) is continuous if 1 < ml < m (by Hhlder’s inequality) it then follows
that we in fact have weak convergence in W,ml (ft) for any m >_ 1.

Finally, by the weak convergence we get

Vu Ilm< liminfk_._, VUp lira-< liminf.._, Ifl (-pl
for every m > n. Thus, Vu 1, i.e., u

Note that we cannot expect to have convergence in C,1, as shown by the following
example. Let Fo 0f, f 1, and # 5xo for some Xo f. Then Up is the Green
function for -Ap with pole at x0 in f (see 4). In a neighbourhood of x0 we have by
IS, Thm. 1, p. 79] that

which is not Lipschitz continuous for any p > n.
Before we proceed we need to study some geometric properties of ft.
DEFINITION 4. The ridge, 7(ft), is the set of points x f such that there exist

yl,y2 Of, yl Y2 with [x- YI ]x- Y2[ dist(x,0ft). This set can also be
characterized as the set of x ft such that dist(., Oft) is not differentiable at x (see
[EH, Thm. 3.3, p. 149]).

Let x, y E Ft. By [B, p. 25, 5.18] there exists a shortest curve in ft joining x and
y. We denote by d(x, y) the distance within f from x to y and define it by

d (x, y) inf{length(7) 7 cft is a curve joining x and y}.

For a general domain in R" one usually uses a different definition for d (x, y) to make
d(x, y) comparable with the distance within f (see [BDM, pp. 22-23]). However,
with the above definition they are in our case comparable, since ft is a Lipschitz
domain. We then define the distance from x gt to F0 as

dro(X) inf d(x,y).
yEro

We can thus choose a minimizing sequence of curves, 7, with terminal points Yn
F0. By [B, Thm. 5.16, p. 24] there is a subsequence 7n and a curve 70 c gt with
terminal point Y0 F0 (since F0 is closed) such that 7 converges uniformly to 70
and length(70) <_ lim inf length(7), i.e., dro(X length(70).

Let Lz be the set of shortest curves in gt connecting z supp # and Fo, and let
E be the subset of f covered by the curves in Lz as z varies over supp #. Clearly
supp# C E. Further, E is closed. Indeed, let {xk}=l c E and suppose xk x
as k --. . By the definition of E, each x lies on a shortest curve joining a point
zk E supp # and a point yk Fo. Since supp # and F0 are closed we can also assume
that there are z supp # and y F0 such that z z and Yk --+ Y as k --, cx,
possibly after choosing an appropriate subsequence of {x}=. By the continuity of
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d it follows that d (Yk, xk) d- (y, x) and d (xk, Zk) d- (x, z). Since x lies on
a shortest curve joining zk and yk, we have d (Yk, Zk) d (Yk, xk) + d- (xk, zk)
d (y, x) + d (x, z). From this it follows that d (z, y) d (y, x) + d (x, z), i.e.,
x E E since we would otherwise have a contradiction to the assumption xk E.

For reasons explained below, E will be called the set of uniqueness. We now
formulate the main theorem of this section.

THEOREM 3.3. Let p > n and let up be the corresponding solution to problem :Pp.
Let uoo be the limit element of some subsequence {Upk }--1 as in Lemma 3.2. Then
the following hold:

(1) Vuoo I[oo= 1 and luoo(x)l <_ dro(X for every x e ft.

() uo i a oitiw na. Th (x) do(X) fo e E.
(3) /f in addition to (2), F0 0t and n() C supptt, then uoo(x) =_ dist(x, 0ft).

In this case, the entire net {Up}p>n converges to dist(., 0f) in wl"(f) for
any m >_ 1 and in C,() for any (0, 1) as p -- (x, i.e., without choosing
subsequences.

Remark. In the case F0 0ft and f =_ 1 on ft the above theorem can be found
in [BDM, Thms. 1.1, p. 33, 4.1, and 4.2, p. 42]. See also IN, Tam. 1, p. 5].

Proof. Let uoo be the limit of some subsequence, {Upk }k__l Using Theorem 3.1
and the fact that Up uoo in C’() as k c we can conclude

(3.6) $oo lim Sp[ lim $pP Upk d# uoo d#.
M-*oo

Using (3.3), Theorem 3.1, and Hhlder’s inequality we get

V E/oo

and hence

(3.7) V’ I1 d
<, V .

Since uoo e ]Coo and Vu [1< 1 by Lemma 3.2, it follows from (3.6) and (3.7)
that

which in turn implies

(3.8) I(,)l-< dro(X)
for every x E ft. This proves (1).

Suppose now that # is a positive measure on f. Since dro E/Coo and IVdro 1
whenever it exists, we have that d ro is an admissible test function for Pp for any

p > n. Hence, by Theorem 3.1 (recall - + 1)

1/ 1
Jpk (Ups)=

q
Upk d# <_ Jp (dro lfl- drod#,
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since Up is the solution to Pp. Thus, using (3.6), we obtain as Pk --* oe

/ drod# <- /u d#,

since Upk u uniformly as k --, , which by (3.8) yields

(3.9) u(x) dro(X), for every x e supp#.

This proves (2).
Suppose that F0 OFt and that supp# is a proper subset of ft and consider

the Lipschitz extension problem as formulated in [Arl]. Here, the given compact set
F supptt kJ OFt and the function to be extended, g, equals dist(x, Oft) on F. It is
clear that both u and dist(., Oft) are solutions to this extension problem.

Suppose 7(f) c supp #. Then dist(., 0f) E CI( \ supp#) and by [Arl, Whm. 4,
p. 555], it is the unique solution. Thus u(x) dist(x, 0f) for every x E f.

If supp # f then by (3.9) we have uniqueness of the limit function. That the
net {Up}p>n converges to u in wl’m(f) for any m >_ 1 as p --. oe then follows
by the same arguments as in [BDM, p. 36]. The proof of the Hhlder convergence is
analogous to the proof of Lemma 3.2(b). []

We can now state a sensible limiting problem :P of the problems Tp: find u
such that Vu I1 _<1 and

f sup /
a IlVlloo _< 10

Observe that the weight function f has "disappeared" in the limit process and does
not occur in P. We immediately get the following corollary.

COROLLARY 3.4. Any function u, as described above, is an extremal to the
problem 7. If # is positive then d ro is clearly an extremal.

The uniqueness result of R. Jensen [J, Thm. 2.22, p. 70] and the fact that vari-
ational solutions are viscosity solutions of Au 0 [BDM, Prop. 2.2, p. 27] enables
us to prove the following theorem.

THEOREM 3.5. Let F0 Oft, f 1, and suppose # is positive. Then the entire
net {Up}p>n converges to a unique limit element u in C,() for any A e (0, 1) as
p --. oe, i.e., without choosing subsequences.

Proof. Let u be the limit element of some subsequence {Upk }=1 (Pk /z oe as
k --. x). Then u(x)=dist(x, Of) for every x E by Theorem 3.3. Let U be a
component of ft \ E and let Vp be the solution of the problem

ApV 0 in U,
v dist(., OFt) on OU.

Denote by v the unique variational solution corresponding to {Vp}p>. By the weak
comparison principle for p-harmonic functions we then get

i.e., u v, and it follows that u is independent of the actual subsequence
chosen. That {Up}p> has the stated convergence properties then follows exactly as
in the proof of Theorem 2.5. []

Remark. Note that Au 0 on ft \ E in both the variational and viscosity
senses.
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4. Green functions. Let xot, Fo=0Q, f--l, and let #=cohxo. For any ex-
tremal upW’P() of problem Pp, p > n, we then have that -ApUp co5o. If
co 1 then Up is a so-called Green function of Ap with pole at xo in . The Green
function will be denoted Gp(x; xo, ). For p 2 we get the classical Green function.
Thus, by Theorem 3.5, the family {Gp(.;xo, Ft)}p>n has a unique limit as p--

We now turn to the question of symmetry for the Green function. For p 2 it is
well known that the Green function is symmetric in any domain , i.e., G2(x; y, t)
G2(y; x, Ft). However, it is not as well known that if p n >_ 3 and Ft B.(xo)
(ball with radius r and center at x0) then the Green function is still symmetric!
Symmetry holds because Mhbius transformations preserve n-harmonic functions, i.e.,
if we perform a conformal change of coordinates, then the transformed function is still
n-harmonic (see [HKM, p. 286]). (The author would like to thank Professor Peter
Lindqvist, Trondheim, for pointing out this fact.) Indeed, let r 1 and x0 0. Then

1
Gn(X; 0, B1 (0)) (,On log -,

where Wn is the area of the unit sphere in R. A mapping is said to be a Mhbius
transformation if it can be written as a finite composition of translations, homoth-
eties, orthogonal linear transformations, and inversions in spheres. Verification of the
statements below requires some very elementary but tedious calculations. These cal-
culations will beomitted. To show the invariance of the n-harmonic functions under
Mhbius transformations we need only show that it holds when the transformation is
an inversion in a sphere. This is done by changing coordinates in the integral on the
left-hand side of (3.3). Now, the mapping

M(x) (1 -l12)(x ) -Ix 12
1 2x. + Ixl21CI

is a Mhbius transformation since it can be written as

M S o H o T o S o T,

x Further,where S(x) -V’ H(x) (1-112)x, Tl(x) x-, and T2(x) x- 1_11..

I(1 -Ix- Iz-
1- 2x + Ixl21[ 2

ix

if x 0 and M(0) 1. Note that the square of the denominator of the right-hand
side equals the denominator of the fraction in the middle. Hence ]M(x)] M()],
M takes Bl(0) onto BI(0), and M() 0. Thus if < 1 then

Gn(x;, BI(O)) Wn log IX 1
is the Green function for BI(0) with pole at . Thus the Green function for the n-
laplacian is symmetric. Below we will show that the Green function is not symmetric
if p is sufficiently large.

THEOREM 4.1. LetB(O) ={xeRn: x < 1}. For everyxeBl(O), x0,
there is a p > n such that

Gp(X; O, B1 (0)) > Gp(0; x, BI(0))



BEHAVIOUR IN THE LIMIT AS p-- cx:) 355

ifp>px.
Remark. We chose B1 (0) for simplicity. A similar result holds for a more general

class of domains, e.g., convex domains. Indeed, let x E ft and suppose ft is convex.
Take a point y E Ft such that y lies on a shortest ray from x to 0f. Then Gp(y; x, ft) >
Gp(x; y, f) if p is sufficiently large.

Proof. Let aBl(0), put y0=(1,0,...,0), and let Rnx=(xl,...,Xn). The p-
laplacian is invariant under rotations and therefore it is no restriction to assume that
a lies on the positive xl-axis. Further, B1 (0) is convex and thus there is a family of
affine functions, {fp}p>n, such that fp(-yo)=O, fp(O)=Gp(a;a, Bl(O)) and since fp
is p-harmonic we get that fp(X)>_Gp(x; a, Bx(0)) by the weak comparison principle.
By Theorem 3.3, Gp(x;O, BI(O)) -- dist(x, OBl(O))in W’P([’) and Gp(X; a, BI(0)) --dist(x, OB1 (0)) for x on the segment from a to Y0, as p - oc. Clearly,

Gp(O;a, Bl(O)) < fp(O)- Gp(a;a, Bl(O))
lal + 1

dist(a, OBl(O))
-* [aI+1

asp-.c,

by construction and since

Gp(a; O, B1 (0)) -- dist(a, OB1 (0)) > dist(a, OBl(O))

the statement follows. []

We end this section with some observations that relate Green functions and the
p-capacity of a condenser.

PROPOSITION 4.2. Let xo C R and p > n. Then

Capp({Xo}, a) Cp(Xo; xo, a) 1-p.

Proof. Since p-capacitary functions are p-harmonic it follows by the comparison
principle that the function

(x) a,(x; xo, a)

is the capacitary function corresponding to p and ({xo}, ft). Thus

1 f IVGp(X;Xo ft)[p dxCpp({Xo},a) Ivul dx
Gp(Xo;xo, a)P

@(xo; xo, )1-,

since -ApGp 5xo and Gp W’P(f). rn
LEMMA 4.3. Let ft C R’ be a bounded domain with Lipschitz boundary Oft and

let p > n. There are constants C1, C2 > 0 such that

Cldist(x, Oft)"-p <_ Capp({X}, f/) <_ C2dist(x, colt)n-p

for every x Ft.
Proof. Put Br(y)= {x e Rn’lx- y[ < r}. By [HKM, Whm. 2.2, p. 28; Ex. 2.12,

p. 35], we have Capp({X}, ft) <_ Capp({x},Bdist(x,oa)(x))= C2dist(x, Oft)n-p.
Take xo ft, put d dist(xo,0ft), and denote by uo the capacitary function

corresponding to ({xo},f/). Extend uo to all of R" by uo(x) 0 if x f/ and let
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v(x) Uo(Xo + x). Then

cP({xo},)= f Iwol d f IVuolp dx---p y IVvlp dx"

[2 CB(xo) B (0)

It only remains to estimate the last integral from below. Since p > n we have by the
Rellich-Kondrachov theorem (see, e.g., lAd, Thm. 6.2, p. 144]) that the embedding
WI’P(BI(O)) -. C(BI (0)) is compact, i.e., there is a constant A > 0 such that

(4.2) 1 sup
xeB(o)

Now, choose 5 2d and put E {x e BI(0)" v(x) 0}. Since 0t is Lipschitz we
claim that there is a constant C > 0 depending only on f such that

(4.a) c < IEI < IBI(0)I

for all x0 E gt. To see this, put

h(x) IBed(X)[

Since t is a bounded Lipschitz domain it has both the interior and the exterior cone
property (see lAd, pp. 66-67]). Here we shall make use of the exterior cone property,
i.e., there is a finite cone S such that every x E 0f is the vertex of a cone Sx c Ft
which is congruent to S. Now, for every x e Ft we have that

1 > h(x) > [B2d(X) N Sl > [Bd() N
IB(x)l IB.(x)l

which is clearly bounded away from zero. Here 2 OFt is such that
dist(x, 0t) Ix 2 I.

From [Z, Thm. 4.4.2, p. 188] we have that for every u WI’p(B1 (0)) that is equal
to 0 on E

where C > 0 depends only on p and IE[. Using (4.3) we then get that there is a
C > 0 independent of the particular E such that

(4.4) U ][W,P(B(O)) C’ Vu L(B(O))
for all u e WI’p(BI(O)) such that u 0 on E.

Inserting (4.2) and (4.4)into (4.1)yields

cp({x0},) (2dist(xo, O))n-p Vv [(S(0))
PC"dist(xo, 0)-p v ]w.,(S(O))

Cdist(x0, 0)n-p

and we conclude Cldist(x, 0)n-p Capp({X}, ) C2dist(x, 0)n-p.
Combining Proposition 4.2 and Lemma 4.3 we immediately get the following

result.
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PROPOSITION 4.4. Let C Rn. Then there are constants C1, C2 > 0 such that

C1dist(x, 0t) p-1- <_ Gp(X; x, ) <_ C2dist(x 0)

for every x E , which in turn implies

Gp(x; x, ) 0 as dist(x, 0t2) - 0.

For further results on Green functions for a more general class of operators we
refer to [Ho]. There, the case where 1 < p <_ n is considered but most of the results
carry over to the case where p > n, with essentially the same proofs.

5. On the "thinning" behaviour of the extremals to the Tq problem.
Below we will show that if the set of uniqueness E - gt, then rq 0 in the mean as
q --+ 1+ on sets that "stay away" from the set of uniqueness. As a corollary of this
result (or rather, its proof) we will find that in this case the Poo problem has several
different extremals.

A proof of the theorem below, in the case of two dimensions and a single Dirac
measure, was suggested to the author by Professor Gunnar Aronsson, LinkSping.

THEOREM 5.1. Let It be a positive Borel measure with It(t) < oe. Let p > n,- +- 1, and let Up and rq denote the extremals of problems 7)p and 7)q, respectively.

Suppose that the set of uniqueness E is a proper subset of and let Fe {x t
d (x, E) > } for any > O. Then

f I" 1 dx f SlVI1-1 d --+ 0, as q -+ 1+ (p -+

for each > O.
Remark. In some cases the sets Fe can be chosen in a different way so that
r E : , e.g., if It kN__ ckSx, ck > 0 and F0 0t. Then we can choose F so

that r E UN={x} and each component of \ F is the intersection of and
a cone with vertex at some x (see Fig. 1).

Xl

FIG. 1. A typical example of the situation described in the remark above. The shaded areas
indicate \ Fe.

Proof. The idea of this proof is to construct a function 0 e K: such that
IV o(x)l < 1 -5 on Fe for some 5 > 0, V0 lion,a= 1, and o(X) dro for
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x E supp #. Suppose that we have carried out this construction. From Lemma 3.1
and (3.2) it then follows that

/ rq Vdx / d#,

Thus,

(5.1) / @ / Wo <_ / dx + 5) / dx

\F F

and since fa up d# fa drod# by Theorem 3.3 as p c, it follows from (5.1) that

(recall 0 < C _< f _< 1)
1

F

I1 upd# drod# -- 0

asq-+ 1+ (p-- oo).
Put

(5.2) 0(x) dro(X sup
dr(Z)

zesupp dro(X) + d (x, z)

(see Fig. 2). Now it only remains to prove that 0 has the properties stated. Clearly,

Po

FIG. 2. Illustration of the curves involved when calculating o(X). The shaded areas are parts
of the complement of .
o is continuous on gt and o(X) < dro(X with equality if and only if x E EUFo since

E is closed. Let a, b gt and suppose o(a) > o(b). Let za supp# be such that
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the supremum in the expression for o is attained. Then it follows from the triangle
inequality that

d(a,b)-5(b, za + dro(b [d-(b, za) d(a, Za)]
O<(a)-(b)<-dro(Za) [dro(a)+d(a, za)][dro(b)+d(b,z)]

dr0(z)<- d(a’b) dro(a -d(a, Za)

since d (., .) is a metric on Ft. Thus

Vo ]loo,n sup
[(a)- (b)l

1
a,be d (a, b)

and o E. Finally,

V0 II,F sup
a,bFe

I(a) (b)l < 1 5
d- (a, b)

where obviously

[
-5= sup sup !

xFe zsupp tt [d
dr(z) ]to(X) + d (x, z) < 1.

Now, we know from Corollary 3.4 that d ro is an extremal to the :P problem.
Clearly, the same holds for the function 0 defined in (5.2). Since 0(x) < dro(X for
every x E gt \ E (since E is closed) we conclude with the following corollary.

COROLLARY 5.2. The cx problem has a unique extremal if and only if E gt.
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DETERMINING LINEAR CRACKS BY BOUNDARY
MEASUREMENTS: LIPSCHITZ STABILITY*

GIOVANNI ALESSANDRINIt, ELENA BERETTA$, AND SERGIO VESSELLA

Abstract. We consider the inverse boundary value problem of crack detection in a two-
dimensional electrical conductor. We prove an estimate of Lipschitz type on the continuous de-
pendence of an unknown linear crack from the boundary measurements.

Key words, inverse boundary value problem, stability, crack

AMS subject classifications. 35R30, 31A25

1. Introduction. The inverse problem of. detecting a crack in an electrically
conducting body can be modeled as the determination of a curve a in a planar domain
t from boundary measurements of solutions u (potentials) to the problem

(1.1a) An--0

(1.1b) u const.

CU
(1.1c) O =

in f\a,
on 0",

on 0,

when various profiles (currents) are assigned.
Friedman and Vogelius have proved that a crack a is uniquely determined when

boundary measurements corresponding to two appropriate profiles are known; see

IF-V]. They also observe, by a duality argument, that a similar result holds when
(1.1b) is replaced with

(1.1b’) 0
0 on a.

When (1.1b) holds, the crack a is said to be perfectly conducting, whereas in (1.1b’),
it is said to be perfectly insulating. They also address the stability issue, discuss the
relevance for the actual reconstruction of the crack, and give some initial results in
this direction.

A stability estimate for perfectly conducting cracks has been obtained in [A1]
and generalized by Diaz Valenzuela to the perfectly insulating case [DV]. Unfortu-
nately, such estimates are of logarithmic type; see [A2] for a partial improvement. In
[A1], [DV], and [A2], bounds on the smoothness and the size of the unknown crack are
assumed, but they involve only a finite number of derivatives of the crack parametriza-
tion. One can expect that better stability estimates might be obtained when stronger
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a priori information is prescribed. Linear cracks have been the object of interest-
ing and successful numerical reconstruction algorithms by Santosa, Vogelius, Liepa,
and Bryan IS-V], [L-S-V], [B-V]. Therefore, it seems interesting to complement such
procedures with a theoretical study of the stability in this special case.

In this paper we prove a Lipschitz-type continuous dependence of the crack a from
the L2(F) traces of two solutions u and u2 of (1.1) when two appropriate profiles 1
and 2 are assigned and are as follows. Fixing three distinct points Po, P, and P2 on
0, )1 and 2 are the two-electrode current configurations with electrodes at P0, P,
and P0, P2, respectively (see (2.3)-(2.5)). Here F is a fixed portion of the boundary

We have chosen to treat the perfectly conducting case as in [A1] and [A2] just
for the sake of convenience, but we wish to stress that a completely analogous result
could be obtained for the perfectly insulating case due to the results in [DV]. Let us
also emphasize the fact that the measurements u and u2 need not to be taken on all
of the boundary 0t, but just on a portion F of it.

Let us illustrate the main line of our argument. Considering u3 u2- u,
that is, the solution with electrodes at P1, P2, we find that there exists at least one
index j 1, 2, 3 such that, setting u uj, Ozu has a singularity of the type z-/2

at both endpoints V and W of a. This fact suffices already to prove the unique
determination of a from the boundary data. This is a consequence of the unique

Ouharmonic continuation of the Cauchy data u, on F.
In order to prove our Lipschitz-type estimate, we study the Frechet derivative u

of u u(z) as a function of the crack a. We write the asymptotic formula of u’ u’ (z)
when z is near the endpoints of a, for instance,

(1.2) u’(z)Sa Re(a(z- V)-I/2(V)--lower-order terms as z -- V.

Here 5V denotes the variation of the endpoint V and a : 0 is a complex number.
From (1.2) we deduce a lower bound on the derivative of the map

(7 - (t ?.t2) e L:(F) L(F)

(see Proposition 4.1). By coupling this lower bound with upper bounds on the second
directional derivative of the same map, we are able to estimate the derivative of the
inverse mapping. This estimate, combined with the general stability estimate in [A1]
(slightly adapted to our setting; see Lemma 4.6), yields the desired Lipschitz stability
result.

Let us recall that Friedman and Vogelius already studied the stability problem
for linear cracks and they proved a Lipschitz-type bound for the line containing the
crack. Unfortunately, their approach does not give sufficient information about the
location of the endpoints of the crack along the line. This difficulty is circumvented
here by evaluating formula (1.2) on appropriate points z near V and also in the case
when 5V is parallel to a.

The plan of the paper is as follows: In 2 we state our assumptions and the
main theorem (Theorem 2.1). In 3 we describe, through a sequence of lemmas, the
asymptotic behaviour of the solutions uJ, j 1, 2, 3, near the endpoints of the crack.
The main results of this section are contained in Proposition 3.4. Section 4 contains
the main body of the proof of Theorem 2.1. The final section, 5, is devoted to the
proof of two auxiliary results, Lemma 4.6 and Proposition 4.5.

2. The main result. Given positive constants L,L2, M, and a, 0 < c < 1,
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which we shall name a priori data, we suppose that ft is a bounded simply connected
domain in R2 satisfying the following:

(2.1a) perimeter of f <_ L1,

Vz E0gt there exist two circles of radiusL2 tangent in z,
,(2.1b) the first contained in and the second in Cf.

If z z(s) is the arclength parametrization of 0ft, we have

(2.1c) IlZllc2, <_ M.

We consider the class E of linear cracks in f which is made of the linear segments
a c gt satisfying the following:

(2.2a) length of a >_ L2,

(2.2b) dist(z, Oft) _> L2, z E a.

Given three points P0, P1, P2 e 0ft such that

(2.3) IP Pjl >- L2 Vi, j, j,

we consider three smooth nonnegative functions o, 1, and 2 on Ot satisfying

(2.4a) f ds --1, i-0,1,2,

and

(2.4b) supp Ui c Of/A Bh(Pi),

where Bh(Pi) denotes the ball centered at Pi with radius h, 0 < h < 2"
We denote

1 ]0

(2.5) v0 w,

Let F C O be a simple arc such that

(2.6) length of r >_ L2.
j 0, 1 j 1, 2, 3, as theGiven two cracks ao, al E, we consider ui H (ft),

unique solution of the following boundary value problem:

(2.7b)

(2.7c)

(2.7d)

/ku{ =0
J const.it

o.{
Or,

Jds=O.u

in ft\ai,
on (:r

on Oft,
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Here denotes the exterior unit normal to 0n. Notice that the constant value in

(2.7b) is also unknown, but it is uniquely determined in view of (2.7d). Observe also
that

3 2(2.8) u u u.
THEOREM 2.1. Assume conditions (2.1)-(2.6). There exist ho, C > O, depending

on the a priori data only, such that if h <_ ho and co, a E E, then we have

2

(2.9) d(ao, al) <_
j=l

Here d(., .) denotes the Hausdorff distance between bounded closed sets of the
plane. If we denote by V/and Wi the endpoints of ai, 0, 1, then we see that

d(ao, a) min {max{]V0 Vl, [W0 W1]}, mx{lV0 W[, [W0 Vl}}.
Hence, up to a renaming of the endpoints, we can assume that

and

d(ao, a) [Vo

[Wo Wl < d(ao, ai ).
Remark. Observe that the hypothesis h < ho mean8 that we require the electrode8

to be concentrated. On the other hand, the constant C doe8 not diverge as h 0
and thus, in the limit, (2.9) remain8 valid when the function8 /j are replaced with the
Dirac deltas.

3. Some preliminary lemmas. When it is convenient we shall use the usual
identification of R2 with the complex plane: z x / iy, Oz 1/2(0- ion)" Also,
we shall choose an orientation of coordinates in such a way that W0 V0 is real and
negative.

Let us denote

1
(3.1) 2 6p 6p,

and let u8 name v# the solution to (2.7) when # i8 replaced with #. Set v ].
From [A1, Thm. 2.1] we know that the level line {v } in \a i8 composed

of two simple arcs, each of which ha8 one endpoint on 0n and the other on a. The
latter one8 are called branching points. We a180 know that the branching points are
distinct when considered a8 point8 on d, the closed curve obtained by glueing at the
endpoint8 two copies of a (that i8, if we distinguish one-sided limit point8 on a). The
following 1emma give8 a new formulation to arguments already used in .[A1, Lem. 4.1].

LEMMA 3.1. There exists C > O, depending on the a priori data only, and at
least one index j 1, 2, 3 such that the branching points on v have distance larger
than or equal to C from both the endpoints of co.

Proof. Let B, 1, 2, be the branching points of v on o:0. From [A1, Thm. 2.1]
we have that, up to a rearrangement of the points P0, P, and P2, the branching points
have the following circular ordering on

< < < < < < <...,
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and that the distance along #0 between any two consecutive branching points domi-
nates a positive constant K, only depending on the a priori data.

Now we show that there exists j 1, 2, 3 such that

KIVo B I, [Wo Bl _> -, Vl 1, 2.

Suppose that for some h 1, 2, 3, and m 1, 2, we have

K

therefore, we gt
K

IVo-Bl - gj#h, /=1,2.

Next, if for some k h and some m 1, 2, we have

KIWo Bl < -,
then we are left with one index j, j = h, k, such that

K
[Wo-B[_> - ’1=1,2,

and our thesis follows with C- K [:]
2

LEMMA 3.2. Let j 1, 2, 3 be as in Lemma 3.1. There exist p, C > O, depending
on the a priori data only, such that

(3.2) IVg()l > CIz- Yo1-1/2, Vz e Bo(Yo)\ao.

Proof. See [A1, Lem. 4.2].
LEMMA 3.3. Let C, p > 0 be fixed. Let u,v e HI(Bp(Vo)) be harmonic in

Bp(Vo)\ao and constant on ao N Bp(Vo).
There exist A, B, o > O, depending on C and p only, such that, if we have

(3.3) IVv(z)l >_ CIz Vol -/2, Vz e Bp(Vo)\ao

and

(3.4)

then we have

(3.5) a(z) i(z Vo)-/ + R(z), Vz e B(Yo)\o,
where

(3.6) c E R, lal > A,

(3.7) I1 + IR(z)[ BllUI[H(B,(Vo)), VZ e Bp(Vo)\ao.

We defer the proof of Lemma 3.3 until after Proposition 3.4, which contains the
main results of this section.

Remark. Let us observe that an analogous statement could be obtained when V0
is replaced with W0.
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PROPOSITION 3.4. There exist constants A, B, p, ho > O, depending on the a
priori data only, and an index j 1,2,3, such that if 0 < h < ho and Uo is the
solution of (2.7) when i O, then we have

(3.8) OzUJo(Z) ia(z- Y0) -1/2 + R(z), Vz e Bp(Yo)\ao,

with c 6 R and

(3.9) I1 _> A; I1 / IR(z)l < BliUlIH(BCVo)), VZ e B(Vo)\O.

Proof. We can fix two open subsets U0 and U1 of fl such that

aCUoCCUcc, VaE.

The weak formulation of (2.7) for u u v gives

u 6 H (fl), u const, on a0,

Vu. V 0 V e H(Ft) such that const. on (70

Notice that the proof of the Caccioppoli inequality and of the weak maximum principle
follow as in the usual case when no constraint is imposed on (70. Therefore, we have

I o [_
aUo Ju

and

and hence

max u vl < max u vlU1 OU1

I1 11(o) < CmaxI v<lOU1

and by interior estimates in HS-spaces,

max lu vl < Cllu VliHil2(Uo).OU

This lt norm can be bounded by the H-I(OD) norm of the Neumann data for

u . Therefore, we get

Recalling (2.5) and (3.1), we have

=,2,3

Now we see that

By (2.4) and the standard estimate

we obtain

7jCds

IIllc,/:(or,) <- CIlll,(or,),
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Therefore, we get

I1’ ,llH-(Uo) --< Chl/2,
and, by similar arguments,

Now we pick j 1,2,3 as in Lemmas 3.1 and 3.2. The proposition follows from
Lemma 3.3. F1

Proof of Lemma 3.3. Without loss of generality, we may set u v 0 on ao N
Bp(Vo). We may assume Vo 0; hence a0 c {y 0, x < 0}.

Consider + iT v as the analytic branch of the square root which maps
C\{y 0, x < 0} onto { Re > 0}. That is, in polar coordinates z rei, I1 < ,

rl/2e/2. By abuse of notation, we set u() u(z) and v() v(z).
By the conformal invariance of the Dirichlet integral, we get

IO( v)l ddr < ,
I<pl/2,>o

and we have u v 0 when 0. Let us continue u and v harmonically to { < 0}
by an odd reflection. By standard interior bounds, we have

IO(- v)l _< Kho,
cand therefore, when 50 < 2K

and

V B(/)/ (0),

C pl/2IOl _> - v, I1 <

laCul)
1/2

(0)
Notice that

Ou C <a (0) 0, -2-
Therefore, the Taylor formula gives

with

Hence, setting a

a() -(0)+ R(),

<_ Kllaull:(.(o)).

V e B(I.)/ (0)

(/.)1/2I<P/2
max IOl < I1

c
localIR(01 < I1

,,<(,/),/:

10u
a ov (0), by the chain rule OzU OCu, we have

ia C
2

and (3.5)-(3.7)follow. El

4. Proof of Theorem 2.1. From now on, we shall restrict our attention to the
J to (2.7) when j is the index found in Proposition 3.4. Therefore, we shallsolutions ui

Jdrop the superscript j from CJ and ui.
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Denote by at, 0 <_ t <_ 1, the line segment with endpoints

Yt Yo "[- t Yl Yo Wt Wo -[- t Wl Wo
Denote by ut E Hl(t), 0 _< t _< 1, the weak.solution to

(4.1a) Aut 0 in

(4.1b) ut const, on

(4.c) Out
Ov

on 0t,

(4.1d) / ut ds O.

Let us also consider vt HI(f), given as the solution to

(4.2a) Avt 0 in gt\at,
(4.2b) vt 0 on at,

(4.2c) Ovt
0,

on OFt.

If we set ct ut]at, then we have

vt ds.(4.3) ut vt + ct, ct

LEMMA 4.1. There exist C, 50 > O, depending on the a priori data only, such that
if d(ao, (71)

_
50, then there exists a one parameter family of invertible C mappings

t , 0 <_ t <_ 1, which satisfies the following properties:
(i) There exists a neighborhood U of [-J0<t<lat, U CC , such that

U

is a complex linear function for all t, 0 <_ t <_ 1.

t((Tt) --(70 t, 0

__
t

__
1.

(iii) There is a neighborhood V of Ot, V cc \U, such that

(4.4) t(z)-z VzV, Vt, 0_<t_<l.

(iv) Denoting t(z) t(x, y) + it(x, y), we have

(4.5) O(t, rlt) I < Cd(ao, al)t, Vz e gt Vt e [0, 1].

(v) t is twice continuously differentiable with respect to t, and we have

(4.6a)
(4.65) I;’(z)l <_ Cd2(ao, al).

Proof. Let T1 be the linear mapping

yl w1 yoWl ylWo(4.7) Tz z+Yo Wo Yo Wo
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We have Tlao al. Hence, if we set Tt I + t(T I), we obtain Tt-1
every t E [0, 1]. Observe that

(4.8a) IIT-1- III <_ Cd(ao, a)t

at ao for

and

d
(4.8b) d-T-i T-I(I- T1)Tt-1, 0 _< t _< 1.

Next, fixing U and V in such a way that

U0<t<lat C U CC ’, (’ C V CC -\U,

consider a C() function such that 0 _< _< 1 in t, 0 in V, and 1 in U.
We define

(4.9) t(z) (1 (z))z + (z)T-lz.
The estimates (4.5)-(4.6) follow by direct computation. The invertibility of t follows
from (4.5) provided that d(ao, a) <_ o with 50 > 0 sufficiently small depending on
the a priori data only. Statements (i)-(iii) follow from the construction. I’]

Let us introduce wt vt o -1; setting Jt o(e,,,,) and At we obtainO(x,y) detJt
from (4.2) that wt H(Ft) is the unique solution to the following problem:

(4.10a) div(AtVwt) 0 in \a0,
(4.10b) wt 0 on a0,

(4.10c) Owt
0

on0gt.

Notice that, if the hypotheses of Lemma 4.1 are fulfilled, then the matrix At satisfies
a uniform ellipticity condition which depends on the a priori data only. Let.us denote
by K - (V as in (iii) of Lemma 4.1).

LEMMA 4.2. Let d(ao, al) _< 50. Then the solution wt Hl(gt) to (4.10) satisfies
the following estimates:

(4.12) _< c.
Here C > 0 depends on the a priori data only.

Remark. Obviously we have

-<
However, the right-hand side cannot be bounded uniformly with respect to h, the size
of the support of .

Proof. We introduce the Robin function for problem (4.10). For every y Ft\a0,
Rt(x, y) is given as the distributional solution to

div(AtVRt(., y)) -Sy in \a0,
Rt(., y) 0 on cro,

ORt
/) (., y) 0 on
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Observe that for x f, y -- Rt(x,y) extends continuously to OFt. Moreover, the
asymptotic behaviour near OFt is the same as that of the Neumann function for the
Lplacian in Ft, and therefore we have the bound

We have

IRt(x,y)l<-C(l+llnlx-yll) Vxe, ye0.

f
wt(x) ] nt(x, y)(y) ds(y);

Jo

thus (4.11) follows easily by recalling that IIllLl(Oa) _< 2. Finally, (4.12) follows from
the Caccioppoli inequality.

LEMMA 4.3. Let d(cr0, crl)

_
50. The mapping [0,1] t wt Hl() is

differentiable, and its derivative w is Lipschitz continuous with respect to t. Moreover,
there exists C > O, depending on the a priori data only, such that

(4.13) w]u(n) Cd(a0, al), Vte [0, 1],
(4.14) ]w’]]H(a) Cd2(aO, al), for almost every t [0, 1].

Proof. om Lemma 4.1 we have that t At is C2. First, we show that t wt
is Lipschitz continuous by taking finite differences of wt. Using (4.10) and (4.12),
we prove that such finite differences are uniformly bounded in Hl(). Therefore, for
almost every t, w exists and satisfies

div(AtVw + AVwt) 0 in a0,
0 on ao,(4.15) wt

Ow 0 on 0.

Notice that At I in U U V. Therefore A 0 there. Hence

IIIIH(> CIIAVwIIL<K>
and therefore, by (4.5) and (4.12), (4.13) follow8 for almost every t. We can repeat
the argument to prove that w is Lipschitz continuous. Hence (4.13) hold8 for every
and, for Mmost every t, the second derivative satisfies

A,,Wwdiv(AtVw’ + 2AtVw + v t 0 in ao,
tt 0 on if0,(4.16)

Ow’ 0 on 0D.

By arguments similar to those above and recalling (4.6), (4.12), and (4.13), we obtain
(4.4).

Now we can use the chain rule to differentiate vt wt o t. We obtain

(4.)

and also

(4.s) ()+ e(w)(),
k] + (w)() k,] + (D)()]. ].
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Remark. We easily see that

Av Ave’= 0 in \at,
(4.19) Ov; Ova’ 0 on 0a,

but on the other hand, v and v verify somewhat complicated boundary conditions
on at. For instance, v satisfies

+

(v;) t (Vwt)(Ct) k,]
on a-.

Here the +_ sign distinguishes the one-sided traces on at; moreover, the right-hand
side must be interpreted in a delicate distributional sense. We avoid this approach by

" directly from those on w and w.deriving estimates on v and v
LEMMA 4.4. Assume that d(ao, a) 6o. There exists C > O, depending on the

a priori data only, such that

(4.e0) ](o Cd(o, ),
(4.1) ];’](o Cd(0,l).

Proof. We start by proving the following estimates on v and v:
(4.22) ( 5 Cd(o, 1),

(.) v’],-( Cd(o, ).

(4.22) follows from (4.17) by using (4.12) and (4.13) and by noticing that ( has support
in g. (4.23) is a consequence of (4.18) via the estimates (4.13) and (4.14). Observe
that the first three summands on the right-hand side of (4.18) can be bounded in
L2(fl), whereas the last one can be estimated in H-l(fl) by an integration by prts.

Next, recalling the smoothness of0 and (4.19), we have a higher regularity near
Off, for instance

,,(v) 5 Cd(0, 1),

]’],(v) Cd(o, 1).

Consequently, by the trace theorem, we derive

(4.24) ]](o Cd(0,l),

(4.2) ’(o 5 Cd(o, 1).

Observe that (4.24) nd (4.25) also imply that ct o foa vt is twice differentible:

vte[0,1]V

(4.2)
c’ 1

vt’’ for almost every t [0, 1].

Therefore, we also obtain that t ut L2(0) is twice differentiable, and we obtain
(4.20) and (4.21). Finally, notice also that by (4.19) and the regularity estimates at
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the boundary, .we have

(4.27) IlullH.(Oa) <_ Cd(ao, rl).

The Taylor formula gives us

(4.28) UI U0 U + R

where R f0 (t- X)u’ dt satisfies

(4.29) IIRIIL.(F) < Cd2(ao, al).

on F,

The following statements, whose proof we defer until 5, allow us to conclude the proof
of Theorem 2.1.

PROPOSITION 4.5. Let d(cr0, crl) _< 50. There exists c > O, depending on the a
priori data only, such that

(4.30) Ilu llL=< > > cd(ao, al).

LEMMA 4.6. There exists a continuous, increasing function w: [0, ) -- [0, ),
with w(0) O, such that

(4.31) d((rO,rl)W(]IU{_UJoI,L2(F))
Let us conclude now the proof of Theorem 2.1. In fact, if d(ao, or1) <_ 6o, then

from (4.28)-(4.30), we obtain

IlUl u011L.(r) d(ff0, ffl)(C Cd(ff0, (:rl)).

Let 51 min{50, c}" If d(ao, al) <_ 51, then (2.9) follows (recall (2.8)). On the other
hand, by (4.31) of Lemma 4.6, when d(ao, al) >_ 51, we have that

d(ao, al) < diam gt <

and (2.9) again follows. El

5. Proofs of Lemma 4.6 and Proposition 4.5.

Proof of Lemma 4.6. The estimate (4.31) is a slight variation of the estimate in
[A1, Thm. 1.4]. In [A1] only the Dirac-type boundary data (3.1) are considered, and
the L(F) norm is replaced by the L(F) norm.

In view of the considerations made in 3, Theorem 1.4 in [A1] also applies when
the boundary data are of the type in (2.5) when h < h0, the number appearing in
Proposition 3.4.

The change of the norm on the right-hand side of (4.31) can also be easily adjusted.
In fact, by (4.27) we have

IlUl uollH=(O ) _< c,
and therefore we can use the interpolation inequality

l12tX tt01ILC(F

_
C(I]tt tt0llH2(F))l/2(l]tt UOIIL2(F)) 1/2. I"]
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Proof of Proposition 4.5. Our proof will be based on the following two steps:
(I) There exist r0, c > 0, depending on the a priori data only, and a point zo,

such that Pro (zo) C f\a0 and

(5.1) lUo(Zo)l >_ cd(ao, al).

(II) There exist C, 6, C > 0, 0 < 6 < 1, depending on the a priori data only such
that

(5.2)

In fact, by (4.22), (4.24), and (4.26), we deduce

(.) l() Cd(o,),
and therefore, by combining (5.1)-(5.3),. we get (4.30).

Proof of step (I). We use formula (4.17) near Vo. We have

{) -(o(z))- 4.(zo)l

Recalling (4.9) and (4.8b), we have that

Therefore,

(z- Vo)(Vo v1 +w1 Wo) <_ Iz VolCd(ao, a).

[u(z)l _> d(ro, a)(r-1/2-B
Now, by recalling (4.24) and (4.26) and observing that by (4.13) we have

[Wo(Zr)l <_ CIIwOIIHI(U) <_ Cd(ro,(Tl),

Hence

Let a E [-3, ]2 be such that ei +_ Iv1-vol’V1-V Now, recall that @ is the identity
mapping and, therefore, wo vo uo co. Hence

() 2lRe(Ozuo)lWo(o)
\6

>_ 2d(ao, al)lRe(OzUoeim)l IOzUoll;(z)
d(o,)(elR(Ozo)l- ClOollz Yol).

Let 0 [-, ] to be chosen later on, and consider z Vo + 2re, with 0 < r < r,
where rl, depending on the a priori data only, is such that B3rl (Yo) C U and 3rl < p
(with p as in Proposition 3.4). By (3.8) and (3.9) on z z, we have

Re(OzUoei)+a(2r)-l/2sin(-) B.

Notice that, as 101 g, spans an interval of length 7; therefore, we shall fix 0
in such a way that sin(- )l - We obtain, on z z,

W0(0)" ,] d(o,l) (@r-1/2-B-Cr1/2)
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we get
lUo(Zr)l >_ d(ao, al)(cr-1/2 g).

Hence, fixing ro min{rl, c_g)2}, we obtain (5.1) with zo zr
Proof of step (II). (5.2) consists of a stability estimate for a Cauchy problem for

the Laplace equation. Prom (4.19) we have that u v +c is harmonic in ft\ao and
satisfies a homogeneous Neumann condition on OFt. The estimate (5.2) can be derived
from two well-known estimates for harmonic functions (see [P]),

JB+(0) + (o) (o)

JB2(0) 4(0) (0)

Here B+(0) is the half disk {z Izl < r, Imz > 0}, S(0) {z x Ixl < r},
and C1, C2 > 0, 0 < r, 0 < 1 are absolute constants. We may conformally map a
neighborhood of F in onto B(0) in such a way that the C2-norm of this map and
its inverse are controlled by the a priori data and F is mapped onto $2(0). Now

(’u’ + .Vu,) (’u’2 + ,u,,)
(o) (o)

<c
(o) (o) (o)

By regularity estimates at the boundary, we see that

0,
(0

recall that here we are assuming ’ 0 on S(0) Therefore, by (g.4) and returning0,
to the original coordinates, we find a disk Bo(w Co near r such that

Bo()

here p and C depend on the a priori data only. Now we can form a chNn of disks
{B(wj)}=l such that W+l C B(w)and Ba(w) c aao for all j, B(wo) C Bo(w),
and WM Zo, and in such a way that the numbers r and M depend only on the a
priori data. By a repeated use of (5.5), we arrive at

0( o) lull2 c lUol 2 lu;I 2

where C and depend only on , 0, and the a priori data. The local boundedness
estimate

c
lu;i 2

yields (5.2). [-1
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YOUNG MEASURE SOLUTIONS FOR A NONLINEAR PARABOLIC
EQUATION OF FORWARD-BACKWARD TYPE*

SOPHIA DEMOULINIt

Abstract. The scope is to study the nonlinear parabolic evolution of forward-backward type

ut V. q(Vu) on Q t ]+

with initial data u0 given in H(Ft), where C g is open, bounded, and q E C(]N;]IN), an

analogue to heat flux, satisfies q Vb with b E C1(]1N) of suitable growth. When b is not con-
vex classical solutions do not exist in general; the problem admits Young measure solutions. By
that is meant a function u in a suitable Sobolev space and a gradient-generated family of prob-
ability measures v (v,t)(x,t)eQ related by Vu (,id) almost everywhere (i.e.) (the iden-

tity integrated against p) and such that the equation can be interpreted distributionally in H-1

fo f(’ q)" V + ut dxdt for all H (Qo). The family is not unique, but through its first

moment some of the classical properties are preserved: uniqueness of the function u is true; stability
is reflected in a maximum principle and a comparison result. The asymptotic analysis yields, as time
tends to infinity, a unique limit z and an associated Young measure v such that the pair (z,) is
a Young measure solution of the steady-state problem V. q(Vz) 0. The relevant energy function is
shown to be monotone decreasing and asymptotically tending to its minimum, globally and locally
in space.

Key words. Young measures, forward-backward heat equation, weak convergence, calculus of
variations

AMS subject classification. 35K15

1. Introduction. We study the nonlinear evolution problem

(1) ut V. q(Vu) on Q gt +,
(e) .(.,0) =.0 on a,
(3) u 0 on 0t +,
which will be denoted by P. Here t is an open, bounded subset of ]N such that
the cone or the segment property is satisfied on the boundary (as for example in the
case of a Lipschitz boundary), and q" ]IN --+ ]N, a nonlinear, continuous, potential
gradient function, an analogue to heat flux, satisfying q- V, where E C1(N)
(the space of continuously differentiable functions on N) is of suitable growth. The
initial data function u0 is given in H(gt) and the zero boundary data (3) can be
taken to be a general time-homogeneous function g E gl(gt). (Here HI() is the
Sobolev space of functions on gt which together with their first-order weak derivatives
are in L2(t), and H0() is its subset consisting of the functions with zero trace on
the boundary of Ft.)

When is not convex, in which case the monotonicity condition (q(x)- q(y)).
(x- y) >_ 0 for x, y Ig is violated on subsets of g, equation (1) then constitutes
a forward-backward parabolic equation which generally admits no classical strong or
distributional solutions. The nonconvexity of the potential is compatible with the
usual requirement that q(A). A _> 0 be imposed on a theory of thermal conductors by
the Clausius-Duhem inequality.

Received by the editors January 18, 1994; accepted for publication (in revised form) June 17,
1994. This research was supported by the National Science Foundation and the Army Research
Office.

Department of Mathematics, University of California, Davis, CA 95616.
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A notion of a solution appropriate for the study of :P is that of a measure-valued
or Young measure solution. By that is meant a function u in a Sobolev space and
a parametrized family of probability measures (l]x,t)(x,t)EQ generated by the
spatial gradients of a sequence in the same space and satisfying

{, q}V + - dx dt O,

where

(’ q} jfN q(A) ,(dA) a.e. in Q

for all in an appropriate subspace of HI(Q). In addition, u and satisfy

Vu- (,id} NA(dA) a.e. in Q,

where id()) . So to each point (x, t) in the domain Q is associated a probabil-
ity measure x,t on N; via this parametrized measure the nonlinearity of q(Vu) is
replaced by the expected value of q, while the first moment of the measure is the gra-
dient of the solution. To date the term "Young measure solution," although strictly
derived from the fundamental theorem of Young measures described in 2, admits
slightly different definitions by different authors; the decision of what is a Young
measure solution of a problem must necessarily accommodate the way the generat-
ing sequence is chosen. In this case, the definition of Young measure solutions for 7)
appears in 3.

The approach we shall assume in this paper for the study of (1)-(3) is the one
employed by Kinderlehrer and Pedregal in [KP1] to establish existence. The method
incorporates the explicit methods for solutions of evolution equations (cf. [BC], [SKI)
with variational methods used to accommodate and describe the oscillatory behavior
(cf. [Ba], [E], [KP1], etc). The combination of the two methods leads to the existence
of Young measure solutions of evolution problems that may be of forward-backward
type.

The analytical context of our approach to obtain existence is to approximate the
dynamics of equation (1) with a sequence of stationary problems the solutions of
which are in turn interpreted as minimizers of variational principles. More precisely,
the time-discretized version of (1) is the Euler equation of a nonconvex variational
principle which at each time step (of size h) is minimized. The minimizer solves the
stationary problem and approximates the solution of 7) within time h. By taking
arbitrarily small time steps we pass from the stationary to the evolution problem.
The method is well known in the study of semigroups. It has been implemented by
Horihata and Kikuchi in [HK] to construct weak solutions to a quasilinear parabolic
problem associated with a convex variational principle. Further, this method has also
been employed by Bethuel, Coron, Ghidaglia, and Soyeur in [BC] to establish existence
of weak solutions for a nonlinear heat equation associated with weakly harmonic maps
in a Sobolev-type space of functions of the unit ball into the sphere in 3.

In applying this method to treat 7) the difficulty that arises is twofold: first, the
nonconvexity of the potential implicating the minimization of a nonconvex varia-
tional principle; second, the unwieldiness of the nonlinear dependence of the heat flow
q on the gradient of the solution. Both situations call for sensible generalizations, in
the former case that of a "minimizer" of a variational principle and in the latter, that
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of a "weak solution" of a differential equation. Respectively, the pertinent themes
implemented in [KP1] to overcome these impediments are first, the relaxation of
nonconvex functional and second, replacing the nonlinearity of q(Vu) with the ex-
pected value of q against a Young measure. The sense in which 7) has a solution is
then that of a Young measure solution.

We review the variational method of Kinderlehrer and Pedregal in [KP1] to obtain
existence and following that we investigate deeper the properties of the Young measure
solution and establish a uniqueness result. It should be remarked that as a rule, non-
uniqueness results appear in the literature (for example in [BC] or [HN]) regarding
nonlinear parabolic problems, especially of a forward-backward nature. In our case,
the uniqueness of the Young measure solution, although not directly dependent on the
particular construction scheme of the solution, is contingent upon an independence
property, namely that the heat flux q and the solution u be independent with respect
to the Young measure , and furthermore, on a condition regarding the support
of the Young measure , namely (, q} (,p}, where p V** and ** is the
convexification of the potential . The function u is unique but the Young measure
is not.

The solution u is also continuously dependent on the initial data in the L2 norm.
In addition, u(., t) satisfies continuity properties in the L2 norm, both as t 0+

(monotone decreasing) and as t -- +c. Stability of the solution is reflected in the
fact that it satisfies a maximum principle and a comparison lemma.

In 4 we investigate the time-asymptotics of P. As time tends to infinity, the
solution u(-, t) converges to z strongly in L2 (monotonically decreasing) and weakly
in H1, and the measure has a (weak) asymptotic limit such that the pair (z,
constitutes a Young measure solution to the steady-state version of P, V. q(z) O.
This is achieved by showing that the set of all weak limit points of (u(., t))t>_o in H
is invariant under the operator :P and further, that there exists exactly one such weak
limit point z. The asymptotic Young measure , has restricted support satisfying
pp C_ {q(). 0} {** }.

In 5 we introduce the relevant energy function E(t)= f **(Vu)(x,t)dx. As
time tends to infinity, the energy converges to zero, monotonically decreasing globally
in space. We show that it also vanishes locally in space, that is, on any subdomain
w c_ (although not monotonically on w).

The forward-backward heat equation has also been studied by Hbllig [HI, Hbllig
and Nohel [HN], and Slemrod IS1]. The treatment in [HI and [HN] concerns the
Neumann initial value problem in the case of one spatial dimension (Ft [0, 1]).
It establishes in the model case of a piecewise linear heat flux q, decreasing on an
interval [a, b] c t, that a continuum of solutions exists for finite time satisfying (1)
weakly in the sense of L2. Each such solution is obtained as the sum of an explicitly
constructed oscillating function and a smooth function that solves (weakly in L2) an
inhomogeneous heat equation.

The treatment in IS1] involves Young measures but the spirit is different from that
assumed here. P with Dirichlet or Neumann boundary conditions is approximated
by a sequence of regular, singularly perturbed problems whose solutions are used to
extract the Young measure solution. The differences between the Young measure
solutions obtained in IS1] and [KP1] are subtle. In [S1] the heat flux q and the initial
data u0 are required to be sufficiently smooth, q must have strictly subquadratic
growth, and equation (1) is satisfied in the sense of distributions. In [KP1] q is
continuous, .of linear growth, u0 E H, and equation (1) is satisfied in H-1.

A one-dimensionM convex analogue to T’ associated with a potential of linear
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growth has been studied by Zhou [Z]. The approach in [Z] differs from a Young
measure viewpoint but here also a variational technique is developed to solve the
stationary and evolution problems.

2. A result on sequences of gradient-generated Young measures. Lemma
2.4 describes limit points of sequences of parametrized measures. The question asked
is whether the limit of a sequence of WI’p gradient Young measures is itself a gradient
Young measure. The result applied in the next section shows that the parameterized
measure solution derived in [KP1] can further be chosen to have the properties of a
gradient Young measure. These properties will be particularly useful in the asymp-
totic analysis in 4.

We start with the notion of a Wl’P-gradient Young measure introduced and fully
analyzed in [KP2] and state a characterization of such measures in Theorem 2.1. Most
statements appear in vectorial formulation although it is their scalar version which
we shall make use of subsequently in this paper.

DEFINITION. A family of probability measures (Ux)xea on M, where is an
open set in Ng, and is a W’P-gradient Young measure for some p E [1, c] if

(i) x e fM I(A)ux(dA) e is a Lebesgue measurable function for all f
bounded continuous on M, the vector space ]MxN ofM x N matrices over the reals;

(ii) there is a sequence of functions (uk)k>0 C WI’p(;NM) for which the repre-
sentation formula

lim fE (Vuk)(x)dx- fEfM (A)u(dA)dx
holds for all measurable E c_ and all in the space

g{(M) := {eC(M) lim
(A)

exists

for p < +c, and for all functions continuous on M when p +c. In the above,
C(M) denotes the space of continuous real-valued functions on M. We shall use the
notation

L(,)" (A) u(dA).

Property (i) above is equivalent to weak, measurability of x u
Prob(N) (the set of probability measures on M), that is, measurability with respect
to the weak, topology on Prob(IN). Strong measurability usually will not be true.
Property (ii) implies that there exists a sequence of functions (uk)k>0 C WI’p(t; M)
such that

(w ) in LI(;M) aS k --+

for all E , (where the notation is used to denote weak convergence in the
space indicated). In particular,

[vu lp [AIp) in Ll(t2) as k -+

(a condition not guaranteed for any subsequence by the uniform boundedness of the
  one).
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As noted in [KP2] the space g(IRN) is a separable Banach space in the norm

(A)
sup
AEM 1 + IAIP

Separability is desirable when the duals of the spaces such as Ll(fl, g(M)) are con-
sidered and the representation formula (4) remains valid if g(M) is replaced by the
inseparable space

8P(M)--{ E C(M) SUPAEM 1 (A)+IAIp <+x}.
There is also the notion of biting Young measure defined in [KP2]. Recall that a

bounded sequence (zk)k LI() does not necessarily possess L weak limit points.
However, it admits biting limit points. That is, there is a decreasing sequence of
subsets Ej+I c Ej of t with meas(Ej) 0 and a subsequence of the (zk)k that
is convergent weakly in L(t \ Ej) to z LI(f) for all j. This is Chacon’s biting
lemma. For details see for example IBM]. This motivates the following definition (cf.,
[BZ] and [KP2]).

DEFINITION. A family of probability measures , (x)xea is a biting Young
measure provided there is a sequence (zk)k LP() and z Ll(t) such that [zk[p
z and (zk) (,) in the biting sense as k for all g (or gP).

When the zk are gradients of functions in WI’p it is straightforward to establish
that a form of Jensen’s inequality holds for biting Young measures, a property that
characterizes WI’p- gradient Young measures as described in the following theorem.

THEOREM 2.1. Let (u)xea be a family o/probability measures in C(M)’ (the
dual space of the bounded continuous functions on M). Then , is an wl,p-gradient
Young measure if and only if it is true that

(i) there ezists u WI’p(;IRM) such that

Vu(x) /MA(dA) x a.e. in;

(ii) Jensen’s ine.quality,

(Vu(x)) _< /M(A)(dA),
holds for all continuous in the case p +oc and all SP(M) continuous,
quasiconvex, and bounded below if I <_ p < +;

(iii) the function

XH

is in L1 (-) if 1 p < OO and when p

supp C_ K for a a.e. in ,
where K is a compact independent of a.

For the proof see [KP2].
Remark. The authors also note that as a consequence the W,P-biting Young

measures are the same as the W’P-gradient Young measures (but the sequences that
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will give rise to the measure as a gradient Young measure differ from the one that
generates it as a biting Young measure).

The guarantee of the existence of Young measures draws upon a theorem originally
proved by Tartar IT] and built on ideas developed by Young[Y]; a version appears in
Ball [Ba] and an extension was proved by Schonbek [Sc]. The theorem describes weak
limit points of sequences (f(zk))k, where f is continuous and (zk) is a sequence of
measurable functions. Accordingly, the sequence (zk)t: defined on a N-measurable
subset S c_ N into ]1M gives rise to a subsequence (zJ)j>_ and a parametrized family
of measures t, (u)es on ]M such that f(zj) converge to
weakly, in L(S) for all f Co(lM) (the set of continuous functions on ]M which
vanish at infinity). With improved boundedness conditions on the generating sequence
(zJ)>l, the convergence of the (f(zJ))j> is obtained for a larger class of functions f
and the measures , are probability measures on M. For example, if (zJ) is bounded
in L, then f(zj) (, f} in weakly, in L for any continuous f.

The representation is also valid if instead (zJ)j is bounded in Lp (actually a milder
boundedness condition suffices); in this case, the measures are probability measures
and for any measurable E c S the sequence (f(zJ))j>_ converges to (x,f} weakly
in LI(E) for all f continuous such that (f(zJ))y is weakly sequentially precompact
in LI(E). Hence it is important to establish criteria for the weak sequential precom-
pactness of the (f(zJ))y>_ in L1. When the domain is bounded, a general criterion is
provided by de la Valle Poussin: the (f(zJ))j>_ are weakly sequentially precompact
in LI(E) for E C_ IN bounded if and only if there exists [0, +oc) - I with
superlinear growth at infinity and such that

f(f(zY)) dx < +c.sup
JE

The following theorem of Ascerbi and Fusco in [AF] and Kinderlehrer and PedregM in
[KP1] also serves to characterize weak sequential precompactness in L in a variational
setting. It has an important application to minimization problems in variational
calculus. The existence of (local) minimizers of a functional of the form

I(u) "=/ f(x, u, Vu)dx

over WI’p(;]M) is very closely related to the lower semicontinuity properties of I,
which in turn are reflected in the quasiconvexity properties of f in the last argument.
We recall the notion of quasiconvexity introduced by Morrey [Mo]" a Borel measurable
locally integrable function f" M --, 1 is quasiconvex if for all A M,

I(A) <_
N(D f(A + V)dx

for all W0’ (D;M) (in fact, it suffices to consider C) and for M1D open
bounded sets in ]N with N(0D) 0. In general, convexity is a stronger condition
than quasiconvexity but in the scalar case, that is, when either M 1 or N 1, the
two conditions are equivalent (cf. [D]).

THEOREM 2.2. Suppose f ’P(M), for some 1 <_ p <_ +x, is quasiconvex and
bounded below and let uk u in WI’p(t; ]M). Then

(i) For all measurable E C_ t,

Ef(Vu dx <_ liminf/Ef(Vu).
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(ii) If, in addition,

f(Vuk) dx f(Vu) dx,

then the (f(Vuk))j>o are weakly sequentially precompact in Ll(a) and the
to

The proof can be found in [KP1]. Part (ii) is a consequence of (i) and it implies
that if

f(w y(w) in LI(),
then the Wl,P-gradient Young measure (x)xea generated by (Vuk)j>o satisfies

(-, f) f(Vu) x a.e. in .
The consequence of Theorem 2.2, which we will have occasion to use directly in

this paper, occurs when a p-growth condition of the function f from below allows
one to obtain information on the Lp norm of the gradients. This is described in the
next result and provides a sufficient (but not necessary) condition for a sequence of
functions in WI’p to generate a W’P-gradient Young measure.

THEOREM 2.3. Let f and (uk)k_l be as in Theorem 2.2(ii) and assume in addition
that

(clA[ )+ <_ (A)

_
C[AI +

for 0 < c

_
C. Let , () be generated by the gradients (Vuk)k>l Then , is

a WTM gradient Young measure.
The proof can be found in [KP1].
We now state and prove a result on the sequences of gradient-generated Young

measures. Given such a bounded sequence we extract a (weakly) convergent subse-
quence using duality so that the representation formula holds for functions of sublin-
ear growth; then we extend the representation to hold for functions of strictly sub-
quadratic growth; finally we show that the limiting measure is itself a biting Young
measure and so a gradient-generated Young measure.

We use the following notation in the remainder of this section:

and p 8(N) for 1

_
p < 2,

where functions on N can be replaced with vector-valued functions. We also let
Q gt x + with an open bounded set in N.

LEMMA 2.4. Suppose that (’)>o with , (,t)(,t)eQ is a sequence of
Hoc(Q)-gradient Young measures and each , is generated by,(Vv’m)m>O, where
(va")m>0 is a sequence in Hoc(Q uniformly bounded in a and m. Then a sub-
sequence (not relabeled) of the (a)>0 and an Hoc(Q)-gradient YoUng measure

(,t)(x,t)Q exist such that

(5) -0

weakly in LI(QT; ), weakly in L2(QT; jz), and weakly, in L(QT; M(]N)) for
each T >_ O. That is,
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weakly in LI(QT) for E Gp, weakly in L2(QT) for JZo, and weakly, in L(QT)
for Co(RN). In addition, this convergence also holds in the biting sense for

Remark 1. Recall that the assumption on the (v)>0 implies that the represen-
tation formula

L’I. (Vv")(x, t)O(x, t) dx dtm (A) d,,(A) O(x, t) dx dt

holds for all 0 and 2, for L(QT), and for each 0 (not necessarily
uniformly in ). This in turn implies that the representation formula also holds for

or Co(N) weakly in L2 or weakly, in L, respectively.
Remark 2. Assume that a sequence of Young measures is bounded in Lo(Q; ’o).

Duality cannot be used here to ensure a limit point. However, we are able to reduce
to the ce of Lemma 2.4 as follows:

Suppose (a)>0, with (’,)(,)eQ, is a sequence of Young measures

bounded in Loc(Q;’o). For each let (Vv,)>0 be the generating gradients,
where v,k e noc(+, H()). Then ()>0 is bounded in n(Q;)no(Q;
M(N)) and a diagonal subsequence of the (va,), is bounded in no(+ H())
uniformly in and k (and can be taken to be the new generating sequence). Thus
Lemma 2.4 applies.

The proof of this remark is straightforward and is omitted.
Proof of Lemma 2.4.
Step 1. Here we extract the subsequence of the measures satisfying (5). Fix

T > 0. It is straightforward to see that ()0 is bounded in the spaces L2(QT;)
and L(QT; M(N)), which are isomorphic to the dual spaces of L2(QT; 0) and
L(QT; Co(N)), respectively. Using this we can extract a subsequence (not rela-
beled) ()q0 and a parametrized probability measure p (x,)(x,)eQ such that

a0 n2weakly in (QT; ) and weakly, in L(QT; M(N)).
We now show that the convergence remains valid if we allow to have higher

growth, provided we compensate by higher integrability on the test functions.

CLAIM. (,) (, ) weakly in L(QT) for all Gp, 1 p < 2.

Proof of Claim. The key idea here is that the sequence (]Vv’]P)a,m is weakly
precompact in L unifoly in ,m for each 1 p 2. (This is not true for p 2; the
sequences (]Vv’m2)m are by assumption weakly precompact in L but not uniformly
in .) We use the same cutoff functions used in Ball [Ba] and Slemrod IS1]. Set

1 if < k- 1,

:- k- if k- 1 _< < k,

0 if > k.

Let Gp and let 0 L(QT). Define

:= e

io’io io’So(,,,,, )O(x, t) dx dt (,,,,, )O(x, t) dx dt
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II011  (  ) I( -I + II + III.

Fix e > 0. It is a consequence of the Dunford-Pettis theorem that

as k - +cx uniformly in a, by the L1 precompactness mentioned above for 1 _< p < 2,
and using that

meas{(x,t) lVv’m >_ k} k__ O,

since IIVv’mlIL.(QT) is uniformly bounded in a, m. For each k, Ck e Co(N) and so
35(k, ) such that II < Via < 5(k, e) (but not necessarily uniformly in k).

For III, assume _> 0. Then 0 _< Ck /z pointwise and so (,t, - Ck) _. 0 as
k -- +c. (For general , write +-- and (+)k +k, (-) -k, and
use the monotone convergence of each term.) So SK(e) such that IXI < Vk >_ g(e).

We choose k for I and III which is independent of a; using this k we then find
5(e, k) for II. This shows that the sequence of a converges in L(QT; M(N)) to
and proves the claim.
Step 2. We now show that for each 1 _< p < 2 the limit point is a gradient

Young measure. For this we fix such a p and find a sequence of gradients for which
the representation formula holds for all functions in a dense set of Gp and show that
the same sequence works for all in Gp. (It is obvious that for this argument one
must work with the separable space p rather than the inseparable space SP.)

Fix T > 0. Let (n)>l be dense in Gp. For each n _> 1 we have, by Step 1,

Cn(Vva,m) m-+___ (a, Cn) in LI(QT),

and also

(,) ---*9 (,) in LI(QT).

Therefore a diagonal subsequence indexed by #(n) exists such that

,(Vv()) ()-*--+ (,) in LI(QT).
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This way we obtain the sequences (Vv(n))(n)> for each n which we Cantor-diagonalize
to obtain a single sequence (Vv)>l such that the representation formula holds for
each Cn, i.e.,

in LI(QT) for all n.

Now using density we show that the sequence of gradients just obtained is a
generating sequence for the parametrized measure v obtained in Step 1. For this, let
( e p and e > 0 be given. Find N(e) such that [1- Cnl[6p < e Vn >_ N(e)..Let
0 E L(QT). We have

I + II + III.

For each term we have

I <_ c I1 n116, (1 + IVv"12)dx dt <_ c Vn >_ N(e), uniformly in #,

II <_ c e V# >_ M(e, n),

III _< c ][ n[16 (,,l+lid[p}dxdt <_ c e.

Thus we may choose n for I and III which is independent of # and for this n we find
M for II.

We conclude that

(Vv’) "-*+’ (,x,t, } in L(QT) V 6p

and by Remark 1 to Lemma 2.4 this finishes the proof of (5).
Step 3. We now extend to $ and show it is a biting gradient Young measure.

Then by the Remark to Theorem 2.1 it is an Htoc(Q)-gradient Young measure. First
note that by assumption

sup ]](,id2}l]L() ,
so that there exists a subsequence converging in biting. We use its limit to extend ;
there is a decreasing sequence of subsets Ej+ C Ej of QT with meas(Ej) 0 and a
subsequence of the , not relabeled, such that

(6) (a, id2} (,id2) in LI(QT Ey) for all j.

Accordingly, we my assume henceforth that in Step 1 the subsequence extracted
to satisfy (5) also satisfies the above biting convergence. Using the Dunford-Pettis
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theorem and the growth condition we extend for E $0 c anonically; for the same
sequence of biting sets Ej and the subsequence as in (6) we see that (/, @)a are
LI(QT \ Ej) weakly convergent for each j, so we denote this biting limit by (n,

(v, } (v, ) in LI(QT \ Ej), for all j.

To see this, fix j, choose A c QT, and assume b _> 0, or otherwise consider + and-. Then as meas(A) -- O,

uniformly in a. In addition, by the growth condition on , the sequence
is weakly Cauchy in LI(QT \ E).

We now produce a generating sequence for the measure . Recall that

and also

[Vv,,12 m-___ (us, id2) in LI(QT)

(, id2 -..0 (, id2 in biting.

So for a diagonal subsequence we have

[Vv {2 --’___ (v, id2

so that (Vv) (,,) in LI(QT) for all E $0. Hence is a biting Young
measure. Letting Vv be the L2(QT) weak limit of (Vvt’) and using Theorem 2.1,
we conclude that , is a gradient Young measure. This completes the proof of the
lemma.

3. The variational treatment and the existence of a Young measure
solution.

Assumptions. We define the two separable Banach spaces

go gg(It(N) := { C(IRN)" IAl-++oolim ll%b(A)l+IAI2
exists

and

e0 (e ;s := { e c(s ;e lira i. exists

We assume the heat flux satisfies q V on ]IN with CI(]tN). We impose the
growth conditions 0, q ’0, and furthermore,

(7) (clal 2 1)+ < (a) _< Clal 2 + 1 Va e NN,

(8) ]q(a)l _< Cla Va e NN.

We let ** denote the convexification of , that is,

** sup{f(x) f <_ , f convex}.
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Since is in C! (]IN), SO is **, and we set

p := V**.
We note that q p on the set { **} and that ** and p satisfy the same growth
conditions as and q, respectively. We assume

**(0)=0
and hence p(0) 0 follows and by the convexity of ** implies

p(A). A k 0 VA N.
Under these hypotheses we fix ideas by agreeing on the following definition.

DEFINITION. A measure solution to P,

ut V q(Vu) in Q x +,
u(x, O) no(x) for x in ,

u 0 on O x +,
with uo e H() a given function, is a pair(u,), were u e Ho(Q)L (+; H(fl))
and (x,t)(x,t)eQ is a parametrized family of probability measures on N such
that the equation

(9) (,q). V + dxdt 0 V e H(Q)

(where (,t, q) f q(A),t(dA)) and

(10) (-,t, id} Vu(x,t) (x,t) a.e. in

hold. Equivalently stated, equation (9) is

(11) ut V. (,q) in H-(Q).

If in addition is a Young measure generated by the gradients with respect to
x of a sequence in Loc(+;H()), then the pair (u,y) is called a Young measure
solution to P. We will say that (u, ) is a solution or solves to indicate that the pair
is a Young me,are solution to P.

The function u is also called a solution and the use of the term is clear from
the context. In the above, C N is an open, bounded set, 0fl x + is the lateral
boundary of the parabolic cylinder Q, and id stands for the identity function. The
notation H stands for the Sobolev space W’2, and W’2 for its subspace of functions
with zero trace on the boundary. As usual H- W-1,2 denotes the dual of w’2
The space Ho stands for the subspace of H of functions which, together with their
first weak derivatives, are locally square-integrable and Ho,zoc(Q) is the space of
functions Ho(Q with t-slices (.,t) H() for t 0 a.e.

Remark 1. By the existence proof below there is a Young measure solution to
P such that ut L2(Q) and (9) is satisfied also locally in time, that is, for test
functions H(Q). In particular, the solution u is an admissible test function.

Remark 2. A consequence of the above definition is that an equilibrium equation
is also satisfied pointwise in time in H-(); indeed, for t a.e. in [0,T] and for all
e HI we h ve

(-,,t, q)" V(x) dx dt u(x, t)(x) dx dt;
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differentiating in time we obtain

/gt(Ux,t,q>" V(x) dx -/ut(x,t)(x)dx t a.e. in l+ V E H0(Ft).

Remark 3. A classical solution to P which is bounded in time is a measure solution
with u 5v.

THEOREM 3.1 (Existence). Under the assumptions stated above there exists a
Young measure solution (u,u) to P. In addition, ut L2(Q),

supp "x,t C {a e ]RN: (a) **(a)} (x, t) a.e. in Q,

and (u, ) is also a Young measure solution of the relaxed problem

ut V.p(Vu) in H-i(Qo)

with the same initial-boundary data.
Proof. The following existence proof is due to Kinderlehrer and Pedregal [KP1].
Step 1. Let h > 0 be fixed and for each j >_ 0 consider the functionals

Oh(V;Uh’j-1) / (VV) -}- -(V uh’j-1) 2 dx

and

(I*h*(V;th’j--1) ]12 **(VV)- 2(V- lth’j-1)2 dx

We drop the explicit dependence on h. By relaxation,

for v g()

for v H(Ft).

I :- inf {O(v; h,j-1) V H01 () } inf {** (v; lth’j-1) V E H() }.
Let (uh’J’k)k>l C H() be a minimizing sequence for (and **). By the growth
condition (7) and the Rellich theorem, together with the Hi-weak sequential lower
semicontinuity of **, there exist uh’j H](t) and a subsequence, not relabeled,
such that

tth,j,k k uh,j weakly in H() and strongly in L2

and therefore,

(12) /a **(Vuh’J) dx

Then by Theorem 2.2

I **(uh’J; uh’j-1),

lim /a ** (vuh’j’k) dx lim /a (Vuh’J’k) dx.
k--+o

Let ,h,j (h,j)xea be the Young measure generated by the (Vuh’j’k)k>l. By
Theorem 2.3 h,j is an H (gt)-gradient Young measure and the sequence ((Vuh,j,k ))k

In fact, the whole sequence converges (weakly) as the minimizer uh,j is unique.

(13) **(Vuh’j’) --- **(Vuh’j) in LI().
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is also weakly convergent in L1; the representation formula (4) describes the weak L
limits and by (12) and (13) we obtain

which together with ** <_ , implies

(14) supp h,j C_ { **}

and therefore

(5) (h,j, ) (,h,j, **) **(Vuhd) x a.e. in t,

(16) Vuh,J <h,j, id> x a.e. in t.

In addition,

(17) <,hd, q> <,hd,p> x a.e. in

which follows from (14). Setting the Gteaux derivative of (**(’;Uh’j-1) to zero at
the minimizer Uh’j we obtain the equilibrium equation

p(Vuh’J) V + -(Uh’j Uh’j ) dx 0 e

or equivalently the Euler-Lagrange equation V p(Vuh’y) (uh’y uh’j-1) in
H- (t). By the stability of Young measure minimizers discussed in [KP1], the equi-
librium equation holds with (h,j, q) (h,j, p} in place of p(Vuh’y) and thus

(lS) V. <h,j,q> V. (h,j,p) V.p(Vuhd). in H-I()

hold.
Let Ihd [hj, h(j + 1)) and Xh’j be the indicator function of Ih’j and for t > 0

set

if hj < t < h(j + 1),

otherwise.

Define for x a.e. in t each t E +,

(19) uh(x,t) Exh’J(t) {uh’J(X) -I- Ah’J(t)(uh’j+l(x) uh’J(X))}

SO that uh e L(I+; H0(D)) and also

U
h 0 on 0gt X ]R+.

We let

(20) wh E )(.h,j tth,J
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(21)

be probability measures on IN (where $’o is the dual space of $0). By (16) we know

(22) Vwh

We also let

in H-l(a)

e L2(Qoo).

Differentiating (19) almost everywhere in time we have

(Uh 1 (uh,J+ot (’ t) ,(t)- ,)(x)

Then for almost every t > 0,

Ouh
V (vh, q)Ot

or, equivalently, the equation

:.((23) h.v+; dx 0

holds. om (23) it is easy to deduce that

(24) (vh, q) V + dx dt 0

(also for (. t) e H (Q)) that isO,loc

Ouh
V. (h,q}

Ot

By (17), (18), and (20),

() (-, q)=

(26)

e L2(Qoo).

v e HI (Q)v-,- e [0,

in H-I(Qr) VT e [0, +oo].

(27) (v,q) V; + -; dxdt O v e H](Q.) v-,- e [0,

both in H-I() for each t _> 0 and in H-(Q)VT e [0, +Oc].
Step 2. Using the growth conditions (7) and (8) on and q we obtain uniform es-

timates in h for the (uh)h>O and (wh)h>O in L (JR+; H (gt)) and (h)h>0 in L2(Qoo).
Further we obtain that L2

-hV)h>O (Qoo) is bounded in h and the Young measures
(h) are bounded in L(IR+; ). Using weak compactness we may therefore extract
weakly convergent subsequences indexed by h’ 0 and a pair (u,) satisfying (9)
and (10). By [KP1, Lem. 6.3] u is obtained as the common weak limit in Lo(Qo
of (uh’)h,>O and (wh’)h,>O and it satisfies o L2 h’5- e (Qoo). Along (24) yields the
equation

V.(h,q) V.(yh,p) V.p(Vwh),

for each t > 0 and x a.e. in t,
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(and as in (24), all e Htoc(Q with (.,t) e H(fl) for almost all t > 0 are
admissible). Further, by (25),

(28) (, q) (,, p) (x, t) a.e. in Q.

In addition, by (14) we have

(29) supp c_ { **}.

In [KP1] the measure , is extracted as the weak limit of the sequence of Young
measures (h)h>0 in L(N+; $’0). We next establish, in accordance with the definition,
that , is a Young measure generated by the spatial gradients of a sequence and related
to u via

(ux,t, id} Vu(x, t) (x, t) a.e. in Q.

This is a direct consequence of Lemma 2.4 of the previous section and is proved in
the following corollary.

COROLLARY 3.2. The measure obtained in the proof of the existence theorem
(Theorem 3.1) is a Young measure generated by the gradients with respect to x of a
sequence in Loc(N+; H](t)) and so the pair (u, ,) is a Young measure solution of :P
(in the sense of the definition).

Proof. In the notation of Theorem 3.1 recall that

h E h,j
l/x, :-- X[hj,h(j+l)](t)l/x

j>o

for x a.e. in f and Vt > O.

Then for each h > 0 the sequence (vuh’k)k>_O defined by

:=
j>_0

E Loc(N+;

generates/2h. We apply Remark 2 following Lemma 2.4 on bh to extract a subsequence
indexed by h -- 0 along which the h’ converge to a parametrized measure

(ux,t)(x,t)eQo, which is generated by a subsequence of (Vuh’k)h,k. In particular,

(uh’, id} (u, id) in Loc(Q

(because id E -0), and (22) then gives

(:,t, id} Vu(x, t) (x, t) a.e. in Q,

since VWh’ VU in L2(). [J

4. Uniqueness and properties of the Young measure solution.

4.1. Uniqueness. The following lemma describes a property of the solution
upon which the uniqueness proof relies.

LEMMA 4.1 (Independence). For (u,) a solution of (1) and (2) the equality

(a0) (x,t, q. id} @x,t, q} (x,t, id} (x, t) a.e. in Q

holds, i.e., q and Vu are independent with respect to the Young measure

Proof.
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Step 1 (the time-discretized case). Fix h > 0.
CLAIM. (h,j, q. id} @h,j, q}. (xh,j, id x a.e. in f for j O, 1,
Proof of Claim. Let (uh’j’k)c__ be the minimizing sequence to the variational

principle O**(v; uh’j-1) converging to uh,j weakly in H(Ft) and strongly in L2(ft).
Recall that (Vuh’J’k)=l generates h,j. For all e H0(ft), we have

p(Vuh’J’k) V -t-
h

dx k___ {Ux’J, p} V + h
dx

uh,J uh,J-1
p(Vtth’J) V + h

dx

O,

becausep(Vuhh,k) --*--- @h’y,p in L2(ft)and v.@hx’j,pl V.p(Vuh’j) in H-l(ft).
It follows easily that

(i) V. p(Vuhh’) k-U-- V p(Vuh’j) in H-1 (ft)

by the estimate

V p(Vuh’j’k) V p(Vuh’j) IIg-l(a)

(for all sufficiently large k)

P

! v dxsup
IIllH(m -1

th’j’k th,J
sup

h dx +e
IIll(a) =1

for any e > O,

since Uh’j’k k__. tth,j in L2(f) strongly. Recalling Remark i to Lemma 2.4 and noting
that p, id E -0 and p. id E 0, we have as k -. oe,

(ii) p(Vuh,J,k) Vuh,J,k {uh,j,p. id} in L1 (ft),

(iii) p(Vuh,J,k) (uh,j,p} in L2 (ft),

(iv) Vuh’j’" (uh’J,id) in L2 (ft).

Now by the div-curl lemma (see [E], IT], or [Mu]), or by direct computation and using
the Hi-strong convergence in (i), we have from (i), (iii), (iv),

p(Vuh,J,) Vuh,.i,k k---,+.oo (vh,.i, p) (vh,j, id)

in the sense of distributions; by (ii) above and recalling (17) we have the claim.
Step 2 (passing to the limit). By (21) and Step 1 we have

(h, q. id} (h, q}. (h, id} x a.e. in ft Vt _> 0.

We may apply Lemma 2.4 to (bh)h>0 to pass to a limit point as h 0. We obtain
subsequence, not relabeled, such that for each T >_ 0,

(v) (,h, q. id} (,, q id) in LI(QT),
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(vi) <uh, q> <, q> in L2(QT),

(vii) (,h, id} (,, id) in L2(QT).

Using the div-curl lemma as in Step 1 we obtain (30).
THEOREM 4.2 (Uniqueness and continuity with respect to initial data). There is

a unique function u" Q 1 with u E Ho,toc(Q and u(., O) uo for which there
exists a parametrized probability measure (x,t)(x,t)eQ so that (9), (10), (28),
and (30) are true. Under the same conditions, uo - u(., t) is continuous from L2(Ft)
into L2(t) for each t >_ 0 (and also into L2(QT) for each T > 0).

Proof. Suppose (u,,) and (w, tt) are two Young measure solutions to 7) with
initial data u0 and w0, respectively. Apply equation (9) using (u- w)X[O,T] as the
test function2 in the previous section and against v and t, and subtract to obtain
(where the shorthand notation v is used for (, q) and similarly for

( ) (d-)dx dt
Ot

(a) - (11 ((., T) (., T) IIb()- I10 011b())
By Lemma 4.1 and (28),

left-hand side (1.h.s.) (31) p. id + p. id" ." ." dx dt

>0,

because the integrand above is precisely the quantity

jfNjf (V**(a) V**(/)) (a- /3) %,t(da) #,t(d/),

which is nonnegative by the convexity of **. This implies for (31)

(3) ((’,T) (,T) IIL<> < IIo--WOIIL<) VT > o,

which is the continuity with respect to initial data. When uo wo is used in (32) we
have

(., T) (., T) xa.e. inVT>0

and this shows uniqueness. [:]

Remark 1 (Comparison between classical and Young measure solutions). The
statement of uniqueness does not depend on the method of extracting a Young measure
solution for P and does not require that be a Young measure, only that and
the independence property of Lemma 4.1 hold. In particular, if (u, 5v) is a classical
solution to 7) satisfying q(u) p(Vu), a weaker condition than (29), by uniqueness it
coincides with the Young measure solution provided by Theorem 3.1 and (29) follows
(the independence property is automatically satisfied by classical solutions). We note
that there is no claim that the parametrized measure is unique; this is false in
general.

2 This is allowed by Remark 1 to the definition of Young measure solutions to 7 and (27).
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The following lemma gives some properties of the solution (u, ,) which are con-
sequences of the convexity of ** and the independence property. Most will be useful
in establishing the uniqueness of the asymptotic limit (in 3).

LEMMA 4.3 (Further properties of the Young measure solution). Let (u, ) be
the solution to 7) and (uh)h>O as in the proof of the existence theorem (Theorem 3.1).
Then the following are true:

1. V.p(Vu) V.= V. in H-I(Q). These equalities also hold in L2(Q)
since the existence theorem yields ut E L2(Q) (recall that by (28)
(x, t) a.e. in Q VT e I+).

2. (i) For each T >_ O, uh e C ([0,T]; L2(gt)) and (uh)h>O is Cauchy in
C ([0,T]; L2(gt)).

(ii) u e C ([0,T]; L2(ft)); that is, u(.,t) --. u(.,to) in L2(gt) as t to for
each to >_ O. In particular, u(., t) -- uo in L2() as t O.

3. (i) t Ilu(., t)llL.() is decreasing (and therefore has a limit as t
(ii) t Ilu(., 5 + t) u(., t)[IL.(U is decreasing for each >_ O.
(iii) The integral

/o+Jn (t Vu dx dt

exists.

Proof. 1. Fix T > 0, let wh be given by (20), and let HI(QT) with (.,t)
H(t), for t a.e. in [0, T]. By Remark 1 to the definition (see 3) - wh is an
admissible test function in equation (24). Using the convexity of ** and (24) we
know that

p(V) V( wh) dx dt >_ p(Vwh) V( wh) dx dt

fof ---(-wh)dxdt.
Letting h 0 we obtain

p(Vff).V(ff-u) _> -(ff-u) .V(ff-u).

Choosing ff u + A(0 u) for 0 E H(QT) and letting A -- 0+ we obtain

p(w). v(0 ) > . v(0 ) v0 e gol().

Replacing 0- u with its negative we obtain equality above and this proves 1.
2. Fix T > 0. Recall that

uh(x,t) uh’J(x) + I jl (uh’j+I uh’J)(x)

forhj<_t<h(j+l). Whenhj<_t,s<h(j+l),
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Also, by the uniform estimates in [KP1],

sup Iluh( ., t)llL.(a) sup I[uh’JllL2(a) <_ M,
t>_o j>_o

which shows that t H uh(., t) is (uniformly) continuous and bounded on N+ into

L2(ft).
Set Uh’h’ uh H:= -uh’ 6 (QT); we have

T/[

h’IIUh’h’ llL.(n)(T) 2Uh’h’Uth’ dxdt

-< IIUh’h’ IIL()IIg’h’

and since (uh)h>O converges in L2(QT) and is bounded in HI(QT), we see

lim sup Ilu uh’ IlL.(a)(t) O.
h,h’--*O t>O

Therefore, (uh)h>O is Cauchy in C (N+; L2(a)). This shows 2.
3. For 0 _< s _< t apply (9) with uX[8,t] as the test function and obtain

(33)

Using (28), the convexity of **, and the independence relation (30) as in the proof
of Theorem 4.2, together with the assumption p(0) 0, we conclude that the 1.h.s. of
(33) is nonnegative and (i) follows. Letting s 0 and t +oc in the 1.h.s. of (33),
we then obtain (iii).

Notice that by the uniqueness of solution the pair (uh,5) (u(.,6 + .), (.,5+.))
solves P with initial data u(., ). For fixed 0 _< s < t we apply (9) to each of the
solution pairs (u5, 5) and (u,) using (u- u)xb,t] as a test function and subtract
the two equations. Arguing as in (i) yields (ii). [3

4.2. Stability: Maximum and comparison principles. We investigate the
stability of the Young measure solution. We show that a maximum principle and a
comparison result are satisfied. We conclude the section with a localization property
of the solution (u, ,), a corollary of the comparison principle.

THEOREM 4.4 (Maximum principle). Let (u, ,) and (w, tt) solve with initial data
uo and wo, respectively. Then (x,t) a.e. in Q,

(34) ess supxeg (uo wo)- _< u(x, t) w(x, t) <_ ess supxeg (uo wo)+.

Proof. Set

K ess supeg(u0 w0)+.

We introduce auxiliary functions as in the proof for a maximum principle for the
solution of the heat equation with H data (cf. [Br]). Fix G 6 C (N) such that G 0
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on (--oc 0] and is strictly increasing with 0 < < M on (0, +cx) For t _> 0 define
the functions

and

H(t) := G(s) ds

(t) Ja H (u(x, t) w(x, t) K) dx.

Then e C(N+) N Hl(N+), (0) 0 and _> 0 on N+. Note that G(u w K) e
H0 (gt) so that it is an admissible test function in (9); for all T _> 0,

T

)’ (t) dt= G (u(x, t) w(x, t) K) O(uot- w) dx dt

(v ,). V(u w) G’ (u w K) dx dt

_< 0,

because (v-"). V(u- w) _> 0 (as in the proof of the Uniqueness Theorem 4.2),
andG’ >_0. Hence--0andH(u-w-K) 0(x,t) a.e. inQ,or

K

G(s) ds 0 (x, t) a.e. in Q,

which by the choice of G implies

u(x, t) w(x, t) K <_ 0 (x, t) a.e. in Q.

Reversing the roles of u and w we obtain the lower bound in (34). []

LEMMA 4.5 (Comparison principle). Assume (u,,) and (v, tt) are the solutions
to 7a with to initial data uo and vo, respectively. Assume further that

uo >_ vo a.e. inst.

Then

u >_ v (x,t) a.e. in Q.

Proof. Although this follows directly from the maximum principle (34) we give
an independent proof which can also be modified to prove (34). Let w max(u, v)
in Q. It suffices to show that

(v-u)+ 0 (x,t) a.e. inQ.

We apply (9) for each solution noting that w u (v u)+ is admissible as a test
function.

T- V(w u) + ut(w u) dx dt O,

T"" V(w u) + vt(w u) dxdt O.
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By subtraction we obtain

( ). V(v u)+ (vt ut)(v u)+ dx dt
2
T d0 - /(v u)+ dx dt

1
{ll(v u)+ L.()(T)2 II(vo uo)+lIL-()}2
1

Since ( ). V(v u)+ > 0, we conclude that

II(v- u)+ll,()(T) 0 VT > 0;

that is, v <_ u, (x, t) a.e. in Q.
COROLLARY 4.6 (localization). Assume w c_ f is open with Lipschitz boundary

and let (u, ,) be the solution to P. Let v be the restriction of u to w. Then v is a
solution with respect to initial data vo, the restriction of uo to w.

Proof. Suppose X is the solution on w (with v0 initial data). Apply the comparison
result to the differences X v and v X.

5. Asymptotic analysis and the equilibrium Young measure solution.
We investigate the asymptotic behavior of the solution as t --, +oo and establish the
following theorem.

THEOREM 5.1. Let (u,,) be the unique solution of P; there exists a unique
z E H](f) and a Young measure (lYx,t)(x,t)eQo such that

(35) u(., t) ---. z weakly in H(Ft) and strongly in L2(f) as t

(these limits exist without restriction to a subsequence in time).

(36) t I1(’, t) zllL.() i decreasing,

(37) V-<OO,q> 0 in H-I(Q),

(38) Vz <,,id) a. e. in (independent of time)

so (z,) is an equilibrium Young measure solution of the steady-state version of P.

u id} 0 a.e. in QT,(9) ,,q

(40) supp, C {A’q(A).A=0}A{**==0}.

DEFINITION. With z, as in the theorem, we call z the asymptotic limit of
u and the asymptotic Young measure; we call the pair (z,,) the equilibrium
(Young measure) solution of P.

We define the set of weak limit points of (u(.,t))t>o in H(Ft)

W(uo) "= {z e H([2) S(tn)n>l / +oo with u(., tn) z}.



398 YOUNG MEASURE SOLUTIONS FOR A NONLINEAR EVOLUTION

The notation

U(.,tn w--s L2--+z inH

indicates that the sequence converges weakly in H and strongly in L2, which we
may always achieve by reducing to a subsequence using the Rellich theorem. Note
that W(uo) is nonempty since u e L (JR+; H0()). Theorem 5.1 establishes that
W(uo) consists of exactly one function.

We begin by describing some properties of all functions in W(uo).
LEMMA 5.2. Let z E W(uo) and tn --+ +c along which U(’,tn) w--s

--+ z. Then
Vt>0

(41) u(., tn + t) - z in HI() L2(),

(4e) + ------ Z in Ho(Q 2Lto(Q

as n -+ +oc (without restricting to subsequences).
Proof. Fix t >_ 0. Since u e L (]R+; H(gt)), the sequence (u(.,tn + t))n>l is

bounded in Hl(t); hence for a subsequence (nj)j>l there exists y(., t) e gl(t) such
that as j --+

+ t) u(., t) in H (t) L2

and, of course,

u(.,tnj) -2 z in Hl(gt)- L2().

Note that y(., t) W(uo); we show that y(., t) z. For all L2(t),

.fo(y(x, t z(x))(x) dx lim .Io(u(x, tj + t)-u(x tn))(x)dx
j+o

lim ut(x, s)(x) ds dx
J+ Jtnj

j+

=0,

since ut e L2(Q). This shows y(.,t) z for x a.e. in gt; as a result the whole
sequence converges to z and (41) is true.

Fix T > 0. The sequence (u(., t + "))t>0 is bounded in HI(QT) and thus we can

find X H(QT) and a subsequence (nj)j>_ along which

u(’,tn + ") X in HI(QT) L2(QT).

Choose (x)rl(t) e H(QT) with (t) defined for each t. By (41),

u(x,t + t)(x) dx

for each t > 0. Thus

(43) (t) f u(x,t + t)(x) dx + ,(t) f z(x)(x) dx
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pointwise in t and the Lebesgue dominated convergence theorem applies to (43) to
give

rl(t)(x)u(x, tn q- t) dx dt nz- rl(t)(Z)Z(Z) dx dt

(by sumption) (t)()(,t)

By the density of separable functions in L this implies

X(’, t) z(.) Vt > 0 x a.e. in a.

We conclude that no reduction to a subsequence is necessary and (42) obtains.

Proof of Theorem 5.1. Fix z Ww(uo) and t + along which u(., t) z.
We define

Then .(un, n) is the solution with respect to initial data u(., tn) for n _> 0. By Lemma
5.2 we know that as n - +c,

un(.,t) K7_2 z in H(fl) L2(a) Vt e +,

u ---2 z in Hoc(Q Loc(Q).

Since z is independent of t it follows that

Oun -+--- 0 in L2(Q).
Ot

In addition, note that )n>0 is bounded in L(Q, $’0). By Remark 2 to Lemma
2.4 there exists a Young meure (x,)(,t)e (generated by spatial gradients

in the remark) satising

) Lo(Q; ).L(Q; M(N)) Lto(Q;

For each n,

<u,q> V + Ot
dxdt 0 V e H(Q)VT e [0,+],

and we may pass to the limit n . (Note that the nonlocal convergence in n is
not guaranteed by Lemma 2.4 but by the boundedness of (u L2)n0 in (Q)); we
obtain

or, equivalently,

V.(u,q) 0 inH-(Q).
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Recall that {v’, id} Vun and converges to Vz weakly in Loc(Q); in addition, by
Lemma 2.4,

in Loc(Qo).

Thus,

Vz (,id} xa.e. ingt.

From (37) and (38) we infer that (z,) solves the stationary problem associated to
P and so the independence lemma (Lemma 4.1) implies

(, q. id) (,, q). (o, id) (x, t) a.e. in Q

and, as before,

(44)

On the other hand, for each T _> 0, by Lemma 4.3 (3i),

{ii,t, q} Vu"(x, t) dx dt - ([]u(.,T + tn)l] 2

---* 0

-/lu(’, t,)ll 2)

and applying the independence lemma (Lemma 4.1) on the 1.h.s. we obtain

T/
(tn,q.id) dxdt --, 0

or

j0TJ (l], q" id) dx dt O.

This proves (39). By (29) and (44) we conclude

suppv C_ {A" q(A). A 0} N {** }.

The proof of (40) will be completed by Corollary 6.2 in the next section.
It remains to show (35) and (36). Let 0 _< s _< t and apply (9) to the solutions of

P (u,u) and (z,,) (corresponding to initial data u0 and z, respectively); we have
(using the notation ( (,, q)),

( V(u z) dx dt
Ot

1 [ 2 2t)
\ /

_>0,

so that
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is decreasing and its limit as t +c exists; it is zero because z E W(uo) and by
the Rellich theorem a subsequence exists along which u(., tj) 3_ z in L2(ft). This
finishes the proof of the theorem. M

CONCLUSION. Let (u,,) be the Young measure solution to with initial data
no. Then W(uo) {z}, i.e., the L2(ft) asymptotic limit of u is unique and the
equilibrium solution (z, ,) solves the steady-state problem

v (,, q) o in H-I(Qc).

6. Energy. Define the energy function

(45) E(t) :=/a **(Vu)(x, t)dx for t _> 0.

The results in this section serve to justify the term energy for the function in (45) and
show that it vanishes at infinity. Throughout this section (u, ) is the solution of P
and (z,) the equilibrium solution.

THEOREM 6.1. Let E be given by (45). Then E LI(N+) and E is a decreasing
function of t. Moreover,

(46) ] **(Vu)(x,t)dx " 0 as t/z +o.

Proof. For 0 _< s <_ t,

E(-) dT ** (Vu)(x, -) dx d-

(since ** is convex and ** (0) 0) N p(Vu) Vu dx dT

utu dx dT

1

--* 0+ as 8 t

by Lemma 4.3 (3i) and (3iii). Therefore,

+fa **(Vu)(x,t)dxdt < +

and this shows that the energy is integrable.
Next we give the proof due to P. Pedregal that the energy is decreasing. For

T 0 fixed we have for all t > 0,

(() (m)) , ((..)) ((. m)))
JT JT J

p(W(x, )). (W(x, ) w(, T)) dd
3T

[+[ o((x, ) (x, T)) ((x, ) (x, T)) ex
T a Os
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1
2
Ilu(,T+t) u(.,T) 2

<0.

By the continuity of E this implies

E(T + t) <_ E(T)

for all t > 0 sufficiently small. Since T is arbitrary, this shows that E is in
and decreasing, so (46) follows.

COROLLARY 6.2. The energy converges as t -- +c and attains its minimum,
i.e.,

(47)
f

lim ] "(Vu)(x t)dx [ ’*(Vz)(x)dx O.

Consequently, the asymptotic Young measure satisfies

(48) supp C_ {** 0}

(which completes the proof of (40)).
Proof. Since ** is convex, the functional

u -* In ** (Vu) dx

is sequentially lower semicontinuous with respect to weak convergence in H(fl). By
Theorem 5.1 we have u(., t) z in Hl(t) as t -- + and

f f
0 _< ] **(Vz)(x) dx <_ lim inf [ **(Vu)(x, t) dx

t--+c

t-+lim/n **(Vu)(x, t)dx

0

because E E LI(+) and ** _> 0. From Jensen’s inequality and (47) we obtain
(48).

The energy is also minimized asymptotically locally in the sense of the following
lemma.

LEMMA 6.3. For all A C_ t, measurable

(49) lim /AC**(Vu)(x,t)dx-t--q-o J A

(but this limit is not necessarily monotone decreasing).
Proof. By (47) and by Theorem 2.2(ii) we conclude that ((**(Vu)(.,t))t>o is

weakly sequentially precompact in L(Ft) and (49) follows. [:]
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ON THE CAHN-HILLIARD EQUATION WITH DEGENERATE
MOBILITY*

CHARLES M. ELLIOTTt AND HARALD GARCKE:

Abstract. An existence result for the Cahn-Hilliard equation with a concentration dependent
diffusional mobility is presented. In particular, the mobility is allowed to vanish when the scaled
concentration takes the values +l, and it is shown that the solution is bounded by 1 in magni-
tude. Finally, applications of our method to other degenerate fourth-order parabolic equations are
discussed.

Key words. Cahn-Hilliard equations, degenerate parabolic equations, nonlinear diffusion, phase
transitions.

AMS subject classifications. 35K55, 35K65, 82C26

1. Introduction. The Cahn-Hilliard equation

(1.1)
u -V. J,
J -B(u)Vw,
w -ZXu + ’(u), V E +,

was introduced to study phase separation in binary alloys (see Cahn and Hilliard
[8, 9]). Although the Cahn-Hilliard equation has been intensively studied, little
mathematical analysis has been done for a diffusional mobility B which depends
on u (where u is the difference of the mass density of the two components of the
alloy). A concentration-dependent mobility appeared in the original derivation of
the Cahn-Hilliard equation (see [9]), and a thermodynamically reasonable choice is
B(u) 1 u2 (see [10, 11, 18]). The mathematical difficulty in studying the Cahn-
Hilliard equation with a mobility like this lies in the degeneracy of B. On the other
hand, there is hope that solutions which initially take values in the interval [-1, 1]
will do so for all positive time (which is not true for fourth-order parabolic equations
without degeneracy). We remark that only values in the interval [-1, 1] are physically
meaningful.

The function represents the homogeneous free energy in the energy functional

2 q-(u)) dx,

where f c ]Ptn (n E ]hi) is a bounded domain with sufficiently smooth boundary.
Possible choices for are

(u) (l-u2)2 and

(u) ((1 + u)ln(1 + u) + (1 u)ln(1 u)) + Fo(u)
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with a smooth function F0. In the case Fo(u) 1 -u2, one gets in the limit as 0 0
the double obstacle potential (see the papers of Blowey and Elliott [5, 6] and Elliott
and Luckhaus [14])

(u)= { 1-u2 iflul_<l,
oo otherwise.

In order to formulate an existence result for (1.1) in a general situation we make the
following assumptions.

Let

with functions lII and 2 such that

and

is convex and of the form

][1I/2 C2 [_1,1] C

l(u) (1- u2)-’F(u) (m >_ 1)

with a Cl-function F [-1, 1] --, lR0+. This means that we allow to be singular
in the convex part as lul--, 1. In particular, the logarithmic form (1.2) is a possible
choice. Furthermore, we assume that the mobility is of the form

B(u) (1 u2)m[(u)
with a Cl-function

which satisfies

B [-1, 1] --+ ]R

b0 </(u) < B0 (B0, b0 > 0)

for u e [-1, 1]. We extend the defintion of B to all of ]R by B(u) 0 for lul > 1. Let

be defined by
" (-1, 1)--, lR0+

1
O"(u) B(u)’ (0) 0, and (0) 0.

The following theorem states the existence of a weak solution to the Cahn-Hilliard
equation with a nonconstant mobility as above on an arbitrary time interval [0, T]
(T E IR+) which fulfills the boundary conditions

n.J-0 and n. Vu=0 on 0Ftx(0, T),

where n is the outer normal to OFt.
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THEOREM 1. Let either O E C1’1 or be convex and suppose that uo H ()
with uol <_ 1 a.e. and

(v(0) + (0)) < c, CER+.

Then there exists a pair (u, J) such that
(a) u e L2(O,T;H2()) C1L(O,T;H()) C1C([O,T];L2()),
(b) ut e L2(0, T; (H(fl))’),
(c) u(O) uo and Vu. n= O on O (O,T),
(d) lul _< 1 a.e in T := fl (0, T),
(e) J e n2(tT, Rn)

which satisfies ut -V. J in L2(0, T; (H(t))’), i.e.,

/o ((t). ,(t)>...(..), J. v
T

for all e L2(O,T;HI(t)) and

J -B()V. (-/ + V’())

in the following weak sense:

a.? [3AuV. (B(u)) + (B")(u)Vu. ]
T T

for all eL2(O,T;HI(,R"))F1L(T,]R’) which fulfill .n= 0 on Ot (O,T).
We point out that the nonlinearity (B")(u) B(u)F(u)+B(u)(u)is bounded

and therefore the last integral in the formulation of the theorem is well defined.
An existence result for the Cahn-Hilliard equation with a degenerate mobility in

a one-dimensional situation has been established by Yin Jingxue [23]. The existence
result we present is for arbitrary space dimensions and uses a weak formulation which
is different from the formulation of Yin Jingxue. Furthermore, we allow the bulk
energy to have singularities when B degenerates. We also refer to the work of
Bernis and Friedman [3] for results on fourth-order degenerate parabolic equations in
one space dimension.

In 4, we prove a similar existence result for a viscous Cahn-Hilliard-type equation
of the form

ut -V J,
a -B(u)Vw,
w -Au + ’(u) + aut, o E]:t+,

where we assume the mobility B and the homogeneous free energy to be as above.
We want to point out that our result includes the case B(u) 1 -u2 and

(1.3)
t9 i

(I u2)@(u) ((i + u) In(l + u) + (i u) In(l u)) +

In a recent work by Cahn, Elliott, and Novick-Cohen [7], a formal asymptotic result
for the deep quench limit (0 " 0) of the Cahn-Hilliard equation with B(u) 1 u2
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and as in (1.3) has been established (they used the scaling s2, t 2t). They
show that one gets in the limit s 0 the following geometric motion for hypersurfaces:

(1.4) V -DAsh, D E P+,

where V is the normal velocity, s denotes the mean curvature, and As is the sur-
face Laplacian. Material scientists refer to this evolution law as motion by surface
diffusion (see Cahn and Taylor [10], Davi and Gurtin [12], and Mullins [21]). The
two components of the alloy are separated by a sharp free boundary which is evolving
according to the law (1.4).

Cahn and Taylor [10, 11] also propose the motions

-1

(1.5) Y As As (M, D e P+),

which formally give in the limit as M -- (D --, , respectively) the laws

(1.6) V -DAst if M - c
and

(1.7) V M(-) if D oc,

where is the average mean curvature on the surface.
Formal asymptotic results suggest that the intermediate motion (1.5) is the asymp-

totic limit of the viscous Cahn-Hilliard equation with a mobility B(u) 1 u2 (as
before, with a logarithmic free energy and in the deep quench limit with a scaling

2 and t -- 2t).
For the geometric motions (1.5)-(1.7), just a few results exist so far. We can

prove local existence for the two-dimensional case, i.e., for the evolution of curves in
the plane and results for the global behaviour if the initial data are close to a circle
(see [13]).

This paper is organized as follows: In 2, we prove the existence of a solution
to the Cahn-Hilliard equation with a mobility which is bounded away from zero.
This result is used in 3 to establish the existence of approximate solutions to the
degenerate problem. We derive energy estimates for the approximate solutions which
enable us to pass to the limit in the approximate equation to get the existence of a
weak solution as stated in Theorem 1. Section 4 is devoted to other applications of our
method. In particular, the viscous Cahn-Hilliard equation and the deep quench limit
are studied. Furthermore, our method can be used to establish an existence result for
degenerate parabolic equations of fourth order in arbitrary space dimensions. Finally,
we discuss some open questions and give suggestions for further research.

2. Existence theorems for positive mobilities. In this section, we study the
Cahn-Hilliard equation with a mobility which is bounded away from zero. We prove
existence of solutions under various conditions on the bulk energy . In 3, we will
use these solutions as approximate solutions for the degenerate case.

We consider the Cahn-Hilliard equation in the form

(2.1) ut V b(u)Vw,
(2.2) w -q,Au + ’(u)
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with Neumann and no-flux boundary conditions

and Vw. n 0 on 0 (0, T).

Here ft c Rn (n E IN) is a bounded domain with Lipschitz boundary. We assume b
and to be such that

b E C(R,R+) and there exist bl,B1 > 0 such that bl _< Ib(u)[ _< B1 for all(i)
uE]R,

(ii) ) C (]P, ]Pt) and there exist constants C1, C2, C3 > 0 such that

I)’ (U)

_
611’t.tl q -[ 62 and (u) _> -C3,

n if n > 3 and q IR+ arbitrary if n 1, 2.where q
Under these assumptions we can state the following theorem.
THEOREM 2. Suppose Uo Hi(ft). Then there exists a pair of functions (u, w)

such that
(1) u L(O,T;HI(f))NC([O,T];L2()),
(2) ut e L2(0, T; (HI())’),

(4) w e L2(0, T;
which satisfies equations (2.1) and (2.2) in the following weak sense:

(2.3) ((t), ut(t)}Hl,(H1), b(u)VwV
T

for all e L2(0, T; H(t)) and

for all e H() and almost all t e [0, T].
Proof. To prove the theorem, we apply a Galerkin approximation. Let {i}ie

be the eigenfunctions of the Laplace operator with Neumann boundary conditions,
i.e.,

The eigenfunctions are orthogonal in the HI(f) and the L2(ft) scalar product. We
normalize the i such that (i, Cj)/.(n) 5ij. Furthermore, we assume without loss
of generality that ,1 0.

Now we consider the following Galerkin ansatz for (2.1) and (2.2)"

-Ai=Aii in gt and Vi.n=0 on 0.
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This gives an initial value problem for a system of ordinary differential equations for
(el,... ,CN)"

,
k=l i=1

(.) (o) (o,

which h to hold for j 1,..., N. Since the right-hand side in (2.9) depends con-
tinuously on c,... ,,Cg, the initial value problem has a local solution.

In order to derive a priori estimates, we differentiate the energy and get

dd S(t)
d ] ( + (uN))
.[ (wvC +

This implies

(2.12) f- // (uN(t)) // b(N)IVwNI2

+ ((0))c.

The last inequality follows from (2.8), assumption (ii), and the fact that u0 H(fl).
Since fu uN 0 (which follows from (2.6) with j 1), Poincar’s inequality yields

esssuPo<,<T]]U(t)[]H(U C.

This estimate implies that the (c,..., c) are bounded and therefore a global solu-
tion to the initial value problem (2.9)-(2.11) exists.

If we denote by HN the projection of L2(fl) onto span{,..., CN}, we get

5 B b(’)lW’
T

for all e L2(O,T;HI(t)). This implies

IIOtuNIIL2(O,T;(HI()),) C.
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Using compactness results (see Lions [19] and Remark 1 below), we obtain for a
subsequence (which we still denote by uN)

uN --- u weak-, in
uN --- u strongly in

OtuN -’--+ OtU weakly in
uN ---+ u strongly in

2nwhere p < n-2"

C([O,T];L2()),
L2(0, T; (HI([))’), and
L2(0, T; LP([)) and a.e. in ftT,

It remains to show the convegence of WN. Choosing j 1 in

(2.7) gives fawN(t) fa ’(uN(t)), which together with (2.12), assumption (ii), and
Poincar’s inequality gives

This implies (again for a subsequence)

wN ---,w weakly in L(O,T;HI(n)).
With the convergence properties proved so far and using the assumptions on b and, we can pass to the limit in (2.6) and (2.7) in a standard fashion (see Lions [19] for
details) to get that (2.3) and (2.4) hold for (u, w).

The strong convergence of UN in C([O, TI;L2(n)) and the fact that uN(0) u0
in L2() gives u(0) no. This proves the theorem.

Remark 1. (a) Let X, Y and Z be Banach spaces with a compact embedding
X Y and a continuous embedding Y Z. Then the embeddings

{u e L2(O,T;X) Otu e L2(O,T;Z)} L2(O,T;Y)(2.13)

and

(2.14) {u e L(O,T;X) IOtu E L2(O,T;Z)} C([O,T];Y)
are compact (for a proof, see Simon [22]).

(b) In the proof of Theorem 2, we applied the above result for the case X
2n respectively) and Z (Hl(ft)) ’.Hl(ft), Y n2(). (Y LP() with p < 7-2,

(c) The solution in Theorem 2 lies in C([O,T];HZ()) (where/9 < 1). We get
this by choosing X Hl(ft), Y HZ(gt), and Z (g()) in (a). [:]

The existence result in Theorem 2 requires a bulk energy which is bounded from
below. It is possible to generalize this result if we assume further assumptions on Oft
and the growth of

We assume now either Oft E C1,1 or t is convex. Furthermore, we replace as-
sumption (ii) by the following:

(iii) e C2(]R, JR) and there exists a constant D > 0 such that I"(u)l < D for
all u

THEOREM 3. Assume (i), (iii), and uo H1(12). Then there exists a function u
such that

(1) u e L2(O,T;HI())C([O,T];L2(gt)),
(2) ut e L2(0, T; (HI())’),
(3) u(O) uo and Vu.n 0 on 0[ x (0, T),
(4) VAn e L2(gtT)

which satisfies the Cahn-Hilliard equation in the following sense:

((t). +
T
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for all e L2(O,T;HI(Ft)).
Proof. As in the proof of Theorem 2, we apply a Galerkin approximation, but

now we make an ansatz just in u:

N

(t, x) cT(t)(x),
i--1

(2"15)/a OtuNCj --/ft b(UN)(--/vAuN -I- )"(uN)VuN)V)j for j 1,... ,N,

N

(01 (0,)().
i--1

Instead of differentiating the energy, we use iuN as a test function to get

-Ot + b(uN)7lVAuNI2 b(uN)"(uN)VuNVAuN

Using Young’s inequality and assumptions (i) and (iii), we derive

A Gronwall argument now gives

< C/ IVuN .
Iv(t)l + J Ivl <_ C(T).

T

With this estimate, the rest of the proof is straightforward using compactness results
(see Lions [19] and Remark 1) and passing to the limit in equation (2.15). [:]

3. Existence proof for the degenerate case. In this section, we prove The-
orem 1. Our approach is to approximate the degenerate problem by nondegenerate
equations, i.e., by equations with a positive mobility. Furthermore, we modify the
bulk energy so that it is defined on all R.

We introduce a positive mobility Be as

B(-1 +g) for
B(u) "= B(u) for

B(1 e) for

u_<-l+e,

u>l-e

and we define (I)s such that (I)(u) B’; and() (I)s(0) (I)s(0) 0. We point out that

e() e()when I1 <- - .
The modified bulk energy -- IR is taken to be "= + 2, where

(11/11" (--1 + e) for u _< --1 + e,
(lI/1 " () for lUl < 1--e,(el) ’!

(U)"=
(1) ’!

(1 e) for u _> 1 e

and (0) (0), (q) (0) () (0). As for I), we get (u) (u) if lul <
1-e. Furthermore, 2 is extended to be a function on all R such that 11211c.() _< C.
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With this choice of Be and e, Theorem 2 give the existence of a weak solution
to the equation

ut V. Be(u)Vw in -T,
w -’),Au + (e)’ (u) in ’T,

Vu.n 0 and Vw.n=0 on 0fx(0, T).

We denote the solution by (ue, we). From now on, we assume either
or is convex. With this assumption, we can state the following lemma.

The solution ue belongs to the space L2(O,T;H2(t)) andLEMMA 1.
L2(fT).

Proof. Since

for all e HI(t) and almost all t e (0,T), the first assertion follows from elliptic
regularity theory. Because Vwe e L2(T) and V’(ue) ’l(ue)Vue e L2(T), the
identity we -?Aue + (u) gives VAus e L2(T).

Therefore, we get

(a.1) (,Ot),(, B()V(- + O’())V
T

for all L(O,T;H(a)).
In the next step, we prove the following energy estimates.
LNMMA 2. There ezists eo sch that for all 0 < e eo the followin9 estimates

hold with a constant C idepeedeet of e:

T

T

(c) ess suP0<t<T fa (lull 1)2

(d) fa IJ12 C, where J := B(ulVw.
T

Proof. The function we -TAue + (ue) e L2(O,T;HI()) is a valid test
function in (3.1). Therefore, we obtain

/0 /o(3.2) <-’yAue + ’e(ue), OtUe)Hl,(H1), Be(ue)lVwel2

for all t [0, T].
CLAIM. For almost all t [0, T],

(3.3) (-Au + ’(u),OtU)H,(S),
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holds.
To prove this, we define functions

U(T,x)dT,(.) (t,z) := -where we set ue(t, x) uo(x) when t <_ 0. It is easily proved that

Ateh ----+ AUe

v’()- v’()
strongly in

strongly in

L2(O,T; HI(Ft)) and

L2 (O, T; HI (Ft)

for at least a subsequence (as h ’ 0). Furthermore, we can show OtUeh Otue
strongly in L2(0, T; (H(t))’). For any e L2(O,T;HI(t)) we have

1

_1

(OtUe(T) Otu(t))dT
h

dt

dt

48

sup IIJ(, + s) J(.)ll/().
-h<s<O

Since

sup IIJ (. -+- s) --Je(.)IIL2(nT) 0 as h 0,

it follows that

OtUeh OtUe strongly in L2(0, T;

Using OtUeh E L2(tT), we have for almost all t E [0,T]

+ v(0))
Passing to the limit (h " 0) in this equation, where we apply the convergence prop-
erties of Uh proved above, and using (3.2) gives for almost all t

Jlw()l it,(7 + ,I,((t))) + B(u)IVI + V(0))
Noting that (u) _< (u) for sufficiently small proves (a).
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To prove (b), we want to use O(ue) as a test function in (3.1). Since Ot is
bounded, we have O(u) E L2(O,T;HI([2)) and therefore is an admissible test func-
tion. With a similar argument as in the proof of (a), we can prove that

is true for almost all t [0, T]. On the other hand, we derive

a
B()V(- + %())W’()

[ (-v + %’()w)B(u)e’()W

[ (= + vJ()lWl=).

It follows that

Since O,(u) S (u) for s sufficiently small and (2)" is bounded, we have proved (b)
(note that we have estimated

Now we can use the bound for f O(u) to deriv a bound for L (]u,- 1). If
z > 1 and s < 1, then we have

10"(1 s) (z (1 ))2Oe(z) O(1
>0 >0 >0

,,(_)(_)=L (_B(-)
--! 1 (z_l)2>C_a_m(z_l)2

2 (1 (1 s)2) (1 s)

It follows now that (z- 1) 2 cmO(z). Similarly, we obtain ([z[- 1) 2 CsO(z)
for z < -1. This implies

/a(u 1)< C/a(u) CTM,

which proves (c).
Assertion (d) follows easily from (), and this finishes the proof of Lemma 2.
Since Aue is uniformly bounded in L2(T), Vue-n 0, nd fa u .= fa u0,

elliptic regularity theory yields

IluIIL(O,T;H(a)) c.
Now we apply the compactness result mentioned in Remark 1 (2.13) with X H(),
Y gl(), and Z (g()) to conclude the existence of a subsequence of (u)>0
(which we still denote by (u)>0) such that

u, Vue u, Vu strongly in L2(T) nd me. in T.
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Furthermore, using standard compactness properties, we obtain the convergence

Otue Otu weakly in L2(0, T;
Aue Au weakly in L2(T), and

J J weakly in L2 (-T).

Passing to the limit in

yields [u[ <_ 1 a.e. in ’-T"

u 1)_ _< Cam

It remains to show that u fulfills the limit equation. The weak convergence of
Otue and Je gives in the limit

O u) ), J
T

for all E L2(O,T;HI(t)). Now we have to identify J. Therefore, we want to pass to
the limit in the equation

[ [
T JilT

where L(O,T;H(,Rn)) L(T,R) with .n 0 on 0 x (0, T). The
left-hand side converges to fay J’" Since VAu may not have a limit in L(T),
we integrate the first term on the right-hand side of (3.5) by parts to get

fa Bs(s)V(-s)= fa 7eB(s)V’+/
Using the Net that for all z N

1-eNJoIN1

it follows that B B uniformly.
Hence we have

Be(e) B(u) a.e. in

Since & weakly in L(r) and B is uniformly bounded, we conclude

AuB(u)V., AuB(u)V., O.
T JT

Now we ps to he lmit in II. First of MI we conside he ce m 1. As fo B we
hve unffomly which ives

By usin

in (T) and a.e. in T
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and the fact that B’ is uniformly bounded a generalized version of the Lebesgue
convergence theorem yields

B’e(ue)Vue------+B’(u)Vu in L2(tT).

Hence

where we use the fact that r E L(T).
In the case m 1, the function B’ is discontinuous and we have to use a more

subtle argument.
CLAIM. Be(/,e)V/,e ---+ B’(t)Vu i71 L2(fT).
We analyze the following integrals:

IB’(u)Vu B’(u)Vul
T

IB’(u)Vu B’(u)Vu[.
Since Vu 0 on the set {lu[ 1} (see [16, Lem. r.r]), we obtain

On the set {lul < 1}, we know B’e(ue ---+ B’(u) a.e.
Hence we have

B’e(ue)Vue ----+ B’(u)Vu a.e. in aT.

The generalized Lebesgue convergence theorem now gives

IB’(u)Vu B’(u)Vul O,
T{lul<l}

which proves our claim. Furthermore, this proves that we can pass to the limit in II.
To complete the proof of Theorem 1, we have to show

(3.6) --+

T T

First of all, we want to point out that Be’’ is uniformly bounded. Therefore, it is
sufficient to show

(3.7) B(u)%’(u) ---+ (Bff*")(u) [(u)F(u) + B(u)ff(u) a.e. in aT.

If lu(t,x))l < 1, the convergence in (3.7) follows from the definition of Be and e
(Be(z) B(z) and e(z) (z) if Iz[ < 1- e). Now let us consider points (t,x),
where lu(t,x)[ 1. Without loss of generality, we assume ue(t,x) ---+ 1 u(t,x).
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For s with u(t,x) _> 1 -s, we have

Be(ue(t,x))(ue(t,x)) /(1 e)F(1 ) + B(1 e)g(ue(t,x))
----*/(1)F(1) + B(1)g(1) (B")(u(t,x)).

On the other side, if u(t, x) 1 and ue(t, x) 1, we have

B(u(t,x))(u(t,x)) B(u(t,x))"(u(t,x))
(u(t,x))F(u(t,x))+ B(u(t,x))(u(t,x))

"(u (B")(u) a.e. in T, which together with the strongWe proved Be(us)
convergence of Vue in L2(T) gives (3.6). This shows that u solves the Cahn-Hilliard
equation in the sense of Theorem 1. The facts that u e C([0, T]; L2())and us(0) u0
follow as in the proof of Theorem 2 from an application of the compactness result
mentioned in Remark 1. In fact, it holds that u C([0,T]; HZ()) with < 1.

Remark 2 (generalized Lebesgue convergence theorem). Assume E C is mea-
surable, g g in Lq(E) with 1 N q < and fn, f E are measurable
functions such that

fn----*f a.e. in E,
Ifnlp <_ Ignl q a.e. inE

with 1 _< p < c. Then fn -- f in LP(E).
For a proof see [1, A 1.26].
Remark 3. For m E [1, 2), the functions and are bounded on the interval

[- 1, 1] and therefore the assumption

a
< c

imposes no restrictions on the initial data. This is in particular true for the case
B(u) 1-u2 and of the logarithmic form (1.2).

The following corollary gives an additional result in the case m _> 2.
COROLLARY. Assume m > 2 and u is the solution constructed in Theorem 1.

Then

(a) ess suP0<t<T

(b) the set {x lu(t,x)l 1}

Proof. We have proved

_< c,
has zero measure for almost all t [0, T].

<_ c

for almost all t [0, T]. Since O(u) _> O, the Lemma of Fatou gives

f liminf O(u(t))< liminff O(ue(t))< C.
\0 \0 Jet

CLAIM.

liminf (I)e(ue)= { (I)(u) if lul < 1,
\o oc elsewhere.
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If lul < 1, it is clear that lim\0 O(u) (u). Now we consider points (t,x),
where lim\0 u(t, x) 1. In this case, we have

O(u(t,x)) >_ min (0(1 e), O(u(t,x))) cx

as e ---. 0. The same argument can be applied for lim\0 u(t, x) -1, which proves
the claim. Therefore, the set {x [u(t,x)l 1} has zero measure and

liminfO(ue) lim ffe(u) O(u) a.e. in T.
e\0 0

The estimate f q2(u(t)) <_ C is proved similarly.
Remark 4. Since F can vanish at +1, " can be less singular than of order rn. In

particular, the smooth double-well potential (u) (1- u2)2 and the double-obstacle
potential are possible choices for all rn >_ 1.

4. Some generalizations.

4.1. The viscous Cahn-Hilliard equation. In this subsection, we consider
the viscous Cahn-Hilliard equation with a nonconstant mobility

ut -V J,
J -B(u)Vw,
w -Au + (u) + aut, a E IR+,

supplemented with the boundary conditions J. n 0 and Vu. n 0 on 0t (0, T).
For a mobility B 1, this is the usual viscous Cahn-Hilliard equation as studied by
Novick-Cohen, Elliott, Stuart, and others [2, 15, 20].

In a first step, we state a theorem for the nondegenerate case. Therefore, we
assume b and to fulfill assumptions (i) and (ii) in 2.

THEOREM 4. Suppose Uo E HI(t) and Ot Lipschitz. Then there exists a pair
(u, w) such that

(1) u E L(O,T;H())nC([O,T];L2()),
() e (),
(3) (o) o,
(4) w E L2(0, T; H())

which satisfies

J ut i b(u)VwV

for all E L2(O,T;HI(gt)) and

for all E H1() and almost all t E [0, T].
Proof. As in the proof of Theorem 2, we apply a Galerkin approximation

N N

(t, x) C(t)(x), w(t, x) d(t)(x),
i=1 i=1

ftottNcj----lb(ZtN)ZwN7j for j--1,...,N,
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for j 1,...,N,

which gives

(4.1) c velvet,
k--1 i--1

These equations have to hold for j 1,..., N. This yields to the following initial
value problem for (c,..., c)"

(4.4)

(4.) c(o) (o,

Since the matrix (gjk)j,k--1,N with

is positive definite, the initial value problem (4.4), (4.5) has a local solution.
Now we use

to establish a priori estimates. The rest is proved in a similar way as in the proof of
Theorem 2. [:]

Having proved an existence theorem for a positive mobility, we are now in a
position to prove existence for the degenerate case. We assume and B to be as in
the introduction. Furthermore, we assume either 0t E C1’1 or convex.

THEOREM 5. Let uo HI() satisfy luol <_ 1 a.e. in tT and

(V(o) + (o)) < c, CR+.
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Then there exists a pair (u, J) such that
(a) u e L2(O,T;H2(gt)) NL(O,T;HI(t)) OC([O,T];L2()),
(b) ut e L2(FtT),
(c) u(O) uo and Vu.n 0 on O (0, T),
(d) lul _< 1 a.e in tT := t (0, T),
(e) J e L2(FtT, ]R’

which satisfies ut -V. J in n2(0, T; (Hl(t))’), i.e.,

ut Jar J" V

for all e L2(0, T; Hl()) and

J -B()V(-+ ’() +)

in the following weak sense:

. ] [(/ )v. (B()) + (BV")()W. 1
T T

for all ? e L2(O,T;H(,]Rn))L(T,Rn) which fulfill y.n 0 on O (O,T).
Proof. We modify B and in the same manner as in the proof of Theorem 1 to

get functions Be and e. For the modified equation, we proved existence in Theorem
4. In a similar fashion as in the proof of Theorem 1, we can derive the following
identities for the approximating solutions (u, w):

and

With these estimates, the remaining part of the proof follows the outline of the proof
of Theorem 1. One uses compactness results to conclude the existence of a converging
subsequence and passes to the limit in the approximating equation. 0

4.2. The deep quench limit. Now we consider the case B(u) 1- u2 and

(4.6) l(l_u2((1 + u)ln(1 + u) + (1 u)ln(1 u)) + ),

where > 0. Let us denote the solution we constructed in the proof of Theorem 1 by
u. Cahn, Elliott, and Novick-Cohen [7] studied the deep quench limit (0 0) of these
solutions. The purpose of this subsection is to show that the solutions uo converge
to weak solutions of the Cahn-Hilliard equation with a mobility B(u) 1 u2 and a
bulk energy (u) 1- u2, which is the case where we set 0 in (4.6).
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For u0, we have the following a priori estimates, which follow from the estimates
derived in Lemma 2 and the weak lower semicontinuity of the L2-norm:

and

eSSSUP0<t<T IVUo(tll 2 / IJol 2 <_ [Vuol
T

+ +o(uo)) <_ C

T T

with a constant C independently of 0. From these estimates, we obtain

11Ouoll.(O,T;(()),) + Iluol[.(o,T;()) <_ C.

Using the same compactness results as before, we get (for a subsequence 0 O)

uo, Vuo -* u, Vu strongly
Auo Au weakly
Otuo Otu weakly
J0 J weakly

in L2(T) and a.e. in T,
in L2 (FtT),
in L2(0,T; (Hl(t))’), and
in L2(tT).

Since lull _< 1 a.e. in T, the same is true for u. Furthermore, we get Otu V. J in
L2(0, T; (Hl(gt))’). It remains to pass to the limit in

JT JT

The fact that uo is uniformly bounded in L2(T) yields

Vuo 0.
T

All other terms can be handled as in the proof of Theorem 1 to get

JT JT

This proves that u is a weak solution in the case B(u) 1- u2 nd V(u) (1- u2).
We note that we have not proved the convergence of the whole sequence. This is

due to the fact that so far there is no uniqueness result for the Chn-Hilliard equation
with a degenerate mobility.

4.3. Other applications. In a paper by Bernis and Diedman [3], the equation

(4.) -(/()),

where

(4.8) f(u) foCl+(R), fo>O, and m_>l,

was studied. They proved the existence of a nonnegative continuous solution and
properties of the support of the solution. For example, they proved that the support
increases when m _> 2. We also refer to [3] for other applications of degenerate
parabolic equations of higher order.
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With straightforward modifications, we can apply our techniques to the following
generalization of (4.7) in several space dimensions

ut V. (f(u)V(-Au + ’(u)))

supplemented with Neumann- and no-flux boundary conditions. Under appropriate
conditions on the nonlinearities f and , our method gives the existence of a nonneg-
ative solution in the sense of Theorem 1. In particular, we have to assume that f, f,
and "f are bounded.

Degenerate parabolic equations of the form

(4.9) ut -V. (f(u)(VAu + Vu)) + g(t,x, u)

arising in the theory of plasticity have been independently studied by Griin [17].
5. Conclusion. We proved the existence of a weak solution to the Cahn-Hilliard

equation with a degenerate mobility. As was pointed out, our method is also applicable
for other fourth-order degenerate parabolic equations. So far, a uniqueness result for
fourth-order degenerate parabolic equations has not been established. Methods for
proving uniqueness in the case of second-order degenerate parabolic equations seem
not to be applicable directly.

Besides studying the question of uniqueness, it is important to get a better un-
derstanding of the qualitative behaviour of solutions. Questions are, for example, the
following: What kind of singularities occur when lul -- 1? What is the evolutionary
behaviour of the set {lul 1}? In the case of the deep quench limit, for example,
one would expect that the set (lul-- 1} develops an interior. If this is the case, one
would get a free boundary problem for O{lul- 1}.

Furthermore, we are interested in the asymptotic behaviour of solutions as t
oc. For second-order degenrate parabolic equations, similarity solutions were impor-
tant for the understanding of the asymptotic behaviour of solutions. There are results
by Bernis, Peletier, and Williams [4] on similarity solutions in one space dimension. It
would be interesting to study if similarity solutions in higher space dimensions exist.
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ANALYTICITY OF ESSENTIALLY BOUNDED SOLUTIONS TO
SEMILINEAR PARABOLIC SYSTEMS AND VALIDITY OF THE

GINZBURG-LANDAU EQUATION*

P. TAK/(t, P. BOLLERMAN$, A. DOELMAN, A. VAN HARTEN, AND E. S. TITIII
Abstract. Some analytic smoothing properties of a general strongly coupled, strongly parabolic

semilinear system of order 2m in ]D X (0, T) with analytic entries are investigated. These properties
are expressed in terms of holomorphic continuation in space and time of essentially bounded global
solutions to the system. Given 0 < T < T _< c, it is proved that any weak, essentially bounded
solution u (ul,..., UN) in ]D X (0, T) possesses a bounded holomorphic continuation u(x+iy, a+
iT) into a region in CD x C defined by (x, a) E ]1(D x (T’, T), [y[ < A’ and IT[ < B’, where A’ and B’
are some positive constants depending upon T. The proof is based on analytic smoothing properties
of a parabolic Green function combined with a contraction mapping argument in a Hardy space H.
Applications include weakly coupled semilinear systems of complex reaction-diffusion equations such
as the complex Ginzburg-Landau equations. Special attention is given to the problem concerning
the validity of the derivation of amplitude equations which describe various instability phenomena
in hydrodynamics.

AMS subject classifications. 35K45, 32A35, 35Q55, 76E15

Key words, weak L-solution, analytic Green function, holomorphic continuation, Hardy
space, Ginzburg-Landau equation

1. Introduction. In this article we investigate analyticity of weak L-solutions
u(x, t) E N (or cN), for (x, t) E ID (0, T), of a general strongly coupled, strongly
parabolic system of N semilinear partial differential equations of order 2m (where
m >_ 1 is an integer) having the following form:

(1.1)
Ou 1 O

/ u: oxo
u(x, 0) u0(x) for X e ]1D.

(x, t) e (0, T),

Here, O/Ox (O/Oxl,..., O/OXD) is the gradient and (Ol"lu/Ox")l,<t denotes the

collection of all partial derivatives Ol’lu/Ox’ ’"’u of u up to order g (where
g is an integer, 0 _< g < 2m), where a (al,... ,aD) (Z+)D is a multiindex of
order [a[ o -[-.-.-[- oD.
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As usual, NN and CN respectively, denote the N-dimensional real and complex
Euclidean spaces, i v/E- and D, N e N, where N Z+ \ {0} and Z+ {0, 1, 2,... }.

Our main objective is to cover the following prototype problem which inspired
our work reported here, namely, the complex Ginzburg-Landau equation (derived
in Newell and Whitehead [29]):

OU
(1.2) Ot (1 + (1 +

0) for x e

for (x, t)e D (0, T),

(0 0and weakly coupled systems of such equations as well. Here, A
denotes the Laplacian, #, v, R E N are given constants, and u(x, t) C is the unknown
function. We assume that u e L(ND (0,T)) is a weak n-solution of (1.2) which
we define later in 2, Definition 2.1.

Although lul 2 u + u is not a holomorphic (i.e. complex analytic) function of
u Ul +iu2 C =_ N ( iN, it is still real analytic in Ul and u2. The following example
shows how (1.2) can be turned into a system of two real equations with real analytic
nonlinearities satisfying all hypotheses we impose below on our general system (1.1).

Example 1.1. Let u =_ Ul +iu2 be the unknown function in (1.2), where Ul e u
and u2 9m u, and set u (uu). Then (1.2) is equivalent to the following system
for the unknown u:

(1.3) - 1
u for (X, t)e ND (0, T),

u(x, 0) u0(x) for x e N.
As usual Au A.1

A.. and lul 1 / Both components of the nonlinearity

--(t/, " tt22) (ttl-#?.l,1+#"t/’2’1/,2.,
are now third-degree polynomials in U and u2. Hence, (1.3) is a real analytic system
with an obvious canonical extension to a holomorphic one.

Rigorous investigation of the validity of (1.2) presented in van Harten [15] and
Bollerman [3] exploits the kind of analyticity results we show in the present arti-
cle. Typically, (1.2) is an amplitude equation which is formally derived by means
of asymptotic expansion from other equations of mathematical physics, such as the
Navier-Stokes equations or the Rayleigh-Bnard convection equations and many oth-
ers, in the context of studying weakly nonlinear instabilities of particular solutions of
those equations. This derivation involves an asymptotic expansion of the solution in
terms of a small control parameter e > 0, which in turn makes use of the analyticity
and asymptotics (as Ix]--. c) of the solution, cf. [3], [6], [15], [22], [29],. [31], and
[32]. To give a rigorous validation of the formal derivation one needs to prove suitable
analyticity results for the solution of (1.2). This is the content of 5 in our article.

With the notation of Example 1.1, in [15] (and similarly in [3]) it is assumed that
D 1 and the initial distribution u(., 0) u0: N --. C2 has a bounded holomorphic
continuation u0(x + iy) into a strip Sa {z x + iy C: [y[ < a} for some constant
a (0, c). This analyticity hypothesis on u0 is weakened in our present work. We
assume only u0 L(N -- C2) and prove an analytic smoothing property for time
t e (0, T).
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In order to be able to treat our general system (1.1) in a simple but reasonably
general way, we assume that

(1.4) p(1 0) Ox

is a strongly elliptic, linear, partial differential operator of order 2rn with constant
coefficients i-Ilp() where each i-Ilp() (i-Ilp}) N)j,k=l is an N N matrix

with real (or complex)entries i-Ilp}). The strong ellipticity hypothesis for P means
that there exists a constant c c (0, c) such that the following inequality holds for all
( ((1,... ,D) C ID and v/: (r]l,..., N) e N (or cN)

N N

k=l Iol--2m

where 1... D for a (o1,...,OD) e (Z+)D. We use an asterisk (*) to
denote the complex conjugate of a number in the complex plane C.

The nonlinear mapping F" It(D (0, T) IN(I+D+’’’+D) - IN (or ID (0, T)
CN(I+D+’’’+D) -- CN) is assumed to be real (or complex) analytic in all its variables

011
(x, t) E ID x (0, T) and ( 0-u(x, t) E lN (or CN) for I1

Moreover, we assume that F possesses a holomorphic continuation F(x + iy, a +
iT, ( + iv/)ll<_ into a region gtF ft X CN(I+D++D), where t C CD C is
defined by

f {(x + iy, a + iT)" (X, a) e ID (0, T), < A and I-I <
such that F and all partial Frchet derivatives 0F/0, for lal <_ t, are bounded in

t2 B for every bounded set B c CN(I+D+’’’+D). Here, A, B E (0, oc) are some
constants.

A brief, weaker version of our main result, Theorem 2.1 in 2, can be stated as
follows.

THEOREM 1.1. Let A and B be as above, and 0 < T < T <_ oo. Assume that u
is a weak L-solution of our system (1.1) in ]D (0, T) such that

M def
ess sup < oo for
D x (O,T) OXa

Then the function u has a bounded holomorphic continuation u(x + iy, a + iT) into a
region , CcD C defined by

{(x / / (x, e (T’, T), lul < A’ and

such that all partial derivatives Ollu/Ox, for Iol

_ , are bounded in u. Here,
A’ (0, A] and B’ (0, B] are some constants depending upon T’ and u solely
through the numbers Ma [0, oc) for ]a <_ .

Remark 1.1. In our Theorem 2.1 below, we specify also the dependence of the
constants A’= A’(T’) and B’-- B’(T’) upon T’ C (0, T). In general, we cannot take
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T’ 0 unless A’ 0 or B’ 0. Namely, given any A’ E (0, A] and B’ E (0, B], the
holomorphic continuation u(x+iy, a+iT) of the solution u into the region tu C CDC
defined by

gtu { (x + iy, a + iT)" (x, a) e ]ID (0, T), lYl < A’ and 171 < B’}

may either fail to exist or else fail to be bounded, cf. Remark 2.6 below, unless u0 has
a bounded holomorphic continuation u0(x + iy) into the strip SA, {z x + iy
cD’Iyl < A’}, in which case one can apply the results of [15].

Some results about the analyticity of solutions of nonlinear parabolic systems,
which are related to ours, are stated in Friedman [13, Thms. 3 and 4] without proofs.
For the Navier-Stokes equations, such analyticity results are proved in Masuda [26].
These results state local analyticity of infinitely differentiable solutions without any
description of their domain of holomorphy (i.e., domain of complex analyticity). Our
present article provides such a description in Theorem 2.1.

As we have already indicated, our main result, Theorem 2.1, is stated in 2 and
proved in 3. Its proof is based on some well-known analytic smoothing properties
of the Green function corresponding to the initial value problem for the linear part
of System (1.1), which are stated and proved in the Appendix. These properties
are combined with a standard contraction-mapping argument in a Hardy space H
of bounded holomorphic functions (rather than a commonly used Hhlder or Sobolev
space). The contractivity is obtained via Cauchy’s theorem (path independence of the
integral). In 4 we suggest possible generalizations of our main result to a wider class of
systems (1.1) involving a much more general pseudodifferential operator as their linear
part. In 5 we discuss direct applications of our main result to the validity problem for
the complex Ginzburg-Landau equation (1.2). Finally, 6 contains a discussion about
further applications of our results to some current issues in mathematical physics and
dynamical systems. We also compare previously known results to ours.

2. Statement of the main result. Recalling D,N N and g,m Z+ with
0 <_ < 2m, we introduce the following notation: The complexifications of the space
and time variables, respectively, are denoted by z x + iy D

__
]ID ( i]D and

t-- a+i C-- (R)i. As usual, I’1 denotes the Euclidean norm in arealor
complex Euclidean space.

Given any Lebesgue-measurable set in a Euclidean space, we denote by L ()
L( -- CN) the Lebesgue space of all (equivalence classes of) Lebesgue-measurable,
essentially bounded functions f (fl,..., fN)" -* CN endowed with the norm

IIfl[- esssup If()l < .
Recall that L(f) is the dual space of Ll(f) Ll(f - cN). Hence, any bounded
closed ball in L(f) endowed with the weak*-topology is a compact metrizable space.
In particular, a sequence {f}= c L(f) converges to f0 L(f) (n - zx) in the
weak*-topology on L(f) if and only if

as n---

for every L (0) and j i,..., N.
We define the notion of weak L-solution of our system (I.i) as follows.
DEFINITION 2.1. Let T (0, c]. A function u" ]D (0, T) -- CN is called a

weak L-solution of system (1.1) if it satisfies the following four conditions:
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(i) u and all distributional partial derivatives i)lalu/Oxa, for Icl <_ , belong to
L(IRn (0, T)).

(ii) t e [0, T) u(., t) e L(D) is a weakly* continuous function of t with the
weak*-limit Uo E L(]l(D) as t 0+. The function u(., 0) uo is called the
initial value of u.

(iii) (x,t) D (0, T) F(x,t, (u(x,t))iai5t) is a locally integrable

function.
(iv) Equation (1.1) is satisfied in the sense of distributions over D x (O,T).
Remark 2.1. If 0 < l< 2m, Conditions (i) and (ii) from Definition 2.1 above

imply also that each distributional partial derivative t (O,T) Ou(.,t)/Ox
L(D), for 0 < ]a , is a weakly* continuous function of t with the weak*-limit
OIUo/OX L(D) as t 0+. This claim is obvious since each of these functions
is valued in a bounded closed ball in L(D), i.e., in a metrizable weak*-compact
set. In particular, we have also O’Uo/Ox L(D) for ]a] g.

Remark 2.2. Condition (iii) from Definition 2.1 is automatically satisfied provided
F satisfies Hypothesis (H2) below and u satisfies condition (i) from Definition 2.1.

The reader is referred to Edwards [11, Chap. 5] for the theory of distributions
and weak topologies.

Let o, 0 (0, ) be two constants to be specified later, and s [0, ]. We set

(2.1) n()(.o) (z x + iv e c". Ivl’ < -o},

(2.2) r()(o) (t + i e c. ,o11 < ),

and introduce the open parabolic region

(2.3) A()(.o, o) u{n()(.o) r()(o) e (0, )} c c c,

together with its time translation by r units, for 0

(2.4) h() (-o, ,o) {(z,t) e c c. (z,t- ) e h()(.o, o)}.

We now define our most important region in CD C, for 0 < s _< T < cxz,

S)(o, no)" r E [0, T- s]} if s < T,
(2.5) F(T8) (o, no) A(8)(o, no) if s T.

Given any r [0, T), we observe that the time r section of r (ao, o)is given by

(2.6) O(r,s)(g0,/20) de {(Z,t)e F(TS)(/0,/20) ){t r}
H(r’)(to) x E(r’)(u0), where r’- min{r, s}.

When discussing the validity of the derivation of (1.2) in 5, we will keep in mind that

the regions defined above depend also on 2m. In particular, we write F(T) (tOo, u0; 2m)
r()(o, o).

Finally, we denote by B(M) the open ball in CN of radius M centered at the
origin, and by B(M) its closure.

Hypothesis. From now on we assume that T (0, x] is fixed. We impose the
following hypotheses on P and F, respectively:
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(H1) P satisfies (1.4) and (1.5).
(H2) There exist constants n0,0 e (0, o), To e (0, T], and Ms e (0, oc), for

la] _< t, such that F" ]D X (0, T) x ][N(1WDW’’’+D) --+ ][N (or ]1D X (0, T)
CN(I+D+’’’+D) --4 CN) possesses a holomorphic continuation F(x + iy, a +
i-, ( + i)ll<) into the region (cf. (2.5))

fF F(TT)(n0,0) X H B(M) C (CD C) x cN(1-FD-F. .-FD

such that F and all partial Frdchet derivatives 0F/0 with respect to
+ iw E CN, for lal _< t, are bounded in tF.

We set

(2.7) CF def
sup [F[ < oo and C def I[0FImax sup < c.

Of course, a holomorphic continuation into fF of a real- (or complex-) valued
function that is analytic in ][D X (0, T) X ]N(1-FDzt-’’’-FD) is always unique, cf. John
[21, Chap. 3, 3(c), pp. 70-72]. We refer to nhrmander [17, Chap. 2] for basic facts
about complex analysis in several variables.

Remark 2.3. For instance, all constants Ms E (0, o) in Hypothesis (H2) may be
chosen arbitrarily large in case F(x + iy, a + i-, ( + il)ll<) is an entire function
(e.g., a polynomial) in all the variables + i (N, iO/i

_
having a

power series expansion all of whose coefficients are bounded holomorphic functions
--(To) cNxNfrom FT (n0, P0) to It is easy to see that (H2) is true in most practical

applications.
The main result in this article can be stated as follows.
THEOREM 2.1. Let P and F satisfy Hypotheses (H1) and (H2) above, where

0 < To <_ T <_ oc, no,o (O,c), andMs (O, oc) forlal <_ . Then there exist
three constants e [o, CX), Cp Cp(n0,-) e (1,(x), and T e (0,T0] with the
following property:

Assume that u is a weak L-solution of our system (1.1) in lD x (0, T) such that

101lu def Ms(2.8) esssup < M for < g.
D x(O,T) 0XC Cp

Then the function u has a holomorphic continuation u(x + iy, a + iT) into the region

Qu F(TTg) (n0, ) C CD C such that

(2.9) sup < Ms for <, Ox

Furthermore, the continuation of u satisfies (1.1) in f.
The constant [0, cx) is completely determined by P, whereas Cp (1, cx) is

completely determined by P, no, and u. In particular, both u and Cp are independent
from the nonlinearity F and

Remark 2.4. Strictly speaking, in Theorem 2.1 we do not need the existence
of a weak L-solution u of (1.1) in ]1D X (0, T). We need only the a priori bounds
(2.8). Nevertheless, in our proof of Theorem 2.1 we will need the uniqueness of a weak
L-solution of (1.1), subject to a given initial condition. In case the a priori bounds
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(2.8) can be established for a particular weak L-solution u of (1.1) in ]D (0, T),
subject to a given initial condition u(., 0) u0(.) E L(ID), then the existence
and uniqueness of such a solution is obtained by a well-known contraction mapping
argument (identical with ours in the proof of Theorem 3.1, Step 4, except for the
choice of space) in a closed ball in the Sobolev space W, ,(D (0, T)).
Here, 1/Y, consists of all functions f: ]D (0, T) -- CN of (x, t) ]D (0, T) such
that f satisfies Conditions (i) and (ii) from Definition 2.1. Regarding the derivatives in
Condition (i) as distributions, we observe that W, is isomorphic to a closed linear
subspace of the L-product space (L(D (O,T))) l+D+’’+D, the isomorphism
being defined by f (Olalf/Oxa)ll<_. In particular, 1/Y, is a complex Banach
space endowed with the norm

i]f[lw, def [Ollf]max ess sup
I1<_ aD (O,T) OX

Notice that W’ is a proper, closed linear subspace of L(D (0, T)).
We refer to Stein [33, Chap. V] for the basic theory of Sobolev spaces.
Remark 2.5. By Definition 2.1 and Remark 2.1, the inequalities (2.8) imply that

the initial value u0 of a weak L-solution of (1.1) satisfies Olluo/Ox L(D) for
all lal _< , together with

(2.11) esssupl0Ia’u0.]’ < Ma dej Ms for
ND OXa Cp

Only these bounds, not (2.8), will be used in our proof of the local (in time) version of
Theorem 2.1 below, i.e., Theorem 3.1, for some T To T (0, cx) small enough.
The bounds (2.8) will be used subsequently to extend the local solution to the entire
time interval (0, T).

Remark 2.6. In Theorem 2.1 above we have specified also the dependence of the
constants A’ =_ A’(T’) and B’ B’(T’) upon T’ e (0, T), used in its weaker version,
Theorem 1.1. We have A’(T’) (toT’) 1/2m and B’(T’) T’/ for T’ e (0, Tg), and
A’(T’) (aoTg) 1/2" and B’(T’) Tg/ for T’ [Tg, T). In general, we cannot take
T’ 0 unless A’ 0 or B’ 0, even if the nonlinear system (1.1) takes the following
simple form:

(2.12) Ot
c2u

-0 for(x,t)Ox2

u(x, O) no(x) for x I.

The function (cf. John [21, Chap. 7, l(a), p. 213])

u(x, t) -_ e-2 d, (x, t) (o,

is a real analytic solution to (2.12) satisfying 0 < u < 1 in I (0, ) and u(x, t)
uo(x) as t --. 0+, for every x I, where

0 ifx <0,
uo(x)= 1/2 if x-0,

1 ifx > 0.
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We take g 0 in Theorem 2.1 since there is no nonlinearity. By Cauchy’s theorem
(path independence of the integral), the holomorphic continuation of u into the region
C ((0, oc)+ ilR)is given by

(2.13)
1 fo/V+ +

for(x+iy, t) ECCwitht>0.

It is easy to see that the second integral is unbounded as t -, 0+, t E IR, for any fixed
x + iy (2 with y 0. Furthermore, its upper bound y/V/4(a + iT) clearly shows the
optimality of our choice of a region in which u(x + iy, a + iT) is bounded.

We now return to Example 1.1 to illustrate a possible choice of the constant
[0, cx) in Theorem 2.1 above.
Example 2.1. Let us consider system (1.3) again. The Green’s function G(x,x’; t)

corresponding to the linear initial value problem

(2.14) /( _)..’x iu--0 for

u(x, 0) u0(x) for x ID

is given by the formula (cf. John [21, Chap. 7, l(a), p. 209])

(2.15) _G/C G1 where G1 e G, G2 rnG andG. G

G(z, x’;t) a(z z’;t) a__f (4r(1 + iu)t)-/ exp
4(1 + iu)t

for z, x E 11D and t (0, o).

Hence, the solution of the Cauchy problem (2.14) is given by the convolution u(t)
G(.; t) u0 for t >_ 0. Given any s (0, cx) fixed, the family of functions IG(.; t)l for
t 8 + iT (s)(/]), has a common integrable majorant over ]1D if and only if there
is a constant - > 0 such that -((1 + iv)t) /(s- ST) > S for every t e E(8)(u).
This is the case if and only if I1 < . Then such a majorant can be taken to be the
function Cs-n/2 exp(--l. [2/s), where C E (0, c) is a constant. Moreover, if I1 <
and a0 (0, oc) is arbitrary, we can choose the constants -),, C (0, cx) so that the
holomorphic continuation of G to A()(a0, ), cf. (2.3), satisfies

la(z;t)l < (z,t) (x + i ,o + e

This estimate plays a crucial role in our proof of Theorem 2.1. It provides the following
bound on the holomorphic continuation to A()(a0, ) of the solution u of (2.4):

[u(z,t)l _< C1 esssup lUo for (z,t) c A()(ao, o),

where C1 (0, 00) is a constant independent from u0 C L(IRD).
3. Proof of the main result. We implement our contraction-mapping argu-

ment (Banach’s fixed-point theorem) in a closed ball in a Hardy space H. Given
any open set f in a complex Euclidean space, we writeH(t) U(f -. CN) to de-
note the Hardy space of all bounded holomorphic functions f (fl,..., fN)" --* CN
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endowed with the L-norm Ilfll. It is well known that H() is a closed linear
subspace of L(t), cf. Hbrmander [17, Thm. 2.2.3].

Given 0 < T < T < , 0, u E (0,), and an integer E [0,2m), we set

x) def= L(F(T)(n0,p))),T cf. (2.5), and define 7-/e, T/e’(F(TT)(t0, P)) to be

the space of all bounded holomorphic functions f" F(TT)(0,) --* CN of (z,t)
(x+iy, crWiT) CDC such that f satisfies the following two conditions (cf. Definition
2.1)"

(i) Ol’f/OzS L(F(TT)(0, v))for [a[ <_ g.
(ii) The restriction t e (0, T) -, f(., t) e L(D) is a weakly* continuous func-

tion of t with a weak*-limit f(., 0) E L(]D) as t -- 0+. The function
f0 f(’, 0) is called the initial value of f.

Regarding these derivatives as distributions, we observe that 7-/, is isomorphic to
a closed linear subspace of the L-product space (c)l+D+’’’+Dt, the isomorphism
being defined by f H (Olslf/Oz)lsl<t. In particular, T/, is a complex Banach space
endowed with the norm

(3.1) ilfllT/,o def 1101slf]max sup
I1< _(%) Oz

t’ (o,)

Notice that T/, is a proper, closed linear subspace of H(r()(0, )).
Proof of Theorem 2.1. In the conclusion of Theorem 2.1 we claim that T (0, To]

is a constant independent from u, provided u satisfies the bounds (2.8) for lal < .
In other words, only LC-bounds on the partial derivatives OlSlu/Oxs in D (0, T),
for lal < , influence the value of T, but not u itself. Consequently, if we can prove
the local (in time) version of Theorem 2.1, claiming that u admits a holomorphic
continuation with the desired properties into a region (cf. (2.5))

(3.2)

for some T e (0, To] sufficiently small, then by uniqueness (cf. Remark 2.4) we can

extend u from A(T)(0,) to all its time r translations A(T)(0,), for 0 < r <
T- T, in order to obtain the full conclusion of Theorem 2.1. Thus, it suffices to
prove the following local result, where we may take T- To (0, cx3).

THEOREM 3.1. Let P and F satisfy Hypotheses (H1) and (H2), where 0 < To
T < and tco, to, Ms (0,). Then there exist three constants D [0, c),
Cp Cp(0,) (1, ), and T (0, To] with the following property:

Assume that uo L(]D) satisfies oqlsluo/Oxs E L(]D) for I] < g, together
with

(3.3) esssup] Ol"’uo <, M’ de____f Ms for < e.
Ox " Cp

Then there exists a unique weak L-solution u of our system (1.1) in ID (0, Tg) such
that the initial condition u(., 0) u0 e L(ID) and the bounds IlOllu/OxSll < Ms
for Icl <_ are satisfied, and moreover, the function u has a holomorphic continuation
u(x + iy, a + iT) into the region A(Tg)(a0, ) C CD C satisfying the bounds
(2.9). Furthermore, the continuation of u satisfies (1.1) in u.
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The constant u E [uo, cx) is completely determined by P, whereas Cp (1, cx) is
completely determined by P, no, and. In particular, both and Cp are independent
from the nonlinearity F and

Proof of Theorem 3.1. Let T To (0, ) be fixed. We divide the proof into
four steps.

Step 1. We start with the following three lemmas which are concerned with the
Green function G(x,x’;t) =_ G(x-x’;t) CNN, for (x,x’,t) ][D ][D X (0,00),
corresponding to the linear initial value problem

(3.4)
Ou (10)+ P u=O for(x,t)

u(x, 0) uo(x) for x e ]1(D.

It is well known that G(x; t) is given by the inverse Fourier transform

(3.5) G(x; t) (2)-D jfD eiX’e-tP()d for (x, t)

P() e CNxN by (1.4) where 1... D. AnRecall that P()= -]1,<2-
extensive treatment of the Green function is offered in HSrmander [19, Chaps. 10
and 11].

LEMMA 3.2. There exist constants (O, oc) and c’ 1 with the following
property: Given any no (0, oc), the function C_,: ]D X (0, OO) --+ NxN has a
holomorphic continuation G(x + iy; a + iT) into the region A(C)(o, ) such that

(3.6) 0---G(z; t)] _< Cn(0,-u0)et\-c’aa-(D+lal)/2m(1-- al/2m)]X[
for all (z,t) (x +iy, a +i’) e A()(o,-) and ]1 < g,

where Cn =_ C(n0, u) (0, oc) is a constant for every n O, 1, 2,
Proof Making use of the Fourier representation (3.5), we obtain the conclusion

of the present lemma from Proposition A.4 in the Appendix. For system (1.3) one
obtains an easy proof of Lemma 3.2 directly from (2.15).

We set

(3.7) C’ C def ec’To f -D-1
G G(B;0,//) CD+I(B;0 /) (1 + IX[) dx e (0, oc).

D

Now let T (0, oc) be a constant to be determined later. In the situation of
Lemma 3.2 we define mapping G" L(D) L(A(T)(o, u)) by

(3.8) (Gf)(z, t) de . G(Z X’; t)f(x’) dx’

for (z,t) e A(Tg)(no, u) and f e L(D).
LEMMA 3.3. The mapping is an everywhere-defined, bounded linear operator

from L(]D) to 7-/,(A(Tg)(to, ))satisfying

(3.9) 0--(Of)(z,t) _< C(o, u)a-1l/2" esssup
D

for (z, t) (z, a + i-) e A(Tg)(ao, u), ]c < g and f
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Proof. Complex analyticity of Gf as well as the bounds (3.9) follow from Lemma
3.2. It remains to show that the restriction of Gf to ]1D X (0, T) satisfies

weak*-lim[(Gf)(., t)] f in
t--0+

or equivalently,

(3.10) 9fD g(x). (Gf)(x, t)dx --. g(x). f(x)dx as t --. 0 +

for all g E LI(D).

Since we have already established the bounds (3.9), it suffices to prove (3.10) for
all g from a (strongly) dense set S C LI(ID) and for all f from a weak*-dense
set S C L(]RD). Because the Fourier transformation 9r multiplied by (2r) -D/2
is a unitary operator on the Hilbert space L2(D) L2(]D -+ N), we choose
S LI(D) CI L2(]D) and S L(]D) N L2(D). Then, for (g,f) e S x S,
we compute as follows (cf. (3.5))"

All integrals in this computation are absolutely convergent. Consequently, we have
also proved Gf e ?-/’(A(T)(n0, )) for every f

Imposing an analyticity hypothesis on f we can extend the estimate (3.9) from
Lemma 3.3 as follows.

LEMMA 3.4. For all s e (O,T) and f e H(H(S)(n0)), we have

10---(Gf)(z (1- s--)t)l < C’ -1,/2m sup

for (z, t) A(Tg) (n0, v) with a t > s, and for

Proof. Fix any s e (0, Tg) and (z,t) (x +iy, a +iT) e A(Tg)(n0, v) with s < a.

Set 0 s/a (0, 1). By (3.8), the integrand

x’ e ID
011
0-G(z x’; (1 O)t)f(x’) e Cg

of the integral o-(Gf)(z, (1- O)t) has a holomorphic continuation to the region

II(8)(no), el. (2.1). The continuation G(z x’ iy’; (1 O)t) of G(z x’; (1 O)t)
to H(8)(no) satisfies the bounds (3.6) with no replaced by (1- 0)-lno. (Notice that
the constant Cn((1- 0)-lno, t), for n 0, 1,2,..., may be unbounded as 0 - 1-,
and so is C((1 -0)-lno, ).) Using the decay of the continuation of the integrand
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(3.12) as Ix’l c, uniformly in ly’l 2" < (1- 0)-10(1- O)a oa, where z’=
x’ + iy E CD, we are able to apply Cauchy’s theorem (coordinatewise) to shift the
domain of integration from ]D to ID + iy, for any fixed y E ]D with lyl2m < os.
We arrive at

(3.13)

Oz011 fD(Gf)(z, (1 0)t) L0-G(z x’; (1 0)t)] f(x’)dx’

Since (z,t) (z + i, + i) e A(r;)(o,u)implies I1
O1/m (s/)l/m. Hence ’1m < os, and consequently z’=
for all z N. On the other hand, we have

z z’ z ’ + i( ’) z z’ + i(1 0/) z" + i",

where

ly"l (1 O1/2m)2mlyl2m < (1 O1/2m)2moa (1 O)oa o(a s).

Thus (z z’, (1 0)t) e A(T)(o, ), so we may apply the bounds (3.6) to the inte-
grand in the second integral in (3.13) above to obtain the desired estimate
(3.11).

Step 2. Next we treat two linear operators that appear in the variation-of-
constams formula for a weak L-solution of system (1.1). Given 0 < T To
T < , we recall and adjust our notation

de2 L(F )(ao, u0)
and

H, H,((Tg) H,(A(Tg)(-o,

Recalling (2.2), we write

Making use of Lemm 3.3 and 3.4, respectively, we define the mappings o,:
o, by

(K:of) (z, t) de____f D G(Z X’; t)f(x’, 0) dx’ (Gf(., 0))(z, t)

and

(3.16) (/Cf) (z, t) de__f G(z x’;t t’)f(x’, t’) dx’ dt’
D

(Gf(., t’))(z, t t’) dt’,

for (z,t) A(T)(0, u) and f 7-/,. By Cauchy’s theorem, the last integral

f... dt’ is path independent provided t’ E(T) (/), cf. (3.14). We choose the path
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{t’= tot e C" e [0, 1]}. The integrals in (3.15) and (3.16) above converge absolutely
as Lebesgue integrals by Lemmas 3.3 and 3.4.

PROPOSITION 3.5. (a) The mapping ]Co is an everywhere defined, bounded linear
operator from TI’c into itself satisfying

(3.17)
011 C’ esssup[ 01l C’

(01lf

e h( (o,)

for (z,t) e A(T)(0,-), [a[ t and f e U*’.

(b) The mapping E is an everywhere defined, bounded, linear operator from Tl’
into Tlt,c satisfying

< C! 2)1/2( IO/1 -1G(1 + (,) 1
2m]

(Tg)l-(l"l/2") sup

Ior (z. t) e t and f U’.

Proof. (a) Take any f e 7-/’ and {a . We have 0f e T/’ by Lemma 3.3.
Integration by parts in the convolution integral (3.15), combined with (3.9), yields

Oz ](z’t) < Ca esssuplf(x, 0)]xD

for (z, t) e h(u) (a0, ").

By Remark 2.1, the function t E (O, Tg) -+ Ol"lf(.,t)/Oxa e L(ID) is weakly*
continuous with the weak*-limit 01alf(., O)/Ox L(ID) as t -+ 0+. Hence, the
duality between LI(D) and L(]l(D) yields

(3.20) esssup 0--f(x, 0) < liminf esssup 0---f(x,t) _< sup
xERD t--’O-t- xeD A(T() (no,u)

0ZC

We combine (3.19) and (3.20) to obtain the estimate (3.17).
(b) Now take any f e 7-/, and lal <_ g. By Lemma 3.4, we have ]Cf e and

(3.21) /o1/ (]Cf)(z, t) t G(z x’; (1 0)t)f(x’, Ot) dx’ dO
D

t (f(.,Ot))(z,(1 -O)t)dO for (z,t) A(r;)(o, u).

By Lemma 3.3, the function (z,t) e A(Tg)(a0, u) (Gf(-,0t))(z, (1- 0)t) e CN

belongs to 7-/’ for every fixed (0, 1). Consequently, applying Lemma 3.4 to
(3.21) we arrive at Oll(]Cf)/Oz Tl,, together with (3.18), as desired. Here
we have used that Ic < 2m and t a + iT e E(Tg)(u) imply Itla-1l/2m <_ (1 +
(p)2)l/2(Tg)l-(lal/2m)" [-]

Step 3. Making use of well-known arguments from the theory of distributions, we
combine Definition 2.1 with Lemma 3.2 to obtain the following variation-of-constants
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formula: A function u" D X (0, T) --+ CN is a weak L-solution of system (1.1) if
and only if u satisfies conditions (i), (ii), and (iii) from Definition 2.1, together with
the following integral equation:

(3.22)
/,

u(x, t) _/D G(x x’;t)u(x’, O) dx’

+ G(x x’; t t’)F (x’, t’,

for almost every (x, t) e D (0, T).

Step 4. Now we are ready to implement our contraction mapping argument. We
choose Cp Cp(0, v) de 1 + 6(to,12) e (1,(X)). Next we fix the initial value

u0 e L(ID) satisfying (3.3). For (z,t) e h(T)(0, ) and u e ,o we set

Ul (Z, t) deal jD G(Z x’;t)Uo(X’) dx’

(3.23)

Here, Y*’ l/Y*’(D (0, T6)) is the Sobolev space defined in Remark 2.4. Thus,
a function u E )/y,,o satisfies (3.22) if and only if T(u) u. Combining (2.7) with

(3.6) we deduce that T is a contraction from a closed ball C }/y,,o into itself,
provided T E (0, T0] is sufficiently small. Our more sophisticated estimates (3.17)
and (3.18) from Proposition 3.5 show that T is also a contraction from a closed
ball c 7-/*’ into itself, provided T (0, T0] is sufficiently small. -We choose

{f e 7-/*’" [If- u1[17-/,,oo _< (}, where 0 < 5 < min{M" [a] _< *}. Notice that
by (3.9),

(3.24) sup
A(%)(0,)

In order that T be a contraction on B, the constant T (0, To] must be chosen so
small that, by (2.7) and (3.18),

(3.25) KCF<_5 and K(I+D+...+De)C<I,

where

K(T)- C(1 + (/2))2)1/2 max (/t,(1 a )K
ae[0,] m

-1

Observe that 0 < T _< 1 and 1 (i/2m) > 0 entail

K(T) C(1 + (v)2)1/2 1 m (T)l-(*/2m)
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Consequently, the integral equation (3.22) possesses a unique solution u B by
Banach’s fixed-point theorem. The restriction of u to ]D (0, Tg) is the unique weak
LC-solution of system (1.1), the uniqueness being obtained by replacing ?-/t’ by
l/Y’ above. In the latter ce we may replace > 0 by 0 in (3.25).

Our proof of Theorem 3.1 is now complete. In Step 4 of this proof we have also
justified the reduction of Theorem 2.1 to its local (in time) version, Theorem 3.1.

4. Some generalizations of the main result. We discuss and suggest possible
generalizations of our results to a wider class of systems (1.1) involving a much more
general pseudodifferential operator as their linear prt.

Remark 4.1. It is clear from our auxiliary results (cf. the Appendix) about the
Green function corresponding to the linear initial value problem (3.4) that P (7 )can
be replaced by a much more general pseudodifferential operator P (x, t, 7), with
a matrix-valued symbol P(x,t,) CNN of class C satisfying certain analyticity
hypotheses in (x,t) D (0, T), growth conditions in D, and the uniform
strong ellipticity condition (in place of inequality (1.5))

N N

for all D and y CN,
where c > 0, c2 0 and > 1 are some constants. We refer to ves [37, Chap. V,
5, pp. 288-299] for details. The nonlinearity F may depend upon the derivatives
Ol"lu/Ox of u up to order , where 0 < .

For instance, we may take P(x, t, ) to be an inhomogeneous polynomial in D
of the form

D

P(x, t, ) :"p(n)(x, t) ( D) e D
n=l

where mn N and P(n)(x, t) CNx are uniformly strictly positive-definite matrices,
i.e., there is a constant c > 0 such that, for all (x, t) D X (0, T),

N N

k=l

In this case, the nonlinearity F may depend upon the derivatives ollu/Ox
"---"D of U such that a, < 2mn for all n 1,..., D.

OX ...OXD

5. Applications to the validity problem. Here we discuss the validity prob-
lem for the complex Ginzburg-Landau equation (1.2).

The main result of this paper (for 2m 2) justifies one of the basic assumptions
made in van Harten [15] and Bollerman [3]. In these papers, as in e.g. Kirrmann,
Schneider, and Mielke [22] and Schneider [31, 32], the validity of the Ginzburg-Landau
equation as a universal modulation equation for nonlinear stability problems at near-
critical conditions has been studied. In [15] the following general equation is consid-
ered"

0u (10,) (10)n + ;n s

0) x s.
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Here # (0;1 R) is again a strongly elliptic linear operator in x of order 2m, and

(xx;1 R) is a linear differential operator in x of order t <_ 2m- 1. Both polynomials
#(-; R) and (.; R) depend upon a real control parameter R possessing a critical value
Rc above which the trivial solution u 0 becomes unstable. By assuming R Rc+e2
with > 0 small enough and

u(x,t) 2s(A(ex, e2t)e(kcx+t)) + O(e2),

it is possible to derive rigorously that the mplitude A(X, T) satisfies the complex
Ginzburg-Landau equation

(5.2)
OA 02A

(T i’2) + (To + i,o ]A]2)A for (X, T) e (0, To).

This formal approach is based on an observation of certain physical effects leading to
amplitude modulations on long time scMe T t and a long space scale moving
with group velocity X (x + Cplt). The constants k,w, T0, 72, 0, 2 are com-
pletely determined by p, whereas fl C is completely determined by p, p, k, and
w. The constants T0 and T re obtained from the Taylor expansion at k k, the
critical wavelength, of the form

(-(k,R +) s 70 re +...,

whereas w, 0, and 2 re obtained from

mp(k, R +) w + e -0 + - +""

In accordance with the physical situation we find out that T2 > 0 (whence -e (., R)
attains a local mimum at k k), which guarantees the strong parabolicity of (5.2).
om the point of view of physics, we are studying a marginally unstable bic state;
cf. Doelman [6]. In [15] a rigorous proof of the validity of this approximation h
been given.

The main result in van Harten [15] can be stated as follows.
THEOREM 5.1. Let Sa {z x+iy C: ]y] < a} for some constanta (0,),

and R R() R + o e (0, ).
() There exists To > 0 such that, for any initial value A(., 0) Ao:

satisfying
(i0) Ao is holomorphic in Sa and
(ii0) supzes Ao(Z)] < ,

there exists a unique classical solution A of (5.2) in [0, To] such that
(i) A(., T) hooohc n S o ah T e [0, T0], A: S

continuous, and
(ii) sup(z,T)eS[O,To] ]A(Z,T) < .

(b) Lt A b oton of (.) (), adoh > 0 t

(z,t) (A(z,t)(+*)) o (z,t) e S/ [0,T0/].

Then (x+ iy, t) (x, y, t) is a real-valued, real analytic function of (x, y)
for each t [0, To/], and for each > 0 small enough, there exists a solution u

of (.1) [0, To/] th th foon
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(i) ue(.,t) (t E [O, To/2]) is real analytic in S,/ for a’ (O,a), u" S,/e
[0, To/2] --. IR is continuous and bounded, and

(iie) there is a constant C > 0 independent from such that

sup
(,t)eSo,/ x [O,To/]

I(z, t) (z, t)i _< C.
The proof in [15] is based on an application of a contraction-mapping argument

which proves the existence of the remainder term e2w u of order O(ee)
by subtracting the appropriate rescaled form of (1.2) from (5.1). The application of
the contraction-mapping argument hinges upon making the correct estimates for the
operators/C and K0, where

(f)(z, t) eiZee-(t-t’)"(e) e-iX’ef(x’, t’) dx’ d( dt’,

(tCof)(z,t) eZee-(t-t’)"(e)o() e-’ef(x’,t’)dz d(dt’.

There are two fundamental assumptions in this theorem.
Assumption 1. The first one is the assumption that A0, the initial value of the

solution A of (5.2), is holomorphic on a strip S. Due to the results of the present
paper, this analyticity assumption can be weakened significantly, while the conclusion
of the theorem can be improved in the following way.

THEOREM 5.2. (a) There exist positive constants no, u, T, and To with 0 <
T <_ To and the following property: Given any initial value Ao L(N), there exists
a unique weak L-solution n of (5.2) in I x (0, To) satisfying the initial condition
n(.,O) Ao and such that esssuP(x,T)eex(O,To ]A(X,T)[ < oo. Furthermore, n has

F(T;)oomo,c ontnaton A(X + Y, S + T) to t ,on U o (o, ’; Z) c
C x C for which supa [A < ee is satisfied.

(b) t ,o, , ;, ae o a i (), t A a otio of (.), ae t

P(Tg/e) 2) for each e > O. Assume thatbe defined in ft To/. (a0, u/;
(i) the initial distribution A(., O) Ao" N ---, C has uniformly Lipschitz

continuous derivatives up to order - 1, and
(ii) esssuP(X,T)eex(O,To) IA(X,T)I <

Then there exist positive constants o, , and T with 0 < Tg <_ To and the following
property: For each e small enough, 0 < e <_ 1, there exist a solution u u of (5.1)

(g) 2m) and a constant C > 0 independent from eholomorphic in ft To/s. (o, u;
such that

(5.3) sup I(z, t) (, t)l _< c.
Since the (5.1) and (5.2) have possibly different orders 2m and 2, respectively,

we have introduced the notation F)(ao, uo; 2m) F)(ao, uo) for 0 <_ s _< T _<
cf. (2.5).

The following few remarks explain some statements made in Theorem 5.2.
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Remark 5.1. Conditions (i) and (ii) from Theorem 5.2(b) imply that there exist
constants Cn, 0 <_ n <_ t, such that

(5.4) sup <_ Cn for n 0, 1,...,g.

Indeed, assume that the initial distribution A(., 0) has essentially bounded derivatives

up to order g, and A is essentially bounded in IR (0, T0). Define An def cgAox---,n<_.
Differentiating (5.2) n times with respect to X, 1 < n _< t, we arrive at the following
linear system of equations for An and mAn"

OAn 02An
OT (T2 i’2) oX2 + (TO + ivo)An

fl [Nn ((A)<n-1, (A)i<n-1) An + N ((A)i<n-1, (A)<n-1) A]

An(’, O)
OnA

(.,0)

inlRx (0, T0),

Here, both Nn ((Ai)i<n-, (A)i<n-1) and N ((Ai)i<n-, (A)i<n-1) are polynomials
in all their variables. Hence, we use induction on n 1,..., t to obtain

(5.5) ess sup
(X,T)ER(O,To)

OnA
(X, T)OX

_< Cn const < cxz for n 0, 1,...,

Finally, we can apply our Theorem 2.1 to conclude (5.4), as desired.
Remark 5.2 In Theorem 5.2(a) above we are allowed to take To oe for the

spatial dimension D _< 2, provided / > 0 holds, by the global existence results in
Bartuccelli et al. [2]. However, we can prove the estimate (5.3) for 0 < To < oe only.

Remark 5.3. Observe that the intersection gt N Ft contains the region

2’=P() 2), 0<<1,

where 0 min{0, 0}, P max(v, } and T min(T, T, 1/0}.
In [22] and [31, 32], it is shown that it is possible to prove the validity of (5.2)

for initial values A0 that are not necessarily holomorphic, but are sufficiently smooth.
However, in these papers it was necessary to impose a certain rate of decay as Ixl - cx
on the initial values Ao(x). As a consequence it turned out to be impossible to prove
validity for such interesting basic cases as periodic and front solutions of (5.2) studied,
e.g. in Doelman [6], Doelman and Titi [7], and Tak [35].

Assumption 2. The second fundamental assumption in van Harten’s theorem [15]
(Theorem 5.1 above) is on the structure of the initial values u0 for (5.1),

uo(x) 2 (Ao(x)eik) + O(2).

In Eckhaus [10] it has been shown that, on a time scale faster than the 1/e2 Ginzburg-
Landau time scale, any solution of (5.1) with L initial values small enough (like O())
first collapses toward a solution having the special structure of (5.6) (clustered mode
distribution) before this solution starts to evolve on the Ginzburg-Landau time scale.
In [10] this phenomenon is called "the attractivity of the Ginzburg-Landau manifold."

It should be possible to obtain the same results by applying the main result of
this paper. From the estimates (3.6) it is clear that in the linearized case the only
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values of e I for which the Fourier transform t(, t) (u)(, t) has any chance of
retaining its order of magnitude on such time scales,

0 < t </ for some (0, 2) and O(1),

are those in the O()-neighborhood of :t:k in which Ne #() assumes positive values,
while for the other values, (, t) seems to become exponentially small. Adding the
nonlinearity to the equation will only result in preventing t(, t) from descending to
that order of magnitude in O()-neighborhoods of multiples of k. For the remaining
values of we find that t(, t) becomes exponentially small, which is a slightly stronger
result than the one obtained in [10].

6. Discussion. We conclude our article with a brief discussion about further ap-
plications of our results to some current issues in mathematical physics and dynamical
systems.

Our main result simplifies the proof of the validity of the time-dependent ampli-
tude approximation for the Swift-Hohenberg equation given in Collet and J.-P. Eck-
mann [4]. Analyticity of spatially periodic solutions to the Kuramoto-Sivashinsky
equation was studied in Collet et al. [5, Thin. 1.2] and Liu [25]. Our results cover
this case also.

An important model for convecting fluids between poorly conducting slabs was
derived by Proctor [30, Eq. (4.15)]. Our analyticity result applies to the simplified
version of the Proctor equation studied in Hoyle [20].

Our results apply also to the generalized Ginzburg-Landau equation studied in
Duan and Holmes [8].

A stronger version of analyticity in the space variable is obtained by considering
the Gevrey classes of functions (cf. Lions and Magenes [23, 24]). For the Ginzburg-
Landau equation, a priori Gevrey-class regularity of solutions on bounded domains
was shown in Doelman and Titi [7] and in Duan, Holmes, and Titi [9] for a generalized
Ginzburg-Landau equation. For the Navier-Stokes equations, it was proved by Foias
and Temam [12] (see also Henshaw, Kreiss, and Reyna [16]). For the Euler equations,
i.e., the Navier-Stokes equations with vanishing kinematic viscosity (no diffusion),
the domain of holomorphy (in the space variable) of solutions on bounded domains
was investigated in Bardos and Benachour [1].

Besides the analyticity results of Friedman [13] for solutions of nonlinear parabolic
systems mentioned in 1 above, a number of analyticity results for solutions of linear
parabolic systems can be found in Friedman [14, Chap. 3, 3, pp. 212-216], HSrmander
[18, Chap. 9, 4, pp. 346-353], Lions and Magenes [23, 24], and Tanabe [36].

The analyticity of solutions to analytic, strongly elliptic systems of both linear
and quasilinear partial differential equations in a bounded open domain, with analytic
boundary and assigned analytic Dirichlet boundary data, is treated in the monograph
by Morrey [28, Chap. 6, 6 and 7, pp. 258-277]. Shorter alternate proofs of some of
these results are given in Masuda [27].

Our last remark concerns possible extensions of our main result, Theorem 2.1, to
(a) an arbitrary bounded open domain t C RD with analytic boundary 012 and

assigned analytic Dirichlet boundary data, and to
(b) an arbitrary (unbounded) cylindrical domain ]l(D1 t2, where t2 C RD.

is a bounded open domain with analytic boundary 0t2, D D1 + D2, and
the assigned Dirichlet boundary data on ]1D1 (02 are analytic.

The latter case is of interest in the validity problem for the Ginzburg-Landau equation
(5.2); el. Bollerman [3].
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It is not difficult to see from our proof of Theorem 2.1 (and its local-in-time
version, Theorem 3.1) that all we need in this proof are the analyticity and decay-at-
infinity properties of the Green’s function G(z, zt;t) E CNN corresponding to the
linear initial value problem (3.4). However, we can apply the analyticity results of
Friedman [14, Chap. 3, 3, pp. 212-216] to obtain all desired properties of the Green’s
function G(z, z’; t) in any domain ft c ID of type (a) or (b) specified above, in place
of ]1D

Moreover, knowing the analyticity results for solutions to analytic, strongly ellip-
tic systems in a bounded open domain, cf. Morrey [28, Chap. 6, 6 and 7, pp. 258-
277], we may restrict ourselves to Dirichlet (zero) boundary data. Consequently, our
main trick in the proof of Lemma 3.4, shifting the domain of integration from D to
D+iy, for any fixed y D with ]y[2 < 0s, can be used in any domain c D
of type (a) or (b). Therefore we conjecture that our main result, Theorem 2.1, is valid
also in any such domain . We leave the details to the reader.

Appendix. The Green function. We establish some standard results about
the inverse Fourier transform

(A.1) G(x; t) de (2)_DD eiX’e-tP()d for (x,t)e D X (0, ).

The reader is referred to Stein and Weiss [34] regarding the Fourier transformation.
Recall that P() a[2mp(a) cNxN is a polynomial in (1,... ,D) D
by (1.4), where ...D for a (al,...,aD) e (Z+)D. Each P()

(P);))j,k=lN is an g x g real (or complex) matrix. We assume that P is strongly
elliptic, i.e., inequality (1.5) is valid. Consequently, we can find
so large that there exist two additional constants Cl > 0 and c2 k 0 such that
the following inequality holds for all 1 + iT E(1)(), (l,...,D) D and- (1,..., N) C"

N N/

(A.2) C2)[[ 2.
j=l k=l

Here E()(,) {t a + iT e C" g[z[ < a s} for 0 < s < , by (2.2), and

[’ (=1 [y[2)1/2 is the Euclidean norm in CN. We set

)(.) {()(.;). e (0,)} {t + e c. < }.
We will investigate the holomorphic continuation of G(x; t) into the region

h()(o,) {(x + , +) e c c-
(z, ) e (0, ), < 0 nd < },

where 0 (0, ) is an arbitrary constant, cf. (2.5).
N the N N identity matrix. We define theAs usual, we denote by I

g2-operator norm of matrix M NN by

]]g]] dj sup ]Mf] for f CN.

We need the following lemm in order to be able to estimate the norm of e-tP()

in (A.1).
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LEMMA A.1. For all E ]D, and for all t,A C satisfying 1 mtl < et and
> c2 e t, the matrix/I + tP() .NN i8 invertible with the norm

(A.3) II(AI + tP())-ll _< (eA + (c1112" c2) t)-1.

Proof. Let 1+i- (1)(/2),/, ( and (1,... ,D) ]D be fixed. Applying
the Cauchy-Schwartz inequality to (A.2) we arrive at

) )
k=l lal<2m

N

In particular, taking " (mt)/(et) and A’ A/(et) we obtain e A’ > c2
together with (A.3). [3

Now we can estimate the norm of e-tP() in (A.1).
LEMMA A.2. For all D and t C satisfying 1 .m t < e t, we have

Proof. Let us fix any D and t C such that l mtl < e t. By (A.3) in
Lemma A.1, for every A C satisfying e A > c2 e t, we have

I[(AI + tP())-l[ _< (eA + (Clll2" c2)et)-, n-- 1,2,3,

Taking A n for n > c2 e t we arrive at

II(I + (t/n)P())-ll <_ (1 + (CllI2m -C2)(I t/Tt)) -n.

Finally, we let n oo in order to obtain (A.4) for the limits

and

(I + (t/n)P())-’ --+ e-tP()

Remark A.1. Making use of Lemma A.2, for any fixed t E C with ul mt < e t,
we easily deduce that the function G D H e-tP() CNxN is in the Schwartz
space S(RD - CNxN) and its inverse Fourier transform G(x,t) has a holomorphic
continuation to the entire complex space CD. Recall that S(RD - CNN) denotes
the Schwartz space of all functions M: RD

_
cNxN that are infinitely many times

continuously differentiable with all partial derivatives having faster than polynomial
decay at intinity. Also -+1 (.(]ID __+ cNxN)) .(D __4 cNxN), cf. Edwards [11,
5.15.1, p. 375].

In order to establish certain upper bounds on the norm of the holomorphic con-
tinuation of the Green function G and all its partial derivatives ollG/Oxa to the
region A()(t0, ), we need the following estimate.
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LEMMA A.3. Given any multiindex (Z+)D, there exists a constant C
C() (0, x)) such that

(.) II o(,) e

’ < 1for all ’ D, s (0, ) and 1 + iT C satisfying "0

Pro@ By induction on ] we derive the formula

(2-)]

(A.6) 0(,)e
01z] -(+i)P(-/:’) e-s(l+iv)P(s-/:’) 8n/2mQ(n)(’),

where each

q()(’) (’)"O(,"), 0, ,..., (e
Ig(2-)Zl-

is a polynomial of order (2m 1)]Z]- n in ’ D with the coefficients Q(,) e
Cgy. Consequemly, in order to obtain (A.5), we estimate the sum in (A.6)
follows, for all D and s (0, )"

(2-1)Z

The exponential in (A.6) can be estimated by (A.4) with s-1/2 and t
(1 + i).
om (A.1) combined with Lemma A.2, we deduce that the formula

(A.) (z; t) (e)-" .g .-,e() d,

for (z, t) (x + iy, a + iT) e h() (a0, )

defines the holomorphic continuation G(x + iy, a + iT) of the Green function G into
the region A()(a0, ). Notice that in (A.7) we have

,(iz ) - 01/]].
Next we set

(x’,a) e D (0, ), ]y,]2m < a0 and ]T < a}.

In order to estimate the norms of the functions zZ(OaiG/Oz), for a, Z (Z+)D,
we make the substitution

(A.s) (z; t) -’/’(-/:; t)

for (z, t) (x + iy, a + iT) e A()(a0, ), where

(A.9) G’(z’;t) de2 (2)-D ./: ei"’e-tP(-/’) d’
for (z’, t) (x’ + iy’, a + iT) e A’(ao, ).
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Combining integration by parts with Lemma A.3, we arrive at

(z’)ZO(z,),ol"l G’(z’;t) (2)-DiI"I+Izl
D

eiz’’’ (’)"O(,)ze-tP(- d’.

Taking (z’, t) (x’ + iy’, a + it) e A’(n0, ) we obtain, by Lemma A.3,

Consequently, given any no e (0, oc), c’ e (c2, oc), and c,/3 e (Z+)D, there exists a
constant C’(no, c’, lal, I/1)E (0, oc)such that

011
(A. 10)[(z’)Z[[lO(z,)

for (z’, t) (x’ + iy’, a + it) e A’(n0, ).

Furthermore, by (A.8) we have

(A.11)

Finally, we combine (A.10) with (A.11) to derive the main result of the Appendix.
PROPOSITION A.4. Formula (A.7) defines a holomorphic function G" A()(n0, )-- CNxN. Recall that (0, c) is fixed, whereas no (0, x) is an arbitrary con-

stant. Choose any c’ (c2, x), where c2 >_ 0 appears in (A.2).
Then, given any no .(0, x), c (Z+)D, and n Z+, there exists a constant

C,n =- C,n(no, ) e (0, c) such that

(A.12)

for (z,t) (x + iv, + e

Remark A.2. We recall that IMI N 2) 1/2(j,k=l IMJkI is the Euclidean norm,
g2_operator CNxwhereas IIMII denotes the norm of a matrix M (Mjk)j,k=lY e N.

Of course, both these norms are equivalent in CNxN.
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LARGE-TIME BEHAVIOR IN INCOMPRESSIBLE NAVIER-STOKES
EQUATIONS*

ANA CARPIO

Abstract. We give a development up to the second order for strong solutions u of incompressible
Navier-Stokes equations in Rn, n _> 2. By combining estimates obtained from the integral equation
with a scaling technique, we prove that, for initial data satisfying some integrability conditions (and
small enough, if n _> 3), u behaves like the solution of the heat equation taking the same initial data
as u plus a corrector term that we compute explicitely.

Key words, incompressible Navier-Stokes equations, strong solutions, large-time behavior,
asymptotic development, heat equation
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Introduction and main results. This paper is devoted to the study of the
large-time behavior of the solutions of the incompressible Navier-Stokes equations in
the whole space n n > 2

(NS)

ut Au + uiOiu + Vp 0 in + n,
u(x) --. O, Ix ---, ,
div u 0 in + n,
u(x, O) so, div u0 0 in n,

where u (ul,..., un) stands for the velocity of the fluid and p for its pressure.
Let us first recall some facts on solutions of (NS). It is known that for any initial

data u0 E (L2(n’)) with div u0 0, global weak solutions of (NS) exist. This was
first proved by Leray ([18], [19]) for n

_
3 and then by Hopf [13] for all n by means of

a Galerkin method. By a weak solution of (NS), we mean a function u such that

u e Cwek([0, oc); (L2())n) with div u 0,

Oiu e L2(0, oc; (L2(n))n), 1,...,n,

(u(0), (0)} (u, t)dt + (Vu, V)dt + (u Vu, )dt

for every e (C([0, c) n))n with div 0, where denotes the scalar product
in (L2()). From now on, we shall drop the superscript n and denote by Z both
the spaces X and Xn.

Weak solutions are known to be unique and smooth (hence, strong) when n 2.
For higher dimensions, uniqueness and smoothness remain open problems.

Besides the Leray-Hopf construction, there are several methods for proving the
existence of weak solutions in] (see [3], [17], [26]). They all construct strong solutions
uk of some approximating problems which converge weakly in Loc(0 c; HI()) and

*Received by the editors October 8, 1993; accepted for publication (in revised form) July 26,
1994. This research was partially supported by DGICYT (Spain) project PB90-0245.

fDepartamento de Matemtica Aplicada, Universidad Complutense, 28040 Madrid, Spain (carpio
sunma4.mat.ucm.es).
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strongly in Loc (I+ n) to some weak solution u of (NS). Those Uk fulfill the energy
inequality, that is,

for 0 <_ s <_ t. In case n <_ 4, the energy inequality also holds for the limit u for every
t > s and a.e. s > 0 and s 0 (see [14], [26]). Following Leray’s terminology, those
weak solutions verifying the energy inequality are called turbulent.

For initial data u0 e H1/2 (n) (see [16]), uo e LP(In), p > n (see [10], [11], [2],
[8]), or uo e Ln(In) (see [14]), strong local solutions are known to exist. They turn
out to be global if the norm of the initial data is small. We call them strong since
they belong to classes where regularity and uniqueness hold. Besides, they satisfy
the equation in the classical sense and both the energy inequality and the associated
integral equation are satisfied.

There are some uniqueness criteria allowing to relate strong and weak solutions,
provided that they both verify the energy inequality. For instance, if a weak so-
lution u is known to fulfill the energy inequality and we have a strong solution
w e C([0, T]; (L(In))n) (see [25]) or w e nr(0, T; Lq(]n)) (see [23]) for some ad-
equate q and r, then w agrees with the weak solution u on [0, T].

We must distinguish the cases n > 2 and n 2. For n 2, we shall study the
asymptotic behavior of weak solutions of (NS) without smallness assumptions on the
data. When n > 2, we are concerned with the study of the asymptotic behavior of
global strong solutions of (NS) like those constructed in [14] with data in n(]n) of
small norm. If u0 also belongs to some Lp(n) with 1 < p _< n, Kato obtains decay
rates for the Lq(]n) norms, q _> p, similar to those which hold for the heat equation
(see also [2]), provided that (! i) < 1, which always holds when n 2. We shallp
remove this restriction and extend te decay estimates to reach the case p 1.

Let us consider first the case n 2. In this case, weak solutions of (NS) turn out
to also be strong. For data in Lp A L2(n), 1 <_ p <_ 2, an argument involving the use
of Fourier transforms allows to prove (see [26], [17]) that the weak solutions of (NS)
behave in L2 like the solutions of the heat equation with the same initial data when
t x. We extend this result to Lq with q = 2.

THEOREM 0.1. Let u be a weak solution of the two-dimensional (NS) with initial
data uo E Lp L2(2), 1 <_ p <_ 2, such that div uo O. Then for any q >_ p,

(i) ill <p<2,

Ilk(t) uo u(t)ll ct-+1/4+1/2, t > o,

(ii) ifp= l,

IIG(t) uo u(t)llq _< Ct-+ log t, t>0,

(iii) ifp= 2,
t1/2- Ilu(t)lla o as t --+ (x)

where we denote the heat kernel by G(t).
In this theorem and what follows, C denotes a positive constant independent of

time.
In cases (i) and (ii) IIG(t)*uollq decays at a slower rate than the powers appearing

in the right-hand side when t --. . Therefore, we may say that G(t) uo is the first
term in the asymptotic development of u when t .
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Both (i) and (ii) follow easily from the integral equation satisfied by u thanks to
the decay estimates on the Lq norms of u obtained by Kato for data of small L2 norm.
Since the L2 norm of u is known to tend to 0 as t oc, we can spare this smallness
hypothesis.

Kato’s estimates together with the covergence to zero of the L2 norm yield (iii),
which also holds for IIG(t). u011q. In fact, at least when q 2, this decay estimate
turns out to be optimal for both the heat and Navier-Stokes equations in the sense
that no uniform decay rate can be found for the L2 norm of solutions with initial data
uo e L2(It(2) (see [21]). However, we ignore whether it is possible to find functions
g(t) and 5(t) with 5(t) --. oc as t oc such that

5(t) t1/2- Ilk(t)  (t)ll ---, o t ---,

under the only. assumption uo e L2(N2) (see remarks in 1.2). The first term in this
case (other than 0) is unknown.

In some cases we can make the above result more precise.
THEOREM 0.2. Let u be a solution of the two-dimensional (NS) with initial data

uo E Lp if)L2(]2), - < p < 2, and v a solution of

vt Av -hiOh OjVE2 hiOhJ

div v 0

v(x, 0) no, div uo 0

in I+ ]t(2,

in I+ I[2,

in N2,

where h(t) G(t) uo is the solution of the heat equation with data uo and E2 stands
for the fundamental solution of-A in I2. Then for any q >_ p, we have

II(u- v)(t)ll _< Ct-++1.

We see that, when < p < 2, the function v, that can be written as

v(t) O(t) , uo fot G(t s) (hiOih + OjVE2 hiOihJ)(s)ds,

that is, G(t) uo plus a corrector term I(t) approaches u better that G(t) uo. The
restriction on p is needed to make some integrals finite when estimating the difference
by using the integral equations.

For initial data uo Lp C? L2(N2) with 1 < p _< , Theorem 0.2 implies

I1( - <_ ct

when q _> r, for any < r < 2. This decay is faster that the decay t-++1/2 observed
for IIG(t)* uo- u(t)llq. Therefore, the second term in the development, in norm
Lq, q >_ , is again I(t).

When p 1, Theorem 0.1 yields the decay rate Ct--+ log t for IIG(t) uo
u(t)llq, q _> 1. By Theorem 0.2, we get the slower decay rate Ct-;++1 with r >
for IIv(t)- u(t)llq q >_ r. However, in this case p 1 and, provided some integrability
hypotheses on the data are added, we can use a scaling technique to find the second
term in the development of u. We have the following theorem.

THEOREM 0.3. Set q >_ 1. Let u be a solution of the two-dimensional (NS) with
initial data uo (L2 C1L1)(N2, 1 +lxl) such that div uo 0 and uo L2r(]2) for some
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r satisfyingq>r> 2q We setM=fR.uo(x)dx-(M M2) andE2-- logq+2"
Then,

3
t2
llu(t) MG(t) + R(t)llq 0 as t --,
log t

where

R(t) log t (MM2 oa(t)
MiMJ

2
OG(t), VOjE2 ).

This result remains true when replacing u with the solution v of (2) so that
R(t) is also the second term in the development of v. The term MG(t) comes from
G(t). uo, while R(t) is the contribution due to the integral term I(t). Note that,
formally, we have set h(t) MG(t) in the expresion of I(t). It is clear then that, for
u0 as in Theorem 0.3,

t
log t

ast c

so that, again, v approaches u better than G(t) uo.
When the mass of the initial data is zero, Theorem 0.3 reduces to

t
log t

Ilu(t) llq 0 as t c

It was proved in [22] that, if u0 e LI(N2, 1 + I1) n L2(N2, Ixl1/2) n H(N2), where
H(R2) denotes the closure in L2 of C(R2) fq {u s.t. div u 0} and the mass of uo
is 0, that is, $’uo 0, then Ilu(t)ll2 _< C(1 -t- t) -1. Solutions may decay faster, even
exponentially, depending on the order of the zero of 9Vu at time 0.

We shall also extend the above theorems to higher dimensions.
THEOREM 0.4. For n

_
3, let u be a global strong solution of (NS) with data

uo E Lp F1 Ln(Rn), 1

_
p < n, of Ln norm small enough and such that div uo 0.

Then for q >_ p, we have

Ila(t),o (t)ll < ct(-+)

For weak solutions satisfying the energy inequality (or that can be approached
by solutions of approximating problems verifying it), the above decay estimate on
IIG(t) uo u(t)ll q was known to hold for q 2 and 1 _< p _< 2 (see [17], [26]). For
divergence free data u0 belonging to L2 rq Ln(Nn) with small L(]Rn) norm, there
exists a unique strong global solution and at least one global weak solution. They
both agree,when the weak solution satisfies the energy inequality. These kinds of
weak sold(ions are known to exist when n _< 4 (see, for instance, [26]). Therefore,
Theorem 0.4 extends the results known for weak solutions.

Denoting the n-dimensional analogues of problem (2) by (n), we get that in
some cases the solution v of (n) approaches u better than G(t) uo, furnishing the
second term in the development of u.

THEOREM 0.5. For n

_
3, let u be a global strong solution of (NS) with data

uo Lp fq Ln(Nn) 3n < p < n, whose Ln norm is small enough and such that
div uo O. Then for any q

_
p, we have

II(u v)(t)llq <_ ct(-+)’]+1,

where v is the solution of (.n) with data uo.
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Taking uo E LPCLn(N) 2n < P --< n-3’ of small L norm such that div u0 0,
we conclude that

II(u v)(t)llq <_ ct(-+)-+1

for q > r and 3n
h--4-g < r < n. This decay rate is faster than that observed for IIG(t)

uo -u(t)llq However, we ignore what happens when p < q < or 1 < p < 2n
n-t-2

Theorems 0.4 and 0.5 are obtained estimating the norms by using the integral
equations and the known decay estimates. We can handle the case p 1 by using a
scaling technique, provided that some integrability hypotheses are added.

THEOREM 0.6. For n >_ 3, let u be a strong solution of (NS) with data uo
LI(]t(n, l+lxl)NLn(n), 1 <_ p <_ n, ofLn norm small enough and such that div u0 0
and q > l If noeL2r(Nn) for some q > r > nq thenq+n

t-}+(l-)llu(t MG(t) + miOiG(t) + R(t)llq --, 0

as t oe, where

M fn uo(x)dx; mi fn xuo(x)dx, l, n,

R(t)= (f0 jfn uu(a’ y)dyda) OG(t)+ (fo fn uuJ(a’ y)dyda) OG(t).VOjE,
and E stands for the fundamental solution of-A in Nn.

The same result holds if we replace u by v so that, in particular, we see that v
approaches u better than G(t) no. Both Theorem 0.3 and Theorem 0.6 extend to
(NS) the results proved in [27] for the following scalar convection-diffusion equations:

ut Au + alu Vu O in]R+xNn, aN,

where the same difference between the case n 2 and n _> 3 appears. We remark that
the solutions we are dealing with satisfy the decay estimate Ilu(t)]12 N C(1 + t):a.
When n _> 3, this decay ensures the existence of f frn uiuJ(a,y)dyda for i,j

1,..., n. For n- 2, we obtain an upper bound for f2 fn uiuj (or, y)dyda which grows
as log t grows. The results in [27] were proved changing to self-similar variables and
then making eigenvalue expansions in some weighted Sobolev spaces. Our technique
can be adapted to yield another proof of these results.

Theorem 0.6 is related to a result obtained by Schonbek in [22]. When n 3,
she proved that kl(1 + t) _< Ilu(t)ll2 _< k2(1 + t) for a special class of data.
Theorem 0.6 implies that u(t, x) MG(t, x) + mOiG(t, x) + R(t, x) + r(t, x) where

IIr(t,x)ll2 o(t@-) as t cx and IIMG(t,x) + miOiG(t,x) + R(t,x)ll2 Ct@.
The paper is organized as follows. In 1, we briefly recall some known results

which will be of use to us in what follows. The next two sections are devoted to
the proof of Theorems 0.1 and 0.2, respectively. In 4, we study some related linear
problems and prove Theorem 0.3. The last section deals with the asymptotic behavior
in higher dimensions.

1. Known results.

1.1. Strong solutions. The following results are taken from [14]. They are
established by using an iterative scheme that goes back to Leray. The idea is to
convert (NS) to an integral equation

u(t) a(t) , uo + oa(t- s), P(u(s))ds Su(t),
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where G(t) denotes the heat kernel and P the projection on the space of divergence
free vectors, Which is a bounded operator from Lp to Lp for 1 < p < oo. Taking
uo E Ln(]n), the sequence Um+l Sum, m 1, with u G(t). uo converges
strongly to a solution u of the integral equation on some time interval [0, T]. If Iluolln
is small enough, we can take T . The construction also yields the estimates below.

THEOREM 1.1 (see [14]). Let uo e Ln(IRn) be such that div u0 0 and Iluolln is
small enough. Then there exists a unique solution u of (NS) such that

(i)
t-(--)u e BC([0, oo); Lq(IRn)) Vn < q < oo,

(ii)
t(-)+1/2Vu e PC([0, oo); Vn<q<oo.

Moreover,
(iii)

u e Lr((O, oo); Lq(IRn)), l_n( ) n2

r 2
n<q<

n-2’

(iv)

lim
1 j0

T

T- oo
llu(s)ll ds o.

Remark 1.1. When n 2, II(t)[[= is monotonically nonincreasing (the energy
inequality holds) and (iv) implies that [lu(t)[[2 0 as t --+ oo if [[u0[[2 is small.

THEOREM 1.2 (see [14]). Let uo e Ln(IR) C Lp(IR) such that div u0 0 and
[[u011n is small enough, with 1 < p < n. Then

(i)
t(--)u e PC([1, oo); Lq(]Rn)) gp <_ q <_

(ii)
t’}(}-})+1/2Vu e BC([1, oo); L(IRn)) Vp <_ q < oo

n nif -(- ) < 1 in (i) or -(- ) + 1/2 < 1 in (ii); otherwise, we replace them by any
positive number less than 1.

(iii)

( ( 1) n )0<b<Min 1, n 1- ,-1
Remarks 1.2.
In view of Theorem 1.1(i) and the fact that u e PC([0, oo); Lp(IRn)) (see [14])

when uo e Lp, 1 < p < n, we can replace Be(J1, oo); Lq(IRn)) in Theorem 1.2(i) by
BC([O, cx:)); Lq(ln)) for any q >_ p.

If [[u0[[ is small then [[u(t)][n 0 as t oc (see Masuda’s remark in [14]).
Strong solutions have been also obtained for data u0 Lr (In), r > n (see [10],

In [2], strong solutions with data uo L2Ln(n) are constructed in a different
n _1way. A decay estimate Ilu( )]l _< without restrictions on the size of y(1/2 )

is also obtained.
When n 2, Theorem 1.2(i) holds for any q >_ p. If n _> 3 it holds for any q _> p

n and forp< < pn whenp< nwhen p _> q ,-2p "
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1.2. Weak solutions. The use of Fourier transform allows us to obtain decay
estimates for weak solutions with initial data u0 E L2(n) without smallness hypothe-
ses, provided that they satisfy the energy inequality or can be approached by solutions
of related problems verifying it. The first results in that direction are due to Schonbek
[20]. The idea consists in taking the Fourier transform of the equation and splitting
the frequency domain in order to get differential inequalities yielding some decay. We
do this first for some approached solutions and in the limit we get a decay estimate
for u. This result has been successively improved and extended in [21], [22], [17], and
[26]. The following theorem is taken from [26].

THEOREM 1.3 (see [26]). Let u be a weak solution of the incompressible (NS)
equations which satisfies the energy inequality (or can be approached by solutions of
approximated problems satisfying it) for any n >_ 2. Then for every uo L2(Nn) with
div u0 0,

(i) Ilu(t)ll2 0 as t oc.

Iunh  , IlO(t) <_ C(1 + t)- o t >_ o, th n

(ii) Ilu(t)ll <_ C(l+t)- with a Min(+l, ao), t >_ O, and

(iii) Ilu(t) G(t) uol12 <_ h(t)(1 + t) -d for all t >_ O, where

n ( n )d=+l-2Max(1-co,0) d>a=aoif-+l>ao
o,

h(t) C ln2(t + c)
C

t --- (:X:) 0 O
ira--l,
/fa 0,1.

nRemark 1.3. Therefore, if uo Lp N L2, 1 _< p _< 2, we have so -ff( 1/2) and

Ilu(t) G(t) uOIIL.(R2) <_ g(t)(1 + t)-(-1/2) Vt _> 0

with

g(t) Cln(t + c)(1 +
(1+ t)(1/2-

if p- 2,
if p- 1,
if1 <p<2.

Remark 1.4. Some results on the behavior of weak solutions in exterior domains
are also known. See, for instance, [1] and the references therein.

Remark 1.5. As we said in the introduction, lower bounds for the decay of the
L2 norm and faster decay rates when n 2 and the mass of the data is 0 have been
obtained in [22].

Remark 1.6. Concerning the case p 2 in Remark 1.3, it is known that both
JIG(t) * u0ll2 and Ilu(t)ll2 tend to zero as t goes to infinity. Moreover, in both cases
no uniform decay rate can be found. This is well known for the heat equation, where
IIG(t) * u0112 can decay at an arbitrarily slow algebraic rate or even exponentially
by choosing an adequate u0 e L2(Nn) (see [21], for instance). For Navier-Stokes
equations in dimensions two and three, the proof of the lack of uniformity is due to
Schonbek [21]. When n _> 3 a function 5(t) --. oc, t oe can be found in such a
way that

5(t)llG(t) * uo u(t)lle 0 as t --, .
By Theorem 2 (iii) of [17], we may choose 5(t) t-1/2.
such a 5(t) exists when n 2.

However, we ignore whether
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1.3. Solutions with singular data. When n 2, solutions of this kind have
been constructed in [11] and its asymptotic behavior is studied in [12] and [6], where
the following result is proved.

THEOREM 1.4. Let u be a solution of (NS) with initial data uo E L2,(]2) such
that div uo 0 and vo curl u0 E M(2). If the total variation of vo is small (see
[12]) or, more generally, the mass of vo, f vol is small (see [6]), then

t1/2- [lu(t) G(t) uo]l o, t Vq > 2,

t- IlVu(t) VG(t) u011 - 0, t --, , Vl < q < .
We denote the space of finite measures by M(2) and the usual Lorenz space by

L2, (112).
The energy of these solutions is not necessarily finite. If we take uo L2(2) c

L2, (I2) with div u0 0 and without hypothesis on curl u0, then Theorem 1.3 asserts
that

but it gives no information on Lq norms with q 2 or on the behavior of Vu(t).
In higher dimensions, solutions with data in Morrey spaces have been constructed

in [24] and [15]. However, little is known about the asymptotic behavior.

2. Dimension two: First term. Let us take u0 L2(2) such that div u0 0
and let u be the corresponding weak solution of (NS), which is known to be unique
and smooth. Since [lu(t)ll2 -- 0 as t -- cx (Theorem 1.3) we can choose to such that
Ilu(t0)ll2 is small enough to apply the estimates of Theorem 1.1.

If we also assume u0 e Lp(I2) for some 1 _< p < 2, then we know that u(t) e Lp

for t _> 0 (see [17]). Therefore, the decay estimates furnished by Theorem 1.2 also
apply.

First, we are going to extend Theorem 1.2 to the case p 1. In order to do that,
we need the following result.

LEMMA 2.1. Let G(t) be the n-dimensional heat kernel. Then, for every i
1,..., n and every t > O, OiG(t) belongs to the Hardy space i1(]1n) and

Proof. There are several equivalent definitions of ?-/1 (see [9]).

Tll(In) {u e LI(In) s.t. Ri . u e Ll(In), i= 1,..., n}
{u e LI(IRn) s.t. Sup

where R(x) and hs(x) s-nh() with h e (1) such that 0 < h < 1 and

f h 1. We may endow ?-/1() with either of the equivalent norms

n

i=1

or

LI(n)
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Let us fix any E 1,..., n. In order to prove that OG(t) -t1, it suffices to verify
that Sups>0[h8 OiG(t)[ e LI(Rn), where hs(x) s-nh() and h e S(IR) is such
that 0 _< h <_ 1 and f h(x)dx 1. We take h G(1) and then

Ihs , OiG(t)(x)l IO(G(t + s,x))l

so that

and

Sup Iht , OiG(t)l IOiG(t)l e LI(]Rn)

PROPOSITION 2.2. Let u be a solution of (NS) in dimension two with initial data
uo L L2(R2) such that div uo 0. Then

(i) u(t) eL, t>0, 1 <_q<_2,

(ii) Ilu(t)llq <_ ct-1+, t > o, q > 1,

(iii) Ilu(t) lll -< C, t _> 0.

Remark 2.1. These estimates extend the estimates known for q 2 (see [26],
[17]).

Proof. (i) It is well known that u e n([0, oc); L2(R2)). By taking the divergence
of the equation we get the following equation for the pressure:

-A p Oj(uiOiuJ),

so that, up to a function of time, the pressure is given by p E2 Oj(uiOiuJ), where
E2 denotes the fundamental solution of-A in ]i(2. Let us write the associated integral
equation

u(t) G(t) uo + OiG(t s) uiu(s)ds

+ OiG(t- s), OjVE2 uiuJ (s)ds.

Since uo L1, G(t) uo Lq for all q > 1 and t > 0. On the other hand, u(s) L2

implies that uiu(s) L and

OiG(t- s) uiu(s)ds

_
C (t- 8) -1+-1/2 Ilu(s)llds _< Ct5

q

provided that 1 _< q < 2. Therefore, the first integral belongs to Lq for alll _< q < 2.
As far as the second integral is concerned, since OG(t) (Lemma 2.1) belongs to

the Hardy space 7-/1(R2) and OjVE2 is a Calderon-Zygmund kernel, we conclude that
OG(t- s) OVE2 E L and

JJOa(t- s), 0yVE2II1 _< CllOC(t- s)lInl <_ C(t-

(see [5]). Then

]l fotOiG(t- s) * 0jVE2 * uiuJ(s)ds <_ (t s)@ Ilu(s)llds <_ Ct1/2.
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In the same way, since 0jVE2 is a Calderon-Zygmund kernel, we have

IlOG(t- s), 0VEIIq <_ CqllOG(t- s)[l, 1< q < c

(see [5]) so that we get

OjVE2 OG(t s) uiuJ(s)ds <_ (t- )-+--1/2 Ilu(s)llds < Ct
q

for 1 < q _< 2. Thus, the second integral belongs also to Lq for all 1 _< q < 2.
Remark 2.2. It is known that if A 6 "(LP)n, B (Lp’) are such that div A

0, curl B 0 (see [4]). Then, A. B belongs to the Hardy space /1 and

In our case, for a.e. s >_ 0 and every j 1,...,n, we have u(s), VuJ(s) e L2 with
div u 0 and curl(V uY) 0. Therefore, uOu(s) 7-/1. Taking into account that
OjVE2 is a Calderon-Zygmund kernel, we conclude that OjVE2 uOuJ(s) L for
a.e. s > 0.

(ii) Taking norms in the integral equation,

u(t) C(t) , uo + OiC(t- s), uiu(s)ds

+ OiG(t- s), OjVE2 uiuJ (s)ds,

we get

Ilu(t)ll <_ lie(t), uoll + IIoG(t- s), uiu(s)llqds.

Taking into account some classical estimates on the heat kernel when n 2,

together with the fact that

II0yVE2, uuY()ll,- ClluuY()ll, 1 < r <

it follows that

=+ dsIlu(t)ll _< ct-l+- -1-C (t s)-1/2--+-4 s

thanks to the estimates
Ilu(t)lll _< ct(=/)

valid for 2 > p > 1 if 2r >_ p. To prove these estimates, it suffices to observe that
(Theorem 1.3) the L2 norm of u tends to 0 as t goes to infinity and then apply
Theorem 1.1 and Remark 1.2.

We split the integral appearing in the inequality as follows:
()

+ < Ct1/2 ,,(t s) 1/2-;+s
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choosing r such that 1/2 7 + > 0, that is, q > r > 2q
q+2"

(b)
--2(t- s)-1/2-+s-r+; < C t1/2+ ,

choosing r such that + 7 + 1 > 0, that is, 1 < r < _--,, which is possible if p > 1.
Therefore,

[[u(t)llq < ct- + + ct1/2+- < ct-l+

if 1 < p <_ , where C is a constant depending on q and on the data.
(iii) Taking norms in

u(t) C(t) , uo + OiG(t- s), uiu(s)ds

+ &a(t s) OjVE2 uiuJ (s)ds,

we get
IIG(t) tO[[1 C,

fo OiG(t s), uu(s)ds _< C (t- 8)A8"p2+1 Ct- C

if p and also

oia(t- s) 0jVE2 uiui (s)ds

when p since &G belongs to the Hardy space
We prove now that, in a first approximation and for some classes of initial data,

the solutions of the incompressible Navier-Stokes equations behave like the solutions
of the heat equation with the same initial .data.

THEOREM 2.3. Let u be a weak solution of (NS) in dimension two with initial
data uo Lp C L2(12), 1 <_ p <_ 2, such that div uo 0. Then for any q >_ p,

(i) if1 <p<2,

lie(t), uo u(t)ll <_ Ct-+t-+, t > O,

(ii) ifp= l,

IIG(t) , uo u(t)llq <_ Ct-l+t-1/21og t, t>O,

(iii) ifp= 2,
t1/2-5 Ilu(t)llq -+ o as t -+ oo.

Remark 2.3. All the estimates were known when q 2 for any 1 <_ p < 2 ([26],
[17]). We ca replace the powers of t by powers of t + 1 (and also log t by log (t + 1))
when p _< q _< 2. In case p 2, (iii) is known to hold for the solutions of the heat
equation; hence, it holds for the difference G(t) u0 u(t), but this gives no extra
information.
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Proof. (i) From the integral equation we get

--2

Ila(t) uo u(t)ll <_ c (t s)-1/2-+5

for q _> r > 1 and 2r _> p. As in the proof of (ii) below, we split the integral in two
intervals [0, ] and [, t]. By choosing an adequate r we conclude that

Ila(t) uo u(t)llq <_ Ct-[+t-+.

(ii) Taking norms in the integral equation, we get

[la(t) uo u(t)llq IlOa(t s) uu(s)llqds

+ IlOiG(t- s), OjVE2 uiuJ(8)llqds.

Since

[lOG(t s) 0VE211, <_
CIIOG(t s)llnl

both integrals are bounded by

C (t-s)-1/2-+s-:+

for q >_ r, 2r >_ 1, r >_ 1. We split this integral as follows:
()

(t- s)-1/2-+s-2+ < C t1/2+ -2

choosing r such that 1/2 7 + > 0, that is q > r > q+2"

(b)

-(t- C log t,8--2+ t]+-2

choosing r I. Therefore, (ii) holds.
(iii) It is known that ]]u(t)2 0 as t . Interpolating and taking into account

that t-;u(t)]] C (see Theorem 1.1), we get

t1/2-5 Ilu(t)llq C(llu(t)ll2)l-a(t1/2-- llu(t)[[r)a <_ C(llu(t)ll2)1-

for any 2 < q < r, which yields the result. [l

3. Dimension two: Second term. Let u be again a weak solution of (NS)
and v a solution of

vt Av -hOih OjVE2 hiOhJ

div v 0

v(x, O) uo, div u0 0

in N+ x N2,

in N+ x N2,

in N2,
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where h(t) G(t) uo so that v can be written as h plus a corrector term. Let us see
whether the difference u(t) v(t) tends to 0 faster than u(t) h(t). We assume again
that uo e L2(N2) N Lp(N2), 1 _< p < 2.

Taking norms in the integral equation satisfied by the difference u(t)- v(t) we
get

In view of the estimatesforq>_r,r _> l such that 7 +-="
Ilu(t)ll2 _< Ct-+,

I[h(t)ll2 <_ Ct--+,

II(u- h)(t)ll2 <_ Ct--+t-1/2 +-}

valid when q _> p, q _> r _> 1, and 2r >_ p, and the fact that

(

t r 1,

we get

;+Ts +;s--+-}ds.

We split the integral as follows:
()

(t s)-1/2-+ s-++1/2 < Ct-++

if r > 2-.q-
q+2;

(b)

+ < Ct-++-}"+-58--’+(t )-1/2-
63 2. provided that p > gif + 7 + > 0, that is, r _< q and 1 _< r < 3(2-p)

Therefore,
II(u v)(t)llq <_ ct-+t--+1/2t-+1/2

if 2 > p > -. This decay is faster than that corresponding to u(t) h(t).
Thus, we have proved the following theorem.
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THEOREM 3.1. Let u be a solution of the two-dimensional (NS) with initial data
uo E Lp g L2(2) - < p < 2 and v a solution of (2). Then for any q >_ p, we have

I1( v)(t)ll <

4. Dimension two: Explicit second term. In this section, we shall obtain
an explicit approximation up to the second term of both u and v. Let us consider the
following three problems:

wt Aw 0 in IR+ x II(2,

div w 0 in IR+ ]2,

w(x, 0) no, div uo 0 in ]12,

wt Aw -fOif
div w 0

w(x,O) =0

in + x 2,

in If+ x ]12,

in 2,

wt AW -OjVE2 * ficOifJ
div w 0

o) =o

in + x ]12,

in ]R+ x I2,

in ]R2,

where w (wl,w2) and f (fl,f2). We assume that uo E L1(2), OjVE2.
fiOifJ, fiOif 51(0, x); L1(]2)), and div f 0. Let us denote by wi the solution of
each (Pi). Then, w wl + w2 + w3 is a solution of

wt Aw -fiOif- OjVE2 * fiOifJ
div w 0

w(x, O) no, div uo 0

in I+ x IR2,

in + x 2,

in I2,

and satisfies the integral equation

w(t) G(t) uo G(t s) fiOif(s)ds G(t s) VOjE2 fiOifJ (s)ds.

Therefore, we may think of the solutions u of (NS) or v of (2) as being the sum of
the following three terms:

a term wl which solves (Pl),
a term w2 which solves (7)2) with f u (resp., f h),
a term w3 which solves (P3) with f u (resp., f h).

We will study the asymptotic behavior of the solutions of these problems in order
to get information on u and v with initial data uo L n L2(I2).

4.1. Problem (7)1). The solution of this heat equation is Wl G(t) no, whose
asymptotic behavior is well known. In case u0 L (2),

t1- JIG(t) * uo MG(t)l[q ---* 0 as t -- oc
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for any 1 _< q <_ oe, where M f2 u0. Thus, the first term in the development of wl
when t (x is MG(t). If u0 E LI(1 + Ixl;lR2), we know further that

+ JIG(t) uo MG(t)II q <_ ClluOllLl(ixl, ).t1_1

In fact, setting M f. xuo, we have

t- IIG(t) . uo MG(t) + MOG(t)llq -- 0 as t ee.

We can obtain more terms when more moments of the initial data are finite (see [7]).
In case uo E Lp(n2), 1 < p < cx3, we have

for any p _< q _< cx3, so that the first term in the development is 0.
This convergence is clear when u0 e :D(In), since uo e LI(In) and then IIG(t).

uollp <_ C(1 + t)-+. Thanks to the fact that IIG(t) uollp decreases as time grows,
we can extend the result to any uo Lp(In) by density. Given uo LP(In), we take
a sequence u0,k c )(nn) such that u0,k -. u0 in Lp(I). Let uk be the solution of
the heat equation with data uo,k. Then

I[u(t)lip < [[uk(t)llp + Ilu(t) u(t)llp < Iluk(t)llp + Iluo uo,kil.

Given > 0, we can choose k large enough to have

and, fixing that k, we get
Ilu(t)ll <

-2

for t > t. Therefore, Ilu(t)llv --, o as t - . Once this is proved, it is clear that

t- IIG(t) * uollq 0 as t

for any p < q < cx3.

4.2. Problem (P). In order to describe the asymptotic behavior of w2, we are
going to use a scaling technique. In the following, we shall drop the subscript 2 and
write only w. Since we want to take f u, u being a weak solution of (NS) with data
uo E L f-I L2(I2), we shall assume that

f(t) e BC(O, cx;L2(n2)), IIf(t)[[= _< C(1 + t):-, t > O,

so that we can rewrite the integral expression for w,

w(t) OG(t- s), ff(s)ds.

By rescaling, we see that the functions w(t, x) ,2w(,2t, ,x) satisfy

wA(t) _-1 OiG(t- s). fxfx(s)ds.
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We remark that
,2(1-) IIw(2t) q

Thus, if we want to make precise the asymptotic behavior of w when t - oc, it suffices
to find a function g such that

for some di(A) tending to oc as A -- oc, where gA(t, x) A2g(A2t, Ax). That implies

IIw(t) g(t)llqtl-6(t1/2) -- 0 as t --+ c.

It is easy to prove that

I111 -lll Oa(t- 8), ffx(8)dsllq

is bounded by C log ,k2 ,-1. Therefore, the same kind of bound should hold for g,
but the difference IIg(t)-w(t)llq should go to 0 faster. Under certain conditions, it is

possible to take g(t) (MM) log t OiG(t) with M (M1, M2) and 5(t) t1/2/log t.
More precisely, we prove the following theorem.

THEOREM 4.1. Let w be a solution of (7)2) and q > 1. Let us assume that
(i)

(1 + t) 1/2+llf (t) G u0(t)]12 _< C, t >_ 0

for some > O, and

where q > r > 2q
q+2

Then
t-

Ilf(t)ll < C(1 + t)-l+, t>0,

log(t) w(t) log t OiG(t)
MiM

2 q

where M (MI,M) f. uo(x)dx, provided that Ixlo e L1 and Ixlo L fo
some cr > 2.

Remark 4.1. It follows from (i) that (ii) holds, replacing 2r by 2, and that

t1/2 IIf(t) MG(t)IIe 0 as t o.

Proof. Setting

log ,k9 OG(1)(MiM) ( ())2
log(.)OG(.)

MiM
(1),

2

we see that

log(t) fo (oa(t- s) ff(s)as -og(t) oa(t)
MM

2 q

--0 as t -- c
is equivalent to

OiG(1 s) fxf(s)ds g(1) o(1) log(X2))-1
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Making the change of variables z(s, y) esf(e8 1, e’y), it follows from (i) that

ziz MiM G(1)2
ac o" 2

Thus, we must prove

--,0 as -, oc
q

We remark first that

/o1( )a,G(1 s). ffA(s) (x)ds
log )2

o01Jf fif(A2s’ Ax)
2
OiG(1 s, x y)

log A2
Aadsdy

OiG 1-,x- log A2
dsdy

l(+)Z ( e’-i )zz(s,y)
0

Therefore, ig is enough go prove

and

Oia(1, x)
log

tendtoOinLq whenA Since

log a dsdy
log a ziz(s’y)dsdy’

the lt convergence is clear. We must prove only the first one. In order to do that,
we split the integral as follows:

log X dsd

= v s x_y’
’g

(OiG (1- , ) -OiG(1,x)) fi f(s’< y)
dsdy

+ OiG 1 ,x- dsdv + OiG(1 x) dsdv
2a 2a log 2

+ OiG(1,x) dsdy
Jo l>X log A2

I 12, + , + J, + I, + J,.



466 ANA CARPIO

Estimate 11

)‘25

JO

Thanks to the continuity of translations in L and the continuity with respect to t,
given s > 0 we can choose 5 > 0 such that

Therefore,

),26

f
Jo 1<)‘6

Ifl2(s’Y)logA2
dsdy <

o log A
dsdy<_eC

uniformly with respect to A, since

Estimate j2

)‘2

,,.,,llz,q cIIVd(1)ll ., og dsdy

f’g(l+)‘) jf ,z]2(s,y)
IlVG()ll

log(1+2) 2 log 2
dsdy C

log( 1+A26)
log 2

Therefore, it tends to 0 when A oe and 5 is fixed.
Estimate 12

1 f
lg(l+A2)

log(A2) Jlog(l+)‘.6) .)e ziz(y, s)dy
L

ds.

We first observe that

es-1 e),x ziz(y,s)dy

Thus,

_< C(1
for r <_ q. Since

2 ’Y * (Ae-)2 zz(s’Ae=Y) (x).

2
x zz(y, s)dy

Lq

e 1)-(-)-1/22 (-)2zz(s, e:y) IIL

IIz()ll,- -(2-)]if(_ 1)[[2,. < C,
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it follows that

Therefore,

log(A2) Jlog(l+A26)
1

A2 (e-)2(1-)ds

< CA2(1-)(A25-k-1)(-1+) flg(l+A) ( e_ 1)-(-)-1/2log(A) log(l+),e)
1 ds

(1 t)-(-5-l--}dt <
log ,V’<- log A2 1+5A2

where C is a constant depending on 5 but not on , taking r > 2q in order to haveq+2

-( 1 + 1/2 > 0.
We conclude that

C
-*0 asA-ec

for a fixed 5.
Estimate j3

f,6 flu Ifl2(s’ y)[IJa IIL= < IIVG(1)llL=6,’ log A

We must prove that

"x=’

1 [fl=(s’ y)
I> log As 0 as A -, oc

for 5 fixed. For any a >_ 2 we have

IIIyIG, o(t,y)ll _< C(t-1 + (t + 1)-) _< C(t -1)

provided that u0, [xl u0 E L and [x[- u0 E L2. It follows that if f G u0,

[yllfl=(y, s) (A-5) c
log A2

_
CA log A2 - log A2"

Since Ill(t) G uo(t)ll= _< c( + t)-,
=f If(s, y) o(, y)l = c

I>_a log ,,2 log A2"

Therefore, for a fixed 6,
IIJ2,>,IIL= --* o as A oc.
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Estimate I,.

As in Estimate 12 but taking r 1, we get

11/3,IIL Co 1- log 2 il(lYl>)

< Cfo Ifl2(s, Y)
I>_ log $2 dds

and we finish in the same way as in estimate j3

4.3. Problem (Pa). In the following, we shall drop the subscript 3 and write
only w. As before, we shall assume that

--1

f(t) e BC(O (x);n2(]R2)) IIf(t)II2 < C(1 + t) t > 0,

so that we can rewrite the integral expression for w,

w(t) OiG(t- s), VOjE2 fifJ(s)ds.

By rescaling, we see that the functions w(t,x) A2w(A2t, Ax) satisfy

w(t) _-1 oia(t- s), VOyE2 ffX(s)ds.

Since IlOiG(t- s), VOE:IIx <_ CIIOG(t- s)lln, it is easy to prove that

oa(t- s), VOyE2 ffx(s)dsl]q

is bounded by C log 2 -1.
It suffices to rewrite step by step the proof of Theorem 4.1, replacing the Lq norms

of OG(t- s) by the Lq norms of OG(t- s) VOjE2 to get the following theorem.
THEOREM 4.2. Let w be a solution of (/)3) and q > 1. Let us assume that
(i)

(1 + t)1/2+]lf(t) G uo(t)ll < C, t > 0

for some > O, and
(ii)

IlY(t)ll= c(1 + t)-l+,
where q > r > 2q Thenq+2"

t-} ]1 (MM ) log t OiG(t) , VOjE2? 2
-.0 as t c,

q

provided that uo
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Remark 4.2. If we take u to be a solution of (NS) and v a solution of (:2) with
initial data u0 e (L gl L2)(2, 1 + Ixl)C L2(N2), then we can apply the theorem with

f u or f G(t) uo and M f2 uo(x)dx to obtain the behavior of the third term,
which is the same for both of them.

4.4. Conclusion. Putting together the previous results we obtain the following
theorem.

THEOREM 4.3. Let u be a solution of the two-dimensional (NS) with initial data
u0 e (n Q L2)(2, 1 + Ixl) such that div uo 0 and set M f. uo(x)dx. Then for a
given q >_ 1,

tends to 0 as t goes to infinity provided that uo E L2r(2) for some q > r > 2q
q+2

Remark 4.3. When u0 E (L C1L2)(IR, 1 + [xl) we can take r 1 and then the
result holds for 1 _< q < 2.

5. Higher dimensions: n > 2. In what follows, we shall be concerned with
solutions u of (NS) taking data uo Lp C Ln such that div u0 0, Iluolln is small and
1 _< p _< n. For that kind of data, unique global strong solutions are known to exist.

5.1. Decay estimates. We improve Theorem 1.2(i) here by proving the follow-
ing result.

THEOREM 5.1. Let u be a strong solution of (NS) with data uo Lp Q Ln(n),
1 <_ p <_ n, of small Ln norm such that div u0 0. Then

Ilu(t)ll <_ ct

ifq>_p.
Proof. Taking norms in the integral equation associated to (NS) we get

]l (t)ll _< ct + c

for q >_ p, q _> r, 2r >_ k, r _> 1. Here we have used the fact that

l<r<c,

r=l

and the estimates (see Theorem 1.2 and Remarks 1.2)

II (t)[IL <_ ct

n 2r < knknown to be valid for 1 <_ k <_ n, 2r _> k >_ p and, if k < , -2" We have also
used some classical estimates on the heat kernel,

for q > r. We remark that 2r _> k yields a restriction on r if k > 2.
We split the integral as follows:
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(t- s)-1/2+(-+)s(+) <_ C t -)

nchoosing r such that 1/2 + (- + ) > O, that is, q > r > qTn

(b)

s) 7+)]s(+7) Ct (-)

n nkchoosing r such that ( + 7) + 1 > O, that is, 1 r < (_a).
:n and > aThose conditions imply k > q_ .

Supposing the above restrictions to be verified, we should get

Ilu(t)llq

_
Ct(-+) + Ct1/2+(-) _. Ct(-+)

if k 2pn where C is a constant depending on q and on the data. This is validn+p
for any q > - -P-% Since p < p, it is valid for any q > q. On the other hand2 nWp" n.+-p

n the conditions q > r > nqk= 2_ > 2n It remains to check that, whenk< ,n+p "-’ q.--n
nkand 1 _< r < 2(n:k) are compatible with the restriction 2r -< n-2k’kn The following

possibilities arise:
n Since k > p, the restriction is unnecessary so that we can find anP>_ .

adequate r in both cases.
n We have nk kn" P < " 2(,-k) < 2(n-2k) SO that we can find an adequate r for case

(b) It remains that nq < kn n
q+ 2(n"-2ki’ that is, q(2n- 5k) _< kn. When p _> 7, we get

n2n- 5k <_ 0 and the inequality holds for any q >_ p. When p < 7, we need to take
q < pn

n-ap in order to find some r for (a).
Therefore, the decay estimate

II (t)ll <_ ct

Ifn>4, wehaven and for >q>pwhenlnow holds for q _> p if p >_ - n-ap
n is excluded.concluded since p <

If we iterate this process using these new decay rates when estimating the integrals
appearing in the integral equation, we obtain that (.) holds for q >_ p if p >_ and for

n The last possibility is again excluded when n > 8.pn >q>pwhenl<p< .n--Sp
n and for pn > q > p whenIn general, assuming that (.) holds for q >_ p if p >_ 7 n-zp

n n1 _< p < 7, we get from the integral equation that (.) also holds for q >_ p if p >_
and for nP_zp >_ q >_ p when 1 _< p < , so that when n < 2z, we are done. Thus,
we can get the right decay estimate for any q _> p by repeing this procedure. The
number of iterations we need depends on the dimension.

5.2. First. term. The integral equation yields

Ila(t)  (t)ll <_ c f0 (t

for q >_ p, q _> r >_ 1 and 2r >_ p, that is, q _> p. As we did in the above proof, we split
the integral in two intervals [0,-] and [-, t]. By choosing an adequate r, we conclude
the following.
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THEOREM 5.2. Let u be a strong solution of (NS) with data uo E Lp C3 Ln(I’),
q < p < n, of small Ln norm such that div uo O. Thenn-t-q

lie(t) o u(t)llq ct(-+)t-+
ifqp.

5.3. Second term. Let us define u, h, and v as in 3. om the integral equa-
tion, we get

+ oa(t s) OVE (u(u h) + h(u

+) +;+)s(-+)s s-c (t-s) +(- (-

for q r 1, 2r p, where we have used the estimates

Ii(t)ll ct(-+),
(- h)(t)ll: Ct(-+)t-e+

when < p N n. We split the integral as follows:
()

t(t- s)-+(-+5)s(-+)+ ct(-+)+1

if r> q
q+n

(b)

s) 1/2+(-+)s(-+;)+1/2 _< Ct(-+)+1

3n3 n np provided p > h-’ggif(-+)g+ >0, thatis, rqandlNr< 3(-p)
Therefore, we have the following theorem.
THEOREM 5.3. Let u be a strong solution of (NS) with data uo Lp Ln(Nn),

3n < p < n of small L no such that div u0 0. Thenn+3

II(u- v)(t)lq Ct(-+)t-+t-+]

if q 2 p, where v is the solution of () with data uo.
This decay is faster than that corresponding to u(t) h(t).
5.4. Explicit second term. Let u be a strong solution of (NS) with data u0

L Ln(Nn) of small L norm such that div u0 0. Making the change of variables

ux(x,t) An(A2t, Ax,), > 0,

we obtain the integral equation

u(t) a(t) , ,o 1- oa(t- s),

1- a(t- ), VOE u[Ou(s)ds
Wl, W2, W3,
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for u, where En stands for the fundamental solution of-A in R’. We have denoted
by w, the rescMed solutions of the n-dimensional analogues of problems (T’) with

Problem (Pi). The first term wl is the solution of the heat equation with data
u0. If, for instance, uo E Ll(1 + Ixl;IR), we know that

n(l__it+ )lla(t) * uo MG(t) + mOG(t)llq -- o as t --,

where M f u0 and m ft xiuo for i= 1,..., n (see [7]).
Problem (P2). It is easy to prove that

fxf (s) ds’I]w2,All q )-1 OiG(t- 8) )n-2

is bounded by CA-i. Keeping the notation of 4.2, we shall see that it is possible to
take g(t) (ff uu(y, a)dady) OG(t) and 5(t) t1/2. More precisely, we have the
following proposition.

PROPOSITION 5.4. Let w2 be the solution of (:P2) and q >_ 1. Then

t1/2+(1-) w(t) + uiu(a, y)dyda Oa(t) -- 0
q

as t x

provided that uo L2r(IR) for some q > r > q+n
Proof. We must prove that

IlfoiOG(1- s) *
uiux (fo uu(a,y)dadt) OG(1)ll -- O
n--2 q

Since

0
oa( s),

this is equivalent to proving

as ) --+ cx.

n-2 OG 1- V

asA--s.

On the other hand,

)uiu(a, y)dadt uiu(a, y)dadt OiG(1, x) --. 0

in Lg as A , so that it suffices to prove that

s Y -OG(lx) uu 0 asA1-z,z-z
q

We split the integrM in the proof of Theorem 4.1. We have

e,llLg Ce ul2(s,y)dsdy eC



ASYMPTOTICS IN INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 473

if is small enough since

lul2(s, y)dsdy < C (1 + s)= ds < C

for n > 2 (see Theorem 5.1 and Remark 1.2). Next,

as A oc for a fixed 5 and

llI2 f s Y uiu(s, y) dy
5 Lqz

d8

< c,n(1-[ 1
s -(;-) -=(2-f) <_ C,A_

if q > r > nq and u0 E L2r(Nn) (see Theorem 5.1 and Remark 1.2) Since n > 2, itqA-n
tends to 0 as A cx for a fixed &

Concerning IIJ35,)llLg, we have

,llLg < CIIVG(t)IIL lul=(s, y)dsdy.

Since

it follows that

Finally,

f lul2(s,y)dsdy <_ C,

lul2(s, y)dsdy 0 as A oc.

I3 f,-5,IIL <
JO

f;( s)sC 1--7JO

and we finish in the same way as before. []

Problem (P3). In this case, by slightly modifying the proof above, We get the
following proposition.

PROPOSITION 5.5. Let w be the solution of (P3) with f u and q > 1. Then

n(l__lt+ ) w(t) + (fo f= uuJ(a,y)dyda) OG(t) , VOjEn --,0 as t --, cx,
q

provided that uo L2r(Nn) for some q > r > q+n
As a consequence of these results, we get the following theorem.
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THEOREM 5.6. Let u be a strong solution of (NS) with data uo
L(In) of small L norm and q >_ 1. Then

t1/2+(-) I1() MO(t) + miOiO(t) + R(t)]lq - 0

as t - oct where

R(t)= (jf uiu(a, y)dydaI OG(t)+ (fo uiuJ(a, y)dyda) OiG(t)*VOjEn,

provided that uo L2r (]n) for some q > r > nq
q+n

Remark 5.1. If, instead of the problems (P) corresponding to solutions of (NS),
we consider those corresponding to solutions v of (n) with f G(t) * uo replaced
by f u, the analogues of Propositions 5.4 and 5.5 also hold. Therefore, if u0

LI(I+Ix];)NL(n), q > 1, and uo L2r(]n) for some q > r > q the solutionq+n
V of (n) satisfies

t1/2+(1-)llv(t MG(t) rniOiG(t) + R(t)llq - 0

as t -- oc, where

R(t) (G(t) uo)i(G(t) uo)(a, y)dyda OiG(t)

+ (G(t) .uo)i(G(t) .uo)J(a,y)dyda OiG(t) VOjE.
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THE DEGENERACY OF A FAST-DIFFUSION EQUATION AND
STABILITY*

YUAN-WEI

Abstract. It is known that for any nonnegative initial value no(x), the solution u(x, t) of the
initial-boundary value problem ut div(lulm-1 u) in a bounded domain C RN with ulo 0,
where 0 < m < 1, becomes degenerate in finite time T > 0, i.e., it tends to zero as T. Therefore,
it is important to know the spatial pattern of u(x, t) as T-. In this paper we study this problem
and prove that the spatial pattern is characterized by solutions which are in the form of separation
of variables and have the same extinction time T.

Key words, fast-diffusion equation, finite-time extinction, stability, convergence
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(1)

1. Introduction. In this paper we study the initial-boundary value problem

st(x, t) div(I ul"-1 u), x e t, t > 0,

0) > 0, e
u 0, x 0t,

where 0 < m < 1 and gt is a bounded domain with smooth boundary. Equation
(1) arises from a number of different applications includes non-Newtonian flow fluids
[2], [14] and nonlinear filtration [12]. The case is referred as "fast" diffusion since it
exhibits behaviour similar to that of the well-known equation

(2) st=Anm, O < m < l

(cf. [7]). We refer the interested reader to [5], [13], and the references therein for
results on Dirichlet initial-boundary value problem of (2).

Indeed, it was shown in [7] that, like (2), any solution of (1) decays to zero in
finite time. Hence it is in strong contrast to the case rn > 1, where the solution decays
to zero as time goes to infinity, like an inverse power of t [1]. However, the spatial
pattern of solution u(x, t) of (1) when t approaches the extinction time T > 0 was not
studied in [7].

The main purpose of this paper is to study the behaviour of solution u when
t approaches the extinction time T. Motivated by linear theory, we seek a function
z(x), positive for x E 12, and a function R(t) such that z(x)R(t) is a separable solution
of (1) which becomes extinct at finite time T > 0. We expect that for any solution
u(x, t) which has the same extinction time T > 0, u(x,t)/R(t) -, z(x) as t - T in
suitable function spaces. Indeed, as shown in Theorem 2 below, the conclusion is true
provided z is the only positive solution of problem (I) below.

This work was motivated by [7] (in bounded domain) and [11] (in the whole space
RN) on (1). Other works on (2) such as [5] (in bounded domain) and [4] (in the whole
space RN) also influenced the contents and techniques of this paper.

We assume throughout this paper the following.
Assumptions. (i) no(x) >_ 0 is sufficiently smooth and is zero on OFt.
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(ii) For some a > 0, u(x, t) is a Cl+a solution of (1) which is positive onf (0, T)
and fulfills the initial and boundary value conditions.

(iii) u(x, T) 0 for all x
(iv) ut e C(O,T;L2(f)) V C(0, T; W0-1’+’(Ft))
We note in passing that some of the assumptions can be weakened and the results

of this paper still hold. However, since our objective is to find the asymptotic profile
of extinction, we will not elaborate on the weakest conditions for all the manipulations
to be legitimate. Nevertheless, the estimates in [6]-[8] justify the above assumptions
as appropriate.

Consider the homogeneity of equation (1) and the boundary condition. It is
natural to seek a separable solution. Indeed, such a solution which becomes extinct
at finite time T > 0 takes the form u(x, t) (1 m)(T- t) 1/(1-m)Z(x). Then z is
solution of the following boundary value problem

div(([ V z[m- V z) + Az O, x e gt,
(I) z > 0, x E gt,

z 0, x 0gt,

where ) 1/ (1 m)m.
The existence of (I) can be studied by using a variational argument and a Po-

hozaev type identity. The special case where fl is a ball and z is radial symmetric
was studied in [15]. In spite of the fact that the study of (I) can be done by simply
modifying the argument on the semilinear equation Au + f(u) 0, we cannot find
the result for general domain gt in the literature. Therefore, we show the following
result on the existence of (I) in the next section.

THEOREM 1. Let 0 < m < 1.

(i) /f N _< 2 or m > (N 2)/(N + 2) for N >_ 3, then there exists a positive
solution of (I).

(ii) If N 1 or N >_ 2 and t Br(x0), a ball with center xo and radius r > O,
then the positive radial solution is unique.

(iii) /f m _< (g- 2)/(N + 2), N _> 3, and f is star shaped, then (I) has no
positive classical solution.

(iv) /f m _< (N- 2)/(g + 2), N >_ 3, and f is an annulus, then there exists a
positive classical solution of (I).

Remark. By a classical solution of (I) we mean the one which belongs to C+a,
for some a > 0. In this case the differential equation is satisfied pointwise in the
classical sense.

Once the existence on (I) is settled, the question is whether the separable solutions
characterize the spatial pattern of the general solution when t T. The following
result answers this question and will be proved in 3.

THEOREM 2. Let 0 < m < 1. v(x, t) u(x, t)/(T- t) 1/(l-m).
(i) Suppose N <_ 2 or m > (N- 2)/(N + 2) and N >_ 3. Then there exists an

increasing sequence of times tn -- T- and a positive classical solution z of
(I) such that v(’,tn)--* z in W’+m().

(ii) In case (i), if there is a unique solution to (I), then v(., t) --, z(.) as t --, T-
in w’l+m(-).

2. The steady state. In this section we study (I) and prove Theorem 1.

Proof of Theorem 1. (i) The standard way to prove existence is to consider the
following minimization problem.



478 YUAN-WEI QI

Problem A. Minimize fair hi l+m dx over the class of functions in W0’l+m()
satisfying fn h2 dx k, where k > 0 is a constant.

Since the embedding w’l+’(fl) -. L2(fl) is compact in case (i), the Palais-
Smale (PS) condition holds. Hence the minimum is achieved and is a CI+() solution
of div(I ulm-1 u) + #u 0 (see [9]), where # > 0. A scaling gives a solution of
(I). This completes the proof of (i).

(ii) Uniqueness in the case where N 1 and fl (0, 1) follows from the fact that
if z is a solution of (I), then the solution to the initial value problem

(IQ’l’-lQ’)’- -AQ, Q(0) 0, Q’(0) 2/(l+m)z’(O)
is given by QV(x) rlz(ax) with a (1- m)/(1 + m). Hence there is only one
value, 1, for which Q(1) 0. Likewise, the uniqueness is true in the case where

is a ball and z is radial symmetric.
(iii) The proof of this part is based on a Pohozaev identity. We note that although

z may not belong to C2(), div(zlm-1 z) is in Cl+() and therefore the following
formal manipulation is rigorous.

Multiplying (I) by u and integrating by parts we have

(3) fn T z[m+l dx + fn z2 dx O.

Likewise, multiplying (I) by x.u we obtain

(4)
l+m Nz2 0 z[mTl(x u) ds,IV zlm+l dx + - dx IV

where u is the outward normal of Ot. Subtracting (3) from (4) we find

(5) (N2 N l

+ m In zlm+l dx ] zl’+l(x ds.

But by our assumption on m, N/2-(N-l-m)/(1+m) _< 0. Therefore, the left-hand
side is nonpositive, whereas the right-hand side is positive for z nontrivial because
is star shaped and z 0 on 0. This proves (iii).

(iv) When 2 is an annulus we can consider the radial solutions z(x) z(r), where
r -Ixl. In this case (I) takes the form

1 (rN_llz, lm_lz,) + AZ 0
rN-1(Ia) z > 0,
z=O,

R1 < r < R0,
r-R1 andr=R0.

Let

E ]_1N 1 mr(N_l_m)/m
m

Then (IR) takes the form

+ p( )u o,
y>0,
y-O, =o and 1,
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where

)-k N(1 + m)(7) p()= N-l-m k=
m N-l-m

(8) i--IN-l-mRN-l-m)/m)-i’m =0,1.

The existence of a solution to (I) can be proved by using a shooting argument. For
this purpose we shall examine the family of solutions of the initial value problem

(1’1-’) + p() 0,(II) Y(I) --0, y’() -b < 0.

Here 1 is a positive number that will be kept fixed throughout.
It is clear that if y is positive in some interval (fl, 1) with fl _> 0, then

(9) y(f) G b(fl @) in (fl, 1).

Consequently’ if fl > 0 the solution can be extended to the left of ft. Denote

(10) f0(b) inf{f0 > 0 u(f;b) > 0 in (f0,fl)}.

It is a standard ordinary differential equation (ODE) result that the function b --, 0(b)
is continuously differentiable in the neighborhood of every b > 0 such that 0(b) > 0.
This is because y’(0(b); b) > 0. Then we can use the energy functionals

(II) Jl() lY’(c) II+m + p(),
l+m

I’()l1+ 1
(12) &() (1 + m),() +

and the Sturm-Liouville comparison theorem to prove the following technical result.
THEOREM 3. (i) ff b > 0 and y(., b) is dCned and positive in (0,) then

limf0+ y(; b) 0.
(ii) limb0 0(b) 0.
(iii) limb 0(b)
The proof of the result is technical and lengthy. We omit it here. It will be proved

in [16]. The interested reader may also consult [3], where the semilinear case m 1
was treated. The argument there may be modified to work for the case 0 < m < 1.

The direct consequence of the above is the existence of (I) for the annulus case.
Thus the proof of Theorem 1 is complete.

3. The main results. We will prove Theorem 2 through a series of lemmas.
LEMMA 1. Let m > O ff N 2 or m > (N- 2)/(N + 2) ffYk3. Then there

exists a positive constant B B(m, N, fl) such that evew solution u(x, t) of (1) with
finite extinction time T > 0 satisfies

(13) (T t) ; f ..
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Proof. Multiplying equation (1) by u and integrating by parts, we obtain the
identity

(14)
d /a dx -2 /a ulm+l dx.

The Sobolev embedding lemma guarantees that there exists a constant c c(m, N,
such that for any h E W’1+’(),

(15) h2 dx <_ c him+ dx
1/(l+m)

We obtain a differential inequality by substituting (15) into (14), which after integra-
tion yields

u(x, t’) 2 dx u(z, t) 2 dx <_ -B(t t’)

for t _< t < T, where B (1 -m)/c1+’. Letting t T and multiplying by -1, we
get the lemma.

LEMMA 2. Let u and m be as in Lemma 1. Then the solution u satisfies

(16) u2(x,t)dx(l-t/T)(l-m)/2 u2(x, 0)dx.

(17)

(18)

Proof. First, we observe that

d- 17 dx (1 + m) Ulm-1 U" (lt)t dx

-(1 + m) ./ div(I ulm-1 u)utdx

-(1 + m) f Idiv(I ul"-1 u)12dx,

(19) lair ulm+ dx -/a div(I V ul"- V u)udx.

We used the condition u ut 0 on OFt in the above manipulation. Applying the
Cauchy-Schwarz .inequality, we find

Combining (14), (17), and (20), we have

d

(21) d-7 fa u2 dx

2 fnu2 dx

d tlm-F1d f v dx

(1 + m) f Iv dx"

Integrating the above inequality, we have

fa u2(x, t) dx
(22) fa u2(x’ 8) dx >- (1 + m) f lv (, t)lm+l dx

2 falvu(x,s)lm+l dx
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for0<s<t<T. Set

(23) J(t) u2(x, t) dx

Then (22) is just J’(s) <_ J’(t) for all s _< t, and therefore J" >_ 0 and J is convex.
Hence

(24) J(T)- J(t) > J(t) J(O)
T-t t

which is just (16).
Remark. Lemmas 1 and 2 with t 0 provide estimates of the extinction time T

in terms of the initial value. Note also that inequality (22) in the proof of Lemma 2
gives the following corollary.

COROLLARY 1. Let

(25) (/a )
(+’)/:

G(h) =/a V h(x, t)lm+l dx/ h2(x, t) dz

Then the function G(u(., t)) is a nonincreasing function of t.
The functional G can be regarded as a generalization of the Rayleigh-Ritz quo-

tient when m 1. If g _< 2 or if g _> 3 and m > (g- 2)/(N + 2), then G(h) has a
positive minimum over W’l+m(gt). If g >_ 3 and m _< (N- 2)/(N + 2), the infimum
of G is zero on W’l+m but the minimum does not exist.

Proof of Theorem 2. Let

T
w(x, s) (T t) u(x, t),

where s -log(T- t) + log T. In order to prove (i) of the theorem, we must show
that there exists a sequence of times sn --* c such that w(., sn) --. z(.) in w’l+’(t),
where z is a solution of (I). To prove (ii), we have to show that w(., s) -- z(.).

The function w(x, s) satisfies

(26) ws(x, t) div(I V w[m- V w) + Aw

in gt (0, co), with w 0 on 012 and w(x, O) u(x, 0), x e gt.

We define the functional

(27) I(h)
1 + m -h2 dx

and f(s) I(w(., s)). It is easy to verify that

(28) f’(s) -/ ws(x, s)2 dx <_ O.

Lemma 2 shows that fn w(x, s) 2 dx is bounded for all s > 0. Hence f(s) is bounded.
Consequently, fa ] w(x, s)lm+ is uniformly bounded. Thus lims__. f(s) exists and
there exists a sequence of times s, -- c such that f’(Sn) --* 0 by (28).

We proceed to show that for a subsequence of sn, again labelled Sn, w(., Sn)
Z(’) in w’l+’(gt). Since w(.,s) is a bounded sequence in W’+’, there exists a
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subsequence, again labelled by w(., Sn), such that w(., Sn) converges weakly to z(.) in
W’l+m(ft). In addition, from the compact-embedding theorem, we have

(29) w(x, s,)2 dx fa z(x)2 dx,

sincem>(n-2)/(n+2)ifN>_3orm>0ifN<_2. In fact,

(30) fa w(x, s)2 dx z(x) dx,

since fa w(x, s)2 dx is nonincreasing by Lemma 2.
Next we show that z(x) is a classical solution of (I) and w(X, Sn) z(x) in

W’I+’(Ft). To prove that z is a classical solution of (I), we note that since

W(’, 8n) V(’), Ws(’, 8n) 0 in L2(ft),

div(I U ulm- u)(., sn) is convergent in L2(f/). Moreover, when we multiply (1) by
E C() and integrate by parts, we find

Le . I hen follow ht

Therefore z is a weak solution of (I)in W’+(a). The standard bootstrap technique
(see [9]) yields that z is a classical solution. Here gain, the condition N 2 or
m > (n- 2)/(n + 2) if g 3 is used.

We now show that w(., s) z in W’+m(a). As is clear from (26) and the fact
that w(., sn) z(.) in L2(a) and w(., sn) O,

div(I div(I z)(.) in

On the other hand, we find, by using Hhlder’s inequality,

(31)

zl+rdxW

0 aS 8n

l+m Thus w(" Sn) -* z in w’l+m(a).wherep= l___m q= 2
It is clear that since w(x,s,) >_ O, z(x) >_ O. Moreover, since fa w2(x,s)dx >-

C > 0 for some C > 0 by Lemma 1 and w(., sn) z(’) in L2(ft), we know that z is
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not identically zero. It then follows from a Harnack-type inequality (see Proposition
1 below) that z is strictly positive in . Thus z > 0.

PROPOSITION 1. Let z be a nonnegative solution of (I) which is not identically
zero. Suppose B4R(y) C f and 1 <_ p < N/(N 1 m); then

(32) R--n/PlIZlILP(B2R(y)) <_ C inf z,
BR(y)

where C C(N,p,R, Ilzll).
Proof. The argument is essentially the same as that of [17] and Theorems 8.17

and 8.18 in [10]. Nevertheless, those works concern more general problems and the
estimates obtained there are not sharp. Therefore, we present a proof which gives the
result of Proposition 1.

Let r]l+’, z + e, where < 0 and e > 0.

(33) (1 + m)7m 7f + /-1 z?l+m.
Multiplying (I) by and integrating by parts, we find

(34)
/

rll+rnNf-l[ V Zl (l+m)dx

+ (1 + m)/a v ,. vzl v Z[m-l- dx fa ,l+mNzdx O.

We may rewrite (36) as

(37) L If] V wl l+mdx l+mc(ll, I111) wl+m(f]l+m -t-IV ?ll+m)dx"

Then, we find from the Sobolev inequality

(38) N(l+m)/(N-l-m)

We can estimate, for any 0 < e _< 1,

< [Vz[++-1 +
l+m-lm

By setting e min{1, [/3}, we obtain from (34) and (35)

(36) l+mN-ll zll+m

c(ll)(llllg + 1).o +m(l+m +l VlI+)dx

where C(II) is bounded provided I is bounded away from zero and C(II, I111)
c(ll)(llllgm + 1). Let e + 1,

+ if -m,w
log g if fl -m.
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Hence, substituting (37) into (38), we get

(39) ][r/WIlN(+m)/(N__m) <_ C(1 + 6)ll(r +IV
We now specify the cutoff function /more precisely. Let 0 < rl < r2 be two positive
numbers. Set r/-- 1 in Brl, r/ 0 in t\Br2 with ll-< 2/(r2-rl). Writing
a N/(N- 1- m), we have

(40) iiwlli,,(+,)(B,,)
_

C(1 + 5)IIWIIL(+,)(B,2)"
r2 rl

Thus we can start an iteration procedure and follow exactly the argument of Theorems
8.17 and 8.18 in [10] to derive (32).

We now prove (ii). Suppose the contrary, that w(., s) do not tend to R(.), where
R(x) is the unique positive classical solution. We note that R is a minimizer of
Problem A, where

(41) K= jfa R2(x)dx= s-olim /a w2 (x, s) dx.

Since Iw(., s) I1,1+m _< M for some constant M > 0, we can extract a sequence of
ll/’l’lWmtimes Sn such that w(. Sn) tends weakly in "0 (12) to a function Q R. More-

over, g fa Q2(x) dx by (21) and (41). Since fa Ih]l+m dx is lower semicontinuous
with respect to weak convergence, we also have

(42) +m dx <_ limn_oinf V w(x, Sn)[1+m dx.

But from the proof of (i), we see that

(43)
1 IV RIl+m dx- - IV R]2 dxf(s)

1 + m
as s oc. Hence

(44) Q]l+m dx <_ jf V RIl+m dx.

Therefore, Q is also a minimizer for Problem A, which is a contradiction. Thus w(., s)
converge to R(.) in W’l+m() as s -- cx. This completes the proof of (ii).
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ASYMPTOTIC ANALYSIS OF THE BOUNDARY LAYER
FOR THE REISSNER-MINDLIN PLATE MODEL*

DOUGLAS N. ARNOLDt AND RICHARD S. FALK

Abstract. We investigate the structure of the solution of the Reissner-Mindlin plate equations
in its dependence on the plate thickness in the cases of soft and hard clamped, soft and hard simply
supported, and traction free boundary conditions. For the transverse displacement, rotation, and
shear stress, we develop asymptotic expansions in powers of the plate thickness. These expansions
are uniform up to the boundary for the transverse displacement, but for the other variables there is a
boundary layer, which is stronger for the soft simply supported and traction-free plate and weaker for
the soft clamped plate than for the hard clamped and hard simply supported plate. We give rigorous
error bounds for the errors in the expansions in Sobolev norms. As an application, we derive new
regularity results for the solutions and new estimates for the difference between the Reissner-Mindlin
solution and the solution to the corresponding biharmonic model.

Key words. Reissner, Mindlin, plate, boundary layer

AMS subject classifications. 73K10, 73K25

1. Introduction. The Reissner-Mindlin model for the bending of an isotropic
elastic plate in equilibrium determines w, the transverse displacement of the midplane,
and b, the rotation of fibers normal to the midplane, as the solution of the partial
differential equations

-t3 div C (q) At (grad w q) F,
-At div (grad w b) G.

Here F is the applied couple per unit area, G is the applied transverse load density
per unit area, t is the plate thickness, A Ek/2(1 + u) with E the Young’s modulus,
u the Poisson ratio, and k the shear correction factor, (b) is the symmetric part of
the gradient of b, and the fourth-order tensor C is defined by

C"I" D [(1 )T + tr(T)Z],
E

12(1 u2)

for any 2 x 2 matrix T (2: denotes the 2 2 identity matrix). These equations are
satisfied on the plane region occupied by the midsection of the plate. In this paper,
we investigate the dependence on the plate thickness of solutions to some boundary
value problems associated to these equations.
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We consider various homogeneous boundary conditions of physical interest"

(1.1) b. n b. s w 0 (hard clamped),
(1.2) .n M8() w 0 (soft clamped),
(1.3) M,(b) b. s w 0 (hard simply supported),
(1.4) Mn(b) Ms(b)= w 0 (soft simply supported),
(1.5) Mn(b) M() Ow/On- .n 0 (free),

in which n and s denote the unit normal and counterclockwise tangent vectors, re-
spectively, and Mn(qb)"= n. C $(qb)n, M(qb) := s. C $(b)n. Each of the first four
boundary value problems admits a unique solution w E Hl(ft), b E Hl(ft) for any
F L2(ft) and G L2(ft). The existence theory for the free plate is slightly more
complicated and will be discussed in 6.

We do not treat the Reissner-Mindlin model in its full generality. In addition to
the assumption of homogeneous boundary conditions, we shall assume that there is
no applied couple, so F =_ 0, and that the constitutive parameters E, , and k are
independent of t. It seems clear that the techniques developed here apply to more
general situations as well.

We also suppose that G gt3, where the function g does not depend on t. This is
a convenient normalization, which leads to b and w having a nonzero limit as t tends to
zero. Given that the first differential equation and the boundary conditions are taken
to be homogeneous, this normalization is not restrictive. If G were to be proportional
to some other function h(t), we could make the change of dependent variables b
t3qb/h(t), t3w/h(t) and the new variables would satisfy the Reissner-Mindlin
equations with load proportional to t3.

With these assumptions, the Reissner-Mindlin equations become

(1.6) -div C $(b) At-2 (gradw ) 0,

(1.7) -At-2 div (grad w b) g.

After a similar normalization of the load, the biharmonic model for plate bending
may be written

DA2w0-g inf/,

and so its solution w0 is independent of the plate thickness. In contrast, the solution
of the Reissner-Mindlin model exhibits a complex dependence on the plate thickness,
which we investigate in the present paper. In previous work [1], we gave an analysis
of the boundary layer for the Reissner-Mindlin model of hard clamped and hard
simply supported plates. There are many additional complications in the case of more
general boundary conditions, and so the analysis of [1] is not easily extended to the
soft simply supported and free plates, for example. In this paper, we analyze the
boundary layer for all the boundary conditions mentioned above in a unified fashion.
While the approach here is more complete, it is also simpler than that of [1] in a
number of ways. Thus the present paper essentially supersedes that one. We shall
show that the boundary layer is strongest for the soft simply supported and free plate,
somewhat weaker for the clamped and hard simply supported plate, and weakest for
the soft clamped plate. In addition, we shall demonstrate that for the soft clamped
and hard simply supported plates, there is no boundary layer near a flat portion of
the boundary.
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We shall develop asymptotic expansions with respect to t for w and b (as well
as for other quantities associated with the solution such as the shear strain). The
expansions take the forms

w WO + twl + t2w2 +""
o + x ’o + + + + x4, ) +...,

where the interior expansion functions wi and bi are independent of t and the boundary
correctors 4i depend on t only through the quantity p/t, p being the distance of a
point of f from the boundary. More specifically,

where 0 is a coordinate which roughly gives arc length parallel to the boundary (see
2), and the function (, 0) has the form of a polynomial with respect to r] with coef-
ficients depending smoothly on 0 times exp(-v/2k). Thus 4i represents a boundary-
layer function, which essentially lives in a strip of width t around the boundary. Fi-
nally, X is a cutoff function which is independent of t and identically equal to unity in
a neighborhood of 0.

After some preliminary material in 2, we construct the terms of the asymptotic
expansions in 3 (for all of the boundary conditions except for those of the free plate,
which are treated in 6). Then, in the following two sections, we justify the expansions
rigorously in the case of the soft simply supported plate, proving a priori bounds
for the terms of the expansions in 4 and performing the error analysis in 5. This
analysis can be adapted easily to the cases of hard simply supported and hard and soft
clamped plates and somewhat less easily to the case of the free plate. The necessary
modifications are discussed in 6. To make it easier for the reader to follow some of the
computations performed in the derivation and analysis of the asymptotic expansions,
we have included in an appendix a summary of the main formulas we have used. In
the remainder of this introduction, we summarize some of the principal results.

For each of the boundary conditions, w0 is the solution of the biharmonic equation

DA2w0 g

determined by appropriate boundary conditions, namely

COwo =0o On
for the hard and soft clamped plates,

w0 (1 u) 02co + . zx 0

for the hard and soft simply supported plates, and

(1 u)02w0 0A030 0(02030 0030)on2 + A030 con + (1- )s OsOn a-s =0

for the free plate. In the last expression, a denotes the curvature of the boundary.
The next term in the expansion of the transverse displacement, 031, vanishes for

the hard and soft clamped plates and the hard simply supported plate but not for
the soft simply supported or free plates. In these cases, it is the solution of the
homogeneous biharmonic problem

A2031 =0 in fl
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with the inhomogeneous boundary conditions

031 O, (1 V) 02031
0n2 -,b A 031

for the soft simply supported plate and

1 05030(1 u) 02031
On2 vf On

0 A1 0 021
g+ (1

for the free plate.
Note that the expansions for the so and hard simply supported plates differ

already in the term w. For the soft and hard clamped plates the terms wo, wl, and
w2 M1 agree, but w3 0 for the so clamped plate and is generally nonzero for the
hard clamped plate.

rning to the expansion of , we find that in all five cases that 0 grad wo
and l gradw while 2- gradw2 A-1D Awo, which is never zero (except in
the trivial case g 0). For the boundary correctors, we find that 0 vanishes in all
five ces. For the soft simply supported and free plates,

Nor the hard clamped and hard simply supported plate, vanishes as well o and
we have

1 0(, O) = -(1 u) exp(-)N o(0, 0)

in both cases. or the soft clamped plate 0, 1, and all vanish. In all five cases,
the firsg noneero boundary corrector is purely tangential. Table 1 summarizes the
terms in the asymptotic expansions of and which vanish.

TABLE 1
Vanishing terms in the asymptotic expansions.

soft simply supported o ])1 7%

free )o 1 n
hard clamped Wl (1 li0, lil 2" n
hard simply supported o31 1 o, 1 2 ?%

SOft clamped 031,033 (1, 3 0, Jl, 2 3 ?%

Using symbolic computation, we have computed exact solutions to the Reissner-
Mindlin system on circular and semiinfinite plates for particular choices of the load
function g, and have explicitly computed the asymptotic expansions of 03 and
through terms of order 6. These computations verify the sharpness of the results
in this paper in that no terms of the expansions vanish except those given in the
table. These results have been reported in [2].

As an application of our asymptotic analysis, we can determine the asymptotic
behavior of Sobolev norms of solutions of the Reissner-Mindlin system. Supposing
that g is sufficiently smooth, we have the following estimates, valid for both the soft
simply supported and free plate, in which the constant C depends on g, , and the
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elastic constants but is independent of t. Here I1" [[8 and[. 18 denote the norms in
the Sobolev spaces Hs(E) and HS(Of) (see 2).

The transverse displacement w and all of its derivatives are bounded uniformly
in t, that is,

but the regularity of the rotation 0 is limited by the boundary layer. For example,
for the soft 8imply supported and free plates, we have

80 derivative8 of order greter than 1 will generally tend 0 infinity in L as 0.
The quantity := -(gradw- ), which is proportional to the 8hear 8train, i8

oen of interest. om the above expansions, we get

--X + (gradw X) +...
80 it ha8 a stronger boundary lyer. Indeed, for the soft simply supported and free
plates, i8 no uniformly bounded in L, or even in H for s > -1/2:

II411 ctmin(’-l/2-s), 8 e .
The corresponding estimates for the hard damped and hard 8imply supported

plates are

s cmin(O’5/2-s), 8 , ]]s cmin(’l/2-s), 8 ,
and for the soft clamped plate

]][[s cmin(O’7/2-s), 8 , [[s cmin(’3/2-s), 8 .
Of course, the boundary layer does not limit the regularity of or at a positive

distance from 0 nor does it affect the smoothness of their restrictions to 0. Thus

for any compact subdomain of .
In the limit as t 0, the variables w and tend in L2 to the leading terms

of their asymptotic expansions. The number of derivatives which converge and the
rate of convergence may be determined by examining the first neglected interior and
boundary terms of the expansions. For any s , we get for the so simply supported
and free plate -Os C$, - O]s cmin(l’3/2-s).

Note that the rate of convergence for depends on the Sobolev norm under consid-
eration. For each of the variables, taking more terms from the expansion increases
the rate of convergence and taking sufficiently many terms in the expansions gives ap-
proximation of any desired algebraic order of convergence in t in any desired Sobolev
space (provided g is sufficiently regular). For example,

ll - 0- t( x +
For the hard clamped and hard simply supported plates, the analogous results are

Os C2, l o[s cmin(2’5/2-s),
[] -0 22[s C3, [[- 0 2(2 + 2)[[s cmin(3’7/2-s).
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For the soft clamped plate,

w --WOIIs
_
Ct2, I1- (OIIs -- ctmin(2’7/2-s),

IIW W0 t2w2]]s
_
Ct3, ]]( 0 t22]s Ctmin(3’7/2-s).

It is also possible to use our asymptotic expansions to derive estimates in function
spaces other than H. The technique for doing this is described in [1]. rther
references for the Reissner-Mindlin model and its boundary-layer behavior can lso
be found there. Many of the results in this paper were described without proof in [2],
where explicit illustrations of the theory are constructed.

2. Notation and preliminaries. The letter C denotes a generic constant, not
necessarily the same in each occurrence. We assume that is a smooth, bounded, and
simply connected domain in 2. The L2() and L2(0) inner products are denoted by
(.,.) and (.,. }, respectively. We also use the usual L2-based Sobolev spaces H()
and H(O), real s 0, with norms denoted by . ]] andS. ]. When the domain
argument is omitted, L2 and H refer to L2() and H(). The space ()
is the closure ofC in H. The interpolation inequality

s+u 8 > 0 U > V >0,

holds. If g 6 L2 and A- g denotes the unique function in H2 Q 1 whose Laplacian
is equal to g, then

z 0,

where the constant C may depend on s and but not on g. In other words,
g A- g]]+2 defines an equivalent norm on H for s h 0. We also define some
negatively indexed norms which maintain this equivalence:

For s -1, this is equivalent to the norm in the dual space of . For s -2, it
is equivalent to the norm in the dual space of H2 . With this definition, (2.1)
holds for s -2. We shall make frequent use of this fact to bound sums of the form

oti]g]]+i by a multiple of the sum of the first and last terms.
We also require the quotient space H/. An element p 6 H/ is a coset

consisting of all functions in H differing from a fixed function by a constant. The
quotient norm is given by

]]p/ min q.
q6p

(In fact, [p/ p[[, where p is the unique function in the coset p having mean
value zero.)

We use boldface type to denote 2-vector-valued functions, operators whose values
are vector-valued functions, and spaces of vector-valued functions. Script type is used
in a similar ay for 2 x 2-matrix objects. Thus, for example, div 6 L2 for 6 H,
while div T 6 L2 for T 6 H. Finally, we use various standard differential operators:

Or/Ox div +gradr= Or/Oy Ox Oy

t22 Ot21/Ox + Ot22/Oy
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-Op/Oy )curlp-- Op/Ox rote= Oy Ox

Note that these differential operators annihilate constants and consequently induce
operators on the quotient space Hs/R for each s. We denote the induced operator
in the same way as the original. Thus, for example, if p E H1/]1(, curlp denotes the
element of L2 obtained by applying the curl to any element in the coset p.

We record here for later reference the identity

n n n--i

i=o j=o i=0 j=o

To describe the boundary layer, we define the usual boundary-fitted coordinates in a
neighborhood of the boundary. Let P0 be a positive number less than the minimum
radius of curvature of 0 and define

o ( z pnz z 0, 0 < p < po },

where nz is the outward unit normal to 12 at z. Let z(O) (X(O), Y(O)), 0 e [0, L),
be a parametrization of 0 by arclength which we extend L-periodically to 0 .
The correspondence

(p, +
is a diffeomorphism of (0, P0) R/L on 0. Let a(O) denote the curvature of 0gt at
z(O) and set

1
a(p, O) "=

1 a(O)p"

The unit vector fields of the outward normal and the counterclockwise tangent extend
from Of to gt0 as functions of O, independent of p, and satisfy

n grad p -a(p, 0)- curl , s a(p, )- grad 0 curl p.

We shall also use the stretched variable pit. When required for clarity, we use
hats to denote the change of variables to (f, ) coordinates, that is,

,f(,5, O) :-- f(x, y).

3. An asymptotic expansion of the solution. We now develop asymptotic
expansions of b and w with respect to the plate thickness. Such expansions normally
consist of two parts, an interior expansion and a boundary-layer expansion. Now it
follows easily from (1.6) and (1.7) that the transverse displacement w satisfies the
biharmonic equation

(3.1) D A2 w g -Dt2 A g,

which indicates that w admits no boundary layer and hence can be described by
an interior expansion alone. However, the rotation vector satisfies the singular
perturbation equation given in (1.6) and hence can be expected to include a boundary
layer. Thus we shall seek expansions of the form

w tw, t + t ,
i-0 i--0 i--1
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where wi and bi are smooth functions independent of t, while 4i(x, y) i(, 0) with
a smooth function on [0, c) . We have suppressed the term 0 since it turns

out to be zero in all cases. In order that the expansion for is defined everywhere in
even though i is defined only on 0, we introduce a smooth cutoff function X which
is a function of p alone, independent of and t, and identically one for 0 p po/3,
identically zero for p > 2p0/3.

In this section, we give precise definitions of all the functions i, wi, and i. In 5
(Theorems 5.1-5.3), we shall prove the validity of the expansions. More precisely, we
shall show that by choosing n large enough we can make the corresponding remainder
terms

n n n

-E Ew := w tw, := x t
i=0 i=0 i=1

smaller than any desired power of t in any Sobolev norm.
Taking the divergence of (1.6) and using (1.7), we see that div satisfies Poisson’s

equation:
D A div g.

This suggests an alternate form for the asymptotic expansion of b in which the terms
of the boundary-layer expansion are divergence free and hence can be written as the
curls of scalar functions. Inserting some convenient factors, the alternate expansion is

b E ti*i -1xtE ti curl Pi
i--0 i--0

with Pi(x, y) -/Si(t, 0) with/5i" [0, oc) x 0t2 smooth. Now

oP oP oP oP
curlPi curlp+ curl0 -t-ls-a(p,O)n.

Formally inserting the Taylor expansion

(p, 0)= [(0)p] [(0)t]
j=0 j:0

and equating the two forms of the boundary-layer expansion, we get that

(3.2) --’-lt2 E ti curl Pi E tii"
i=0 i=1

This gives the relation between 4i and Pi"

(3.3) 4i-- A-1
ogi-1 Vr hal ogi-j-2

j=o

We now proceed to the definitions of wi, i, and Pi (with 4i determined from Pi by
(3.3)).

In order to motivate the definitions of the expansion functions, we shall reason
formally. Let b denote 0tb and let p denote 0tP (these definitions
are only formal, since the sums need not be convergent). We want pairs (,w) to
solve the Reissner-Mindlin differential equations and -A-lt2(curlp, 0) to solve the
corresponding homogeneous differential equations, so that the pair (b, w), which (when
X _= 1) is formally their sum, will satisfy the inhomogeneous equations. Inserting the
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expansions for )I and w into the Reissner-Mindlin equations and equating like powers
of t gives the equations

A(bi gradwi) div C (bi-2),
A div(4)i grad wi) 6i2g,

where tiii is the Kronecker symbol. These equations are to hold for 0, 1,... with
the convention that bj 0 for j < 0. From (3.4) and (3.5), we easily deduce that w
satisfies the biharmonic problem

(3.6) D A2
wi 5og 62-1D A g,

as is to be expected in view of (3.1). It follows from (3.4) that

[/2]

i grad E(,-1D) Ak bdi_2k

k=O

or, in light of (3.6),

(3.7) 4)i grad z,

with

zi wi +/-ID Awi-2 + 6i4)-2D9

To obtain differential equations satisfied by the boundary-layer functions, we note that
(curl P, 0) solves the homogeneous Reissner-Mindlin system if and only if P solves
the differential equation

(3.9) _t2A_tD 1 u
A P + P O.

2

In (p, 0) coordinates, we have (on ft0)

In the last step, we have (formally) replaced each coefficient with its Taylor series in
p. It is easy to check that

(3 10) a{ -[g(0)]j+l a (j + 1)[a(0)]j a j(j + 1)[i,(O)]J_ll,t(O)"
2

Switching to the stretched variable t, this becomes

A P t-2 02P (OP’O2P’OP)0--- .+ E(t) a{t-1N + +4N
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Thus if we write (3.9) in (t3,.0) variables, insert
of t, we get

(3.11) _A-1DI-V02Pi--- 0t2 + Pi =/i(, 0)

i--1

-ID 1 u ( OPi-j-

j=O

-=0 tiPi for P, and equate like powers

02pi j 2 + a3
0Pi j ___2 ) 0 1,

O0 O0

where again P is to be interpreted as 0 for j < 0. Note that (3.11) is an ordinary
differential equation for the function Pi in the independent variable/ in which 0 enters
as a parameter. We shall only consider solutions which satisfy the decay condition

(3.12) lim P 0.

This will ensure that each Pi decays exponentially with f and is therefore negligible
outside of f0.

The differential equations (3.6) and (3.11), together with appropriate boundary
conditions, will be used to define the functions wi and Pi. Then the i are given by
(3.7) and the i by (3.3).

We now derive the boundary conditions and, for each of the boundary value
problems we consider, show that the wi and Pi are uniquely determined. The bound-
ary conditions for wi and Pi will be obtained from the boundary conditions for the
Reissner-Mindlin system by inserting the asymptotic expansions and equating like
powers of the thickness, and then using (3.7) to eliminate the

The hard clamped plate. The boundary condition w 0 leads, of course, to

(3.13) wi 0 on 0ft.

The boundary conditions b. n 0 and b. s 0 give i" n + 4i. n 0 and
bi s + 4i s 0. Using (3.3), these become

(3.14) bi .n --10P-2
0O

on 0t

and

(3.15) bi. 8 --)k-10Pi-1 on 0D.
0

In view of (3.7), (3.14) can be expressed equivalently as

(3.16) Owi_ OPi_ _ID
O A Wi_2

On
A- O0 A On on

and, using (3.13) and (3.7), we can write (3.15) as

(3.17) OPi 0 i Wi- 1D Og
O

D 0--- "3t- 5i3A-- -8 on OFt.

We now show that all the wi and Pi are uniquely determined by (3.6), (3.11),
(3.13)-(3.15), and (3.12). Indeed, from (3.11), (3.12), and (3.17), we immediately
infer that P0 0. We can then uniquely determine ov for 0, 1, 2 from (3.6), (3.13),
and (3.16). These being known, P, 1, 2, 3 are uniquely determined, from which
we can in turn compute w for i 3, 4, 5 and so forth. Note that o0 is determined
from the usual boundary value problem for a clamped Kirchhoff plate. Also, (3.6),
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(3.13), and (3.16) all have vanishing right-hand sides for 1, so 021 and therefore
vanish.

The soft clamped plate. In this case, the boundary conditions (3.13) and (3.14)
apply, but instead of 4)- s 0 we must enforce Msb 0 on 0t. Using (3.3) and the
fact that

M84
D(I u) ( O O )2 -t--p’S+-- "n

we get

(3.18)

02- + 5iaA-1Dg).

We conclude that 020 is uniquely determined and that w again vanishes. Now since

02wo/OsOn Owo/Os 0, we infer that P0 and P1 vanish as well and therefore that
023 does also. The other terms can be computed as follows: first 022, then P2 and P3,
then w4 and w5, then P4 and P5, etc. It is interesting to note that w0, wl, 022, and P0
are the same for the hard and soft clamped plates but w3 and P are not (they vanish
for the latter but not for the former).

We now show that for the soft clamped plate all the Pi vanish for any values
of 0 such that a(O) 0. Thus there is no boundary layer near a fiat portion of the
boundary. (This property holds as well for the hard simply supported plate but not
for the other boundary conditions we consider.) To prove it in the case of the soft
clamped plate, we note first that by (3.7), bi is a gradient for all i. Using this fact,
one computes that

0. n
Mi D(1 v) {

\

In view of (3.14), we have

wherever a 0. Our claim then follows from the defining equations for the Pi and
induction.

The hard simply supported plate. For the hard simply supported plate, the bound-
ary conditions are (3.13), (3.15), and, arising from the condition Mnb O,

{ OPi-2 02pi-1 )(3.19) Mni A-ID(1 u) 00 + 000t
on On,

where we have used (3.3) and the fact that
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Using (3.7) and (3.8), we may rewrite this as

Since (3.17) holds, we again have P0 0. Using (3.13) and (3.20), we see that w0 is
determined from the usual boundary value problem for a simply supported Kirchhoff
plate and that wx vanishes. We can then continue by computing P and P2, then w2
and w3, etc.

Now since bi is a gradient, one can verify that

div C E(bi). s
Os + D(1 v)-s aqb n

If we assume that vanishes on a nondegenerate interval, then, combining this equa-
tion with (3.19) and (3.15), we can express div C (bi). s in terms of Pi-2 and Pi-1
for 8 in this interval. Now (3.15) and (3.4) combine to give

oP div C g(bi) s.
o#

Thus, on an interval where t; vanishes, OP/O# may be expressed in terms of P-I and
Pi-2 on that interval. A simple induction allows us to conclude that all the P vanish
for such O.

The soft simply supported plate. In this case, the boundary conditions are (3.13),
(3.18), and (3.19). We can compute w0 and b0 from the same equations as for the
hard simply supported case. Then P0 can be computed (it need not vanish), and then
Wl (which also need not vanish), P1, etc.

4. A priori estimates for the soft simply supported plate. We now con-
sider in detail the case of the soft simply supported plate. An easy computation shows
that

/5o(#, 8) D(1 v) 02w (0, O)e-c#,OsOn
2

where c
D(1 v)

x/.

We may show in general that/5i are polynomials in t times the decaying exponential
e-c#. The specific form is given in the following theorem.

THEOREM 4.1. For i E N,

k=0 j=0/=0

where the aijkt are smooth functions of 0 which depend only upon the domain ft.
Proof. Let us say that a function is of type (m, n) if it is a sum of terms of the

form

with k, j, E N satisfying k _< m, j + _< n, and cr a smooth function of 0 depending
only on t. We wish to show that P is of type (i, i) for N. We shall use induction
on i. The result is known for i 0. If we assume its validity for 0, 1,..., i- 1, we
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easily check that F defined in (3.11) is of type (i- 1, i) and that the right-hand side
of (3.18) is of type (0, i) (there is no p dependence since this is on the boundary). It
is then easy to see that the unique solution Pi of (3.11), (3.12), and (3.18) must be of
type (i, i), as desired.

Using this formula, we now turn to the derivation of a priori estimates for the
interior expansions and boundary correctors. The following estimates are obtained
immediately from the form of Pi.

THEOREM 4.2. For any E N and s 1t( there exists a constant C depending
only on , E, u, k, s, and i, such that

_< CE IM"Y I+i-j"
j=0

Using this result, we next obtain bounds for the terms in the interior expansions
of and w.

THEOREM 4.3. For all real s >_ 0 and N, there exists a constant C such that

Proof. Let B2 denote the boundary differential operator

B2w D[(1 u)
02w
5-n +’A].

It easily follows from (3.8), (3.6), (3.13), and (3.20) that

D A2
zi 5jog in , zi .,-ID AWl_2 + 5i4-2Dg

( OP- OPi-1)Bzi =,-D(1-u) 00 + 000f3
on 0f.

on Oft,

Applying standard estimates for the biharmonic, we obtain for s >_ 0 that

ooo
s+1/2)

Now bi grad zi and by the definition of zi and the triangle inequality, it easily
follows that

IICOills+2

__
C (llzilIs+2 + Ilcdi_2lls+4 --
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Combining these results, we obtain

j=O

The result for 0 follows directly and the result for k 1 is then obtained by
induction.

COROLLARY 4.4. For real s k --1/2 and i E N, there exists a constant C such
that

8

Proof. Since

M.4 M.(grad z) D(1 u) OsOn

on Of, we have

The result follows from this estimate and Theorem 4.2.
We next consider the derivation of interior norm estimates for the boundary

correctors. To get these results, we make use of the following elementary lemma.
LEMMA 4.5. Suppose a > O, b k 1, and p(x) is a polynomial of degree <_ n with

positive coejCficients. Then there exists a constant Kn(a) depending only on n and a
such that

oo

dx Kn(a)e-abp(b).p(x)e-ax

Proof. It clearly suffices to prove the result for p(x) xn. In this case, it reduces
to showing that

(1 + x/b)ne,-ax dx <_ Kn(a) for all b >_ 1,

which is obvious. E!
Next recall that

o { z pnz z E Ot, O < p < po }

and set

l { z pnz z Ofl, po/3 < p < po }

so X 1 on gt0 \ 1 and X -= 0 on a neighborhood of t \ t20. The following result is
similar to results previously derived in [1] (cf. Theorems 4.1 and 4.5).

LEMMA 4.6. Suppose k, l, n, s N,

P(t, 0) &(0)exp(-c)p(t),
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and

](, o)
0+

where c is a smooth function depending on Ofl and p is a polynomial. Then there
exists a constant C depending only on fl, p, k, l, n, and s such that

Moreover, for any j >_ O, there exists a constant C depending on C and j such that

$

m---O

We now obtain bounds on the Pi in f.
THEOREM 4.7. For any i,j,k,l,n,s E N, there is a constant C such that

Proof. From Lemma 4.6 and Theorem 4.1, we get

115 0+

OoOn Pills,ao _< Ctl/2-s E tmE IM’4)Jln+m+i-J"
m=O j=O

By Corollary 4.4, this is bounded by

$

Ct/2- y t"llgll,+.+i-a/2 <_ C(tl/2-*llgll,+i_a/2 +
m---O

Similarly,

ol+n

m=0 j=0

< ct/+-
r=O

<_ CjtJ(tl/2-Sllglln+i_3/2 + tl/2llglln+s+i_3/2 ).

Using (3.3), we easily obtain the following, where bB }-’]i=on t4ii andpn
Z"--o tP.
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COROLLARY 4.8. For any s, n, j N, there is a constant C such that

(4.3)
(4.4)
(4.5)
(4.6)
(4.7)
(4.8)

5. Error estimates for the soft simply supported plate. In this section, we
shall derive estimates for differences between the solution components of the Reissner-
Mindlin equations and finite sums of the asymptotic expansions. We shall not bound
these differences directly but rather first bound their images under a differential op-
erator and then apply a priori estimates for the operator. The differential operator
we employ is not the Reissner-Mindlin operator but rather a singularly perturbed
Stokes-like operator which arises in an" equivalent formulation of the Reissner-Mindlin
equations due to Brezzi and Fortin [3].

The Brezzi-Fortin formulation begins with the Helmholtz decomposition of the
transverse shear stress vector

(5.1) At-2 (grad w b) grad r + curlp, r

Then it is easy to see that r may be determined by the Poisson equation

(5.2) -Ar=g

together with the homogeneous Dirichlet boundary condition, and then and p may
be determined from the perturbed Stokes-like system

(5.3) div C (b) curlp grad r,

(5.4) rot b + )-lt2 A p 0

together with the boundary conditions

(5.5) Mn O, Msd O, . s + -1t2n=0.0p

Note that p is only determined modulo , i.e., up to an additive constant. Finally, w
satisfies

(5.6) A w div b -lt2 A r

and vanishes on the boundary.
The weak formulation of (5.3), (5.4), and the boundary conditions (5.5) seeks

b E H1, p E H1/1 such that

where

a(b, ) -(curlp,) (grad r, ) for all e H1,
-(b + -1t2 curlp, curl q) 0 for all q

) (c
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To continue, we need to define an asymptotic approximation to p. From (3.5),
we see that A(bi+2 gradwi+2) + 50 grad r is divergence free. Therefore, we can
determine a function p, unique modulo , by

(5.9) curlpi -(i+2 grad wi+2) 5iogradr -div C(di) 6iogradr.

It follows immediately from Theorem 4.3 and regularity for the Dirichlet problem that

(5.10) ]lPn]ls/ Cllgll+-2, s , s o.

Note that, by (3.7), curl pi is a gradient, so pi is hrmonic for all i. We may now
write our asymptotic expansion of p:

ptp+xtP.
i=0 i=0

Let us now introduce some notation for the finite interior and boundary expansion
sums. Set

’ E" E I E Ew t’wi, 0i, P t , p tiP,
i=0 i=0 i=0 i=0 i=0

and
E I E I

Note that we deliberately choose one less term in the boundary-layer expansion for p
than for the other terms.

The following three theorems give estimates in Sobolev norms of general index
for the differences between , p, and w and their finite asymptotic pproximations.
Note that the rates of convergence for and p decline the index of the Sobolev
norm increes, but this is not true for w. This reflects the presence of a boundary
layer for the first two variables but not the third.

THEOREM 5.1. For any n N, there exists a constant C independent of t such
that

114’EII1 + llpllo/ + Ill curlpEIIo _< c(t+/llgll-/ + t+/llgll-/).
THEOREM 5.2. For any n, s E N, s >_ 2, there exists a constant C independent

of t such that

I111 + tllx,ll/ < c(t+/-llgll-/ + t’+111911,+-).
THEOREM 5.3. For any n, s N, s >_ 2, there exists a constant C independent

of t such that

IIll < c(t’+llgll,-i +
IIll < c(t+llgll+- + tn+llglln+-), _> 3.

The proofs depend on number of estimates nd equations which we collect here
and prove at the end of the section. These results show that the formal equations
(3.2) and (3.9) and the moment boundary conditions are indeed satisfied, at least to
high order, by the finite boundary-layer expansions.



BOUNDARY LAYER FOR THE REISSNER--MINDLIN PLATE 503

LEMMA 5.4. For any n, s E N, there exists a constant C for which

(.)
IIff /-cu(p_)ll _< c(+/-llgll_/ / +/:llgll+-/),

div(xbs)]]8 <- c(+1/2-11g11-3/2 / t+/211gll+-3/2),

(5.14)

1 u
rot(x"Bwn u

8 "(t’+/2-liD p,-ll < Ilgll-/e / t+lellgll+,-le),
2

D
1 rt(xbB)2 --Pn-IB + tn I)-iD(1-)O2n2 O2 n) 0 onO,

(5.15) Mn(qbI +) D div on 0,

(5 16) M.( +) A- D(1 )tn 02Pn
2 O

on 0,

(5.17) M( +) + D 1..- rot(x) Pn-s tn on 0.

In the interest of brevity, we introduce the following notation for the quantity on
the right-hand side of the estimate in Theorem 5.1:

Proof of Theorem 5.1. It follows immediately from (5.9) that

div C8() u ad, , 0, ,
Therefore,
(.lS)
-a(O,) + (cu,) -(grad ,) (M,O,. n) (M,O,. s), e H’.

Using the identity

a(,)=D l-u,,
2

(rot , rot) + D(div , div)

+(Mn-Ddiv’’n)+M+DI-u2 rot,.s

we get

(5.19) a(xCBn )+ (curl S

-(D
1 p

rot(Xbn) XpnS_l, rot ) D(div(XbnB) div)
2

(M,s DdivB n)IMs,+DI-2 rotbnB B HPn_l,.8

Adding (5.7), (5.18), and (5.19) and using (5.15) and (5.17) gives the error equation
corresponding to (5.7):

(5.20) a(nE), (curlEpn,) (1--rot(xCBn)--xpBn_l,rot)D2

n (div(x), div) t (/5,. s), H1.
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Turning to the second equation, we have from (5.9) that

I A-it2 grad r- A-it2 curl Ib/n gradwn Pn-2"

Combining this with (5.1), we obtain

I -lt2 E4)nE grad(w COn) curlpn

A-l(tn+l curlpn_ + t+2 curlpn) -[XbnB + A-t2 curl(xpnB_)].

Multiplying by curl q for q E H, using the orthogonality of gradients and curls, and
rearranging, gives the error equation corresponding to (5.8):

(5.21) (bnE + A-it2 curlPnE, curl q) -A-l(tn+l curlpn_ + tn+2 curlpn, curl q)

(()nB -- )--1t2 (url(pnB_l), curlq) q e H.
The desired error estimate will be obtained from (5.20) and (5.21) using a few choices
of the test functions and q. For this we will need to bound various terms arising on
the right-hand sides.

Our first choice of test functions is bnE in (5.20) and q pEn tnxPn in
(5.21). (The more obvious test function q pE could also be used here, but not
for the case of the free plate, since there we will need q to vanish on the boundary.)
Adding these equations and rearranging terms, we get

a(bnE, CnE) + A-t2[[ curlPnEllg T + T2 +... + T9,

where

By (5.13) and (5.12), we get

Irll--IT21 <_ CAIICEnlll/IR.
Next, from (4.1),

(5.23) IT3 + Tsl Itn(rot (;bnE, Xn)l <_ CAIIEnlI1/R



BOUNDARY LAYER FOR THE REISSNER-MINDLIN PLATE 505

Since the pn are harmonic, using (5.10) we obtain for any q that

,(#;n+l curlpn_l + tn+2 curlpn, curl q), <n+l Opn-lO--- + n+2OPnon )
< {q{0 ]tn+ OPn- tn+2Opn {q{0 (tn+lllpn-{{3/2 + tn+2

On o

Cllqll12(tll curlqllo)/=h 5 CA + (llqll/ + t=ll curlqll),
where q is the difference between q and its mean value and can be any positive
number and will be chosen later. Applying this twice and using (4.1), we get

(5.24) IT4I CA2 + 5(llpll/ + t211 curlpll), ITbl CA2.

Finally, by (5.11),

(5.25) ITI CtAII curlll0, ITI CA2,
and, using (4.1),

(5.26) ITI GrAil curlpll0.
Combining (5.22)-(5.26) gives

(.) ($, v)+-tll Cull CA+(IIvIIz,+ IIllz,+tll 11),
where e > 0 is arbitrary and C > 0 depends on e.

To get control over the L norm of p, we use another test function in (5.20).
Namely, we select e l with rot Pn-E and lllll <_ Cipiio/ (this is always
possible). Then

a EIIpllz I111 (p,rot) (curlp,) (=,)-[a(,)-(curlp,)].

Using (5.20) and noting that vanishes on 0, we may write the term in brackets as

(D 1 -u rot(x+) X -l, curl) + D ),div
2

pS (div(x

Using (5.13), (5.12), and Schwarz’s inequality, we easily conclude

(5.2s) I111/ < CA2 + CllVll
The above estimates give us control oer a($, ), IIP$110/, and 11 curipll0.

The theore ould follo esily ere a(, )1/ equivalent to the H nor.
But this is not so, since a(,) vnishes for in the three-dimensional spce

:= { (-,+ x) I,, e )

of plane rigid otions. However, a(@,)i + I1110 i euivlent to the H
norm, with P the L-projection onto R. Therefore, we choose q in (5.21) of mean
vlue zero such that curl q P, hich is possible since the functions in re
divergence free. Then

IIPII (cl) (+-ul P).p, curl q) X- (curlp,

Usint (5.21), (5.11), (5.10), nd Schrz’s inequality, e conclude

(5.29) IIPII < CA + Cll curlll0"
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It is a fairly easy matter to conclude the proof from (5.27)-(5.29). Adding 1/(2C2)
times (5.29) to (5.27), we get after simple manipulations

I1E]112 + t211 curlpEII _< CA2 + C3e(llbEIl + IIpE[[/ + t2] curlp),
for some constant C3. Then adding 1/(2C) times (5.28) to this equation and similarly
manipulating, we obtain

Finally, choosing e sufficiently small we obtain the theorem.
Proof of Theorem 5.2. By standard regularity results for plane elasticity,

s
E E E

nom

-dvCg()=eurlp-eurl[Dl-u ]rot()-p_ + Dgrad div().

Then applying (.la), (.1), (.1), (.1), (4.1), Theorem g.1, and the trace theorem,
we get

Next, using regularity for the Neumann problem for the Laplacian, we know that

By (5.21),

and

ApE At-2 {rotE + rot[XCnB + ,,--12 curl(xP_i)]}

0------- On + [XB + A-lt2curl(xpB-1)]’s

Applying (5.11), (5.10), the trace theorem, and (2.1), we obtain

Combining these bounds, we have

I111 + 1111/ < C(-IlIVII-I + I111-1/ + +/:-lllln-/. + llll+n--)"
For s 2, the theorem follows from this relation and Theorem 5.1, and for s > 2, it
follows by induction on s. [:]

Proof of Theorem 5.3. From (5.6) and (3.5), we get

A(w wn) div( P/n) div E B/)n+s--1 + X/)n+s--1 -- E tjj
j--n+l

The theorem follows by elliptic regularity for Poisson’s problem, Lemma 4.3, (5.12),
and Theorems 5.1 and 5.2. [:]

We conclude this section with the proof of Lemma 5.4.



BOUNDARY LAYER FOR THE REISSNER-MINDLIN PLATE 507

Proof of Lemma 5.4. From (3.3) and (2.2), we can express bB in terms of the Pi"

Applying the identity

Mn-Ddiv=-D(1-) [0(i s)

and (3.19), we get that

n.

on 0

n

M, B Bhen Ddivbn -A-1D(1 p)Et [02i-1

which proves (5.15).
Applying the identity

M8 D(12- p) [-t-1 0(.0t 8) + 0(.00 n)
to (5.30) and using (3.18), we get

which proves (5.16).
Using (5.30) and the expansion

t2 curl B ti+2
i----1

we get

ticr O0
i--2

n

(5.31) AnB + t2 curl B
Pn--1 (g.)n--i--1

i--0

It now follows directly from Theorem 4.7 that
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Finally, using (4.6), we get

which proves (5.11).
Now for any ,

0 O (_t_ O )div --p n + a- s -p + a b n) + a-----

From (5.31), we then have

divCnB=(-t-O ) [+ _to+l (1--1o]
_o -0-1

It then follows easily from Theorem 4.7 that

To complete the proof of (5.12), we use (4.8).
Finally, we give the proof of (5.13) and (5.14). For 0, 1,..., n, we get by

simple identities that

0Oi 0i
roti= Op

s + a-ff n
Op s+{(p)J+a(p)n-i+} 0

j-O

no

Hence,

rot bn Et rot
=o =o 0--" s +

k=(p) + (p)_+ --"
A-1 ti t

=o
= + ,=o [=o() + ()-,+1 .,

where we used (3.3) and reindexed the first sum in the last step. rning to the double
sum on the left-hand side, we use the identity (2.2) to obtain

n n--i ]Et,[=o(t)J+a(t),_+10ii=0 -- n

, t ()o4_ t+
O

n + ()-+1 O0
i=O j--O i--O
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Using (3.3) and (2.2), we further obtain that

Y()o0o_ . () o(_.o0 ) - "
j=o j=o

0 0___ 0--1- () ()
=o 00

and so

n-1

=o 0

rot bnB

D
1-u B =tn [_Dl--U-lO2n ] tn+l

n
n-i+l Oi

2
rot 4)B Pn-1 2 O2 =)n "- E o’() O0

i=0

Equation (5.14) follows directly. Using Theorem 4.7 and (4.4), we then obtain

rot bnB B < c(tn+l/2-s tn+l/2Pn-111s,ao Ilglln-3/2 + Ilglls+n-3/2).

Finally, using (4.8), we obtain

rot(xbB) B
2

-<’Ix(D I ptn_l) 1-- V
rot 4)B IIs + D 4). curl

< C(llD
1 v

rot bnB pn-B s,o + nB s,fl2
< C(t/l/2-llgll_3/2 + t/l/2[lgl[/_3/2 ).

Jwhere the a are defined in (3.10) and we used (3.11) in the last step. Collecting these
results, we have



510 DOUGLAS N. ARNOLD AND RICHARD S. FALK

This completes the verification of (5.13).
6. Other boundary conditions. In this section, we discuss the modifications

to the foregoing analysis necessary to handle the remaining four other boundary con-
ditions discussed in the introduction: the hard clamped plate, the soft clamped plate,
the hard simply supported plate, and the free plate. We shall see that Theorems 5.1-
5.3 remain true as stated in all cases.

For the hard clamped and hard simply supported plates, these were proved in [1].
(The method of proof was somewhat different and required slightly more regularity
to obtain the estimates for w. However, the present method of proof can easily be
adapted to correct this.) Since 1 0 for these boundary conditions, it follows from
(5.9) that Pl 0 as well. Exploiting this, one may slightly improve the regularity
requirements for the estimates of blE and plE. See [1] for the precise result.

The analysis for the soft clamped plate is very close to that presented here.
The space H in which b is sought is replaced by the subspace of H consisting
of functions whose normal component vanishes on the boundary. Because of this, a
few terms which we estimated in 5 are zero, so the analysis is slightly simpler. A
more essential difference between the soft clamped and soft simply supported plates
is that the boundary layer for the former is much weaker. In fact, the boundary
layer for the soft clamped plate is weaker than for any of the other four boundary
conditions we consider. Specifically, as shown in 3, the boundary-layer expansion
functions P0 and P1 and consequently 40, 41, and 42 all vanish. Moreover, the
interior expansion functions wi, @, and pi, 1 and 3, vanish as well. Consequently,
b0E (f (2E -[- t22 and poE pl

E
p2
E + t2p2 Thus, for example, we see from

Theorem 5.1 that -0 is O(t2) in H and P-Po is O(t2) in L2. (These quantities are
only order O(t1/2) for the soft simply supported plate and the free plate and O(t3/2)
for the hard clamped and hard simply supported plates.)

It remains to consider the case of the free plate. First we summarize some basic
existence results for the biharmonic and Reissner-Mindlin plate models with traction
boundary conditions. Given functions g E L2(), f,h L2(0), the variational
problem to find w H2(t) satisfying

(Ce(gradw),e(grad#)) (g,#)- (f,#) + h, n for all # H2(f)

has a solution if and only if the given data is compatible in the sense that

(g, #) <f, #) + h, =0 for all#eL,

where L denotes the three-dimensional space of linear polynomial functions on t. In
this case, the solution is determined up to the addition of an arbitrary element of L.
Performing integration by parts, one obtains the identity

(C g(grad w), e(grad #)) (D A2 0#) H2w,#)-<BAT,#} + B2W, n w,# e

where

B2a := Mn grad
0

B3w := -sMs gradw + [div C g(gradw)] n.

From this we deduce the boundary value problem corresponding to the weak formu-
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lation just discussed:

DA2w=g inf,, B2w=h, B3w=f on0.

Note that the traction-free biharmonic plate problem, i.e., the case when f h 0,
has a solution if and only if the load function g is orthogonal to L.

Analogously, the Reissner-Mindlin boundary value problem for a traction-free
plate, given by equations (1.6) and (1.7) and the boundary conditions (1.5), has a
solution if and only if the load g is compatible with the traction-free conditions, i.e., it
is L2-orthogonal to L. The solution pair (w, b) is then determined up to the addition
of a pair in

Lv := { (1, gradl) e L }
We henceforth assume that g is compatible. We now proceed to the construction

of the expansion functions wi, bi, Pi, and pi in the case of the free plate. The boundary
conditions we use are (3.18), (3.19), and, from the last equality in (1.5),

(6.1) (bi gradw) n -A-10Pi-2
00

or, in view of (3.4),

(6.2) div C E(bi).n= 00"
Now, from (3.18) and (6.2), we have

a 1 v O 02, Oi-1 02i--2 )+
00

=A-1D(1-v) 0 002
where we used (3.11) with 0 in the last step. Using (3.7), we convert this to a
boundary condition on wi:
(.a)

+ +
00

The construction of expansion functions satisfying (3.6), (3.7), (3.11), (5.9),
(3.18), (3.19), (6.1), and (3.12) proceeds as follows. First we define wi n2 from
the biharmonic equation (3.6) together with the boundary conditions (3.20), which
we may write as

(6.4) Nwi -B(-IDwi_ +i-Dg) +-ID(1- u) 00 + 000
and (6.a). Note that for 0 this is simply the biharmonic problem for a traction-free
plate with load 9, so 0 is determined up to addition of a linear function. As we shall
show shortly, this problem always admits a solution, so that once P is known for
j < i, is determined up to addition of a linear function. Then i is given by (a.7)
and (a.8) as before, so the pair (i, i) is determined up to addition of an element
of L. Note that M,i is determined completely, and so we can uniquely determine
P by the differential equation (a. 11), the boundary condition (a. 18), and the decay
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condition (3.12). Thus we compute, in order, w0, b0, P0, wl, bl, P1, always with
(wi, bi) determined up to addition of an element of Lv, and Pi determined completely.

To see that the biharmonic problems for the wi admit solutions, we must show
that

(6.5) (Si0g 5i2-1D A g, p) (f, ) + h, 0 for all p e L,

when f is given by the right-hand side of (6.3) and h by the right-hand side of (6.4).
Setting u A-1D A wi-2 + i4A-2Dg and using the biharmonic equation satisfied by
wi_2 (which we can assume by induction), we get D A2 u i2.-Dg. Hence if # E L,

(Siog i2,-lDg,#) -(B3u,#) - B2u, -n
Thus, to complete the verification of (6.5), it suffices to show

and

003 ’# O0 ’On

for all # E L. These may be verified with elementary calculus, independent of the
particular functions Pi_ and Pi_2.

We now define functions pi and r, as was done in the beginning of 5 for the soft
simply supported plate. From (3.7), (3.8), and (3.6), we see that div div C $(bi)
5iog. Hence, defining r H/I by

Or
-Ar=g in,t, 0--=0 on

we see that div C $(bi) + 5i0 grad r is divergence free. Hence we may again define a
function p H, unique modulo I, by (5.9). Now from (5.9) and (6.2), we see that
O(pi + Pi)/Os 0. Therefore, we may normalize pi so that

(6.6) pi + Pi 0 on 0t.

This completes the construction of the expansion functions.
In 4 and 5, we presented the analysis of the asymptotic expansions in such a

way that they adapt with a minimum of effort to the case of the free plate. Due to
the different boundary conditions, we need to use different negatively indexed Sobolev
norms. Instead of the definition given in 2, we define 118 to be the norm in the
dual space H8. With this understanding, all of the results of 4 hold with essentially
the same proofs. Of course, in the proof of Theorem 4.3, we use the traction problem
for the biharmonic rather than the simply supported plate problem.

Turning to the error analysis in 5, we again use the Helmholtz decomposition
as in (5.1), except that now r HI/I and p /2/1. We then recover the differential
equations (5.2)-(5.4), and (5.6), now with the boundary conditions

Or Ow
On

Mndp M p On
dp. n O.

These determine (r, b, p, w) up to an additive constant in r and addition of an element
of Lv to (w, b).
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The norms on the left-hand sides of the estimates in Theorems 5.1-5.3 need to
be modified in the obvious ways because of the indeterminancy in (q,w) and the
determinancy of p. That is, the norms of qnE are in the Sobolev spaces modulo
those on wnE in the Sobolev spaces modulo L, and those on pnE in the full Sobolev
spaces. The proofs of these theorems carry over easily. In particular, Lemma 5.4
holds without change.

The main part of the proof of Theorem 5.1 involved the choice of test functions
qnE in (5.20) and q pEn tnxPn in (5.21). Notice that this choice of q vanishes

on the boundary because of (6.6) and so is.an allowable test function. This part of
the proof carries over to the free case without problem.

Two more choices of test functions complete the proof of the theorem. For the
second one, we take E H with rot pnE, which allows us to get control over the
full L2 norm of pnE. Finally, to control the infinitesimal rotation in qnE, we choose a
test function q E/:/1 in (5.21) with nonvanishing integral and use the fact that

-- a(, )1/2 q rot

defines a norm equivalent to the usual norm in H1/]12.
The proof of Theorem 5.2 adapts easily. Naturally, we use a Dirichlet rather than

a Neumann problem to obtain bounds on pnE, using that fact that pEn tnPn on 0f.
E and the factAnalogously, to prove Theorem 5.3, we use a Neumann problem for wn

that

n+s--1

n+l

Appendix. In this appendix, we collect some elementary formulas for the con-
venience of the reader.

It follows immediately from the definitions of rot and curl that

Oq Oq
rot curl q A q, curl q. n Os’ curl q. s 0--’

and

(rot , q) (, curl q) (. s, q).

Simple computations show that

div C (grad v) D grad A v,

div div C ’(4)) D A div q,
div C (curlp) D

1
curl Ap,

2
A q grad div q curl rot q,
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and on OFt,

and

On Os
0-- s, 0- -n,

Ov Ov Ov Ov Ov
n. (v)n On2,

s. Tl(v)n OsOn as’ s ?-l(v)s s2 + 0--,
where ?-/(v) denotes the Hessian matrix of second partial derivatives of v.
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TWO PROBLEMS FROM DRAINING FLOWS INVOLVING
THIRD-ORDER ORDINARY DIFFERENTIAL EQUATIONS*
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Abstract. A mathematical analysis is given of two third-order ordinary differential equations
which arise in models for flows of thin viscous films over solid surfaces. Questions about existence,
uniqueness, and qualitative properties of solutions are discussed.
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1. Introduction. In a recent survey paper, Tuck and Schwartz [12] discussed
a series of third-order ordinary differential equations (ODEs) arising in the study of
the flow of a thin film of viscous fluid over a solid surface. When such a film drains
down a vertical wall and the effects of surface tension and gravity as well as viscosity
are taken into account, one is led to an equation of the form

d3u
dx--W f(u)

for the film profile u(x) in a coordinate frame moving with the fluid.
In [12] different possible choices of the function f are given. For drainage down

a dry surface with the x-axis pointing downwards, this function becomes

1
(A) f(u) -1 + u---.
This function is singular at u 0, that is, at the tip of the film. If the surface is
prewetted by a very thin film of thickness 3 > 0, the function f becomes

1 + + 2 + 2(B) f(u) -1 + u2 u----5--.
Since u may now be expected to be bounded away from zero, the singularity at u 0
is no longer relevant.

When the surface is dry, insight into the shape of the film close to the tip may
be obtained by studying the limit of solutions of equation (B) as t -* 0. In suitably
scaled coordinates this leads to equations involving the functions [1, 2, 11, 12]

1 1 1
(C),(D) f(u) and f(u) u2 U3

Equation (A) also occurs in different film flows, such as spin coating and spray
coating [7, 8]. In addition to the asymptotic context given above, equation (C) is
interesting in its own right in that it describes the spreading of certain oil drops on
horizontal surfaces [9].

In [12] the authors formulate a series of well-posed mathematical problems arising
from the study of these draining flows. In this paper we address two of them. The
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first, problem (I), involves the simpler function (C) and occurs in the asymptotic
analysis near the tip. The second, problem (II), involves the original function (A) and
describes the draining of a film along a dry wall, which is uniform far upstream.

The objective of our analyses is to prove some basic properties of these problems,
such as the existence of a solution and the domain on which it exists, its uniqueness and
such qualitative properties as monotonicity or oscillatory behaviour, and asymptotics
far up- and downstream.

A comparable analysis for equations (B)and (D) has been given by Troy [11].
Let us now state the first problem in detail. We look for a smooth function u(x),

defined for all x E (-cx, oc), which has the following properties:

u"’ 1
U2

(I) u(O)-1 and u’(0)-0,
u"(x) as x

We shall prove that such a solution indeed exists, is also unique, and has the following
asymptotic behaviour at -c and at

(1.1) u(x) -x(3 log IXl) 1/3 aS X --+

1
(1.2) u(x) -Kx2 as x +c.

Here K is a positive constant. In fact, K limx_+ u"(x). The associated numerical
values given in [12] are

u"(O) 1.2836 and K 2.1591.

It is interesting to note that the behaviour near x -ec is the same as that found in
[11] for equation (D).

These asymptotic estimates have been obtained before by formal methods [1, 5,

We shall prove these results by transforming the third-order differential equation
to the classical Emden-Fowler equation,

y" + t-kya O, t > O,

with k 2 and a -. Studying this equation instead and making use of its specific
properties, such as the convexity of its solutions, we obtain the required information
about u.

It is interesting to mention here a somewhat related transformation, recently
proposed in [4], which casts the equation into an autonomous system of two first-
order equations.

The second problem we consider is

u’" 1

(If)
=-i

u2
u(x)l as x-.

Clearly this problem has the trivia] solution u(x) i.
Numerical studies [12] suggest that nontrivial solutions of (II) exist and are pos-

itive and oscillatory for all x (-, ), with increasing maxima and decreasing
minima. The objective of our analysis of problem (If) is to confirm these observations
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and explore the character of the oscillations. Specifically, we shall prove the following
sequence of results about nontrivial solutions u:

A. u exists and is positive on the whole line.
B. u- 1 has infinitely many zeros; these zeros form an increasing sequence {an

-c < n < +oc and an --00 as n --c, while
C. u has a unique minimum in each interval (a2n, a2n+l), attained at a point b2n.

The sequence of minima u(b2) is decreasing and

u(b2n) --, 0 as n ---,

D. u has a unique maximum in each interval (a2n+l,a2n+2), attained at a point
b2n+l. The sequence of maxima u(b2+l) is increasing and

u(b2+l) oe as n +cx.
E. The length of the intervals in which u < 1 tends to zero, while the length of

the intervals in which u > 1 tends to infinity. More precisely,

F. The sequences

a2n+l a2n --* 0 as n --
a2n+2 a2n+l ---* cx:) as n -- nUcx:).

lu’(an)l, ]u’(Cn)l, lu"(an)[, lu"(bn)l
in which the points c are the zeros of u", are increasing and tend to infinity as

It is remarkable that property F does not discriminate between the intervals in
which u > 1 and those in which u < 1.

2. Problem (I)." Existence and uniqueness. We recall that problem (I)is
1

(2.1) u’"
U2

(2.2) u(0)=l and u’(0)=0,
(e.a)

THEOREM 2.1. There exists a unique solution u u(x) of problem (2.1)-(2.3).
This solution is defined for all x R.

We begin with some preliminary observations. Suppose that u(x) is a solution of
(2.1)-(2.3). Then, because u"’(x) > 0 everywhere and u"(-) 0, we can inmedi-
ately conclude that

(2.4) u(x) kl and u"(x)>O for all xeR,

<0 if x <0,
(2.5) u’(x) > 0 if x > 0,

and
u x + as x

Thus, since any solution is strictly decreasing on (-, 0), we may introduce u as
an independent variable and, as in [6], introduce the function
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s a dependent variable. (Notice that u’ -x/-’) Carrying out the transformation,
we obtain for y the problem

2 1
(2.7) y+ =0, y>0 for l<u<u: -o, 0 -.

It will be sufficient to prove the existence and uniqueness of a solution of problem (2.7)-
(2.8). We shall do this by means of a shooting argument, replacing the condition at
u +oo by a second condition at u 1, so that we then have

(2.9) y(1)=0 and y’(1)=a>0.

We could also use Proposition 2.4 of [10], which establishes existence and uniqueness
by a different argument.

It is readily seen that for any a > 0, problem (2.7), (2.9) has a unique local
solution y(u, ) which can be continued as long as y > 0. Because the graph of y(u,
is concave, it follows that if y exists on the whole half line [1, cx)), then

y’(u, a) > 0 for all u > 1 and lim y’(u, a) exists.

Moreover, we have the following monotonicity lemma.
LEMMA 2.2. Suppose that a < c2. Then, as long as y(u, a) exists,

y(u, a) < y(u, a2) and y’(u, OZl) < y’(u, a2).

In addition, if y(u, al) exists for all u >_ 1, then

0 < < <

Proof. For convenience we shall write y(u) y(u, a), 1, 2. It is enough to
prove that Yl(U) < y(u).

Since al < c2, the assertion is true near u 1. Suppose it first fails to hold at
some point uo > 1. Then

(2.10) y(uo)=Y2(uo) and y <Y2 on (1, uo).

However, if we integrate the equations for Yl and y2 over (1, uo) and subtract, we
obtain

fl ( 1 l)ds(2.11) y (uo) y2(uo) c a2 2
v/ - < 0

because y < y2 on (1, u0). This contradicts (2.10).
The second assertion follows from (2.11) when we set u0 co. Observe that

y(c) must be finite and nonnegative.
We now define two sets of initial slopes:

S+ {a > 0 y exists on [1, oc) and y’(c, a) > 0},
S_ {a > 0 y vanishes at some u0 e [1, cx)}.

It is clear that S+ S_ 0 and by continuous dependence on the initial data, both
sets are open. In the next two lemmas, we shall show that they are nonempty.
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LEMMA 2.3. S+
Proof. Suppose that S+ 0. Then for any a > 0 there exists a point us, which

may be infinite, such that y(.,a)is increasing on (1, us) and y’(us,a) 0. If we
integrate (2.7)over (1, us), we obtain

Define

Then, for a > 1,

u" ds
a 2

s2 V/Y(S, a)

ds
<

and we have a contradiction.
LEMMA 2.4. S_ 0.
Proof. Observe that by concavity,

< 2
ds

s2 vf
< cx)

y(u,()<(u-1) on (1, as),

where [1, as) is the maximal interval of existence of y(-, a). Hence

and so

2 1
y"(u, a) < on (1, as)

u2 V/U 1

2 ju ds
for 1<

1

Thus, if S_ were empty and so y’(u, a) > 0 for all u _> 1 and all a > 0, then

ds
O3/2 2

s2v/s- 1

for all a > 0. This is clearly a contradiction.
COROLLARY 2.5. (0, 72/3]
From Lemmas 2.3 and 2.4, we conclude that there exists a shooting angle a0 such

that yo(u) y(u, c0) has the properties

yo(u)>O and yo(u)>O for all u>l

and
lim y(u) O.

This is the desired solution of problem (2.7), (2.8), from which we deduce at once that
problem (2.1)-(2.3) has a solution u(x) defined for x E (-cx, 0]. But this solution
u(x) can be continued to the whole line R because, as explained above, u(x) _> 1 and
hence u’" remains bounded.

By the strict monotonicity of y’(c, a) with respect to , established in Lemma
2.2, the solution yo(u) must be unique and hence u(x) is also unique.

The proof of Theorem 2.1 is now complete.
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3. Problem (I): Asymptotic behaviour. Most of this section is devoted to
proving the asymptotic estimate (1.1), which by definition means that

(3.1) lim
u(x)

z-.- -x(3 log Ixl)l/3
1.

To study the behaviour of the solution u(x) of problem (I) as x --, -cx we consider
again the change of variables (2.6) and equation (2.7) and recall that x --, -oc for
u(x) corresponds to u +c for y(u).

We present a self-contained proof of Theorem 3.3 below, which could also be
derived from [10, Thm. 3.6].

In what follows y(u) stands for a solution of (2.7) such that y’ (u) --. 0 as u +oc.
LEMMA 3.1. We have

> 32/a =- M.limu_sup (log u)2/3

Proof. Suppose to the contrary that

y(u) < M- 2(3.2) limsupu__, (log u)2/3
for some e > 0. Then there exists a u > 0 such that

y(u) <_ (M-)(logu)2/3 if u > ue.

Hence
2 1

(log u)- 1/3 if u > uy" u

_
v/i----- u-

and, because by assumption y(oc) -0,

where

Thus

2y’(u) >_ J(u),
viM

whence

dt 1
J(u) t(logt)ll u(logu)ll3

>(3.3) lium__jnf (logu)2/3

because by l’H6pital’s rule

lim f J(t)dt
u-o (log u)2/3

u2
J(t)dt,vM

2
lim fu J(t)dt

v/M- e u- (log U)2/3

J(u) 3
lim
u--* -(logu) -1/31u 2

Remark. Note that

x/M-e

as U---+
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We conclude from (3.3) that

(3.4) lim sup
(logu)2/3--,o v/M e

which contradicts the assumption (3.2).
Similarly one can prove the following lemma.
LEMMA 3.2. Wehave

Define

3

y(u) 3/"lirn_inf (logu)2/3
_<

() (3 og)/.

32/3

?1 sup{u > uo y <_ on (uo, u)} <

Then

2 1 2(3.5) o" + < O.

We proceed to compare y(u) and (u).
THEOREM 3.3. Let y(u) be a solution of (2.7) such that y’(u) - 0 as u -- oc.

Then

lim
y(u)

1.(3.6)
(u)

Proof. We distinguish two eases:
(a) y(u)- (u) # 0 for all u > 1;
(b) SUo > 1 such that y(uo)- (uo)= O.
Case (a). Suppose that y < . Then

lim sup
y(u) < 1.
()-

Proceeding as is the proof of Lemma 3.1, with e 0, we conclude that

lim inf
y(u)

1,
()

om which we deduce (3.6). If y > the argument is the same.
Case (b). Let

(o) (o) 0

and let y > in a right neighbourhood of u0. We assert that y > on (uo, ). In
fact, sume for contradiction that

sup{ > o > v on (0, )} < .
Setting z y and taking (3.5) into account, we find that

z">0 and z>0 on (uo,u).
This and Z(Uo) Z(Ul) 0 contradict the maximum principle (or the convexity of
z). Thus y > on (Uo, ) and as in Case (a) we conclude that (3.6) holds.

Finally, let y < on (uo, uo + 5) for some 6 > 0. If y in (u0, ), then (3.6)
follows as before. On the other hand, if
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then y > on (ul, c) and (3.6) follows again. This completes the proof of Theorem
3.3.

Remark. Theorem 3.3 only involves local arguments near u -t-c. In particular,
the condition y(1) 0 of (2.8) is not assumed.

THEOREM 3.4. The solution of problem (I) satisfies (1.1).
Proof. Using the change of variables (2.6), the relation between u(x) and y(u)

can be written as

< x <_ 0.

We divide by V and integrate over (x, 0). This yields

() dv

and by Theorem 3.3

u() dv
(3.7) (31ogv)l/3-x as x-.

On the other hand, by l’Hbpital’s rule
u dv u

(3 log V)X/3 (3 log U)/3
Therefore, (3.7) yields

u(x)
(31ogu(x)} 1/3

as u +.

--X as x --+

and hence

Ixl
The last two relations imply that

u(x) -x(3 log [x[)
which is what we set out to prove.

Remark. It also follows that as x

X--- --0(3.

as X --+ --(3(3

//(X) --(3 log IXl) 1/3 and u"(x) -x(3 log Ixl)2/3"
Finally, we briefly deal with the behaviour as x
THEOREM 3.5. Let u(x) be the solution of problem (I). Then

K lim u(x) exists.

Moreover, K is positive and finite so that

u(x) Kz

Proof. Since um > 0 and u’(-cx) 0, it is clear that the limit K exists and that
it is positive. Thus, we only need to prove that it is finite. Because K is positive, it
follows that u(x) > Cx2 for some positive constant C and x sufficiently large. This
implies by the differential equation (2.1) that urn(x) < C-2x-a so that um is integrable
near infinity and hence that u" tends to a finite limit.
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4. Problem (II). We recall that problem (II)is
1

(4.1) u’"= -1 +
U2

(4.2) u(x)-- 1 as X--+

In this section we always assume that u is a nontrivial solution of problem (II).
By definition, we require that u be of class C3. This implies that u must be positive
because of the singularity at u 0 of the differential equation (4.1). Hence, the
assertion that u is everywhere positive is included in global existence (Theorem 4.5
below).

The linearization of equation (4.1) about u 1 is u"’ -2u and has the eigen-
values

-/, f i
Hence, by standard linearization theory, nontrivial solutions of problem (II) actually
exist, have infinitely many zeros near -c, and satisfy

(4.3) u(x) 1, u’ (x) O, u" (x) 0 as x - -oc.

Notice that for the moment we only know that these solutions are defined near -c.
We define the following four auxiliary functions:

lu,2(I)1 -- (1 u)u" + -1
u

4 -- - U -}- -}- -U U

LEMMA 4.1. If U is a nontrivial solution of problem (II) then the functions
2- 2, 3 and Oa- 3 are strictly increasing and positive. Furthermore, Oa is convex.

Proof. Since (I)1, (I)2 2, (I)3 and (I)a 3 tend to zero as x -oc by (4.3), it is
enough to prove that they are strictly increasing and that (I)a is convex. Taking into
account the differential equation, we obtain

O (1 u)u" (1 u)2(u21 + u) _> O,

(I)=u’’2 because xx u+

(I) =--U’u(4)
?23

(I)[ (I)3 > 0 and hence (I) O _> 0.

Notice that the monotonicity of these functions is strict. In fact, if one of the deriva-
tives (I) were zero in an interval, then equation (4.1) would imply that u 1 in
that interval and hence u would be the trivial solution by standard ODE uniqueness
theorems.
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We proceed to analyze the structure of the arches of u.
LEMMA 4.2. Suppose that an and an+l are two consecutive zeros of u- 1. Then

in the interval Jan, an+l], the derivative u has a unique zero bn and also u has a
unique zero cn. Furthermore,

u’(an)u"(an) > 0 and an < ca < bn < an+l.

Proof. Assume that u > 1 in (an, a,+). (The case in which u < 1 is analogous.)
Then u" < 0, u is decreasing, and u is concave in this interval. From the positivity
of (1)2 2, we deduce that

u’(an) > O, U"(an) > O, u’(an+) < 0, and U"(an+l) < O.

This proves the existence and uniqueness of bn and cn. Finally, u"(bn) < 0 by the
positivity of (I)1 and hence cn < bn.

In what follows an, bn, and cu stand for zeros of u- 1, u, and u", respectively,
and we introduce the notation

(a2n, a2n+l) for intervals where u < 1,

(a2n+1, a2n+2) for intervals where u > 1.

LEMMA 4.3. As n increases, the minima u(b2n) are decreasing and the maxima
u(b2n+ are increasing.

Proof. From the monotonicity of (I)2 (Lemma 4.1), we deduce that

1
u(bn) + is increasing.

The lemma follows by observing that the numeric function

1
sHs+-

8

is decreasing if 0 < s < 1 and increasing if s > 1.
LEMMA 4.4. For all n,

(4.4) u(bz,+)- 1 < (azn+9.- a+l)a.
Proof. Observe that in the intervals where u > 1, we have that sup lu’"] < 1. The

lemma follows by integration, since u", u’, and u- 1 have zeros in [a=+, a=+z].
Our next result is global existence.
THEOREM 4.5. All solutions of problem (II) exist on the whole line R.
Proof. Let (-oo, b) be the maximal interval of existence of u. Assume (for

contradiction) that b < oo. We consider two cases.
Case 1. Suppose that u- 1 and hence u’" have infinitely many zeros near b. By

Lemma 4.3
lira u(b=) exists.

This limit can only be zero. Otherwise equation (4.1) implies that u’" would be
bounded in a neighbourhood of b and the interval would not be maximal. Hence by
Lemma 4.1 (b-) oo, and by Lemma 4.3

lim u(b=+l)

But this and (4.4) contradict b <
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Case 2. If u’" has constant sign near b, then u’(b-) and u(b-) exist. As before
u(b-) 0 since (-oc, b) is maximal, and u’(b-) _< 0. Furthermore, u’(b-)
because u’"(b-) +x). Thus, u’(b-) is finite and in a left neighbourhood of b, we
have

_< x).

This implies by equation (4.1) and one integration that

C Cu’" (x) >_
(b x)2

and u"(x) >_
b x’

where C denotes a positive constant, possibly a different one at each occurrence. The
last inequality implies that u(b-) cx). This contradiction completes the proof of
Theorem 4.5.

Remark. The exponent 2 in the denominator of equation (4.1) is a borderline value
in the sense that the above argument of Case 2 works for the equation u" -1 + 1/up
if and only if p _> 2 (cf. [3]).

LEMMA 4.6. The function u- 1 has infinitely many zeros near

Proof. By linearization theory we know that u- 1 has zeros. Hence it is enough
to prove that

u(a) l == 3b > a such that u(b) l.

Assume (for contradiction) that u > 1 in (a, +oc). Then u’" < 0 and .the limits
u"(+oc), u’(+oc), and u(+oc) exist. This and the differential equation (4.1) imply
that

u’"(+c) 0, u(+cx) 1, u’(+cx) 0, and u"(+cx) 0.

Hence u" is decreasing and positive, u increasing and negative, and u- 1 decreasing
and positive in (a, +cx)). This contradicts u(a): 1.

A similar argument excludes the possibility that u < 1 on (a, x)) and completes
the proof of Lemma 4.6.

LEMMA 4.7. As n

u(b2n) --. 0 and u(b2n+l)

Proof. By Lemma 4.3 we know that these limits exist. On the other hand, Lemma
4.1 states that (I)a is increasing and convex, and hence

(4.5) Oh(x)

Letting x +oc along the sequence {bn}, we obtain that

1
(b) (b) * s n- +,

from which the desired conclusions follow.
LEMMA 4.8. The sequences ]u’(an)l and ]u"(an)l are increasing and tend to in-

finity as n ---,

Proof. The sequences are increasing because the functions (I)1 and (I)3 are increas-
ing by Lemma 4.1. Notice that u’"(an) 0. By (4.5)

Let us show that each of the factors also tends to infinity. Since the functions (I)i of
Lemma 4.1 are increasing, we may compute their limits as x -o + along different
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sequences. Considering 1 and using Lemma 4.7, we obtain that as n -* 4-00

_1 lim{u,(an)}= lim u" (b2n),

while considering 3 it follows that

lim u" (b2n) lim u" (bn)l lim u" (an)1.
The last two relations and (4.6) conclude the proof.

Remark. It follows that as x --, +oo, the four functions of Lemma 4.1 tend
to infinity so that the sequences lu’(c,)l and lu"(bn)l are also increasing and tend to
infinity as n --. +c.

LEMMA 4.9. We have

a2n+2 a2n+l OO a8 n

Proof. This limit follows at once from (4.4) and Lemma 4.7.
LEMMA 4.10. We have

a2n+l a2n 0 a8 n --+ 4-cx:).

The proof follows from the inequality

1
(4.7) 1- u(b2n)> -lu’(a2n)[(a2,+- a2n)

and Lemmas 4.7 and 4.8, according to which u(b2n) --* O, lu’(a2n)l---* oo as n --. cx.

Proof of (4.7). We are going to perform a comparison argument in the intervals
where u < 1. To simplify the notation we set

h a2n+l a2n, b b2n, oz -u’(a2n) > 0

and translate the origin to a2n. In this setting we have that

u(O) 1, u(h) 1, u < 1 in (0, h),

and (4.7) takes the form
1

1- u(b) > -oh.
We define a polynomial of second degree P such that

P(0) =0, P(h) =0, P’(0)
Hence

Next we consider the function

Since

(x)P(x) cx 1- -Q=I-u-P.

Q(o) Q(h) Q’(o) 0 and Q’"= -u’" < 0

it readily follows that Q > 0 in (0, h) and, in particular,

1- u(b) > P(h/2)= ah.
This completes the proof of (4.7).

in
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5. Properties A-F of 1. The lemmas and theorems of 4 prove all the
properties of solutions of problem (II) stated in 1 as follows:

Property A is Theorem 4.5.
Property B includes Lemma 4.6; the remainder follows from a standard lineariza-

tion analysis near x- -c.
Properties C and D are Lemmas 4.2, 4.3, and 4.7.
Property E is contained in Lemmas 4.9 and 4.10.
Property F is dealt with in Lemma 4.8 and its associated remark.
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GLOBAL BIFURCATION OF AN ELASTIC CONDUCTING ROD IN
A MAGNETIC FIELD*

PETER WOLFE

Abstract. We study the equilibrium states of a nonlinearly elastic conducting rod in a magnetic
field, a problem we have considered in several previous papers. We are now able to prove a global
bifurcation theorem for this problem. To do this, two difficulties must be overcome. The first is the
presence of the rotation group SO(2) as a symmetry group for the problem. The second is that, for
some values of certain parameters, the linearized problem is a nonstandard eigenvalue problem. The
former difficulty is overcome by applying an idea due to Healey, who observed the existence of an
additional symmetry in a related problem first posed by the present author. The latter problem is

handled by using some nonstandard tools from functional analysis.
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1. Introduction. In this paper we contine our study, begun in [6] and [7], of
the equilibrium states of a nonlinearly elastic conducting rod in a magnetic field. The
rod is assumed to be welded to fixed supports. The magnetic field is assumed to be
constant and directed parallel to the line between the supports.. The rod can undergo
flexure, tension, shear, and extension. The elastic properties of the rod are embodied
in the the constitutive functions which relate the strains which measure the above
quantities to the contact force and contact couple. We assume the rod is homogeneous
and transversely isotropic. We will also assume that the rod is hyperelastic so that the
constitutive functions are derived from a strain energy function. This assumption was
essential in previous work but is less so here. However it is convenient to retain this
assumption. The fundamental parameter is A IB, where I is the current in the rod
and B is the strength of the magnetic field. For all real there exists a trivial state in
which the rod is straight and untwisted. We are interested in the existence of nontrivial
solutions. This problem can be posed as a boundary value problem for a system
of nonlinear ordinary differential equations. In order to study bifurcation from the
trivial solution (corresponding to the trivial state), we must study the linear eigenvalue
problem obtained by linearization about the trivial solution. It was at this point in
our previous work that we ran into an obstruction. In order to apply the standard
results of bifurcation theory [2], it is necessary that the eigenspace corresponding to an
eigenvalue be one dimensional. However, in our case this condition cannot hold since
the problem admits SO(2) as a symmetry group. We are now able to surmount this
obstruction. For this we use an idea of Healey [5]. In [5] Healey considered a problem
previously posed by the present author [8], that of a rotating conducting wire in a
magnetic field. Healey noticed that in addition to the SO(2) symmetry, that problem
also possesses a Z2 symmetry which he called a "subtle symmetry." This observation
enabled him to reduce the problem to one in which the eigenvalues of the linearized
sytem are simple and thus amenable to standard global bifurcation analysis. We show
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that the same symmetry is present in our problem. Thus we are able to obtain a
global bifurcation result in this case.

In the study of the linearized system in [7], we assumed that the parameters
appearing in the linearized eigenvalue problem satisfy an inequality, which enabled us
to use standard techniques to prove the existence of (real) eigenvalues. Here we show
that, by using some nonstandard tools from functional analysis, we can mostly dispense
with this condition (which from a physical point of view is completely artificial).

In 2 we will formulate the problem. In 3 we will outline the theory of global
bifurcation in the presence of symmetry. In 4 we will discuss the symmetries of the
problem. In 5 we will deal with the linearized problem, while in 6 we present our
global bifurcation result.

Vectors (elements of three-dimensional Euclidean space E3) will be denoted by
r, dp, etc., while elements of Rn (n-tuples of real numbers) will be denoted by u,v,
etc. The summation convention will be used throughout. An equation containing an
index which is not repeated (and therefore not summed) is assumed to hold for the
values 1, 2, 3 of that index.

2. Formulation of the problem. Our model for the rod is the special Cosserat
theory. In this theory, the configuration of the rod is specified by a position vector r and
an orthonormal pair of vector functions dl and d2 of the real variable s E [0, 1]. We
interpret s as a scaled arclength parameter of the line of centroids of the rod (a slender
three-dimensional body) in a reference configuration, so s identifies material sections
of the rod. Thus r(s) is the position in a deformed configuration of the material point
at the centroid of the section s. The vectors dl(s) and d2(s), which determine a
plane in space and a line in that plane, characterize the deformed configuration of the
section s. We set

(2.1) d3 d d2

to obtain an orthonormal triple, called the directors. Let derivatives with respect to
s be denoted by primes. Since {dp} is orthonormal there exists a vector function u
such that

(2.2) d) u dp.

Conversely, given an artbitrary vector function u, any solution {dp} of (2.2) is or-
thonormal if {dp(0)} is. The components of u with respect to {dp} are

1
(2.3) Up -epqrdq. dr,

where {epqr} are components of the alternating symbol. We decompose the vector r
into its components with respect to the basis {dp} by

(2.4) r’ vpdp

and set

(2.5) "it (tl, t2, t3)T, V (Vl, V2, V3)T.

The triples u and v are the strains of the theory. They determine the configuration
of the rod uniquely to within a rigid body motion by integration of (2.2) and (2.4).
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The physical interpretation of these quantities is as follows: Vl and v2 measure the
amount of shear, v3 V. (dl d2) measures volume change, (VkVk) 1/2 measures axial
stretch, U and u2 measure flexure, and u3 measures twist.

Let {il i, is j, ia k} represent the standard orthonormal basis for E3. Let

(2.6) dij dj. ii.

Then we may consider D (dj) as an element of SO(3), the group of 3 3 orthogonal
matrices with determinant 1. We can then write (2.2) as

(2.7) D’= DU,

where

(2.8) U U3 0 --Ul

-u2 ul 0

We write

(2.9) r xli + x2j + x3k xiii.

Then if we set

(2.10) r (Xl, x2, x3)T,

we may rewrite (2.4) as

(2.11) r’ Dv.

For later developments it (unfortunately) becomes necessary to introduce Euler angles
in order to parameterize D. The ones we introduce here are slightly different from
those of [7]. Thus we set

()() ()(e)()
D s()c() + c()s(O)s()

-()()

-()(e)

(e)

()() + ()()())()() ()(e)()
()()

where c() cos C, s() sin, etc. These angles are such that 0
corresponds to D I. Also, the polar singularities occur at (n + )Tr. From (2.7)
and (2.12),

(2.13)
Ul ’ cos ’ cos sin ,
u2 ’ + ’ sin ,
u3 0’ sin -t- ’ cos 0 cos ,

while v can be written as a function of r’ and (, ,) by rewriting (2.11) as

(2.14) v DTr

and using (2.12).
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The set of admissible strains is restricted by the inequality

(2.15) v3 > H(ul, u2).

The inequality (2.15) is the rod-theoretic analogue of the requirement that the Jaco-
bian of the transformation in three-dimensional kinematics be positive. Here H is a
given function which depends on the cross-sectional shape. We require that H satisfies

(2.16)
H(0, 0)-0,

H(ul, u2) > 0 for u2 + u > 0,
H is homogeneous of degree 1.

If the cross sections of the rod are disks of radius h, then

H(ul, u2) hV/U q-

For s E (0, 1), let

(2.17) n(s) nk(S)dk(S)

be the contact force and

(2.18) m(s) mk(8)dk(S)

be the contact couple exerted by the material of [0, s) on the material of Is, 1] in the
configuration (r, dk}. We let

f(t) dt

be the resultant of all other forces exerted on the material of Is, 1] in this configuration.
We assume that the resultant of all other couples exerted on the material of Is, 1] in this
configuration is 0. Then the classical equilibrium equations for forces and moments
are

(2.19) n’ + f O,

(2.20) m’ + r’ n 0.

In this paper we assume that the rod is a conductor carrying a current I. There is
also a constant magnetic field B Bk present. (Recall that k ia.) The force on
the rod is then given by

(2.21) f(s) Ir’(s) x Bk Ar’(s) k,

where

(2.22) IB.

The elastic properties of the rod are embodied in the constitutive equations re-
lating the stresses m (rn, m2, m3)T and n (nl, n2, n3)T to the strains u and
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v. Thus we assume that twice continuously differentiable functions and taking
values in R3 are defined on the set

(2.23) S----- {(u,v) e R3 R3:v3 > H(Ul,U2)}

so that

(2.24) m(s) (u(s), v(s)), n(s) (u(s), v(s)).

We further assume that the rod is hyperelastic, meaning that there exists a stored-
energy function (I):S --. R such that

(2.25) (u, v) O((u, v) (u, v) cOO(u, v)
Ou Ov

We assume that (I) is three times continuously differentiable and convex. We assume
that and tend to infinity as lul + Ivl- c or as v3 H(ul, u2) - 0.

We also assume that the material of the rod is transversely isotropic, i.e.,

(2.26) (Qu, Qv) Q(u, v), (Qu, Qv) Q(u, v)

for each orthogonal matrix Q of the form

(2.27)
Q Q 0)Q= Q Q: 0
0 0 1

Finally, we assume

(0, v)=0, a=0ifva=0, a=1,2.

It follows from these assumptions [1] that 3 and 3 depend on

(2.29)

and that {rhZ, Z, f 1, 2} have the form

(2.30) rh &u, ?v,

where & and " depend on the arguments listed in (2.29). The convexity of (I) together
with (2.30) implies that

(2.31) >0, >0.

We assume that the rod is welded to fixed supports at 0 and bk, where b > 1.
Thus the boundary conditions are

(2.32a)
(2.32b)

r(0)=0, r(1)=bk,
dk(0) ik, dk(1)= ik.

It terms of the Euler angles, (2.32b) becomes

(2.32c) 0(0) (0) (0) 0, 0(1) (1) (1) 0.
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In order to convert the equilibrium equations (2.19) and (2.20) to a form which
is amenable to further analysis, we take the dot product of these equations with di
and use (2.2). The result is

(.)
(2.33b)
(.c)
(2.33d)
(2.33e)
(..f)

In (2.33) the arguments of m and n are u and v. The convexity of (I) implies that the
symmetric matrix

Om/Ou Om/Ov )(.a41 0/o 0/0

is positive definite. Thus equation (2.33) can be solved for u’ and v’. Furthermore,
as long as [1 < /2, we can differentiate (2.13) and (2.14) and solve these equations
for the second derivatives of Xl, x2, x3, , , . Thus if we let

(2.35) X=(x,x,z,e,,)v,

where

(2.36) z(s) x3(s) bs,

we arrive at an equation of the form

-X" F(X, X’, A),

which is equivalent to (2.33). The boundary conditions (2.32) can be restated as

(2.38) X(O) X(1) O.

Thus our boundary value problem consists of (2.33), (2.13), and (2.14) along with
the constitutive equations (2.24) and the boundary conditions (2.32) or, alternatively,
(2.37) with the boundary condition (2.38).

For every real value of , the problem admits a trivial solution in which the rod
is straight and untwisted. In this solution u 0, Vl v2 0, v3 b, r bsk, 9

0, m 0, nl n2 0, and

(2.39) n (0, (0, 0, b)r) no,

where

(2.40) no > 0.

Inequality (2.40) is consistent with the assumption that the rod is in tension when no
force is applied, that is, the assumption b > 1. The object of this paper is to study
the existence of nontrivial solutions.
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3. The global bifurcation theorem. In this section we state the global bifur-
cation theorem which we will use to obtain our results. We follow the treatment in

[4]. For further references, please refer to that paper.
Let B be a real Banach space, ft an open connected subset of B R such that

(0, A) E ft for all A E R and f ft B be m times Frchet differentiable. We consider
the problem

(3.1) f(x, =0.

We wish to determine E, the solution set of (3.1).
We assume that (3.1) models a system characterized by a symmetry group G. In

particular, we assume that (3.1) is equivariant under a specific representation T of G
on B, i.e.,

f(Tgx, ) Tgf(x,/k), Vg e G,

where it is assumed that if (x, A) ft then (Tgx, ik) for all g G. Let 7{ be a (not
necessarily proper) subgroup of G. We define the ?-l-fixed point set Bn as

Bt {u E B Tu u Vg 7-l}.

If T/is a compact group, Bn is a Banach space. We let ftn= f N (Bn R). It then
follows from (3.1) and (3.2) that if (u, ) e fin, g e 7-/, then

(3.3) Tgf(u, .X) f(Tgu, .X) f(u, .X).

Thus f(u,A) e Bn for all (u,A) e ftn and f :ft --, B. So we see that a point
(x0, ) fn is a solution of (3.1) if and only if it is a solution of the ?-l-reduced problem

(3.4) fu(u, =0,

where ft finn. The solution set of (3.4), denoted by Et, is called the ?-l-solution
set.

We assume that f has the form

(3.5) fn _---- u cn(u, )),

where cn :ftn Bn is completely continuous. Suppose

(3.6) f(0, 0, w e R.

The set Et ({0} R) is called the trivial solution branch of (3.1). A solution
(0, A0) e Et is said to be a bifurcation point of (3.1) if every neighborhood, of (0, A0)
contains solution pairs (u,,/k,) e E with u, = 0. Define L(A) Dlf(0, A), the Frchet
derivative of f with respect to u at (0, A). A necessary condition for (0, A0) to be a
bifurcation point is that L(A0) B - B be noninvertible.

For any subgroup 7{ C , since 0 Bn, we have

(3.7) fn(0, A)= 0, VA e R.

Suppose L(A0) is singular, y Af(L(A0)) is such that the isotropy subgroup of G at y

(3.8) Tl {g e Tgy--y}
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is proper. It then follows that Ln(A0) DlfT(0, A0) L(A0)IBn is singular. We
then have the equivariant bifurcation theorem.

THEOREM 3.1 [4]. Suppose that f E C2 and there exists a vector y JV’(L(A0))
which defines a proper isotropy subgroup 7-l. Assume

(i) dim.M(Ln(A0))is odd, and
(ii) nt(A0)v 7(nn(A0)) Vv e (nn(A0))\{0},

where prime denotes differentiation with respect to A. Then (0, A0) is a bifurcation
point of (3.1) such that in every sufficiently small neighborhood of (0, A0) there are
nontrivial solutions (u.,A.) ET. In particular, if dirnjY’(Ln(A0))= 1, there exists
a unique, local bifurcating branch of solutions of the form a (z2(a), (a)). Moreover
there exists a connected subset @t c_ En fq E\Et containing (0, A) that is characterized
by at least one of the following properties:

(a) 7-t is unbounded in B R.

(c) There exists a pair (0, A,) E @t q Et with A, Ao.
The set @t is called a global 7-/-symmetric bifurcating branch of (3.1) through (0, Ao).

The rest of the paper consists of verifying that we can apply Theorem (3.1) to
the problem described in 2.

4. Symmetries of the problem. In this section we examine the symmetries
of the problem. There are two types of symmetry, the "obvious" rotational symmetry
and the "subtle" reflection symmetry. It is the latter which we will use to obtain our
results.

We first consider the action of the group SO(2) on the problem. The action of
an element of this group Ta, c R(mod27r) is defined by the matrix

cosa sina O)(4.1) Qa sin o cos a 0
0 0 1

Ta acts on the vector r by counterclockwise rotation through the angle a about the
x3 axis. If r is given by (2.10), the components of Tar are given by Qar. Similarly,
Ta acts on the triples u and v by

T(u, v) (Q.u, Q.v).

The action of Ta on the matrices D and U is

(4.3) TaD QaDQT, TaU QauQT.

(The second equation of (4.3) is equivalent to Tan Qau.) By (4.2), (2.24), and
(2.26) it follows that

(4.4) Ta(m, n) (Qam, Qan).

It is easily checked that if the configuration {r, D} is a solution of our problem (in the
form (2.33), (2.32a,b)), so is {Tar, TaD}. It does not appear that the Euler angles
transform in a nice (i.e., geometric) way under the transformation Ta. Since we do
not intend to use the rotational invarience in our global bifurcation theorem, we shall
not identify a mapping f which is equivarient under SO(2). Of course, as has been
noted in [7], this SO(2) symmetry is a source of difficulty when one attempts to apply
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standard bifurcation theory since it forces the kernel of the linearized operator (at
a singular point) to have an even dimension. However, as in [5], this problem also
admits a "subtle symmetry" (Healey’s term), which we now describe. This symmetry
corresponds to a 180 rotation of the rod about the line x2 0, x3 b/2. If we
denote this mapping by R (so that R2 I), we have

(4.5)

Let

(_1(4.6) E 0
0

Then R acts on the triples u and v by

00)1 0
0 1

(4.7) R(u, v)(s) (Eu, Ev)(1- s).

The action of R on the matrices D and U is given by

(4.8) RD(s) EDE(1 s), RU(s) -EUE(1 s).

As regards the Euler angles, if we let (, , ))T, the action of R on is given by

(4.9) R(s) -E(1 s).

Again, by (4.2), (2.24), and (2.26) with Q E,

(4..10) R(m, n)(s) (Em, En)(1 s).

We are now ready to cast our problem into the form suitable for applying Theorem
3.1.

We let C C] [0, 1] be the space of continuously differentable functions vanishing
at s 0 and s 1. For x C[0, 1], we define

max Ix(s)l + max
O<s<l O<s<l

We let B (C[0, 1])6. For X (1,... ,6)T e B, we define

6

(4.11) IIXIIB ]lillC
i=1

We identify our state variables with X E B by (2.35),(2.36). Associated with X E B
are the variables D defined by (2.12), u by (2.13), and v by (2.14). Note that when
X 0, v (0, 0, b)T. The set t is defined as

(4.12) t {(X, A)" v3 > h(ul, u2), IO < rr/2, A e R}.

For the mapping f(X,A) f + B, we let K(s,t) be the Green’s function for the
problem -x"(s) g(s), 0 <_ s < 1, x(0) x(1) 0. Then (2.37), (2.38) is equivalent
to

f(X,A)(s) =_ X(s) K(s,t)F(X(t),X’(t),A)dt O.
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Clearly, f is of the form (3.5). Thus we are now ready to apply the theory of 3.
For X E B, we define RX by

(4.14) (RX)(s) (Xl,-x2,-z, 0,-,--)T(1 s).

Remark. The transformation law for z given in (4.14) is consistent with (4.5)
since RZ(s) R(x3(s) bs) Rx3(s) R(bs) b- x3(1 s) (b- b(1 s))
b(1 s) x3(1 s) -z(1 s).

We also have

(4.15)
d
d-(RX))(s) (-x’,x’2, z’, -0’, ’, ’)T(1 s)

THEOREM 4.1. The mapping (4.13) is equivarient under the representation of Z2
defined by R, i.e.,

(4.16) f(RX, A) Rf(X, A).

Proof. Observe that if the left sides of (2.33) are formed into a 6-vector (in the
order in which they appear), this 6-vector is equivarient under the mapping (4.14). It
follows that this equivariance is preserved in the transformation to (2.37). If we write

(4.17) x" + F(X, X’, o,

the transformed left-hand side of (4.17) must be of the form

(4.18) +((RX)" + f(RX, (RX)’, A)) 0.

But by (4.15) we see that the + sign must obtain in (4.18), so the operator On the left
side of (4.17) is equivariant under R. Therefore, so is f.

Thus our reduced problem consists of restricting the mapping (4.13) to functions
X E B satisfying RX X. Note that the full symmetry group for the problem is
O(2)

_
{T, RT :c e R(mod2r)}. We next turn to the linearization of the problem.

5. The linearized problem. In this section we will consider the lineariza-
tion of the problem, about the trivial solution. For this we set r (0, 0, bs)T +
(Xl,X2,x3)T,v (0,0, b)T + (Vl,V2,v3),u (Ul,U2,U3)T, and (0,,))T.
Linearization of (2.12) gives D I + cO1 + O(e2), where

o - )D1 0 -0- o o

while linearization of (2.13) gives

(5.2) Ul 0’, U2 ’, U3 )’.

Finally, linearization of (2.11) yields

(5.3) x=vl+b, x=v2-b0, x=v3.
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At the trivial solution, the matrix (2.34) is given by

(5.4) diag(a, a, m33, T, T, n33),

where a and T are the values of and (defined by (2.30)) evaluated at the trivial
solution, while m33 Om3/Ou3, n33 On3/Ov3 evaluated there. Of course all the
constants in (5.4) are positive. We now use (5.1)-(5.4) to linearize (2.33). The result
is

(5.5b)

(5.5d)

The boundary conditions are

Xl X2 X3 0 0 at 8 0 and s 1.

Our linearized problem is (5.5), (5.6). Of course it follows immediately from (5.5c),
(5.5f), and (5.6) that x3 0, _= 0. The remaining equations can be simplified. We
let

(5.7) a no Tb, X Xl + ix2, W 0 + i.

Then equations (5.5a), (5.5b), (5.5d), and (5.5f) can be written in complex form;

(5.8b)
TX" iaW’ i)X’ 0,
aW" + abW iaX’ O.

The boundary conditions become

(5.9) X(0) X(1) W(0)= W(1)= 0.

Our problem is to find the eigenvalues of (5.8), (5.9). The form (5.8) shows that
the dimension of the eigenspaces for (5.5), (5.6) must be even. This is because the
dimension of an eigenspace for (5.5), (5.6) is twice the dimension of the corresponding
eigenspace for (5.8), (5.9). In [7] we proved the existence of an infinite set of real
eigenvalues of this system under the assumption that

1
a < - (v/b2T2 + 42ra b-).

This assumption implies that, if we write our system in the form Au )Bu with
u in a suitable Hilbert space, the operator A is positive definite. In this paper we
show that we can, for the most part, dispense With the condition (5.10). Here we only
assume

(5.11) ab =fi n22a, n 1,.2, 3,
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(It is by no means clear that the result is false if (5.11) is violated. Of course, if (5.11)
is false but (5.10) holds, we can still appeal to the argument of [7].)

Under the assumption that (5.10) holds, we can solve (5.8b) for W in terms of
X:

(5.12) W iaK1 (X’),

where K1 is the Green’s operator for (5.8b) with the boundary conditions W(0)
W(1) 0. We next insert this into (5.8a) to obtain

(5.13) TX" + a2KI(X’)’ iAX’ O.

We let Ko be the Green’s operator which inverts the operator -X" with the boundary
conditions X(0) X(1) 0. Then (5.8), (5.9) is equivalent to

(5.14) X + a2Ko[K (X’)’] iAKo(X’) O.

We consider (5.14) on the space H[0, 1] equipped with the norm

Ilxll 2 Ix’(s)l 2 ds.

LEMMA 5.1. The mapping u Ko[Kl(u’)’] is self-adjoint and compact on Hl
Proof. Let (., .) denote the H1 inner product and (., .) denote the L2 inner prod-

uct, so that (u, v} (u’, v’). Then if u, v E C2 N H1, a dense subset of H1,
1
(u, K1 (v’)’)<u, Ko[Kl(v’)’]> (u’, Ko[K1 (v’)’]’) -(u", Ko[K1 (v’)’]) -_1 (u’ K1 (v’)’) _1 (K1 (u’) v’) __1(K (u’)’ v) (K1 (u’)’ Ko(v"))

T T T

-(Ko[gl(u’)’], v") (K0[K1 (u’)’]’, v’) <K0[gl (u’)], v}.

To prove compactness we need only count derivatives. We find that the mapping maps
H1 into H3, thus is compact on H.

LEMMA 5.2. The mapping u -- iKo(u’) is self-adjoint, compact and injective on

H.
Proof. Let u and v be as in the proof of Lemma 5.15. Then

<.. Ko(v’)> (.’. Ko(’)’) -(-". Ko(’)) -(Ko(-"). )’) _1(.. ,)
T

1
--(,, ) -(u,, 0(")) -(K0(’), ") -(0(’1’, v,) (o(’1, ).
T

The compactness and injectivity are clear.
From Lemmas 5.1 and 5.2 we see that (5.13) can be written in the form

(5.15) M(A)u O,

where M(A) is the linear pencil

(5.16) M(A) I- T- AH
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with T and H compact and self-adjoint and H injective with its set of eigenvalues
square summable. Of course, if I- T or H were positive definite, the spectral theory
of (5.15), (5.16) would be straightforward. (This is essentially the case considered in
[7].) The theory of such pencils is treated in [3, Chap. V]. This theory is a chapter in
the theory of operators on an inner product space with an indefinite inner product, in
particular a Pontryagin space.

It is shown in [3] that, without loss of generality, we may assume that I- T
is invertible. We then introduce a new (possibly indefinite) inner product on H1 by
setting

(5.17) {u, v} ((I T)-lu, v).

With respect to this inner product, the operator A H(I- T)- is self-adjoint and
(5.15) is equivalent to

(I- AA)v O, v (I- T)u.

If I-T and therefore (I-T)- are positive definite, then {u, u} is equivalent to (u, u
and the usual theory applies. In the case where this is not true, we have the following
result.

THEOREM 5.3 [3]. Under the above hypotheses, we can write

HI N (R) P,

where the following hold:
N and P are invariant subspaces with respect to the operator A.
N is finite dimensional.
The inner product {., .} is positive on P.
The operator Alp has a complete set of eigenvectors which correspond to

real eigenvalues and are orthogonal with respect to the inner product {., .}.
From this result, it follows immediately that (5.14) and hence (5.8), (5.9) have

infinitely many real eigenvalues.
In the next section, when we apply all of this to prove our main result, we will

need to verify condition (ii) of Theorem 3.1. We will now do this for the operator L,
the linearization of (4.13). It will then hold afortiori for the operator Lu which we
shall define in the next section.

So suppose we have

L()vo O, L’ ()vo L())vl, vo, vl e B, vo 0, - 0.

The components of v0 and vl are in H. Thus, if we retrace the steps which led to
(5.15), (5.16), we see that (5.19) is equivalent to

(I- T- AH)yo O, (I- T- )H)yo Hyo, yo O.

We take the inner product of the second equation of (5.20) with y0 and use the fact
that I- T- AH is self-adjoint. The result is (Hyo, y0} 0. But

1 1
(Hyo, yo) ((I T)yo, y0) {(I T)y0, (I T)y0} 0

by Theorem 5.3 since (I- T)yo E P. Thus we have proven the following.
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PROPOSITION 5.4. If v e N(L(A))\{0}, A 0, then L’(A)v
6. Global bifurcation. We are now ready to prove our main result by applying

Theorem 3.1. As our subgroup of 0(2), ?-/, we of course take Z2, whose representation
on B is given by {I, R}. Thus Bn consists of all elements of B which are invariant
under the mapping R defined by (4.14). We need only check that dim(L(A0)) 1,
where A0 is an eigenvalue of the linearized equation (5.8), (5.9). In terms of the
complex variables X and W, the 7-/-invariance condition is

(6.1) X(1 s) X(s), W(1 s) W(s).

Now it may happen that for certain values of the parameters in (5.8), the eigenspace
corresponding to an eigenvalue A0 has dimension greater that one (over the complex
numbers). However, generically this will not happen. (In principle, the eigenval-
ues can be found by algebraic means since (5.8) is a system of ordinary differential
equations with constant coefficients.) So let us suppose that A0 is an eigenvalue of
(5.8), (5.9) whose eigenspace is one dimensional over C (two dimensional over R). Let
{X(s), W(s)} be an eigenfunction of (5.8), (5.9). Then there is a complex constant C
such that

x(1 w(1

We must have [C 1. To see this, take absolute values in (6.2) and integrate from 0
to 1. Let

(6.3)

In order for {X1, W1 } to satisfy (6.1), we observe that

x (1  X(1 gCXl( ),

so that we must have

Hence {X1, W1} satisfies (6.1)if

_aC 1.

(6.4) a eel/2 where C ei.

We therefore have proven the following theorem.
THEOREM 6.1 (global bifurcation theorem). Suppose the parameters appearing

in (5.8) satisfy (5.10) or (5.11). Then the system (5.8), (5.9) has an infinite set of
real eigenvalues and, except for perhaps an exceptional set of these parameters, for
each of these eigenvalues ;k, the point (0, ) is a bifurcation point for the problem
(2.32), (2.33). Moreover, there is a global bifurcating branch 4n of solutions through
(0, ;) which are invariant under the mapping (4.14). @t is at least locally a curve and
satisfies the conclusion of Theorem 3.1 where is defined by (4.12).

Remarks.
1. It seems likely that (5.11) is needed only for the proof we give, and even if it is

violated, the conclusion of Theorem 6.1 remains valid. Likewise, if for some value
of the parameters (5.8), (5.9) does have an eigenvalue of complex multiplicity
greater than one, most of the eigenvalues should be simple.
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2. Since the Euler angles represent local coordinates on SO(3), it should be possible
to remove the restriction I1 < r/2 from the definition of t.

3. By the rotational invariance, if (X, A) E Cn, then (TAX, ) is a solution of the
problem. Thus the branch of solutions bifurcating from (0, ) is, in fact, n
R(mod2r).
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ON SEMILINEAR PROBLEMS WITH NONLINEARITIES
DEPENDING ONLY ON DERIVATIVES*

A. CAIADAt AND P. DR/iBEK:

Abstract. In this paper we deal with the semilinear boundary value problems (BVPs)
?"(t) nt- ,iU(t)nt-g(t,*Z’(t))"-- f(t), E I, (Bu)(t) --0, OI,

where I [0, r], B denotes either the Dirichlet or the Neumann or the periodic boundary conditions,
respectively, and A1 is the first eigenvalue of the corresponding linear problem

u"+Au(t)=0, I, (Bu)(t) O, E OI.

This kind of problem is very important in applications where the quantity g(t, u) may be regarded
as a nonlinear damping term. The nonlinear function g is supposed to be bounded and, in some
cases, satisfies additional differentiability assumptions and asymptotic conditions. We emphasize the
dependence of g on the derivative of the solution u(t) in order to show the qualitative difference
of this case and the "classical" Landesman-Lazer-type problem in which the nonlinearity g depends
only on the solution u(t).

Key words, semilinear boundary value problems, ordinary differential equations of second
order, solvability, nonlinear damping, bounded nonlinearities, alternative method
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1. Introduction. In this paper we study semilinear problems of the type

(1.1) (u’(t) + Alu(t) + g(t,(Bu)(t)u’(t)) == o,f(t)’t etoI,e I,

where I is a closed interval [0, r], B denotes either the Dirichlet boundary conditions

(1.2) u(0) u() 0,

or the Neumann boundary conditions

or the periodic boundary conditions

respectively, and A1 is the first eigenvalue of the eigenvalue problem

(1 5) ( u" q- Au(t) O, t e I,
=0, e

The main purpose of this work is to emphasize the qualitative difference between
our case and the "classical" Landesman-Lazer-type problem where the nonlinearity g
depends only on the solution u and not on its derivative u’. This qualitative difference
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will be shown by describing the range of the operator u"(t)+)illt(t +g(t, u’(t)) (under
(Bu)(t) O) and then comparing the obtained results with the corresponding ones
for the case g(t, u(t)). Our paper is not an exhaustive treatment of the problems of
this kind (in fact, after reading 4 of this paper, one would have the impression that
such a paper would be too long); we deal only with the case of ordinary differential
equations (ODEs) of the second order and with the boundary conditions of the type
(1.2)-(1.4). Note that the techniques used here are typical for ODEs. In the case
of Neumann or periodic boundary value problems (BVPs), respectively, we use the
shooting method (more precisely, the continuous dependence of the solution of an asso-
ciated initial-value problem on the parameter and on the initial conditions, and some
differentiability property of this dependencemsee, e.g., [7]). The Dirichlet problem
is studied by an alternative method combined with the method of lower and upper
solutions (which should also be applied in the case of partial differential equations
(PDEs)) but here we use essentially the shape of the first eigenfunction sin t and its
derivative cos t.

Many natural questions arise during the proofs; that is why we formulate some of
them explicitly in the last section of this paper.

It should be also mentioned here that this is not the first attempt to give some
satisfactory answer to the question of solvability of problems like (1.1). Motivated by
the celebrated papers [15] and [13], various authors dealt with semilinear problems
where the nonlinearity depends not only on the solution but also on the derivatives
(or on the gradient) of it. Let us mention, e.g., papers [3], [4], [9], [19], [6], and [5]. In
all these papers different variants of Landesman-Lazer conditions were considered in
order to give (at least) sufficient conditions for the solvability of investigated BVPs
(for analogous results concerning the nonlinearity g depending only on the solution
u we refer the reader to [8] and [10] and to the references therein). However, these
results were not completely satisfactory, because they do not allow one to deal with
the most simple case g g(u’) (i.e., g does not depend on t). Thus it was not clear
up to now how to characterize the solvability of the BVP

u" (t) + u(t) + g(u’ (t) f(t),
0

t e (0,

(see [3]) or related problems with boundary conditions (1.3) and (1.4), respectively.
Note that semilinear problems of the type (1.1) are very important in applica-

tions. Let us mention the problems arising in viscosity, nonlinear oscillations, electric
circuits, etc. The term g(ut) may be regarded as a nonlinear damping term in reso-
nance problems and it appears, e.g., in Rayleigh’s equation (which is closely connected
with a theory of oscillation of a violin string), in oscillations of a simple pendulum
under the action of viscous damping, in dry (or Coulomb) friction (which occurs when
the surfaces of two solids are in contact and in relative motion without lubrication),
and in some cases of van der Pol oscillators. (Refer to [11], [20]; [14], and [18] for
bibliography).

2. Preliminaries. Let us assume that g I R2 --+ R is a continuous function,
bounded by a constant M > 0:

(2.1)
for t E I and (r/, ) E p2.

[g(t, r/,)[ < M

Consider the BVP

(2.2) u"(t) + A u(t) + g(t, u(t), u’(t))= f(t), t e I,
=0, t e
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Let Ul ul(t) be the positive eigenfunction associated with A A1 of the eigen-
value problem (1.5), which satisfies f[ u(t)dt 1.

PROPOSITION 2.1. Let f
R, ] e C(I), f[ ](t)ul (t)dt O. Then, for any ] there exists a nonempty, connected,
and bounded set ] c R such that the BVP (2.2) has at least one solution u C2(I)
if and only if s

Sketch of the proof of Proposition 2.1. Let Z denote the Banach space Z C(I)
with the norm Ilzll0 maxtei Iz(t)l for any z e Z. By U we denote the Banach space
V {u e C(I): (Bu)(t)= O, t e OI} with the norm Ilull max{llull0 Ilu’ll0}. If
we defineL domL C U ZbydomL- {u U u C2(I)}, Lu=u"+Au
and Y U--. Z by (gu)(t) f(t)-g(t,u(t),u’(t)), for any u e U, and t e I,
then our problem (2.2) is equivalent to solving the operator equation Lu Nu. It is
well known (see, e.g., [10]) that there exist continuous projections P: U -- U and
Q Z Z such that Lu Nu is equivalent to the alternative system

u Pu K(I Q)Nu,

QNu O,

where K is the (continuous) inverse of the mapping L domLNKerP ImL KerQ.
Now, writing u e U in the form u(t) CUl(t) + v(t), c e a, f v(t)u (t) dt 0, the
BVP (2.2) is equivalent to the system

(2.3) v K(I Q)N(CUl(.) + v),

(2.4) QN(cul (.) + v) O.

Applying the Schauder fixed-point theorem we get that for any fixed c R there
exists at least one v U N C2(I) such that (2.3) holds (see, e.g., [10]).

Equation (2.4) is now

QN(cUl(.) + Vc) O,

which, taking into account the expression for Q (see again [10]), becomes

(2.4a) g(t, CUl (t) + Vc(t), Cti (t) 2t- Vc(t))ul (t) dt s.

Hence, for a given ] C(I), f (t)u (t) dt 0, the BVP (2.2) with f(t) su (t) +
f(t) has at least one solution if and only if s belongs to the range of the (multivalued,
in general) function Fi" R F](R),

(2.) r](c) (t,c(t) + v(t),ci(t) + v’(t))l(t) dt,

where v e {v e U Cl C(I) v is a solution of (2.a) for fixed c}. But @ rf(R) is

a connected set. In fact, let s* and s belong to @ and s* _< s. Then the BVP (2.2)
with f* S*l + f and f Sl + f has solutions * and , respectively. If we
consider now the BVP (2.2) with f =s + f, where s e [s*, s], then * is an upper
solution and is a lower solution to this problem. Due to a result in [1], there exists
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at least one solution, i.e., s belongs to ]. Moreoveri since g is bounded, the range
of F] is bounded.

Remark 2.1. The proof of Proposition 2.1 is based on the alternative method
(see, e.g., [10]) and on an interesting result related to the method of lower and upper
solutions due to the authors in [1]. In fact, it follows from [1] that the same.assertion
as in Proposition 2.1 holds true also for more general BVPs of the type

Au + Alu + g(x,u, Vu)= f(x) in t,
Bu 0 on

with g bounded.
Remark 2.2. Note that we have used the fact that existence for the BVP (2.2)

follows even if u* and u are not ordered (see [1]). The periodic problem is not
considered in [1] but the reasoning is the same.

Remark 2.3. Further information concerning the properties of the "solution set"
,7] from Proposition 2.1 will be obtained from the concrete form of the nonlinearity g

in next section. For this purpose, it is useful to define sl(f) inf ], s2(f) sup ].
Remark 2.4. We must also remark that the bounded interval ,7] may be open, or

closed, or open from below and closed from above (or vice versa) (see next section).
3. Main results. Let us point out that there are many results concerning the

structure of the range of a multivalued function F] in the case when nonlinearity g
does not depend on the derivative of the solution u. One of the most illustrative
characterizations of the range of F] is given by Landesman-Lazer-type conditions
formulated at first in [13]. This result has been generalized in many subsequent papers
(see the bibliographies in [10] and [8]). Many papers document that the structure of
the right-hand sides f for which the BVP (2.2) has at least one solution is closely
related to the shape of nonlinearity g and to its qualitative properties (the growth or
limits at infinity, smoothness, oscillatory properties, sign condition, etc.).

On the other hand there are few results for the case when nonlinearity g depends
also on the derivative. Only several attempts have been made to adopt Landesman-
Lazer-type conditions to guarantee the solvability of (2.2). However, in these cases
either the fact that g g(t, u, u’) depends also on u is essential (see, e.g., [9]), or
an additional monotonicity hypothesis on g is considered (see [19]), or a suitable
dependence of g on t E I is required (see, e.g., [3, 4]). To illustrate the latter case
let us consider the BVP (1.1), where A1 1 and B denotes the Dirichlet boundary
condition. Then the Landesman-Lazer-type conditions

(3.1)
f/2g(t,+oc)sint dt + f/2g(t,-oc)sint dt < f f(t)sint dt

< f/2 g(t, +c)sin t dt + f/2 g(t,-c) sin t dt

are sufficient for the solvability of (1.1) (see [3, 4]) (here we denote g(t, 4-oc)
lime_+ g(t,()). Observe that if, moreover,

<
<
> a(t, u’),
>

(0, Vu’ e a,
Vt E (/2, ), Vu’ d

Vt (r/2, r), Vu’ E ,
Vt e (0, r/2), Vu’ e

then the previous condition is not only sufficient but also necessary to the solv-
ability of (1.1). So that, if for f e C(I) we write f(t) sx//7sint +
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s f[ f(t)sin t dt, f[/(t) sin t dt 0, then (1.1) has solution if and only
if s e (Sl (/), 82 (])), where

sl (]) g(t, +c) sin t dt + g(t, -) sin t dt

s2(f) g(t, +cx) sin t dt + g(t, -cx) sin t dt
/2 Jo

(realize that now sl (]) and s2(]) are both independent of ]!), which shows that ff],
in Proposition 2.1, may be open.

However, it should be verified immediately that conditions (3.1) are empty in the
case g g(u’) (i.e., when g does not depend on t). Hence this approach does not
apply in this more simple case, which establishes a deep difference with respect to the
case where g depends only on u.

It appears that the question of solvability of the BVP

u"(t) + (t) + o(’(t))= I(t),
(Bu)(t) =o,

tI,
teOI

is qualitatively different from the case

u"(t) + Alu(t) + g(u(t))= f(t),
(Bu)(t) --0,

Since this difference depends essentially on the type of boundary conditions, we con-
sider separately B of the forms (1.2), (1.3), and (1.4).

3.1. The Dirichlet problem. Let us study the BVP

(3.2) "(t) + (t) + (’(t))= (t),
(o) () o.

t e (o, ),

We will consider nonlinear function g which will document the difference between the
situation considered here and in [13].

In this subsection we will write the right-hand side of the BVP (3.2) in the fol-
lowing form:

f(t) s sin t + ](t), s e P, ](t) sin t dt O.

THEOREM 3.1. Let g be a bounded and continuous real function of a real variable
satisfying g(+cx) g(-o) and g() < g(+c) for any e a. Then for any f e C(I),
f ](t)sint dt 0 there exists a real number g] < 2x/rg(+ such that the
Dirichlet BVP (3.2) has at least one solution u E C2(I) if and only if

[ )g], 2 g(+oc)
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Proof. The starting point is Proposition 2.1. First, note that now ul(t)
-/r sin t. Due to the considerations in the sketch of the proof of Proposition 2.1, it
is sufficient to show that for a given ] e C(I), f[ ](t)sin t dt 0 we have

The (possibly multivalued) function F] has the following form:

F](c) g(ccost + vc(t))sint dt,

where c E P and vc E C2(I) verify the equation (2.3). In particular, it follows from
the boundedness of g that there exists a constant D > 0 such that

(3.3) IIvllc1 <_ D

for any c e a (see, e.g., [101 for related estimates). Thus we have

ccost + v(t) --. =t=cx for t 0, and c

ccost + Vc(t = for t r and c =i=.

Applying the Lebesgue-dominated convergence theorem we obtain

(3.4) g(ccost + v’c(t))sint dt --, g(:t:) sint dt + g(Toc) sint dt
Jo 12

for c -- -t-cx). Due to g(+(x)) g(-x) we get

F](c)--. 2 g(+) for c +c.

The assumption g() < g(+), e P, and (3.3)yield

r](c) <

for any c E P. Let us denote

g]= inf F](c).cEIR

It is sufficient to prove that this infimum is achieved. We use the standard compactness
argument. Let {Sn} C F](R) be such that Sn --* g] and {cn} be the corresponding

minimizing sequence, i.e., un Cn-sint / vc (t) are the solutions of the BVP
(3.2) with the right-hand sides fn Snx/sin t + ](t). Then the sequence {Cn}
is bounded due to g() < g(+cx), e a, (3.3), and (3.4). Applying a standard
compactness argument usual in alternative methods (see, e.g., [10]), we show that
cn c (at least for a subsequence) and that u(t) cx/r sin t + v(t) is a solution
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of the BVP (3.2) with f(t) g]//rsint + ](t). Hence the infimum is achieved
in c. D

Remark 3.1. The necessary and sufficient condition from Theorem 3.1 can be
written in the following equivalent form:

f(t) sin t dt< 2g(+).

Note that the solvability is determined not only by the asymptotic behavior of
g but also that the behavior of g on bounded intervals in t is essential (a similar
result for the case where g depends only on u may be seen in [2], which shows that, in
some particular cases, the solvability of problem (3.2) may be like the case g g(u)).
Observe also that g] depends, in general, on f. The exact determination of g], for g

and f in general seems to be a difficult question.
Example 3.1. Let g() arctan for _> 0, g() g(-) for < 0. Then the

condition (3.5) has the form

g] <_ f(t) sin t dt < ,
where 0 _< g] < x/r for any ] e C(I), f[ ](t)sin t dt 0. Moreover, it should be

easily verified that g] 0 for ] =_ 0 in (0, r).
Remark 3.2. The assumptions on g from Theorem 3.1 imply that the "solution

set" ,] is an interval

Considering nonlinearity -g in Theorem 3.1, we obtain that ] is of the following
form:

(81 (]),

Last, it is clear that if g 0, then 81(]) 82(S) 0, and in this case ,7] is a
degenerated interval.

As we have pointed out in Theorem 3.1, the solvability 0f problem (3.2) may be,
in some particularcases, like the case g g(u). The following result (where g(-c) -g(+cx) is allowed) shows that in other situations the conditions for solvability of (3.2)
may be completely different with respect to the case g g(u) (see Proposition 6.4 in

THEOREM 3.2. Let g be a bounded and continuous function satisfying

o < +

Then, there exist two numbers gl

_
O, g2

_
V/(2/)(g(+)+ g(-)) such that the

BVP

u"(t) +u(t) + g(u’(t))=svf  sint t e

satisfies



550 A. CAIADA AND P. DR.BEK

(i) If s E [gl, g2), it has a solution.
(ii) If s [gl, 92], it has no solution.

Proof. As in Theorem 3.1, we have

Fo(c) (g(+ac) + g(-oc)) for c -t-oc.

Since g(0) 0, 0 E Fo(0), which proves that g infcet Fo(c) s(0) verifies
g _< 0 < V/(2/r)(g(+oc)+ g(-oo)). Again, as in Theorem 3.1, one may see that g is
achieved, i.e., gl Fo(R). So, the theorem is proved if we denote g2 supcet Fo(c)

n
The case where g O, g2 V/(2/r)(g(-f-) + g(-)) is possible (see Theorem

3.1 and Example 3.1).
3.2. The Neumann problem. Let us study the BVP

(3.6) { u"(t)u,(O)+ g(u’(t))= u’(r) 0.=f(t),
t e (0, r),

In this case 0 and u =_ 1/v/-. It should be mentioned here that the alternative
method does not provide enough information concerning the structure of the "solution
set" 7]. This is due to the fact that Ul is a constant function and consequently u 0,
which means that we cannot obtain information from the alternative equation (2.4).
Instead, we apply a change of variables and then a shooting method.

It is possible to observe immediately that the solution of the BVP (3.6) is invariant
under the translation v u / c, where c R is an arbitrary constant, i.e., u is the
solution of (3.6) if and only if v is the solution of (3.6 .Thus we can restrict ourselves
to the functions with mean value zero. Let us denote C(I) {u C(I); f u(t) dt
0}, 0, 1,2 with the norm I1" Ili, where I1" II0 means the uniform norm, Ilull
Ilullo + Ilu’llo, and Ilul12 Ilullo + Ilu’]]o + Ilu"ll0. For u E 2(i) let us introduce a new
function, w e C(I), by w(t) u’(t). Then the BVP (3.6) transforms to

+ t e (0, 0.

Let us split the right-hand side f C(I) as follows:

(3.8) f(t) s + ](t), s

Define the map Jz’C(I) x a x (I) --. C(I) x R in the following way:

Let us assume that g" t --. R satisfies

(3.9) Ig()l-< M

for any E R with some constant M .> 0.
THEOREM 3.3. Let g be a continuously differentiable function satisfying (3.9)

and let f(t)~in (3.6) be of the form (3.8). Then for any ]e(I) there exists precisely
one s s(f) such that (3.6) has a solution. In this case, the Neumann BVP (3.6)
has a family of solutions

+
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c E R is arbitrary, where

u(t) Ws(])(T)dT

and ws(]) is the unique solution of (3.7). Moreover, the map (I) -- , ] s(]) is

continuously differentiable and s(]) e I-M, M] for any ] e (I).
Proof. The idea of the proof consists in the application of the implicit function

theorem to 9v. Note that ’(w, s, f) o is equivalent to (3.7). Let us divide the proof
into two steps.

Step 1. For any ] e (7(I) there exist precisely one s s(]) e [-M,M] and
w ws(]) C1(I) such that

(3.10) ]) o.

Consider the initial-value problem (IVP)

(3.11) w’(t) s + ](t) g(w(t)), t e [0, -], w(O) O,

with parameter s R. The existence and uniqueness theorems and the continuous
dependence of the solution to the Ive (3.11) on the parameter s (see, e.g., [7]) yield
the following facts: the solution w ws of the IVP (3.11) is uniquely determined and
depends continuously on s R. In particular, (s) w() is well defined and it is
a continuous function. It follows from (3.11) that

w(t) st + f(T) dT- g(w(T)) dT, t e [o,

and hence we have

for s > M and (s) < 0 for s < -M,

due to (3.9). To prove Step 1 it is sufficient to show that ’(s) > 0 for any s R.
Really, then, this fact together with (3.12) and the continuity of imply the existence
of a unique s [-/,/] satisfying (s) ws(r) 0. Let us fix so E R. Since the
right-hand side of (3.11) is a continuously differentiable function of variables s and w,
we obtain (see [7]) that ws ws(t) is a continuously differentiable function of s and,
moreover, dw8(t) is the solution of the linear IVPd8 s--so

(3.13) z’(t) 1
z(O) =0.

Then

dw(t)
d8

8--80
jotef g’(Wso(a))da dT.e-- f g’(Wo(r))dr

In particular, it follows from here that dw()ls=od > 0, i.e., ’(s)l=o > 0. This
completes the proof of Step 1.

Step 2. The assumptions of the implicit function theorem are satisfied at any
point (w, s, f)satisfying (3.10).



552 A. CAIADA AND P. DR/BEK

Let (wo, so,]o)e CI(I) x a x 0(I) be a fixed point satisfying 3Z(wo, so,]o)= o.
Then the function and the partial Frchet differentials O:TZ/Ow, 0:TZ/Os, O:Tz/O] are
continuous in the neighborhood of (wo, so, fo), and we have

OF1
0:Tz Ow Os

Ow Os (o,o,/o)

( w(t)+ fg’(Wo(T))W(T)d’--st )
It follows from here that T" C (I) x [R C (I) [R is a continuous linear map. Let
(h, r) E Cl(I) x R. Then the equation T(w, s) (h, r)T is equivalent to the problem
of finding the solution of the IVP

(3.14) w’(t) + g’(wo(t))w(t) s + h’(t), w(O) h(O)

satisfying

(3.15) w(r) =r.

It is easy to see that the solution of (3.14) is of the form

/.t
fo + J0

/0
It follows from this expression that for any (h, r) C(I) t we can find a unique
s t and the solution w ws(t) of the IPV (3.14) satisfying (3.15). This proves the
surjectivity of T. It follows also from this explicit form of w that for h(t) O, t [0, r],
and r 0, the relations (3.14) and (3.15) are verified only by w(t) O, t [0, r],
and s 0. Thus T is injective. Applying the Banach .open mapping theorem (see,
e.g., [21]) we get that T- is continuous. Thus T C(I) I -- C(I) I is
an isomorphism. This completes the proof of Step 2.

The assertion of Theorem 3.3 follows immediately from Steps 1 and 2 and from
the considerations at the beginning of this subsection.

Remark 3.3. From the results of the previous two subsections we can assert that
the structure of the range of the operator u"(t)/ u(t)+g(u’(t))with the Dirichlet
boundary conditions is completely different from the case of the Neumann ones.

Remark 3.4. Also, the qualitative structure of the range of the operator u(t) +
g(u’(t)) under the Neumann boundary conditions is quite distinct from the case g
g(u) (see [17j), w_here, in many cases, infinitely many values of the parameter s exist
for a given f C(I), for which (3.6) has a solution.

3.3. The periodic problem. In this subsection we will study the BVP

(3.16) { u"(t)u(o; g(u’(t)) f(t), t E (O,r),
(), ’(0) ’().
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Again, the alternative method is not a useful tool to study this type of problem (realize
that, as.in the case of Neumann problems, the positive eigenfunction associated with
the first eigenvalue, ,1 0, is a constant function). We shall also apply a change
of variables and a shooting method. In any event, the periodic boundary conditions
make the problem a little more complicated than the Neumann ones, although the
final conclusion about the range of the corresponding operator will be the same.
By the same reasoning as in the previous subsection, we can restrict ourselves to
the functions u e 2(1), and by introducing the function w(t) u’(t), we transform
the BVP (3.16) to the problem

w’(t) + g(w(t)) f(t), te(0, r), w(0) w(r), w(t) dt O.

Using the same notation as in the previous subsection let us define the map

" CI(/) 11,2 d(I)---+cl(I) l:2

in the following way:

G(w, s, c, f) G2(w, s, c, f)
aa(w, s, c, f)

(w(t)--st--f2f(T)dT+fg(w(T))dr--c)f:w(r)W(T)_dT
THEOREM 3.4. Let g be a continuously differentiable function satisfying (3.9) and

let f(t) in (3.16) be of the form (3.8). Then for any f e (I) there exists precisely
one s s(f) such that (3.16) has a solution. In this case, the periodic BVP (3.16)
has a family of solutions uc(t) u(t) + c, c e R is arbitrary, where

u(t) ws(])(T)d"

and ws(]) is the unique solution of (3.17). Moreover, the map C(I) -- R, f -- s(f)
is continuously differentiable and s(f) e I-M, M] for any f e (I).

Proof. The idea is again to apply the implicit function theorem to G because
the equation G(w, s, , f) o is equivalent to (3.17).

Let us. consider the IVP

(3.18) w’(t) s + f(t) g(w(t)), t e [0, r], w(0) c,

with s and c as parameters. Integrating (3.18) we get the integral equation

(3.19) w(t) st + ](r) dr g(w(r)) dr + , t [0, r]

for all solutions of the IVP (3.18). On the other hand, every solution of (3.19) (be-
longing to CI(I)) is the solution of the IVP (3.18). Let w w,(t) be the solution
of the IVP (3.18) and define 2, (3 R2

--* R by

d2(s, c) W,.(T) dT (3(8, 0) ws,c(Tr) 0.
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The proof of the theorem follows in three steps.
Step 1. There exists at least one (s, a) E p2 such that

0.

Observe that (2 and (3 are C functions due to the continuous and differentiable
dependence of the 8olution of the IVP (3.18) on the parameter and on the initial
condition (see [7]). It follows~ from (3.9) and (3.19) that for any a E P and arbitrarily
small > 0 we have G3(-M , 0) 0 and G3(M + e, a) > 0; therefore, for any
a P the equation

has at least one solution s I-M, M]. As in the Neumann problem, one may prove
that

(3.21) OG3(s,a)
Os > 0 for any (s, a) R2

so that for any a P there exists precisely one s s(a) [-M, M] such that

3(8(O), ) 0 for any a e a.

Clearly the mapping a I-M, M] (a) s(a) is continuous.
On the other hand, for any fixed s t we get a constant c%, > 0 such that

2(s, -as, 0 and 2(s, as,i) O; therefore, for any s the equation

0

has at least one solution. Moreover the function vo(t) =- Ow,(t) I=o t e [0, r] is
the solution of the linear IVP

v’ (t) + g’(ws,o (t) )v(t) O, t e [0, r], v(0) 1

(see [7]), and it is easy to see that vo(t) > 0 for t [0, r]. In particular this implies
that

(3.22) OG2(s,a)
Oa > 0 for any (s, a) p2,

so that for any s l:t there exists a unique a a(s) such that

(2(s, a(s)) 0 for any s P.

Also, the mapping P P, 2(s) a(s) is continuous. Now, if we consider the con-
tinuous mapping 1 o 2 [-M,M] -- [-M,M], then there is at least one point
so E [-M,M] such that 1(2(s0))= so. Lastly, (so, 2(s0))satisfies (3.20).

Step 2. The point (s, a) with the property (3.20) is unique.
We argue by contradiction. Let (81,O1) and (82,02) be tWO points satisfy-

ing (3.20). We can assume, without loss of generality, that a > a2. Then due
to the fact that both ws,, 1, 2 must solve (3.17), we have to find two points
tx, t2 (0, 7r) such that

wl,l(ti w,2(ti), 1,2
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(t)w,(t) >w,
Then the first inequality implies s <_ s2 and the second one implies s >_ 82. Hence
s s2, but this contradicts Sl > s2 and (3.22).

Step 3. The assumptions of the implicit function theorem are satisfied at any
point (To, so, so, ]o) e C1(I) a2 ((I) satisfying

(wo, so, co, Io) o.

The function G and the partial Frchet differentials o-w o_.q o_q and o_ are continuousOs Oa’ Of
in the neighborhood of (To, so, so, ]o). We have

0
) (o,o,o,]o) (w(t)+fg’(wo@))w()dr-st-)v)(w, s, s) O(w, s, f w(T)_ sdT

Then S C(I) x R2 - Cl(/) x R2 is a continuous linear map. Let (h, , r) e
C1(I) R2. Then the equation ,(w, s, s) (h, , r)T is equivalent to the problem
of finding the solution of the IVP

(3.23)

satisfying

w’(t) + g’(wo(t))w(t) s + h’(t), w(O) s + h(O)

(3.24) W(T) dT , W() s + r.

Since the solution of the linear IVP (3.23) is of the explicit form

(t) [ + (0)]- fo ’(o()) + - o ’(o()), ]0 ,()

+ s.e- f g’(w(r)) dr. efog’ (To (r)) dr da,

we derive from here that
(i) for any (h, , r) e C(I) t2 we can find (s, s) e t2 and the solution w

ws,(t) of the IVP (3.23)satisfying (3.24);
(ii) for h(t) O, t e [0, ], r 0, the relations (3.23) and (3.24) are verified

only by w(t)= O, t e [0, r], and s s 0.
It follows from (i) that S is surjective and from (ii) that is injective. Then S is

an isomorphism due to the Banach open mapping theorem. This completes the proof
of Step 3 and also the proof of Theorem 3.4.

Remark 3.5. Taking into account the results obtained in previous subsections we
can affirm that the structure of the range of the operator u"(t)+u(t)+g(u’(t)) under
periodic boundary conditions is similar to the Neumann case and completely different
from the case of Dirichlet boundary conditions. Also, the qualitative structure of such
a range is quite distinct from the case g g(u) (see [16], [12]) where, in many cases,
infinitely many values of the parameter s exist for a given f C(I) for which (3.16)
has a solution.
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4. Concluding remarks, possible extensions, and generalizations.
Remark 4.1. Obviously, the results of Theorems 311-3.4 should be formulated

also for nonlinearities of the type g g(t, ut) (with g depending also on t E [0, r]/.
Remark 4.2. It follows from the results in 3 that the "solution set" ,] from

Proposition 2.1 has a structure that depends on the nonlinearity of g and on the type
of boundary conditions. In the case of a Dirichlet problem adding some appropriate
asymptotic conditions on g, it is, in general, an interval with a nonempty interior,
while in the case of a Neumann (or periodic) problem, it is a point without any
assumptions on the asymptotic behavior of g.

Remark 4.3. Let us point out that further assu_mptions on g may allow us to get
more information about the behavior of the maps f s(f), 1, 2 (e.g., the limits

] I1- 0 ] I1- etc.).
Remark 4.4. In the case of the Dirichlet BVP we restrict ourselves only to the case

of bounded nonlinearity with the finite limits in +/-x. We had several reasons to do
so:

(i) to avoid tedious calculations and to keep the idea clear,
(ii) to give not only sufficient but also necessary conditions for the solvability,
(iii) to emphasize the difference between the BVP (1.1) and the "classical" Landes-

man-Lazer-type problem with nonlinearity depending only on the solution u.
However, by using the Fatou lemma instead of the Lebesgue theorem in the proof

of Theorem 3.1 one can deal with more general nonlinearities (e.g., unbounded ones)
and formulate sufficient conditions for the solvability of the BVP (3.3) in terms of
liminf_.+ g() and limsup_.+ g(). It should also be mentioned that the alter-
native method does not provide enough information concerning the solvability of Neu-
mann and periodic problems. That is why we use a different approach based on the im-
plicit function theorem in these cases.

Remark 4.5. It should be interesting to study related problems for higher-order
equations or for the systems of equations. One can expect that similar results also hold
true in the case of boundary value problems for partial differential equations. How-
ever, a different approach should be applied because our method works only in the case
of ordinary differential equations. Another possible extension of our result is to con-
sider the solvability of the BVP (1.1) with As instead of A1, with general n_>l.

Acknowledgment. P. Drbek is grateful to Universidad Granada for the pleas-
ant hospitality during preparation of this paper.
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TRACKING INVARIANT MANIFOLDS UP TO EXPONENTIALLY
SMALL ERRORS*
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Abstract. This work establishes a new tool for proving the existence of multiple-pulse homo-
clinic orbits in perturbed Hamiltonian systems and general multidimensional singular-perturbation
problems. The center-stable and center-unstable manifolds of slow manifolds in these problems in-
tersect transversely at angles that are of the same order as the asymptotically small parameter in
the problem, which can be either an amplitude or a frequency. To deal with the difficulties asso-
ciated with small angles of intersection, we develop the exchange lemma with exponentially small
error (ELESE), which is the main technical result of this work. This lemma enables highly accurate
tracking of invariant manifolds while orbits on them spend long intervals of time near slow manifolds.

Key words, multiple-pulse heteroclinic orbits, singular perturbations, Fenichel coordinates,
tracking invariant manifolds, exchange lemma, Hamiltonian systems

AMS subject classifications. 58F30, 34C37, 70H05, 34E15

1. Introduction. Homoclinic orbits play central roles in many systems. For
reaction-diffusion systems and nerve impulse equations, for example, travelling waves
are realized as homoclinic orbits in associated systems of ordinary differential equa-
tions. In addition, for finite-dimensional systems, transverse homoclinic and hetero-
clinic orbits are the source of Smale horseshoe chaos in the ambient phase space.

In singularly perturbed systems with two asymptotically distinct time scales, one
can construct formal homoclinic orbits in the limit in which the small parameter
vanishes. These orbits are formal in that they consist of a finite number of fast 50(1)-
time-duration jumps, or "pulses," between manifolds of critical points interspersed

)-time-duration orbit segments on those manifolds, wherewith appropriate slow 50(7
0 < < 1. These jumps and orbit segments are obtained from the "fast" and "slow"
limiting version of the equations, respectively, which are individually easier to study
than the entire system. One of the major goals of geometric singular-perturbation
theory is to establish conditions under which such formally constructed singular ho-
moclinic and heteroclinic orbits perturb to real orbits for small, nonzero values of the
perturbation parameter.

The problem of constructing heteroclinic orbits in the context of singularly per-
turbed systems has been attacked with many techniques. Topological methods for
proving the existence of orbits homoclinic to fixed points near a singular limit were
pioneered in [5]. The results of [5] concerned the Fitzhugh-Nagumo and Hodgkin-
Huxley systems, in which the homoclinic orbit models the travelling nerve impulse.
Similar, but more analytic, methods were simultaneously developed in [17]. The
authors of [14] extended the topological methods to systems with more diffusing vari-
ables. A combination of analytic and other techniques have been developed by many
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authors for determining homoclinic orbits and related structures in singular systems;
among these authors’ works are [6]-[8], [9], [15], [19], [28], and [33]. We refer the
reader to [34] for a more complete list of references.

Recently, two of us established a technical tool known as the exchange lemma
for tracking invariant manifolds in singularly perturbed systems; see [21]. This work
was motivated by a large class of travelling-wave problems. The exchange lemma is
a general tool that makes it possible to demonstrate the existence of multiple-pulse
orbits homoclinic to fixed points even when these points lie on higher-dimensional
center manifolds. The pulses are the fast excursions the orbit makes going from a
neighborhood of one slow manifold to a neighborhood of another slow manifold. These
results are obtained under the assumption that certain transversality conditions hold
between the center-stable and center-unstable manifolds of the slow manifolds in the
space of the dependent variables and the wave speed. In particular, the relevant
intersections of the center-stable and center-unstable manifolds of the slow manifolds
occur at an angle of (.9(1).

There are many interesting classes of singularly perturbed systems, however, in
which the center-stable and center-unstable manifolds of invariant sets on the slow
manifolds coincide in the 0 limit of the equations, so that the leading O(1) term of
an expansion of the distance between the perturbed stable and unstable manifolds is
identically zero. These systems include perturbed Hamiltonian problems and coupled
travelling wave problems. A partial listing includes [1]-[4], [10]-[12], [16], [23]-[27],
and [29]-[32]. See also Chapter 4 of [35]. In these systems, the perturbations lift the
degeneracy at 0, and the stable and unstable manifolds intersect at an O() angle.

Our goal in this work is to produce a technique that is applicable to a wide range
of problems, such as those listed above. We call this technique the exchange lemma
with exponentially small error (henceforth referred to by the acronym ELESE). The
sharpness of the error estimates given by ELESE enables us to overcome the previously
unsurmounted difficulties associated with transverse intersections at angles of order
O() between the relevant center-stable and center-unstable manifolds. Moreover, our
technique also applies to problems in which the angle of intersection is order O()
for any a >_ 0.

As introduced in [20] and [21], the exchange lemma tracks invariant manifolds
while trajectories on them spend long intervals of time near slow manifolds. Consider
a trajectory which lies on a locally invariant manifold M and which spends an O(7)
interval of time in the neighborhood of a slow manifold S. In order for an orbit to
spend an O(7) amount of time in this neighborhood, it must be exponentially close
to the stable manifold of S on entry into the neighborhood and for at least half of the
time interval it is in the neighborhood. Now, if one assumes that M is transverse to
the stable manifold of S at the point where the orbit enters the neighborhood; then
the exchange lemma states that at the point where the orbit exits the neighborhood,
M is C-0() close to the unstable manifold of S restricted to an orbit segment on
S. In particular, at the exit point, the tangent hyperplane to M is O() close to the
space spanned by the unstable directions and by the one center direction tangent to
the restricted flow on the slow manifold.

As a consequence of the exchange lemma, we know that when the unstable mani-
fold of one slow manifold, restricted to a slow orbit segment, transversely intersects at
an angle of O(1) the stable manifold of another (not necessarily distinct) slow man-
ifold, then the tracked manifold M will also be transverse to the stable manifold of
this second slow manifold. In this sense, transversality information is exchanged. By
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induction, this process can be repeated finitely many times to study homoclinic orbits
with finitely many pulses. In particular, when orbits on the tracked manifold M leave
the neighborhood of the second slow manifold, M and its tangent plane are exponen-
tially close to the unstable manifold of that second slow manifold restricted to the
appropriate slow orbit segment. Thus, since the restricted unstable manifold trans-
versely intersects the stable manifold of a third slow manifold, the tracked manifold
will as well.

The exchange lemma enables one to capture the dynamics in all of the fast and
slow directions. By contrast, following the tangents to individual trajectories one loses
information about the dynamics in the center directions because all trajectories exit
the neighborhood of the slow manifold approximately tangent to the fast unstable
space.

By establishing ELESE, we improve on the result of the exchange lemma. In
particular, we demonstrate that, at the point at which the orbit on M exits the
neighborhood, M is actually C1- (9(e-) close to the unstable manifold of S re-
stricted to an orbit segment on S. Therefore, when the unstable manifold of one slow
manifold transversely intersects at an angle of (9(ea) the stable manifold of another
(not necessarily distinct) slow manifold for any a >_ 0, then the tracked manifold
M will also be transverse to the stable manifold of this second slow manifold. In
fact, ELESE is precisely the result needed to establish the existence of multipulse
orbits in the problems listed above. Finally, the sets to which these multipulse or-
bits are asymptotic can consist of unstable equilibria, periodic orbits, tori, or more
complicated invariant sets on the slow manifolds. They can also be an entire slow
manifold.

The improvements obtained here are made without requiring further assumptions
on the equations (see (1) below) under consideration. Rather, we take fuller advantage
of the structure in the normal form for the flow near a slow normally hyperbolic
invariant manifold. See equations (4) and the discussion in 2.

Finally, in order to illustrate the technique, we use ELESE to obtain the existence
of multiple-pulse heteroclinic orbits in a model problem which consists of a quasi-
periodic, slowly modulated, nonlinear pendulum. In particular, we demonstrate the
existence of orbits that (i) are forward and backward asymptotic to periodic orbits
on the two-dimensional tori that are the slow manifolds in this problem and (ii) have
finitely many pulses, or fast excursions from one slow torus to another. Furthermore,
in between each pair of adjacent excursions, these heteroclinic orbits spend long (9(7)
intervals of time near the slow torus.

The central feature of this model is that the stable and unstable manifolds of the
slow manifolds intersect transversely at an angle of (9(s). Hence, error estimates that
are sharper than those of existing work are necessary in order to obtain useful bounds
from tracking the invariant manifolds during their long passages near slow. manifolds.
The exponentially small error estimates of ELESE are more than sharp enough.

Geometric simplicity guided the construction of this model. In particular, the
number of dimensions and the qualitative features have been kept to a minimum.
The model is intended only to elucidate the essential ideas. We refer the reader to
the references cited above for several important problems exhibiting O() and O(2)
transversality in which ELESE can be used.

This paper is organized as follows. In 2, we state the equations under study and
their normal forms near the slow manifolds. In 3, we establish a CO version of the
main result. Then, using differential forms, we prove the full ELESE in 4. Finally,
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the example is discussed in 5.
2. Fenichel coordinates. We study systems with two time (or length) scales

for which the governing equations have the form

x’ f(x, y, ),

(1) y’ eg(x, y, e),

where x E ]R" and y E IRn with n > 0 and f and g are smooth.
The unperturbed equations, (1) with e 0, are autonomous and are parametrized

by the y variables. The relation f(x, y, 0) 0 determines a manifold of equilibria.
For this work, we are interested in the case in which some subset of this manifold is
normally hyperbolic; i.e., we assume that there exists a subset So of the manifold of
equilibria such that the eigenvalues of Dxf(p, 0) have nonzero real parts for all points
p So. The reason for this choice is that a normally hyperbolic manifold So persists
as an invariant manifold Se in the full system (1) along with its local stable and
unstable manifolds for 0 < << 1. See [13] and [18]. Furthermore, Se lies O() close
to So and may be expressed as a graph over So when the eigenvalues of Dxf(p, 0) are
uniformly bounded away from zero for all p So. In addition, the perturbed local
stable and unstable manifolds of Se lie O() close to their unperturbed counterparts.
Finally, Fenichel theory states that the vector field restricted to St has magnitude
O(e), which leads to the label slow manifold for S.

We briefly discuss the structure of the unperturbed vector field near S0. For a
fixed y, the local stable and unstable manifolds of So give rise to a new coordinate
system in which the dynamics near So are best studied. Let a ]pk and b IRg,
where k + g m, be a new coordinate system such that the local stable and unstable
manifolds of So are the axes a 0 and b 0, respectively. Then the equations are

a’ A(a, b, y)a,

b’ r(a, b, y)b,

(2) y’ O,

where A and F are matrix-valued functions. The normal hyperbolicity of So implies
that for any A > 0 sufficiently small, there are constants A0 and 70 such that for any
eigenvalue of A(0, 0, y) or any eigenvalue - of F(0, 0, y), we have Re > A0 > 0
and Re < 70 < 0 for all points in the box B _= {(a, b,y)l]a[, [b] _< A}, where the y
variables lie in a compact subset of IPn.

The persistence theory cited above gives an explicit constructon of the perturbed
counterpart of this local coordinate system. In particular, there exist (a, b, y) coordi-
nates, which have been dubbed Fenichel coordinates (see [21]) such that the perturbed
local stable and unstable manifolds correspond to the manifolds a 0 and b 0, re-
spectively. Furthermore, these manifolds are () close, as functions of the variables
(x,y,), to the corresponding unperturbed manifolds. Using equations (ll.6)(a) and
(ll.7)(a) from Theorem 11.1 of [13], the equations near Se may be written as

a’ A(a, b, y, )a,

b’ r(a, b, y, )b,

(3) y’ m(y, ) + Ch(a, b, y, )ab,
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where h(a, b, y, s) is a rank-three tensor. In component notation, the third equation
kis y’ m(y, ) + -m=l ’-j=l hjmajbm.

The terms a and b factor out in the slow (y) equations in (3) because the coor-
dinate system is determined by the perturbed center manifold and its fast stable and
unstable foliations. Furthermore, it is precisely this factoring that makes the tracking
with exponentially small error possible, since the product of these two terms remains
exponentially small during an orbit’s (9() long time of passage near a slow manifold.

Finally, we make a technical refinement of (3). If one first rectifies ,e in (1)
(taking into account that this may have to be done using more than one chart) so
that the slow flow of (1) is in the Yl direction, as is done in [21], then the normal form
has the following useful structure:

(4)

a’ A(a, b, y, t)a,

b’ r(a, b, y, s)b,

y’ (U + h(a, b, y, )ab),

where U (1, 0,..., 0). This is the normal form we shall use throughout the paper.
Remark 1. In October 1992, Fenichel pointed out to one of us (C. Jones) that the

CO and C ’ELESE of 3 and 4 also hold when the factor of in front of the second
term of the y equations in (3) is not present.

Remark 2. The technical refinement used in (4) is made without loss of generality.
The flow on Se can, and in general does, exhibit nontrivial dynamics, including fixed
points, periodic orbits, homoclinic orbits, etc.

3. The Co ELESE. In this section, we establish the Co version of the main
result, namely that, in the coordinates of (4), the b coordinates are exponentially
close in to b 0 and that the y (i > 0) coOrdinates are exponentially close in to
the values of y they have on entry into B.

PROPOSITION 3.1. Let q be a point in M {[b A} whose trajectory exits
i (lal A} at Ct after a time T that is O(). Let V be a neighborhood of q in M.
Then for V sufficiently small, the image of V under the time T map is O(e- Co

close for some c > 0 to (Ibl O, yi yi(O) O, > 1}, where yi(O) denotes the value

of yi at q.
Remark. O() C-closeness is established in Corollary 3.1 of [21]. See also [6] and

[8]. Here we are able to refine the estimate since both an a and a b factor out in the
normal form (4).

Before proving this proposition, we state a technical result which gives bounds on
the rate of growth and decay of the variables a and b, respectively, while the orbit
is in B. Most importantly, the proposition shows that the integral of the product
of lal and Ibl over any subinterval of the time a trajectory is in B is exponentially
small. This proof uses the fact that solutions spending long times in B must have
exponentially small a components for at least the first half of the subinterval and
exponentially small b components for at least the second half of the subinterval, so
that the product of a and b is exponentiaily small during the orbits entire stay in B.

LEMMA 3.1. For sufficiently small, there exist positive constants Ca, Cb, c, and
K such that, for s <_ t,

(i) [b(t)[ _< clb(s)le(-),
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(ii) la(t)l _> Cala(8)leA(t-s),

(iii) la()l[b()[d _< Ke(s-)

independently of , where K 2A2 max(__/__,l c___)lol and c 1/2 min(A0, I’01), so long
as the trajectory stays in B.

Remark. Parts (i) and (ii) of this lemma are identical to parts (i) and (ii) of
Proposition 3.1 in [21], and so we refer the reader there for their proofs. We prove
part (iii) here.

Proof of part (iii). Split the integral on the left hand side of (iii) in two pieces: (I)
from s to s-2t and (II) from to t. For (I), we first rewrite part (ii) of the lemma
as

(5) la(ff)[ < la(t)leO(_t)
Ca

where s < _< t. Then, using (5), Ib()l <_ A, and la(t)l _< A, we get

la(C)llb(C)ldC
A2 (-t) [1 e(-t)eO(-t)d c---e ].

Also, since we have Ib()l _< clb(s)leo(-) from using (i) with s _< <_ t, the
second part of the integral (II) yields

cA2 (t-) [1 e(t-(7)

Putting (6) and (7) together proves the lemma.
Remark. As a consequence of (5), the fact that lal is bounded by A at time t

implies that lal is exponentially small at least in the first half of the interval. Similarly,
the fact that Ib()l is bounded by A at time s implies that Ibl is exponentially small
during at least the second half of the time interval.

This technical lemma leads to the following proof.
Proof of Proposition 3.1. The variable b(t) is exponentially small at c] by part (i)

of Lemma 3.1 because the trajectory spends an 0(7 amount of time in B. Hence,
we only need to consider Yi for > 1. From (4), we know

(8) Yi’ ehi(a, b, y, s)ab.

Thus,

yi’dT e h(a, b, y, s)abdff,

(9) lye(t) y(O)l < di lal]b]d,

where di is a bound on [hi]. Finally, because t O(), part (iii) of Lemma 3.1 implies
that the right-hand side of (9) is O(e-) as -. 0 for some c > 0, which establishes
the proposition.
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4. The C1 ELESE. In order to get the C version of the main result, which we
present in this section, we follow [21] and study the vector field induced on the (k+ 1)-
dimensional tangent planes of invariant manifolds using the (k + 1)-forms which are
dual to them. By tracking (k / 1)-dimensional manifolds and their tangent planes,
we capture the dynamics in all directions, including all of the center directions.

We are interested in the (k + 1)-forms

Pa. a+ 6o’1 A... A

where the aj range over the variables a, b, and y and where 6a is the 1-form dual
to the coordinate a. Each (k + 1)-form associates with the (k + 1)-dimensional plane
Q a number that is proportional to the volume of the projection of a unit cube of Q
onto the coordinate plane of the k + 1 coordinates specified by P. We assume that
the a are ordered in P according to the rule

al < a2 <... < ak < bl <... < be < yl <"" < Yn,

and we work with the projectivized version of the (k + 1)-forms

pff PC1 ,ffk+l
l’"’(Yk+l Pal,a2,...,ak,yl

We are now in a position to state the main result.
ELESE. Let M be a (k + 1)-dimensional invariant manifold. Assume that pe

M N {Ibl A} intersects {a 0} transversely. Let q e pe be a point whose trajectory
sufficiently small, theexits from { [a A} at (t after a time t (9(). Then, for

manifold M is (9(e- )-C close for some c > 0 to {b 0, y- y(0)
Remark. The conclusion of the ELESE may be restated as: Upon exiting the

box B at the point c/, the projectivized (k + 1)-form/5, + is (9(e-) for some
constant c > 0 and for all (a,...,ak+) (a,...,ak, y).

Before proving ELESE, we develop the working estimates that we will need for
the differential forms. After these are established, the proof of ELESE requires three
short steps.

Let z _= (a, b, y). Let A and Fy denote the i, jth entries of A and F, resp.,
and let A and F denote their ith rows. In addition, let Lj =_ VzAj. 5z and

G VzFj. 6z, where for each i,j pair, VzAij q ]1:kWgWn and
Finally, let L (LI,..., L) and G (GI,..., G).

The development of the working estimates begins with the equations of variation
of (4):

(Sa)’ A 6a + a. L,

(Sb)’ F 5b + b. Gi,

(10)

These equations of variation readily yield the evolution equations for each of the
possible (k + 1)-forms/5 a+. We split the forms into two blocks: block I consists

of the forms Zi =-. ay for all i, and block II contains all of the others, which
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we denote X. From the definition of Zi and the product rule for differentiation, we
have

k

Zi’ E hai A A (haj)’ A A 5Yi + hal A A 5ak A (hYi)’.
j--1

Then, using the fact that the wedge product of a 1-form by itself vanishes, specifically
that

al A A ak A himajbm 0 for all i,
m=l

we obtain

(li)

where

z’ (WrA) Z + (Z, X, t),

(12)

and

, g(z, X, t) + a(Z, X, t) + (X, t)

k

F Sal A,.. A (a. Lj) A... A 5y,
j-1

m-1 j-1

(13)
re=l j=l

We have kept the dependence of ?li on a, b, and y implicit. Clearly, the inhomoge-
neous term 1 vanishes for each at a 0. In addition, the terms in Fi from block
I involve only Z and are O(lal) and those in F from block II are also O(lal). All of
the terms in G{ are O(slallbl). Finally, the terms in Q can only be in block II, and
they are O(slal). Thus, we have proved the following lemma.

LEMMA 4.1.

IF(, x, t)l < CFIaI(II + IXl),

IC(Z,X, t)l _< Clallbl(IZl + IXl),

(14) IQ(x, t)l < CelallXl
for some CF, Ca, CQ < oo and for each i.

Remark. The factor of Ibl in the bound on Gi plays a vital role in the working
estimates of Lemma 4.3.

In a similar fashion, one derives the evolution equation for the (k + 1)-forms X:

(i5) X’ BX + r2(Z, X, t),
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where

(16) r]2 (Z, X, t) E(X, t) + H(Z, X, t)

and where B B(a, b, y, s) is a matrix that satisfies

(17) Ilexp (ot(B- TrA)d} < 2tT/e-(t-8)

for some M _> 1 and # > 0. The terms included in E come from those (k / 1)-
forms that have the a. Li term in them from a factor with (hai)’ and from those that

khave the s ,-1 j-1 hj,ajhbm terms in them from a factor with (hy)’. The term
H(Z, X, t) consts o-the remaining terms, each of which has a a factor of Ib[ in them.
Therefore, recalling that sic _< cA, we have established the following lemma.

LEMMA 4.2.

IE(X,t)l < CEIalIXI,

(18) IH(Z, X, t)l <_ CHIbl (IZl +

for some CE, CH
Next, we use the bounds from Lemmas 4.1 and 4.2 to derive the working estimates.

x and 2 _= . We show the following.Let -- 27,
LEMMA 4.3. There exist constants C, K > 0 such that the following hold:

(19)

(20) < {2Clal + a(t)} 12l + a(t)

where

(21)

and

(22)

where

1 -- -t- Clal I1 + CA,

(23) 2 -= K]bl [(1 + slallJ[I)I1 +1+ 2slallJ[I]
and # and M are as stated in (17).

Proof of Lemma 4.3. The proof of this lemma is virtually identical to that of
Lemma 3.3 in [21]. We state only the differences. In (19) and (21), there are factors
of ]bl in front of the ]] terms due to the bound on IGi] given by (14) that are not
present in (3.11) and (3.12) of [21]. In addition, there is an overall factor of Ibl in
front of the first term in 2 in (23), due to the sharper bound on H given by (18), and
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in the proof their 3 is replaced by 3 C*lal(1 + ]1) + C*]allbl(1 +
for some constant C*.

The last preliminary result we shall need is an estimate of the initial conditions.
LEMMA 4.4 There exists a constant K1 > 0 such that IZll > Kle+,

and I,1 are exponentially small at TqM
Proof of Lemma 4.4. Since IX[ < 1 by the choice of normalization, the fact that

the tracked manifold M and the stable manifold {a 0} intersect transversely at an
angle of (.9(e) implies that there exists a constant K such that [Z > Klea+l at

TaM. Therefore, using IXl < 1, and the definition of ) we also have
at TqM.

To establish the third result, we apply the argument given in the proof of Lemma
3.2 in [21]. We observe also that here the situation is even better in that the
component of the tangent vector is (.9(lallbl) by (4) for each i > 1.

This concludes the proof of Lemma 4.4.
We finish the proof of the C ELESE in three steps. Let T O(e1-) denote the

time required for the trajectory to pass through B from q to . We assume t 0
corresponds to the time at which the trajectory in question is at the point q.

7remark. Although the same in spirit as those in [21], all three steps involve
different estimates. The differences can be traced back to the term b that is factored
out in the normal form (4) and to the fact that our technique is designed to apply to
any problem in which p and {a 0} intersect transversely at an angle of (.9(e) for
any a _> 0.

Step I. Let 0 < T < T be any time of size O() such that [a[ is exponentially
small for t _< T1. Then at t T, 15[[ (.9( + A) and [[ is exponentially small.

Proof of Step I. In Lemma 4.4, we showed that since the angle of intersection of
p and {a 0} is (9(), with a >_ 0, at t 0, the quantities I1[ and [[ satisfy the

Kbounds [] _< and [[ _< 1 at t 0. Thus, since lal is exponentially small at
t 0, it follows that 1 -# + O(A) + exp small and/2 _< 2KA + exp small at
t 0. Then, as long as [[ _< 1,

(24) 1 2’

and

(25) 2 _< 3KA,

(22)-(25) imply

(26) il< l{e_e2t. 1 6KA}R+I +

Hence the a priori estimate 15[I _< continues to hold.

Next, we observe that since I1 is exponentially small at q by Lemma 4.4, not
only does the a priori bound I1 _< 1 continue to hold for all t up to and including
T1, but I1 is exponentially small at t T1. This follows immediately from applying
Gronwall’s inequality to (20) and recalling that lal is exponentially small for t _< T
so that a(t) + 2C[a[ _< K2e- =_ :

12(t)l <_ I2i(O)let + (et- 1).
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Finally, (26) implies that ]l O( + A) at t T1.
Step II. Let T1 < T2 < T be any time of size O(7) such that T- T2 O(}) and

lal and Ibl are exponentially small for T1 E t <_ T2. Then at t T2, I1 and I1 are
exponentially small.

Proof of Step II. The result of Step I implies that the a priori bounds I1 <_
and Iil _< 1 hold at t T. We now establish these a priori bounds up to T2.

From the definition of f2 in (23) and the fact that ]b is exponentially small, we
know

(27) 2 _< Kae-.

Hence, as long as [1 <- 1, the estimate (27) on 2 holds up to T2, implying that
I] <_ at T2. Also, while I11 _< continues to hold in this step, we know that

];I -< 1. This establishes the a priori bounds for the entire step.
Next, using (27) and substituting t T2 in the inequality (22), we obtain that

I11 is exponentially small at t T2, which is as desired, since T2 is 0(7 ). Finally,
I;I is also exponentially small at t T2, since application of Gronwall’s inequality to

(20) (in a fashion similar to the application of Gronwall’s inequality in Step I) yields
IZi(t)l <_ I(O)let +(et- 1), where

(t) + 2Clal _< gee- .
Step III. At t= T, 111 and I1 are exponentially small.
Prool ol Step III. During this final step, Ibl is exponentially small while ]al <

O(A). We first establish the a priori bounds Il _< 1 and IXl _< g3e-. From Step
II, we know that these bounds are more than satisfied at t T2.

If I1 _< g3e- for some K3 and c3, then the bound <_ -2 and Lemma 4.3
imply

(2s) I:l <_ 1 [e-(t-r)lX(T2)] + exp small].
Hence, for K3e- > hT/ (exp small), the a priori bound continues to hold as long as

Next, we verify that I1 <_ 1 holds throughout this step. Recalling (21),

we know that for I;I _< 1 and Il exponentially small,

a(t) _< ClalK5e-

because Ibl is exponentially small. Therefore, (20)implies

(29) 12i(t)l <_ CI2i(T2)[ + e (exp small) ds,

which guarantees I;I <_ 1. Note that in deriving this bound, we took advantage of the
fact that the integrals of lal stay finite as e --, O.
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Observing that the first term on the right-hand side of (29) is exponentially small
and that the second term is also exponentially small at t T, we have thus concluded
the proof of the C ELESE.

Remark 1. T. Kaper has shown that ELESE can be extended to manifolds M of
dimension k + 2. After that work was completed, the generalization to the (k + a)-
dimensional case, with 1 _< a _< n, was carried out by S. K. Tin using our methods.
Furthermore, he has removed the rectification requirement by working in Pliicker
coordinates.

Remark 2. In the applications listed in the introduction, the slow manifolds have
two or more dimensions and the flows on them range from simple flows with fixed
points to complex flows exhibiting resonance bands. Also, these systems depend on
parameters, such as the speed of the travelling wave or the amplitude of forcing or
damping. See [23] in particular for an example of two coupled nonlinear oscillators in
which there is a two-dimensional slow manifold with a resonance band on it and in
which the k - 2 version of ELESE is used to establish the existence of eight different
types of multipulse orbits heteroclinic to fixed points and periodic orbits, including
multipulse Silnikov orbits.

5. Multipulse orbits heteroclinic to periodic orbits: An application of
ELESE. We present a model problem, consisting of a quasiperiodically modulated
pendulum, to illustrate how ELESE with k 1 can be applied. In particular, we
prove the existence of multipulse orbits heteroclinic to periodic orbits. Recall that
pulses are defined to be those segments of an orbit which are the fast excursions from
one slow manifold to another that the orbit makes in between the long intervals of
time it spends near the slow manifolds.

The equations of motion are

(30a) i + A(’I, T2; W, l, 2) sin q O,

(30b) e,

(30c) 2 e sin(2rT2),

where q e IR, A(T1,T2;021,l,2) 1+ sin(27W1T1)+2sin(2rT2) with 021 > 1 and
irrational, and 1, f12 > 0 such that 0 < fll + f12 < 1, (T1, T2) E T2, and 0 < << 1.

When 0, the parameters T and T2 are frozen, and the system reduces to that
of the classical nonlinear pendulum with Hamiltonian

p2
(31) H(q,p, T, T2)

2
A(T1, T2; Wl, ,/2) cosq A(T, T2; W, 21, 2).

The term --A(T.,T2;W1,31,2), independent of q and p, is included in the Hamilto-
nian H so that H vanishes identically at the fixed points H(:I:,O, TI,T2) =-- 0 for
all (T, T2) E T2. Of course, on the cylinder S ]R, these two saddle fixed points
coincide, but they are distinct on the universal cover IR2, which is where we shall
study the global geometry.

In the 0 phase space, there exists a pair of normally hyperbolic invariant
two-tori, which are the Cartesian products of the saddle fixed points (q :t:r, p 0)
with the two-torus T2:

(32a) S (-r, 0) T2,



570 C. JONES, T. KAPER, AND N. KOPELL

0) T

Moreover, every point on S0 is connected by two heteroclinic orbits

(33a) up upF, (qP (t), Ph (t), T1, T2),

(33b) _down]-adown (qOWn(t),Ph (t), T T2)T2

to the point on So2 which has the same T1 and T2 coordinates. The orbit up (resp.,TI T2

rdwn is asymptotic to the point (-r, 0, T1 T2) aS t --+ --OO (resp., t - +) and to
7"1 Y2

the point (Tr, 0, ’1, T2) as t -+ oc (resp., t --+ --). The normally hyperbolic invariant
manifolds S and S02 have smooth three-dimensional stable and unstable manifolds,
Ws(S) and Wv(S); Ws(S) and Wv(S), respectively. One branch of each of
Wv(S) and Ws(S) and one branch of each of wU(s) and Ws(S)coincide in the
homoclinic manifolds

(34a) Fup Wv(S ’Ws(S) =_ U FuP,7".
7"1,7"2 ET

(34b) =,ow WU(S) ’WS(S) U Fdwn
--T1 T

7" ,7"2 ET

Now, for 0 < e << 1, the persistence theory for normally hyperbolic invariant
manifolds presented in [13] guarantees that there exist manifolds S and S2 that
are differentiably d0(e) close to S and S02. In fact, for (30), we have S _: S and
S2 _= S02 since the perturbation in (30a) was chosen to be in the form of slow amplitude
modulation.

The slow flow on S is illustrated in Fig. 1. On S, there are two periodic orbits

(35 ) { 1,la (T1, mod 1

(35b) lr {(T1 0 mod 1},

which are attracting and repelling, respectively, for the system (30b) and (30c). The
slow flow on S2 is the same, and we denote its attracting and repelling periodic orbits
by 9TM and 72r, respectively.

The persistent hyperbolic manifolds S and S2 have smooth local stable and un-
stable manifolds--WloSc(Sl), and WloVc(S); W1Soc(S2), and WloUc(S2)--which are
close to their unperturbed counterparts. However, the perturbed global stable and
unstable manifolds no longer coincide. Instead, they intersect transversely along two-
dimensional surfaces spanned by heteroclinic orbits connecting one of the slow mani-
folds to the other. These heteroclinic orbits have only one pulse and may be detected
by the adiabatic Melnikov theory; see [31], [30], and [22]. We briefly review the rele-
vant one-pulse results, since we need to know some details about the perturbed global
geometry for our construction of multipulse heteroclinic orbits. We refer the reader
to [35] for new results and a complete exposition of Melnikov theory in perturbed
Hamiltonian systems.
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FIG. 1. The phase portrait of the slow flow on the perturbed slow manifold sic in the example
o 5.

We work only with the upper pair of manifolds WU (Sl) and wS(s2). The work
and result for the lower pair are almost identical. The Melnikov function is

(36) up T2)dtM(T1,T2;Wl,tI,t2) (V(.,,..)H" g) (qP(t),ph (t),T1,

where g is the two-component vector consisting of the coefficients on the (9(s) terms
in the vector field (30b) and (30c). Melnikov theory implies that if there exists a point
(1, 2) e T2 and parameter values (1,1,2) such that

(37a) M(l, 2; 1, D1,/2) 0,

(37b) V(I,.)M(, 2; 1, 1, 2) has rank 1,

then, for sufficiently small s, Wv($1) intersects WS S2() in a two-dimensional surface
near (1, 2;,, 2). Furthermore, this two-dimensional intersection surface varies
smoothly with s for 0 < s << 1, and at every point on it, the intersection of Wv($1)
and WS S2

e is transverse, with the angle between the tangent planes being (.9(s). See
[35, Thm. 4.1.14], where our example corresponds to the case of m 2, n 1, and
l=O.

For (30), an explicit computation of (36) yields

(38)

M(7"1, T2; C01, 1, 2) --Tr [21COl e0S(271"C01T1) -- 2 sin(nTlT2)] (1 +cos(qP(t))dt.

Since the improper integral in (38) is a finite positive number, one readily verifies that,
for fixed wl, fl, and 2, the Melnikov function M has two smooth curves, UI and r2,
of simple zeroes on T2. For 2 sufficiently small, the curves 1 and 12 stay bounded
away from each other. The curve r11 passes through the points (T 4_,T21 0),
T1 T2 1/4) (T1 T2 1/2) and (T T2 ) Similarly, the curve

2 passes through the points (T1 w, T23 0), (T1 -w’3 T2 1/4), (T1 ’w’3 T2

1/2) 41, T2 -). The zero set on S is shown schematically in Fig. 2.



572 C. JONES, T. KAPER, AND N. KOPELL

"172

FIo. 2. The zero set of the Melinkov function (38) on S.

Hence, Melnikov theory implies that there exist two families of surviving one-pulse
heteroclinic orbits. Each orbit is asymptotic to S as t --* -oo and to S2 as t --*

The Melnikov function for the lower separatrix Fdwn is identical to the Melnikov--Y Y
function given by (38) for the upper separatrix since the integral in (38) with t/h-dwn (t)

upreplacing qh (t) is the same. Thus, WU(s2) and WS(S) also intersect transversely
at an angle of 69(s) near the simple zeroes of the Melnikov function (38), and there
are two families of one-pulse heteroclinic orbits that asymptote to S2 as t --, -oc and

toS as t --, cx.
We observe that the curves /11 and 12 transversely intersect each of the periodic

orbits .la,.lr,.2a, and q/2r. Therefore, among the surviving orbits in the above-
mentioned families, there exist eight distinguished one-pulse orbits that are actually
heteroclinic to the periodic orbits .yl and q/2a; and "yr and .y2. Each of these is the
unique orbit close on finite-time intervals to one of the eight distinguished unperturbed
heteroclinic orbits

(39a) F Fup 1, F2 Fup 1,
4w 4to

(39b) F3 FUp pa pup
a--y ,0 a--i" ,0

and F5 Fs, which are defined as F F4 are, respectively, but with the superscript
down replacing up. These are distinguished because their takeoff and touchdown
points (limits as t --, q=c) are the eight points on S and S in which the zero curves

711 and ?22 intersect the periodic orbits .a, /, 72a, and /2r.
This concludes our brief review of the one-pulse results.
We now turn our attention to multipulse orbits and establish the existence of

many heteroclinic orbits connecting the periodic orbits -yla, .ylr, ,),2a, and /2 to each
other which have finitely many fast pulses interspersed with slow segments. The main
idea in proving their existence is to track the unstable manifolds of these periodic
orbits through each passage near the slow manifolds S and S2 using ELESE.

We begin by constructing singular multipulse heteroclinic orbits. Two examples
of three-pulse singular heteroclinic orbits (see Fig. 3) are

(40) 2aUF5UlaUF2U,,,2au5ula
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FIG. 3. The geometry of the triple-pulse singular heteroclinic orbit given by (40) ’T2au F5U
la U r2 U 2a U I5 U "Tla.

and

(41) -}/lrUI3U/2rUISU-ylrUI4U 2r,

where iJ denotes the segment of the periodic orbit -yiJ with - T1wl< < 3 and
denotes the remaining piece of the periodic orbit

In general, an N-pulse singular orbit hetero- or homoclinic to the attracting pe-
riodic orbits consists of the following:

A. the slow attracting periodic orbits, ,ia and .yja, to which the orbit will be
hetero- or homoclinic
and

B. the N unperturbed heteroclinic orbits chosen from (F1,F2,F5,F6 that are
alternatingly "up" and "down" and that connect points on .yla and ’T2a,
which are interspersed with

C. segments of .yla and y2a, where a segment of -yi may consist of going around
.yia finitely many (including fractional) times, i.e., any finite string of alternating

segments ia and
In the same fashion, one constructs N-pulse singular orbits hetero- and homoclinic

to the repelling periodic orbits, except that the unperturbed heteroclinics are chosen
from the set {F3, Fa, Fv, F8}.

Remark. Of course, in A, j if N is even, and : j if N is odd.
We now prove the following theorem.
THEOREM. For all sufficiently small, there exists a unique true multipulse

heteroclinic orbit 0() close to every singular multipulse heteroclinic orbit.
Remark. The true and singular multipulse orbits are only O(e) close because the

stable and unstable manifolds of the perturbed tori are O(e) close to their unperturbed
counterparts. Furthermore, for general problems of the form (1), O(e) closeness of
these orbits is the best that can be expected since the perturbed and unperturbed
slow manifolds in (1) are O(e) apart, in contrast to the situation here where they
coincide.

Proof of the theorem. For the sake of exposition, we prove the existence of the
unique three-pulse heteroclinic orbit connecting .y2a and .yla that lies near the singular
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heteroclinic orbit (40):

(42) ,.y2aUhUylaUr2Uy2aUhUla.
The generalization to all of the other orbits in the theorem is given at the end of the
proof.

Let A/[ denote the two-dimensional manifold wU(s2)I., that we will track in
this proof using ELESE with k- 1.

First, Melnikov theory immediately implies that

(43) w transversely intersects WS(S) at an angle of

since this is a one-dimensional subset of the one-pulse intersection surface. Part of
this intersection is near F5.

Next, due to the existence of this transverse intersection, it follows by a continuous-
dependence argument that there exist initial conditions on JP[ whose trajectories sat-
isfy the hypotheses of ELESE, i.e., initial conditions whose trajectories spend (0()
time inside a A neighborhood of S. Namely, the initial conditions actually in the
intersection never leave the neighborhood, and there are initial conditions that leave
the neighborhood in O(ln 7) time, due to the exponential expansion in the a direc-
tion. Hence, by continuity of the manifold, there exist initial conditions which spend
the desired amount of time near S. More specifically, there exists a point q on
A/[ N {Ibl A} such that the trajectory through q exits the A-neighborhood of S
at a point Je r {lal A} after a time 2-g-) + O(1).

Therefore, the hypotheses of ELESE are satisfied, and ELESE implies that at the
point , the manifold j4 and its tangent space are O(e-) close to the local unstable
manifold wloU(S1)1, and its tangent space.

Now, the process repeats, but in the other direction. First, since J4 and
wUo(S)l. are so close by the previous step, and since WUo(Sl)l.,, transversely
intersects WS(S2) at an angle of O(s) by Melnikov theory (part of this intersection
being close to F2), it follows immediately that the tracked manifold J transversely
intersects wS(s2) at an angle of O(s) as well. Then, as above, there exist orbits
which spend the desired amount of time, )+ O(1) in the case of this example, in

a A-neighborhood of S2 and which satisfy the hypotheses of ELESE. Thus, ELESE
implies that, at the point where these trajectories exit that neighborhood, A4 and
its tangent hyperplane are O(e-) close to woUc(S2)l..

Finally, we use once more the first step in the process: since A4 and woUc(S2)l.
are so close by the previous step, and since WU($2)1. transversely intersects Ws(S)
at an angle of O(s) by Melnikov theory (part of this intersection being near F5), it
follows immediately that the tracked manifold J transversely intersects WS(S) at
an angle of O(s), as well. Hence, we have constructed a three-pulse orbit backwards
asymptotic to .f2 and forwards asymptotic to -f. Furthermore, this orbit is unique
due to the transversality of the above intersections, and it is O(s) close to the singular
heteroclinic orbit (40).

The proof just given for the three-pulse example readily extends to a proof of
the existence of all of the orbits in the theorem. Let A4 denote the two-dimensional
manifold WU(S)I.# (where i 1, or i 2 is the index of the slow periodic orbit to
which the desired hetero- or homoclinic orbit is backwards asymptotic). The above
proof explicitly shows the existence of the first pulse near the first fast piece of the
singular orbit. Then, by transversality of the intersections and by the same contin-
uous-dependence argument given above, there exist initial conditions on A4 whose
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trajectories spend long time intervals near the other slow manifold S (i.e., j)
and whose trajectories satisfy the hypotheses of ELESE. We are especially interested
in those trajectories which spend time intervals of length -;) + O(1)near Sj for
any fixed positive integer k, since these leave the neighborhood of Sj near the valid
takeoff points given by the curves Jl and r/j2 of the Melnikov function zeroes.

Then, by ELESE, when these trajectories exit the neighborhood of S, M is
C-O(e-) close to the fast unstable foliation WloVc(SJ)la. Hence, a portion of
Me is brought back into the neighborhood of the first slow manifold, S, due to
the fact that wU(s) and WS(S) intersect transversely at an angle of O(). By
induction, this process can be repeated finitely many times until one completes the
hetero- or homoclinic orbit with the desired finite number of pulses and slow segments
in between.

Remark. In addition to the heteroclinic multipulse orbits found above, there ex-
ist other types of multipulse orbits in this model which may be treated with similar
methods. Above, we found orbits that are either backward and forward asymptotic
to the periodic orbits that are attracting on the slow tori or orbits that are back-
ward and forward asymptotic to the periodic orbits that are repelling on the slow
tori. Another type of multipulse orbit consists of those that are backward asymptotic
to a repelling periodic orbit and forward asymptotic to an attracting periodic orbit.
The singular orbits for these consist of the union of finitely many segments of slow
orbits on the tori (orbit segments that are disjoint from the periodic orbits) inter-
spersed with the appropriate up and down heteroclinic connections. The segments
of slow orbits start at the touchdown point (Tuchdwn, 7"uchdwn) of the heteroclinic

/’Ttakeoff Takeofforbit Fuprdwn and end at the takeoff point of the nextTtouchdown Ttouchdown
heteroclinic encountered in the singular orbit.

In contrast to the situation of the theorem in this section, the singular orbits
discussed in the previous paragraph are not locally unique; there is a two-dimensional
surface of each type of multipulse heteroclinic orbit, parametrized by the value of the
T2 coordinate at their first takeoff points. The existence of real multipulse heteroclinic
orbits near these singular ones may be established using the k+2 ELESE, where (k+2)-
dimensional manifolds are tracked and where 2 is the number of center directions that
are followed. Note, of course, that there are only two center directions. Equivalently
a A-lemma argument may be employed where the entire slow manifold is treated as
the fixed point of some map associated with the vector field, say the time-1 map of
the flow.

Appendix. In this appendix, we briefly review the relevant Melnikov theory.
upFor fixed (t 0, 7-, T2) e X T2, let r =_ (qP(O),Ph (0), 7"1,7"2) denote the point

on the unperturbed homoclinic manifold up (S t2 S). At the point r, there is a
three-dimensional hyperplane

(44) Hr--=span{(0,0,7"=l,0),(0,00T2=l),, ,(OHoq, opOH’o’o)}
transverse to up, where the derivatives of H are evaluated at the point r. We will
measure the splitting distance between the perturbed unstable and stable manifolds
Wv(S) and WS(S2)in the transverse hyperplane Hr.

First, we observe that the coincident unperturbed manifolds Wv(S) and WS(S)
intersect Hr transversely in a two-dimensional surface. Hence, we also know that
the perturbed manifolds WloVc(S) and Wc(S2)intersect Hr transversely in two-
dimensional surfaces, rv, and sr,, since they are O() away from their unperturbed



576 C. JONES, T. KAPER, AND N. KOPELL

counterparts. Let rv and rS denote two points on the surfaces Ev,e and E,, respec-
tively, that have the same values of T1 and 72. Geometrically, the distance between
the points rv and rs is

(V(q,p)H(qP(O) pP(0) T1, T2))" (qU qS pU pS )T
(45) d(T1, T2; Wl, I, 2; e) ]V(q,p)H(qP(O),pP(O), T, T2),

where denotes the usual inner product in 2. Finally, we use the fact that the
leading order term d(T, T2; W, fl, f12; 0) in the Taylor expansion of the numerator of
d(T, T2;,, f12; ) about 0 is identically zero since the unperturbed unstable
and stable manifolds are coincident, and we use Melnikov’s original idea. These lead
to

up up(46) d(wl’T2;Wl’l’2;a)=allV(q,p)H(qh (O),Ph (0),Wl,Wa)ll
as e 0, where the Melnikov function (i.e., the numerator of I=o)is

P )dt,(47) M(n,r;,l,) (V(,.IH. g’)(q2P(t),ph (t),n,

as reported above in
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ON SUBDIVISION INTERPOLATION SCHEMES*
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Abstract. Subdivision cardinal interpolation schemes that preserve functions of positive type
are shown to be related to orthonormal multiresolutions. The interpolating function is the solution
to a certain optimization problem, and this makes it possible to derive error estimates, in particular
for Lagrange iterative interpolation schemes.
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1. Introduction. The purpose of this paper is to study subdivision cardinal
interpolation schemes of the form

(1) f(2-J-lm) 2 E’7(m 2k)f(2-Jk), m e Z, j

_
0,

kEZ

where the sequence (’7(k)}keZ is the mask that determines the interpolation scheme
in question. (The normalizing factor 2 is for convenience introduced here so that it
does not appear in the equations one obtains after taking Fourier transforms.) Such
schemes have been studied by several authors, and various conditions for the mask
to generate an interpolation scheme are known; see e.g., [1], [5], [6], [16], and the
references mentioned there. It is clear that if the restriction F flz of f to the
integers is known, then one finds from (1) the values of f at the half-integer values
Z + 1/2 (by taking j 0), then the values at Z + 1/4 and Z + (by taking j 1), and
so on. (If the values of f are not given on Z but on some other set of evenly spaced
points, one can use a simple transformation of the argument to reduce the problem to
the one considered here.) If rn 2p in (1) is even, then one has

f(2-Yp) 2-(0)f(2-Yp) / 2y -(2(p- k))f(2-Yk).
kEZ
ykp

Since we are studying an interpolation and not a refinement scheme (that is, we do
not want to change values of f already calculated), we have to require that

1,(2k) -5o,k, k Z

(where 5i, 1 if i j and 0 otherwise).
Observe that the interpolation scheme in (1) is linear and translation invariant.

Therefore, it suffices to find the fundamental interpolation function (I) that interpolates
the sequence {hk,o}ke. Provided the sequence {F(n)}e is known, one can then take
as the desired interpolant I(F) the function

I,(F)(t_) dej E F(k)((t-- k).
kZ
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(Here and below we use underlined arguments like _t to denote arguments used for
defining functions so that, for example, t2 denotes the function that maps each real
number t to the real number t2.) It turns out (see [4, pp. 208-209]) that (I) should
satisfy the equation

() (t) e ()(:t- ), (_) _,0,
kEZ

and we let (I) be defined by this relation. From (2), one immediately sees that

1 (_(3) (-) 2 )"

We will only consider the case where (I) and hence 7 are real functions, and the main
restriction we put on (I) (in some of the results below) is that it is of positive type (and
continuous), which just means that ( and are nonnegative functions.

Recall that a function g :A --. C (where A is some additive group) is said to be
of positive type if

M M

tA, cC, i=1,2,...,M

(see, e.g., [12]). We say that the subdivision interpolation scheme given by (1) is of
positive type if the fundamental interpolation function given by (2) is of positive
type. It is straightforward to check that if this is the case, then I(F) is of positive
type whenever the sequence F is of positive type.

One way to construct a subdivision interpolation scheme of positive type is to
take

(4) (I)(t) jf (s + t)(s)ds,

where is the scaling function of an orthonormal multiresolution (or a multiresolution
analysis) of L2(;]) (for simplicity we consider only the real case), i.e., the pair
({Vm}mEZ, P) satisfies the following properties:

E L2(It(;) and Vm is, for each m E Z, the closed subspace
of L2(;) spanned by {(2-mt_- k)}keZ;

(6) Vm C gin-l, m Z;

limm--o Vm L2(II;R), i.e., lim,__oP,f f for ev-
ery f L2(]l(;]), where Pm is the orthogonal projection, of
L2(R;R) onto V,;

(8) {(t- k)}ke is an orthonormal basis in V0.

(Concerning (7), note that it follows from the other assumptions that for all f one has
limm-o Pmf 0 as well; see, e.g., [2].) By (6) and (8), we have

() v(_t) 2 .()(2_t- ),
kZ
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where the filter a is given by

a(k) 9f qa(s)(2s k) ds.

It is straightforward to check that if (4) and (8) hold, then is a continuous function
of positive type. Combining (4) and (9), we conclude that

(10) 7(k) a(k_ + j)a(j).

Note that in practice, one often follows the reverse reasoning: starting from
and 7, one constructs qa and a such that (4) and (10) hold.

If we were to consider a complex multiresolution (of L2(R; C)), then the only
difference is that we would introduce complex conjugates at appropriate places in the
formulas above. For further results on multiresolutions, see e.g., [4], [10], and [11].

We shall first give necessary and sufficient conditions for a sequence 7 to be the
mask of an interpolation scheme of positive type, and we shall prove (the not very
surprising result) that essentially every subdivision interpolation scheme of positive
type is associated with a multiresolution scheme by means of (4).

It is possible to prove that E L2(R;R) and 7 E t2(Z;R) In general, one does
not have (I) LI(R; R) and 7 ll(Z; R), which can be seen by considering the example
(t) sin(rt)/(rt), in which case and a(_k)= 7(_k)= sin(rk/2)/(r_k). Below,
however, we shall make the stronger assumption that -kez log([k[ + 1)[7(k)[ < c.
Observe that if one wants the interpolation scheme to reproduce constants, then one
must have kez 7(k) 1, and this is also a necessary condition for (2) to have a
nontrivial integrable solution.

The second and main problem is to find error estimates. To accomplish this, we
first consider another problem. Find a norm ][.[[ so that

for all functions g with g(n) F(n), n e Z.

It turns out that one should choose the norm to be of the form [Ig[] 2 f [(w)[2r/(w) dw
(where is such that (w_)(w__) is bounded and periodic), and one gets an error
estimate of the form IIf- I(flz)[[ -< [[f[I. From this inequality one can derive more
useful results where one gets inequalities involving other norms (in, e.g., Sobolev
spaces) of the error, but in any case, one must have enough information about the
function r/. These estimates become more precise if becomes more regular. Observe
that these results do not assume that the fundamental interpolation function is of
positive type.

For other approaches to error estimates involving wavelets, see, e.g., [14] and the
references mentioned there.

2 Statement of results. It is clear that the interpolation scheme (1) is easiest
to use if 7 has compact support, but nevertheless we state some of our results in
greater generality. First, we study what the necessary assumptions on 7 are. We
define the Fourier transform of a function in LI(R; C) to be f(w_) f e-2ritf(t)dt,
and we use corresponding definitions for periodic functions and sequences, that is, we
have the factor 2r in the exponent and not somewhere else. By LI(R;R), we denote
the set of those functions in C0(R; R) (the set of continuous functions with limit 0 at
+cx) that are Fourier transforms of functions in LI(R; C).



SUBDIVISION INTERPOLATION 581

PROPOSITION 1. Assume that E C(I; Iill) is of positive type with O(k) 5o,k_,
and let 9/ be given by (3). Then e L2(I;]l() N LI(It(;I), 9/e g2(Z;I),

(11) 1(w__) + (w__ + -) a.e. 1,

and

(12)

If, in addition,

9/is of positive type.

(13) sup I(I)(s)l e LI(]I(+; R)
Isl>_

and (2) holds, then 9/e I(Z; ]I() and

(14) E 9/(k)
kEZ

and

(15)

=1,

there is a compact set C c IR with m((7) 1 such that does
not vanish on (.Jk=l 2-kg, and for each w [0, 1], there is an
integer j such that w + j C,

The following result is closely related to corresponding results for multiresolutions
where an assumption of the form (15) is seen to be of crucial importance; see [2].

THEOREM 2. Let 9/ l(Z;) be such that (11), (12), (14), and (15) hold and

(16) E log(lkl + 1)lg/(k)l < .
kEZ

Then there exists a function e C0(IR; R) of positive type such that (2) holds. More-
over, there is a multiresolution ({V,},ez,) of n2(I;IR) such that (4) holds.

If 9/has compact support, so do and .
Condition (15) can be given in other, equivalent forms; see, e.g., [4, Thm. 6.3.6]

for the corresponding multiresolution case. It follows from the argument in [2, p.
452] that it is satisfied provided is continuous and (w) 0 for Iwl _< . On the
other hand, the standard example of a mask 9/that satisfies all required conditions of
Theorem 2 except (15) is the one where 9/(0) 1/2, 9/(4-3) 1/4, and 9/(k) 0 for all
other k, in which case we have (w__) (1 + cos(6rw__))/2.

The main problem considered in this paper is, however, what error estimates one
can derive for subdivision interpolation schemes, and a related question is to what
problem, if any, the subdivision interpolation scheme is an extremal solution. For
example, the cubic spline interpolant minimizes the L2-norm of the second derivative.
In general, we cannot, of course, expect to get anything as simple as this but we can
get something that enables us to derive error estimates.

We use the notation 1" IR/Z, that is, a function with domain 1" can equiva-
lently be considered to be a function defined on I which is periodic with period 1.
For example, when we below assume that (w__)(w__) e L(I’;I), this means that
r/ (w__)( (w_.) e L(IR;IR) and r/(w__ + 1)((w_ + 1) a.=e. ri(w__)’(w_).

THEOREM 3. Let ( L2(IR;]R) L(IR;IR) be a fundamental interpolation
function, i.e., (k_) 5o,k_. Let ]R - ]R+ be a nonnegative measurable function
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such that r](w__)((w__) e L(I’; JR). If F e ll(Z; ]R), then

(17) I(F)(w) l(w) dw + (w) I(F)(w) ’q(w) dw I(w)[2r/(w) dw,

for all g e L2(R;]R)N LI(R;If() satisfying fcl[7(w)12](w)dw < cx and g(n) F(n) for
n . In particular,

I(F)(w) rl(w) dw <_ It(w)12’r/(w) dw,

and if f e L2(]R;]R)A L’(IR;]R), fct](w)[2(w)dw < oc, and fl e tl(z;]l), then.

(18)

Note that we do not assume here that the interpolation scheme is of positive
type and that if r] grows sufficiently rapidly, then it follows from the assumption

fcl[t(w)12(w)dw < c that e L(]R;C). Recall also that by scaling these error
estimates (as well as those given below), one gets results for the interpolation of a
function at nodes 2-Jk, where one can then let j

Let us as an example consider the well-known case of cubic splines. In this case,
the basic interpolation function (I) satisfies (4), where o is the scaling function or father
wavelet of the Battle-Lemari wavelets constructed from the piecewise linear splines
by orthonormalization, that is,

sin(rw__) 2

+
see [4, 5.4]. Since )(w__) we see that we can take ?(w__) w__4, that is, the
cubic splines minimize the L2-norm of the second derivative. It is straightforward to
extend this result to the other odd splines, that is, interpolation with splines of order
2N- 1 leads to r](w__) w__2N.

Next we consider the so-called Lagrange iterative interpolation schemes (see, e.g.,
[5]) where the filter is chosen so that (k) 0 when Ikl >_ 2N and (1) holds for all
polynomials of degree at most 2N- 1, i.e., these polynomials are reconstructed exactly
in the interpolation scheme. As shown in [13, Thm. 5.2], the fundamental interpolation
function (I)N of such a Lagrange subdivision interpolation scheme of order 2N- 1, and
the scaling function o constructed in [3] with support width 2N- 1 such that the
corresponding wavelets have N vanishing moments, are linked via (4). Thus we have,
by [4, Prop. 6.1.2, p. 216],

-(w__) (sin(Trw__)7__.
where

LN(W__.) PN (sin(rw_)2) and
N-1

k=o
k -"

Thus we see that the function in Theorem 3 can be chosen to be

(19) r/N (w__)
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and we have the following estimate that follows easily from the.ones in [4, 7.1].
PROPOSITION 4. If N >_ 1 and ?N i8 given by (19), then

CO2N
(20) CN (1 + [co[)log.(Pr(3/4)) -< N(W) <_

where
N

CN > 16ge2N

By a result in [4, p. 226], we have

1 3N_l < pN(3 3N_l

It is not difficult to see that the exponents in the estimate (20) are the best possible
ones; see [4, Lem. 7.1.3] for the lower bound and take co 2k in the upper bound.

It is clear that (18) as such is not very useful, and therefore we record some quite
easy consequences of it.

THEOREM 5. Let the assumptions of Theorem 3 hold and let f LI(]R;R)C1
L(N;R) be such that flz e tl(Z;) and fRI](w)12(w)dw < oc. Then for every
q >_ O, we have

(21) lo ’co]ql](co)-/:(f,---)(co)]2 dco < esssup lw’q L dco

and

(22) II>12Iwlql](w)-Iv(fl-)(c)ld<Ifl-i_>l/e

Ilq dco L ](co) 12r(co)dco’(o)

(23) ess sup <
I.,I<I12 (w+k)

k#o

then

(24)

and

__1/2 2

1/.
I](,-)- L(fl)(,,)

t,(flz)(")l dco ,C, I](co)12r(co)dco.
Note that by Proposition 4, we have (23) at least for Lagrange iterative interpo-

lation schemes and one gets an upper bound for the constant esssup]/2(wq/(w))
in (21). om Proposition 4, one can get some results about when the crucial constant

/2(]w]2q/(w)) dw in (22) is finite as well. It is possible, however, to get better
and more general results for this term, and we shall consider that problem below.

Observe also that if a n + , where n N and 0 < 1, and we define

defIlfllc() suplf(t)l + sup If(n)(t)-f(n)(s)l
te t,sN,tCs It-sl < }’
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then it is easy to check that

Ilfllc ( ) < su ly(t)lt  + dw

when f e L’(It(; ]1(), for example. As a partial converse, one can prove that if ](w) >_ 0
for w e IR, and f e C(]R; IR) with a > 0, then fRIwl’](w)dw < oc for all a’ e [0, a).
This is one reason for studying error estimates of the form (22).

THEOREM 6. Assume that E C(I;]) is of positive type such that (2) and
(13) hold, and let "I be given (3). Suppose there is a positive integer M such that

(26)

and

"(J)(-) =0, j=0,1,...,2M-1,

If one takes 7(w__.) de_.f sin(Trw__)2M/(w__) and r > O, then the following three conditions
are equivalent:

(i) f. dw <
I>/ ()

(ii) L lwlrl(w)l dw <
(iii) r < 2M-log2(p) where p is the spectral radius of the operator A: C([0, 1]; C)

--, C([0, 1]; C) defined by

where

(Af)(w-)=a()f(-2)+a, 2)fc+(+2,’

a(03) de__f
cos(Try__)2M"

This is not really a new result because equivalences similar to (ii) , (iii) can be
found in, e.g., [7]-[9] and [15].

Observe that if - has compact support, then the spectral radius p of A is the
spectral radius of a matrix and can easily be calculated; see the proof below. For a
method to compute p when - does not have compact support, see [9].

3. Proofs.
Proof of Proposition 1. Since we assume that (I) E C(Iiti; IR) is of positive type and

(I)(0) 1, there exists by Sochner’s theorem (see, e.g., [12, p. 19]) a nonnegative Borel
measure # with #() 1 such that

(I)(t) f e2rit#(dw).

Define another nonnegative measure #, by ,(E) ke(E + k) for every Borel
set E. It follows that

e-’i (dw) (-) 50,,
,1)

and this in turn implies that , is the Lebesgue meure. This means that # is
absolutely continuous with respect to Lebesgue measure, and then we can use the
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Radon-Nikodym theorem and the uniqueness of the Fourier transform to show that
E L (1; I+) and that

(28) E ((w__ + k) a._e. 1.
kEZ

In particular, it follows that

(29) ELP(I;), l_<p_<,

and we conclude that LI(; 1) N L2(; 1).
By (3), it follows that "7 is of positive type as well, which again by Bochner’s

theorem implies that is the Fourier transform of a positive measure on [0, i). But
from (3) and (29), we can easily conclude that this measure is in fact absolutely
continuous with respect to Lebesgue measure (so that " is a function), and we have

+
kEZ

a.e. a.e.
and therefore (II) is a direct consequence of (28). Because 0

_
(w_)

_
I, we have

/ g2(Z; 1) by Plancherel’s theorem.
Let us now assume that (13) holds. It follows that we have tl(Z;), and

from (2), we get

(30)

From (11) and (12), it follows that we must have 0 _< (0) <_ 1, but if (0) < 1, then
we see from (30) that ((w) 0 for all w 1, which is impossible. Therefore, we have
(14).

In order to prove (15), we first show that the series -]keZ (w__ + k) that appears

in (28) converges uniformly on [0, 1]. Therefore, we consider the function gn(t) de=
max{0, min{n- nt, n + nt}} (the graph of gn and the t-axis thus form a triangle with
corners at (:l:l/n, 0) and (0, n)) and note that it is a standard result that (w_)
sin(rw__/n)2 / (rw_/n)2. It follows that the Fourier transform of the sequence {Cn (k) }
where

(31) cn(k) O(k) f gn(k t)O(t) dt,

is given by

(32) c% (w__) E(1 nn(W_ + k))(w__ + k).
kZ

From (13), (31), and from the uniform continuity of , we are able to deduce that
limn--.llCn]ll(Z) 0, and this gives by (32) the uniform convergence of the series in
(28) because all terms are nonnegative.

It follows that -keZ (w + k) 1 for every w E 1, and hence for each w [0; 1],
there exist numbers k e Z and > 0 such that ( + k) > 0 when I -w] < .
Since [0, 1] is compact, we can choose finitely many of these points wj, j 1, 2,... n

nsuch that [0, 1] c j=l (wj -e,w + e). But then we can construct the set 2 as
the finite union of closed intervals on which does not vanish. Since it follows from
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(30) that

we see from (14) and the fact that ( does not vanish on C that - cannot vanish on

k__l (2-kC). Thus we have established (15).
(e-27riwkProof of Theorem 2. We have /(w__) 1 keZ 1)3’(k) since (0) 1

by (14), and hence

I’(w--)- 11 <- Z
kZ

Let m be a positive integer and let w E/I. Now it is clear from the preceding inequality,
Fubini’s theorem, and the fact that [sin(t_)l <_ min{1, It_l} that

(33)

2 ( [log2(wk]) + 1-m+ + 2-m-[g(lki)]-l+)’(k).
kZ

(Here we used the notation ].+ max{0, .}.) We let

p() ()H?=(z-),
P() n?=i(Z-),

and observe that because (0) 1, we may assume that 0 belongs to the interior of the
set C. om (16) and (33), we therefore conclude that the sequence (Pm}me converges
uniformly on compact intervals toward P, and this shows that P is continuous.

An immediate consequence of assumption (15) is that if f L(;C) (that is,
f Loc(R; C) is periodic with period 1), then

l(z) d l(z) d.

Using (11) and the fact that is periodic with period 1, we therefore get

m m--1

Pm()e2id (-J)e2id:2m (2J)e2i2d
cj= j=o

lm--1

[ ()e
j=O

( (+(+ ) a

-1 n(-d _1(d.
j=O

Z (2-jw) 1] _< 2 Z Z
j----m j--m kZ
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Since f Po((M)e2ri-kw do3 fc e2ri-kw do) (0,_k, it follows by induction that

(34) jf Pm (co)e2ri-k dw di0,_k,

and in particular that

(because Pro(w_) _> 0). Thus we also conclude from Fatou’s lemma that P e LI(; I)
and IIPIILI()_< 1.

The function P is continuous and does not vanish on C, hence there is a constant
e such that P(w) >_ > 0 for all w E C. Because Pm vanishes outside 2mc and satisfies
Pro(w__) P(W__)/P(2-mw__) on 2mc, it follows that

Pro(w)

This inequality allows us to apply the dominated convergence theorem, and we con-
clude that

(35) Pm P in LI(I;).
Now we can choose (I) so that ( P. From the definition of P it follows that (30)

holds. By (35), we see that (34) holds with Pm replaced by P, and this is equivalent
to (28) or (I)(k) 50,_k, that is, (I) is a fundamental interpolation function which is of
positive type because ((w__) is nonnegative.

If /has compact support, we can use a lemma by aiesz (see [4, Lem. 6.1.3]) and
the fact that /is real and of positive type to find a real sequence c with compact
support such that

We may, of course, assume that &(0) 1, and we can define the function 7) by (w__)
H=l&(2-Jw_). It follows from [4, Lem. 6.2.2] that (I) and have compact support as

well. If /does not have compact support, we define c and by &(w__) v/(w_) and

(w__)- /((w__), so that we in any case have

and

Because & L(I’;C), it is clear that c g2(Z;ll) and e L2(I;]) because
(I) e L(;I). Moreover, it follows from (28) that (8) holds (see [4, p. 132]), and
hence (9) holds too. If one uses the notation in (5), this implies that (6) is satisfied.
Finally, we get (7) from the fact that ( is continuous and ((0) 1 by [4, Prop. 5.3.2].
This completes the proof.

Proof of Theorem 3. It is clear that we have I(F) e n2(;)N C(;) and

that I(F)(w__) (w__)(w__). Moreover, we have fslI(F)(w)12rl(w)dw < oc. Let
h de g_ I(F). We observe that h(n) 0 for all n e Z and that ] e n(; C).

Let p(w__) dej ?(0.)))(__.)z((M)" A straightforward calculation shows that

(36) 9f I(F’)(w)h(w)rl(w) dw 9f (w)((w)(w)/(w)dw- jfp(w)h(w) dw.
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If p, is a trigonometric polynomial, i.e., a finite linear combination of the functions
e2rikw--, where k E Z, then it follows from the fact that h(n) 0 for all n E Z
that ftp,(w)(w)dw 0. Since p L(; C), it is possible to find a sequence
{p(w__)}hen of trigonometric polynomials such that pn (w__) - p(w__) almost everywhere
and supneN IlPn L (V) < . But then we see that

p(w)(w) dw nlim p(w)(w) dw O.

If we combine this result with (36) and recall the definition of h, then we easily see
that (17) holds. The remaining claims now follow immediately. []

Proof of Proposition 4. Since we have LN(W__) _> 1, the upper bound in (20) is
obvious. It follows from [4, Lem. 7.1.8] and an argument similar to the one used in [4,
Lem. 7.1.6] that for every rn >_ 1, we get

(37) IYff=ILN(2-Jw) <_ PN()m-IpN(1)IIj=m+ILN(2-JW).

We observe that by the convexity of PN, we have on the interval [0, 1/2] the inequality
PN(Y_) _< 1 2y_ + 2yPN(1/2) 1 + (2N 2)_y since PN(1/2) 2N- (see [4, p. 219]), and
therefore, we have for every w and rn _> 1 satisfying 2-mlwl _< 1 that

(38) IIj=.+[LN(2-Jw)] <_ PN(1)II=.+ (1 + (2N 2)r24-Jw2) < PN(1)e2N.

We can choose the integer m such that 2-m[w[ _< 1 and 2"-1 _< ]w + 1 so that we get

3 m-1 (PN(-))._< (1 1 + 1)

The claimed result now follows by (37) and (38) because we have

PN(1) (2%--1)4N</-;

see [4, p. 223]. []

Proof of Theorem 5. Inequality (21) follows directly from (18), and in order to
get (22), one must first invoke Hhlder’s inequality. Moreover, (25) follows from (24),
again by Hhlder’s inequality. Thus it remains to prove (24).

We let e de f_ I(flz), and we define the function p e L(V; C) by requiring
that p(w) (w) when -1/2 < w _< 1/2. By the same argument that was used in the
proof of Theorem 3, we find that

f
(w)p(w) dw O.

Recalling the definition of p, we therefore get the following result with the aid of
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H61der’s inequality:

fl/2 I(w)l2 dw (w)p(w) dw
J--1/2 I>_1/2__

I(d) 127(0.))dw i(d) 12 1

--1/2 (w+k}’ dw
k#o

< (w)12V(w)dw I(w)l2dw esssup
1

-1/ I1/ (+k)"

Inequality (24) now follows from Theorem 3, and the proof is completed. [J
The proof of Theorem 6 is essentially the same as the proof of [8, Thm. 1], but

for completeness we give it here. We begin by proving a lemma that could be derived
from more general results as well.

LEMMA 7. Let > 0 and let a E C(I’; R) be nonnegative. Then there exists
an eigenvalue A of the operator A: C([0, 1]; C) C([0, 1]; C), defined by

such that I1 is the spectral radius of A.
Proof of Lemma 7. Assume, without loss of generality, that a E (0, 1). We choose

a sequence (en}neN of positive numbers such that limn-,o en 0 and so that the
functions an, defined by

an(w__) def 1 ol ( sin((nT1)rt) )
2

n+ sin(rt) a(w__ t) dt + en, n N,

satisfy

(39) an(w__) >_ a(w__), n e N.

Furthermore, we see that the functions an belong to C(I’; R) and

(40) supIIan IIc(r) <

and

(41) lim Ilan allLOO(r) O.

We define the operator An" C([0, 1]; C) --* C([0, 1]; C) by

w w w_+l ) w__+l(AnS)(w__) an(--)S() + an( 2 S(--.
Because n(k_) max{0 1 }5(_k) + enS0,k it follows that an is a trigonometricn+l -polynomial. Now if f C([0, 1]; C) is a trigonometric polynomial, then

n

an(w__)f(w_) E e2rikw- E n(j)](k j),
kZ j=-n
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where the sum is actually a finite one. Then

n

(A,f)(_) 2 e2"ik- E 5n(j)](2k j)
kEZ j---n

because the odd terms cancel. Thus we see that if the support of the Fourier transform
of f is contained in [-n + 1, n- 1], then the same holds true for the support of the
Fourier transform of Anf. Thus An maps a finite-dimensional space of trigonometric
polynomials into itself, and therefore there is an eigenvalue n of An such that Inl
Pn, where Pn is the spectral radius of An restricted to this space. We denote the
corresponding eigenfunction by vn, and we normalize it so that Ilvnllc([o,1]) 1. We
note that Pn is also equal to the spectral radius of An in the space C([0, 1]; C) because
by the nonnegativity of an, we have IIAmll- IIAnmlllc([0,1]), where I1"11 is the operator
norm in any one of these spaces. By (39), we have Pn >_ P (where p is the spectral
radius of A), and from (41), we conclude that An A in operator norm as n -, oc
and hence also that

(42) lim Pn P.

(Observe that the fact that Pn _> P is needed to derive (42) was not noted in [8].)
Define a new operator Bn" C([O, 1] [0, 1]; (2) C([0,’ 1] [0, 1]; (2) by

(Bnh)(w_..,r]) an()h( w-- w+l _+1

We can also define B in a similar way with an replaced by a. We note that Bn,
applied to a function that does not depend on its second argument, gives the same
result (as a function of its first argument) as An applied to the same function (with
only one argument). Since IIBnmll IIBnmlllc([0,1]2) and IIAnm]l [IAnmlllc([0,]), we
therefore conclude that IISll IIAnml[, and these operators have the same spectral
radius. Define the function gn E C([O, 1] [0, 1]; C) by

Then we get
2-’Bngn Pngn bn,

where

bn (w_., r_)
(an(-) an())vn() + (an,----) -an(

Because Bn B as n cx) by (41), supve[0,]lvn()l 1, and (40) and (42) hold, we
conclude that

sup sup Ign(w, 7)] < oc.
n_l w,r/6[0,1]

But this means that the functions vn are uniformly HSlder continuousmin particu-
lar, equicontinuous--and we may pass to the limit and obtain a nontrivial function
v E C([0, 1]; C) such that Av )v, where I1 p.
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Proof of Theorem 6. First, we consider the operator A. By changing variables
and using the periodicity of a, we easily see that for all f, g E C(P; C), we have

(43) (Af)(w)g(w) dw f(w)2a(w)g(2w) dw.

In particular, this implies that if we define numbers ap,, by

m--1
def

2m J0 sin(r2mw)2P H a(2kw)dw, p e {0, M}, m > 1,(44) ,,
k=O

then it follows from applications of (43) that

/o(45) ap,m (Aml)(w)sin(rw)2p dw, p e {0, M}, m >_ 1.

Thus we have

(46) ap,m <_ IIAml[, p e {0, M}, m >_ 1,

where I1"11 denotes the operator norm.
From the moment assumption on ", it follows that - c2M+I(;II), and hence

it is clear that if we want to prove that a C (; ), then the only points where there
may be problems are the points 1/2 / Z, and by periodicity, it suffices to consider the
point 1/2. By (26) and Taylor’s formula, we have

()= (2M)] ) + (a) (2M)
da.

Now a straightforward calculation, where we use the fact that c2M+(;),
shows that lim/2a(w) and lim/2a’(w) both exist, and this gives the desired
conclusion that a C(; ).

Thus we can apply Lemma 7, and we conclude that there is a nontrivial function
v e C([0,1];C) and a number e C such that Av() v() and p, the
spectral radius of A. Because we may assume that supe[0,]]v(w)] 1, we therefore
see by (45) that

ii1Iv()lsin() d (Amv)()v()sin() d

N (Al)()sin()pd ,, p e {0, M}, m 1.

Combining this result with (46) and the fact hat limmllAll1/m 0, we conclude
ghat for p 0 or M, we have

(47) 2-m,m < iff s > log(p).
m=l

Let
# inf a(w)+a

It is clear that (Aml)(w) >_ #’, w e [0, 1], hence I]Amll >_ #m, and it follows that
the spectral radius of A is at least #. Since ]cos(rw)l <_ 1 for all w, we conclude from
(11) and the definition of a that # >_ 1. By (27), we have a(1/2) 0, and we see that
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a(0) 1 because-(0) 1 by (14). Since Icos0rw)l < 1 when w Z, it therefore
follows from (11) and the definition of a that # > 1, and hence p > 1.

Let us define the function Q by

Q(w_)
sin(r)2u(0).

Our assumption (13) implies that L(; ), and hence we get (30) from (2) and we
have () (2-k)H=i(2-J), where 1 k . Therefore, it follows from (26)
that Q is continuous. The important point, however, is that since. cos(r2-k)
sin(r)/(r), we get in addition that

(48) Q() a(2-k).
k=l

Let s 2M- r and sume that s > 0. It follows from the definition of Q that

(49) (i) holds iff /(1 + w2)-/2Q(w)dw <
J

and

(50) (ii) holds iff L(1 + w2)-S/2Q(w)sin(rw)2M dw < C.

Because s > 0, after integrating by parts we get that

(1 + w)-/2Q(w)sin(rw):p dw

sw(1 + w2) -i-s/2 Q()sin(ry)2pd dw, p e {0, M},

where equality holds in the ce where one of the integrals diverges too. There are
positive constants C1 and C2 such that C1 < 2sm f2Jj2m_jSW(1 + W2) -l-s/2 dw C2,
and hence we see that for p

(1 + w2)-/2Q(w)sin(w)2p dw

2mJ

iff
m=l J -2mJ

Using (48), changing variables, and invoking the periodicity of a, we get

2mJ

[ sin(’)2P H a(2-k’)O(2-m’)dw
J--2mJ k=l

2m sin(2w)" a(2)()dw
J k=O

m-1 J-1

2m sin(2) (2) Q( + j)d.
k=O
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In the proof of Proposition 1, we showed that the series in (28) converges uniformly
J-1and therefore there exists an integer J such that Ej---j (o2 + j) >_ 1/2 for all w e [0, 1].

Moreover, from (28) we get ((0) 1 because by (26) and (30) we have (n) 0 when
n e Z \ {0}. Hence Q(w_) _> (w_), and we have for some constant C3

J-1
_1 < E (I)(w+j)<C3 we[0 1]

If we use this result in (52), then we see from (44) and (51) that for p e {0, M},

f(1
+ w2)-s/2Q(w)sin(Trw)2p dw < c iff E 2-Smap’m < C.

m--1

Thus the claimed equivalence follows from (47), (49), and (50).
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WAVELETS FROM SQUARE-INTEGRABLE REPRESENTATIONS*

DAVID BERNIER AND KEITH F. TAYLOR

Abstract. The continuous wavelet decompositions that arise from square-integrable represen-
tations of certain Lie groups on L2(]Rn) are investigated. The groups are formed as the semidirect
product of IR with an n-dimensional subgroup H of GLn (IR). There is a natural "translation and
dilation" representation of such groups on L2(]Rn). The basic formulas of Duflo and Moore, which
lead to the resolution of the identity via a square-integrable representation, are given an elementary
proof for this special cas6. Several two-dimensional examples are described. A method for discrete
decompositions via frames is given using the representations under study.

Key words, wavelet, square-integrable representation, resolution of the identity, frame
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1. Introduction. This paper is concerned with higher-dimensional analogs of
the theory of continuous and discrete affine wavelets in L2(]R). We emphasize the role
of a locally compact group acting on ]Rn in such a way that square-integrable repre-
sentations of the associated semidirect product group arise. These square-integrable
representations are the source of existence of (at least) the continuous wavelets.

An introduction to the theory of wavelets in L2(IR) can be found in the book
by Daubechies [6] or the survey article by Heil and Walnut [16], which includes an
explanation of the role of a certain pair of square-integrable representations of the
affine group on L2(IR). The affine group can be viewed as the semidirect product
of IR+, the multiplicative group of positive real numbers, acting on IR as dilations.
There is a natural representation of this semidirect product on L2(IR) by "translations
and dilations" that is the direct sum of two square-integrable representations. The
abstract orthogonality relations of Duflo and Moore [9] then say that there exist vectors
in L2 (IR) which can serve as continuous wavelets. The details are described in 1 below
and can also be found in [15] and [16].

In order to generalize this to higher dimensions, we consider closed subgroups
H of GLn(IR) which act on IRn in such a manner that the natural representation of
IRn:>H on L2(]Rn) contains square-integrable representations. Here ]Rn:>H denotes
the semidirect product of IRn with H. The exact definition is given in 2, where we go
on to give a very elementary proof of the basic Duflo-Moore theorem for the square-
integrable representations in question. Our proof also makes the so-called admissibility
condition very explicit.

In 3, examples in two dimensions are considered. Two of the examples have
already found use in applications; one leads to wavelets which are tensor products of
one-dimensional wavelets and the other gives wavelets for L2(IR2) which are moved
by translation, dilation, and rotation [2]. In addition to these two examples, a whole
new class of examples is discussed.

In 4, we consider methods for discretizing the reconstruction formulas to obtain
frames in L2 (JRn). In Theorem 3, we describe discrete subsets of ]Rn and H and condi-
tions on a g E L2(]Rn) which lead to the translates and dilates of g providing a frame

*Received by the editors September.28, 1993; accepted for publication (in revised form) June
7, 1994.

TDepartment of Mathematics and Statistics, University of Saskatchewan, Saskatoon, SK STN
0W0, Canada. This research was supported by a National Sciences and Engineering Research Council
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in L2(]Rn). The general conditions are then made specific for the two-dimensional
examples in 5. The new methods of constructing frames from a group representation
are obtained in this paper by considering more general groups that still have square-
integrable representations in the strict sense. Generalizations have also been studied
by DeBivre in [7] and Ali, Antoine, and Gazeau in [1], where the motivation is to
generalize the concept of a coherent state. The representation that underlies their
concept of a frame is not necessarily square integrable.

1. Foundational harmonic analysis. The reader is referred to Chapter III of
[11] for the general ,theory of locally compact groups; we present only what is nec-
essary to establish the notation. Let G be a locally compact group with left Haar
integral denoted fa"" dx. Let Co(G) denote the function space consisting of con-
tinuous compactly supported complex-valued functions on G. For f E Cc(G), let

IIf[[p If(x)[pdx)I/p for 1 _< p < oo. Let Lp(G) denote the completion of the
normed linear space (Cc(G), ]1" liP) for 1 < p < oc. We are most interested in LI(G)
and L2(G). As usual, we identify elements in Lp(G) with measurable functions.

The left Haar integral on G satisfies, for any f C(G) and y G,

(1.1) L f(x)dx f(yx)dx.

In this study, G will not usually be unimodular and the modular function on G plays
a significant role (see [11, III.8] for information on modular functions). The modular
function is a continuous homomorphism 2xa G -+ IR+ such that, for any f C(G)
and y G,

(1.2) f(x)dx Zka(y) f(xy)dx.

A unitary representation of G is a homomorphism r of G into b/(7-&), the group of
unitary operators on a Hilbert space 7-/. We will always require that r is continuous
when b/(7-&) is equipped with the weak operator topology. That is, for any
the coefficient function v{,v(x) {r, r(x){} is a continuous function of x e G. A good
source of fundamental results on unitary representations is Dixmier’s book [8]. For
the rest of this paper, representation will mean unitary representation.

A representation r is called irreducible if {0} and 7-/ are the only closed subspaces
of 7-/ which are invariant under r(x) for each x G. A vector { is called a cyclic
vector for r if {r(x) x e G} is a total set in ?-&. That is, for r/e 7-/, r _l_ rr(x),
for all x E G, implies r/ 0. Equivalently, { is a cyclic vector for r if and only if
v, 0 implies r 0 for r 7-/. It is easy to see that r is irreducible if and only
if every nonzero vector in 7-/ is a cyclic vector for r. In many cases, this is the most
convenient method for establishing irreducibility of a representation.

From the point of view of wavelet analysis, the key concept involving.representa-
tions is square integrability. A representation rr of G is called square integrable if (i) r
is irreducible and (ii) there exist , r 7-/, both nonzero, such that v, L2(G). The
most important theorem concerning square-integrable representations was established
by Duflo and Moore [9] and is stated here for easy reference. A vector { 7-/ is called
admissible if there exists a nonzero r E 7-/ such that v{,v L2(G).

THEOREM (Duflo and Moore, [9, Thm. 3]). Let rr be a square-integrable represen-
tation of a locally compact group G on a Hilbert space r. Then there exists a unique
operator K on Tlr, self-adjoint positive and satisfying the following:

(i) r(x)Kr(x)-1 =/kG(x)-IK for all x e G.
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(ii)
(iii)
(iv)

domK-1/2 { e 7-/, " is admissible}.
If is admissible, then v,v E L2(G) for all

If 1 and 2 are admissible and 1,2 T/r, then

The proof in [9] used details of the Mackey analysis to prove this theorem. Al-
ternate proofs were also provided by Carey [5] using reproducing kernel Hilbert-space
methods and by Phillips [17] using quasi-Hilbert algebras.

In [15], it was recognized that this theorem allows one to represent arbitrary
elements of T/ in terms of a fixed admissible element and its images under the repre-
sentation. In particular, if is admissible and normalized so that [[K-1/2I 1, then
we can define a linear mapping t 7-U -- L2(G) by Vr v,v, for H,. The
notation V follows [10], where it is called the voice transform defined by . Using

(1.3), we get, for rl, 2 7-/, since K- 1/2 1,

(1.4)

Let E denote the range of Y, a closed subspace of L2(G). Then V H - 2C is a
unitary map between Hilbert spaces. Let l denote the left regular representation of
G on 52(G) defined by [lG(x)f](y) f(x-ly) for all y G, f E 52(G), and x G.
An easy calculation shows that lG(x)(V?) V((x)?) for all . Thus is
a/a-invariant subspace of L2(G) and V defines a unitary equivalence of 7 with the
subrepresentation of lG formed by restricting lG(x) to ]C for each x G.

The reconstruction of 7-U from Ve is implicit in (1.4). If Hilbert-space-valued
integrals are considered in the weak sense and E 7-/,, then (1.4) implies

V(x)(x)dx

or

(1.5) /G(’ r(x))n.r(x) dx .
This can be further refined to give a resolution of the identity operator I on TU. If
T/is a Hilbert space and , 0, let (R) denote the rank-1 operator given by
(p (R) )(#) (#, )n for all tt 7-/. With operator-valued integrals interpreted in the
weak-operator topology sense, (1.5) becomes

(r(x)) (R) (r(x))dx I.

This completes our summary of the known theory of square-integrable represen-
tations. Formula (1.5) is useful when the Hilbert space r is realized as a meaningful
function space. One of the important questions is: which are admissible, or, equiva-
lently, what is the domain of the unbounded (if G is not unimodular) operator K-1/2 ?
In the next section, we will study a class of groups which have square-integrable repre-
sentations for which the operator K has an easily understood form and, consequently,
the admissibility condition is easily stated.

2. A class of semidirect products. Let GLn(IR) denote the group of invert-
ible n n real matrices with the usual topology. Let H be a closed subgroup of
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GL(IR). We will consider the elements x of IRn as column vectors and the elements
h of H as n n matrices. Then the matrix product (h, x) --. hx gives a natural action
of H on IRn. For h e H, let 5(h) det(h)l. For any integrable function g on lRn,

(2.1) g(z_.)dz_. 5(h), g(hz__)dx_.

We will use IR for n-dimensional Euclidean space with the elements written as

row vectors. For /-- (71, 2,..., "7) E IRn and

we have "7__x_ j= ",/jxj. This facilitates calculations with the Fourier transform. For

f L(IRn), its Fourier transform, ]" IR’ -, C, is given, for 7 IR-’, by

](_7) =/t f(x)e2i2- dx.

If g LI(]Rn) I"1 L2(]Rn), let Pg l). The Plancherel theorem says that P extends to

a unitary map of L2 (IRn) onto L2 (lRn).
The dual action of H on IRn is also very important to us and is given by the

natural product (h,_7) _h for h H, _7 E ]R. Then, for any integrable on IRn
and h H,

(2.3) ((.),)dq, 6(h) /. (h)d.

The group H and its action on IR can be used to form a new locally compact
group G IR:><H, the semidirect product of IR and H (see [11, III.4.7 and
III.9.4]). The elements of G are all the ordered pairs (_x, h) with x IR and h H.
The product rule for G is, for (x, h), (y_, k) G,

(2.4) (x, h)(y, k) (x + hy, hk).

We will make heavy use of left-invariant (Haar) integration on H and G. Let fH’’" dh
denote a fixed left Haar integral on H. Then left Haar integration on G is given, for
any f e Co(G), by

f(X, h)d(x_., h) n f(X__., h)(h)-ldx_.

It is easily checked that (2.5) defines a left-invariant integral on G. However, this
integral will not usually be right invariant. If/H denotes the modular function on
H, then a short calculation shows that the modular function on G is given by

Aa(x__,h) Ag(h)/5(h), for all (x_,h) e C.

There is a very natural and important representation of G on L2(IRn) that
combines translation by vectors in IRn with the action of H. For (x, h) G and
g L2 (IRn), define

fl(X__, h)g(y_.) (h)-1/2 g(h-l(_y x__))
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for all y E IRn. The basic representation of the affine group IR:> IR+ on L2(]R) that
plays a fundamental role in affine wavelets in L2(IR) is essentially a special case of (2.7)
(see [16, 3.3.2]). It is routine to show that p is a (continuous unitary) representation
of ( on L2(]an). It will be very useful to know the equivalent representation on

L2(]Rn) obtained from using the Plancherel transform :P. That is,

(e.s) r(x, h) Pp(x, h)P-1 for all (_x, h) e G.

PROPOSITION 1. For (x, h) G and L2(]Rn),

(2.9) r(x, h)() 5(h) 1/2 e2Y.- (_h) for all

_
e lR-’.

Proof. It suffices to check (2.9) for with g e LI(IRn) N L2(IR). For such
and e IRn,

We denote the unitary equivalence of two representations with a . Thus, r p.
If U is an open subset of ]R, let L2(U) denote the closed subspace of L2(IRn)

consisting of elements supported on V and let T/] :P-1 (L2(U)). Then ?-/ can be

thought of as a generalized Hardy space. If U is an H-invariant open subset of lR
(that is, U and h H imply /h U), then L2(U) is seen to be a -invariant

subspace of L2(IRn) by (2.9) and ?-/ is p-invariant. In this case, let rv and Pu denote
the subrepresentations of r and p, respectively, formed by restricting to L2(U) and

:H. Note that pv rv. The open H-invariant subsets of IR which are single
H-orbits are of special interest.

An H-orbit in lRn is a set of the form _H {_h" h H} for

_
E ]Rn. Clearly,

_IH 2H if and only if there exists k H such that _1 2k and H-orbits are
H-invariant sets. An H-orbit H is called free if -h 7 implies h e, the identity
element of H. It doesn’t matter which element of the H-orbit is used to check for
freeness. If IRn and 7H is a free orbit, then h --. 7h is a continuous bijection of
H with /H. In general, this bijection need not be a homeomorphism. However, if-H
is not only free but open in IRn, then h /h is a homeomorphism of H onto H by
Theorem 1 of [12]. Most of the rest of this paper is based on situations where we have
open free H-orbits in ]Rn. The next theorem shows why.

THEOREM 1. Let H be a closed subgroup of GLn(]R) and let G IRn>H. Let
U be an open free H-orbit in IRn. Then Pu is a square-integrable representation of G
on.

Remarks. Several examples of H and U satisfying the hypothesis of Theorem 1
will be given in 3. The proof given here for Theorem 1 is adapted from the proof for
the affine group, IR:>IR+, given in [16, 3.3.5 and 3.3.6]. Besides being elementary
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and giving a simple admissibility condition, the proof leads the way to a very simple
proof of (1.3) for the representation pv, as we will see in Theorem 2. Before proving
Theorem 1, we study the relationship between the Lebesgue measure on the open free
H-orbit U and the measure on U obtained by tran.sferring the left Haar measure of H
to U. Let An denote the Lebesgue measure on IRn, which, by restriction, we view as
a regular Borel measure on U. For 7 E U, define mr, a measure on U, by transferring
the left Haar measure of H to U vi-a the homeomo-rphism h - -. h. That is, for a

Borel subset B of U, let BZ {h e H h e B} and m_(B) fH X[ (h)dh.
LEMMA 1. m. is independent of’ U.
Proof. If _71,_2 U, then there exists a k H such that -1 -2k" Now,

for h E H, and any Borel set B C_ U, h BI iff _lh B iff _2kh B iff h

k-1B By left invariance of the Haar integral on H, m21 (B) m22 (B) for any Borel

Let m mr, for any " E U.
LEMMA 2. The measures An and m are mutually absolutely continuous on U.
Proof. Now, it is convenient to move An and m to H. Fix a / U and define,

for a Borel subset A of H,

A(A) An(_. A) and mH(A) m(_. A),

where _. A {_h" h A}. Of course, mH is just the left Haar measure on H and,
for k H,

Ai(Ak) (_. Ak) ((_. A)k) 5(k)A(_ A) 5(k)A(A).

Thus A/ is a (right) quasi-invariant measure on H. Of course, mH is also quasi-
invariant under right translations; so, by uniqueness of quasi-invariant measures on a
coset space (in this case H, itself) (see [11, III.4.9]), this means that A is mutually
absolutely continuous with mH. Transferring back to U via the homeomorphism
completes the proof.

Let denote the Radon-Nikodym derivative of m with respect to An. The
properties of are collected in the following proposition.

PROPOSITION 2. Let H be a closed subgroup of GLn(IR) and let U be an open

free H-orbit in IRn. Then there exists a Borel measurable function on U with the
following properties:

(i) 0 < (_) < c, for all

_
U.

(ii) If ? is either a continuous function or a nonnegative measurable function
on U, then, for any 9/o U,

(-h)dh Iv (_)(_)d.
(iii) For any k H,

/H(k) (/) for a.e. / e U.(2.11) (_Tk) 5(k)

Proof. Properties (i) and (ii) are easily checked from the properties of Radon-
Nikodym derivatives. To verify (iii), let -0 U be fixed and let Co(U). Then, by
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(2.10), (2.3), and (1.2),

()(k)d 6(k) -1 (_k-1)()d_

6(k)- ./ rl(ohk- )dh
AH(k)6(k)-I (oh)dh

AH(k)5(k)-1 [ r/(7_.)q(7)dT.

Thus, (Tk) AH(k)5(k)-(_), for a.e.

_
E U. A

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let f, g E 7-/]. Then, using ] Pf and .5 Pg for
simplicity,

(2.12)

For each h H, let Ch(_) ](7)-(_h) for all

_
IR’. Then Ch L(IR’) for each

h H. Let denote its "inverse" Fourier transform on IRa. Then (2.12) becomes

(by 2.5)

(by 2.10)

(2.13)

Note that 11  ’1/2 I1 , may be infinite for g e 7-/], but 11 ,I,1/2 0 if and only if g 0.
If g is any nonzero element of T/ and f e 7-/ satisfies f I pv(x, h)g for all

(x,h) e G, then (2.13) implies that Ilfll 111/21122 0. Since g 0, this implies

f 0. Therefore, any nonzero vector in 7-/ is a cyclic vector for Pu. Hence, pv is an
irreducible representation of G.
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On the other hand, if E Co(U), = 0, and g E 7-/] is such that , then

I11/2 I1 < c. So (2.13) implies that, for any f e 7-l, Vg,f e L2(G). Therefore, Pu is
a square-integrable representaiton of G.

The following two corollaries are clear from the proof of Theorem 1.
COROLLARY 1. For g -,g i8 admissible if and only if [1/2 L2(U).
COROLLARY 2. If f, g e 7"l and Ch() ]()(_h) for all /_ e ’ and h e H,

then g admissible implies Ch L2(IRn) for a.e. h H.
We are now in a position to give an elementary proof the theorem of Duflo and

Moore described in 1 for the square-integrable representation pv.
THEOREM 2. Let H be a closed subgroup of GLn(IR) and let G IRn>H. Let

U be an open free H-orbit in IRn. Then there exists a self-adjoint positive operator K
on Tl satisfying the following:

(i) pv(x, h)g pv(x, h) -1 A(x, h)-Ig for all (x, h) e G.
(ii) domg-1/2 {g e g is admissible}.
(iii) If g is an admissible element of ?-l, then Vg,f e L2(G) for all f e 7-l.
(iv) If g and g2 are admissible elements of 7"l and f, f2 e 7-l, then

(vgl,Ii, Vg.,l.)i2(G (fl,f2} (K-1/2g2,K-1/2g).

Proof. Recall that denotes the Radon-Nikodym derivative of the left Haar
measure on H, transfered to U, with respect to the Lebesgue measure of IRn restricted
to U. Thus - is the Radon-Nikodym derivative of these measures in the other order.
Let -1 also denote the operator on L2 (U) defined by pointwise multiplication. Define
K to be P- -p. Thus,

domK {g e 7-/] / e L2(U)}

and, for g dom K, Kg /.
For r dom -1 and (x_, h) G, using (2.9), we get

(2.14) 71"U(_X h)[I/-171"u(_x, h)-l?] () I/-1 (h)?()

5(h) I/-l(/) Recall from (2.6) thatfor all -), E U. By 2.11, -(_h) A,(h)
and the definition of K establishes !i).

Now, for g ,g domK- iff 1/2 L2(U) iff g is admissible by Corollary
1. Thus (ii) holds and (iii) follows immediately from the calculation (2.13). It remains
to prove (iv).

Let gl and g2 be admissible elements of U] and f, f2 ]. Let ()
]j()(h) for

_
E IR-, h H, and j 1, 2. By Corollary 2, ,

L2(IR’) for almost all h e H. Again let v p_1, for j 1, 2. The computation
is similar to (2.13), so we leave some steps to the reader.
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<fl, f2>u <K-1/2 g2, K-1/2 g>u. [1

Remarks. (1) The only part of the Duflo-Moore theorem that has not been
established for Pu, by these elementary methods is the uniqueness of K.

(2) The forms that the reproducing formulas (1.5) and (1.6) take in the present
setting are now obvious.

Our final remarks in this section concern the assumption that there exists an

open free H-orbit in ]Rn. This forces the dimension of H, as a Lie group, to be n.
There are several questions which arise concerning such groups H and their action on

IRn (and ]Rn).
(3) If H is a closed n-dimensional subgroup of GLn(IR), must there exist an

open H-orbit in lRn? The answer is no; an example for n 2 is easily found. Let

H:{(a O)b 1 "a, bE]R,a>O

a0Then, for (9’1,9’2) E ]R (9’1 9’2)( b 1) (a9’1 + 59’2,9’2), from which it is easy to see

that there are no open H-orbits in IR2. Nevertheless, the answer seems to be yes for
"most" H. It would be interesting to make this precise.

(4) If H is a closed n-dimensional subgroup of GL(IR) and if there exists at

least one open free H-orbit in IRn, then a multivariate calculus argument shows that
the union of the open free H-orbits is dense in IRn. Thus, if there is one open free H-
orbit, then L2(IRn) is a direct sum of p-invariant subspaces, the ?-/’s, on each of which
Pu is square integrable. In such cases, it turns out that the regular representation of G
is then a direct sum of irreducible subrepresentations, see [3] where several examples
are given. Groups with this property were also studied in [4] and [18].

(5) In any dimension n, can one classify, up to inner equivalence in GL(IR),
those closed n-dimensional subgroups H for which there exists an open orbit?

3. Two-dimensional examples. In this short section, we present some exam-

ples of two-dimensional subgroups of GL2(IR), describe open orbits in IR2 for these
groups, and give admissibility conditions for vectors in the associated Hilbert spaces.
We will return to these examples in 5, where we discuss frames arising from these
group actions.

Example 1. Let A denote the diagonal subgroup of GL2(IR). That is,

0 a2
"al,a2 IP\{0}

Let G ]a2>< A. Clearly, G factors as a direct product of two copies of the (discon-
nected) affine group of one dimension. The map (01 0 __, (1 1)(01 0) (al a2) is

a2 a2

a homeomorphism of A onto V ((9’1,9’2) e ]R2 "9’19’2 0}. Since U is dense in
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]R2, 7- L2(]R2) and, by Theorem 1, p is a square-integrable representation of G on
L2(]R2), where p is given by (2.7), which in this case becomes

0)] (yl) 1

a2
g

y2 v/lala21 (Y2 x2)/a2

al 0o 11 a.for all (1) e IR2, g e L2(]R2), and [(x2Y2
The Radon-Nikodym derivative of t’roposition 2 is given by

1
1I/(’1, 2)

I/ ’1’-1-2’
for (’1,’)’2) e U

and g E L2(IR2) is an admissible vector for p if and only if

Example 2. Let

Let G IR2><K1. The map (-ab ab) __, (1, 0)(_ab ab) (a,b) is a homeomorphism of

K1 onto the open orbit U 1R2\{(0, 0)}. Again 7-/r L2(IR2) and p, as given by
(2.7), is square integrable. We leave it to the reader to calculate the explicit form of

p in this case. We prefer to give the equivalent representation 7r on L2(IR2).
For r e L2(IR2) [(x) b b)] G, and (71 "2) IR2

X2 a

b)J r](’l, ")’2)- v/a2 + b2 e2ri(’lx+x)r(a/1 b/2, b’)’l nt- a’)’2).a

An L2(]R2) is an admissible vector for r if and only if

d,),1d3,2 < 00.

Remark. K1 is just the direct product of the dilations and rotations. That is,

K1 {aRo "a > 0 and 0 _< 0 < 2r},

where Ro cos0 sin0
sin 0 cos 0 )"

For any r > 0, define

{(aKr -rb b). (a, b) IR2\{(0, 0)}}a

Then Kr has properties very similar to K1 and, in fact, Kr is inner conjugate to K1
in GL2(IR) since

Kr= (1/v/ 0)KI(V 0)0 1 0 1
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Thus, any Kr, r > 0 is equivalent to K1 via a change of scale on the horizontal axis
(cf. Remark (5)in 2).

Example 3. This is a family of examples. For each c E IR, let

{ (o 0) }a, bEIR, a>0
b ac

If c - 0, there are two open orbits U+ and U_ in IR2; U+ {(,1, ")’2) ")’2 > 0} and
U_ {(9’1, /2): 72 < 0}. Note that when c 0, we have the example in Remark (3)
at the end of 2. Fix c 0. Let G IR2:> He.

As with the group in example 2, the formula for , the representation on L2(IR2)
is simpler than that for p. For [(xl (a 0 )] e G e L2(]R2) and (7 "2) IR2

x2 b a

i(x ) (o o)1 (, ")’2)
x2 b ac

e2i(Ix+’x) r(a/1 + b/2, ac2).

Then r rv+ @ u_, where u+ and ru_ are the subrepresentations of r formed by
restriction to L2 (U+) and L2 (U_), respectively.

For rv+, the admissibility condition for L2(U+) is

The condition for U_ is similar.
For this family of examples, the case of c 1 leads to the simplest formulas and

is representative of the general case in terms of the nature of the action on IR.
4. Discrete frames. We begin this section by recalling the definition of a frame.

If is a Hilbert space, a frame in is a family of vectors (wj)jeg such that there
exist A > 0 and B < c, called frame bounds, with

for all r E 7-/. For a good discussion of frames constructed from the affine group, see
[16, Chap. 3]. In this section, we show how to generate a frame in 7-/ for the groups
]an:>< H and the square-integrable representations pv discussed in 2. The results are
of a general nature and we do not attempt to obtain tight frames (where A B in
(4.1)). For any particular group H that proves useful, detailed analyses can be carried
out in later work.

For this section, fix a closed subgroup H of GLn(IR) such that there exists an

open free H-orbit U in IRn. Let 7-/ denote the Hardy space of elements in L2(lRn)
with Fourier transform supported on U. Let p be defined as in (2.7) and pv be
the subrepresentation of p determined by restriction to 7-/ as in 2. Our aim is to
describe guidelines for selecting an admissible g 7-/ and a discrete set ((xi, hj))jj
in G ]Rn<H so that (p(x,hj)g)jej is a frame in 7-/]. In what follows, we have
been heavily influenced by [10] and [16].

DEFINITION. A subset P of H is called separated if there exists a neighbourhood
V of the identity e in H such that l-1V k-1V for k and l, k P.

It will be convenient for us to express this condition in terms of the action of H
on U.
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LEMMA 3. A subset P of H is separated if and only if there exists a compact
subset B of U with nonempty interior such that Bl N Bk for l, k E P,l k.

Proof. Fix -0 E U. Suppose P is separated by a neighbourhood V of e in H. We
may assume that V is a compact neighbourhood of e. Let

B- {’0h-l" h V}.

Then, the map, h _0h-l, is a homeomorphism of H onto U; so B is a compact
subset of U with nonempty interior. For k P, Bk {_0h-lk h V} {_0h-1
h k-V}. Thus 1-V k-V implies B1 Bk . The converse is simi-
lar.

We will say tha P is separated by B in U if the condition of Lemma 3 holds.
LEMMA 4. Let P be a separated subset of H and let D be a compact subset of U.

Then suPkEp (#{/e P" Dl Ok }) <
Proof. This follows from (i) => (iii) of Lemma 3.3 in [10], or the reader can show

it directly with an easy compactness argument.
DEFINITION. A frame generator is a pair (P, F), where P is a separated subset

of H and F is a compact subset of U, such that Uk’-P Fk U.
We now describe how to obtain a frame in ?-/v from a frame generator (P, F)

and the square-integrable representation Pu. Let D be a compact subset of U with
nonempty interior DO and F C D0. Let R be an n-dimensional parallelepiped with
D c R. By R being an n-dimensional parallelepiped, we mean there are vectors

IRn, linearly independent, and real numbers a
bn such that

R- 2- 7J A-J aJ <-’J <- N l <-j <- n
j=l

Since {A,_A2,...,_An} forms a basis of IR’a, we have a dual basis {yl_ y2, yn} for
]Rn. Let I n considered as an index set for the following discrete set in ]Rn. For
each/- (i, i2,..., in) I, let

and
0 if -), e ]Rn\R,

e!(_) 1
e2 i-- if 7 R,

where A(R) denotes the Lebesgue measure of R. Identify L2(R) with {r/e n2(IRn)
r/(_) 0 for almost all

_
IRn\R}. Then {e,_. / I} is an orthonormal basis for

L2 (R). Let
M sup (#{/

kEP

which is finite by Lemma 4.
Now suppose g 7-/] satisfies the following conditions:

(i) Support of c_ D. (That is, (-),) 0 for almost all

_
E IRn\D.)

(ii) a inf {l(’7)l "3’ e F} > 0.

(iii) b sup {[(’3,)[ "7 D}
Let A A(R)a2 and B A(R)Mb2.
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THEOREM 3. With the notation which has been established above, {p(x*-, k)-lg
i e I, k e P} is a frame for 7-l with frame bounds A and B.

Proof. For (x,h) e G,(x,h)- ((x, e) (o, h))- (o, h-)(-x, e). Thus, for
fET-/, /EI, andkP,

(f, p(x’:, k)-) (p(o, k)L p(-_’-,))
<(o, k)], (-_-,

2.9) f 5(k) 1/2 ](_k)e2" 2x-- ()d_.(by
Ju

Thus,

kEP iEI kP

kP

(by
kP

(.)
kP

On the one hand, using the fact that (P, F) is a frame generator, we have
a2, for all 7 U. Thus, by (4.2),

I(f,P(X-,k)-g)nl 2

kP iEI
>- A(n)a2/v []()

AIIfl[ 2

On the other hand, for a given 7_ U, 9(k-1) 0 for at most M values of k P
and 19(_k-)l

_
b, for any of those values. Thus,

Z I(f’P(X-i-’k)-ig)12 <- A(R)Mb2 fg f()2d
kePI

(4.4) B[[/2

Together, (4.3) and (4.4) mean that {p(t,k)-g’ I,k P} is a frame for
with frame bounds A and B.

Remark. The proof of Theorem 3 is clearly an easy adaptation of the standard
arguments for the affine group (see, for example, [16, 5.1.2]).

5. ame generators in two dimensions. We now use the two dimensional
examples from 3 to illustrate how frame generators, as described in the previous
section, can be asily found in particular examples.

Ex,, . n thi cse, A {(% 0). e {0}} d A.
a2

Note that, by including negatives of the dilations, there is a unique open A-orbit

u {(, :) :. 0, : 0} in . Let

0 2 "m,n
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and let F [1, 2] x [1, 2]. Then P is separated (by [1 , 1 + ] x [1 , 1 + ] as long
as 0 < < 1/2) and keP Fk V. Thus (P, F) is a frame generator for IR2:>A and
the associated square-integrable representation p on L2(]R2).

Example 2. We now study K1 {aRo a > 0, 0 _< 0 < 2r}. One can easily form
P by separately discretizing the a’s and 0’s and then find an appropriate "fundamental
domain" F. However, it is important to note that P can be of the form {hn n E }
for a single fixed h. Let

1 1 x/ cosz sinh
-1 1 -sing cosg

and let P {hn n }. The action on ]R2 of h is a simultaneous rotation
and dilation. It is easily verified that P is a separated set, with respect to U
lR2\{(0, 0)}, which, is the open orbit for K1. Let F be the trapezoid with vertices at
(, 0), (1, 0), (6, 6), and (1, 1). Then U [.Jnz Fhn" That is, (P, F) is a frame
generator.

Remark. It is known that one can do much better in this situation (see [13],
for example). If we let F 2 c_ ]R2, combining translations by elements of F and
dilations by powers of h admits a multiresolution analysis and leads to an orthonormal
basis in L2(]R2), not just a frame as is given by Theorem 3.

Example 3. We select one representative example from the family {He c 0} of
groups from Example 3 in 3. If c- 1,

Hi={( ab 0 / blR, a>0}aa

There are two open Hi-orbits in IR2. We will consider one of them

u+ > 0}
for illustration. Let

p
rn2n

and let F denote the trapezoid with vertices at (0, 1), (1, 1), (0,2) and (2, 2). It is a
pleasant exercise to show that the open upper half-plane is tiled by the translates of
F under P. That is, U+ m,neZ F( 2" 0

m2 2 )" It is also easily checked that P is a
separated set relative to U+. Therefore, (P, F) is a frame generator.

6. Concluding remarks. Our purpose was to show the wide availability of
square-integrable representations on IRn. The group that is being represented is of the
form ]Rn:>H with the elements of IRn acting on IR as translations and the elements
of H acting as generalized dilations. There is a great deal of liberty in selecting H.
Among the n-dimensional closed subgroups of GLn(]R), many (perhaps most) will act

in such a manner that open free H-orbits exist in IRn. We have illustrated this point
with two-dimensional examples.

Once H has been selected so that there exists an open free H-orbit U in IRn, then
a representation pu is naturally defined on the Hardy space ]. We showed that this
pu is square integrable and gave an elementary proof of the Duflo-Moore relations for
such a representation. Moreover, for Pu, the admissibility conditions are particularily
easy to check and the "formal dimension" operator has an explicit description.
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We made the first steps towards constructing good frames in 7-/] in 4. There
is clearly much remaining to be done. Especially, in cases where one knows that a
particular dilation group H is well suited to an application at hand, one needs to refine
the analysis to obtain tight frames or even an orthonormal basis.

Acknowledgments. We would like to acknowledge useful conversations with
James Brooke, Patrick Browne, Qingde Yang, and Eberhard Kaniuth while we were
developing these ideas.
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POLYCONVEX FUNCTIONALS FOR NEARLY CONFORMAL
DEFORMATIONS*
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Abstract. Variational integrals whose absolute minima are conformal deformations are studied.
Polyconvexity and mean coercivity of these functionals are proved in even dimensions. Existence of
nearly conformal deformations is established.
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1. Introduction. In this article, we investigate a class of variational integrals
with nonconvex and noncoercive integrands. Such functionals arise naturally in quasi-
conformal analysis and nonlinear elasticity. They are referred to as energy functionals
for a deformation f : C ]Rn - n and take the form

(1.1) [f] E(Vf)dx.

In elasticity, the integrand E IRnx’ --+ R+ is called the stored-energy function and
it encodes the mechanical properties of the material. The minimum points A E Rnxn

of E are called potential wells. Obviously, the derivative E’ :Rx __, Rx vanishes
on the potential wells and E posesses stress-free states. Our basic assumption is
that E vanishes exactly on the matrices of linear conformal mappings, that is, on
the set C+(n) {,kA ;A e SO(n), ) >_ 0}. Therefore, $[f] measures (in an average
sense) how far is f from a conformal deformation. If f is conformal, then [f] 0
and we say that f is an absolute minimizer of . The minimizers (with prescribed
boundary values) of our energy functional will be referred to as nearly conformal
mappings.

The simplest example of such a functional is the complex p-harmonic intergral- 1, <p<

for functions f f C C + C of Sobolev class WI,P(f). Its minima, called the complex
p-harmonic functions, are found by solving the nonhomogeneous Cauchy-Riemann
equation

Of
0- -Ih(z)lq-Uh(z)’

where h is a holomorphic function and q is the HSlder conjugate to p.
Define a nonlinear operator H-n --. I+ acting on gradient matrices as

(1.2) H(Vf) [Vfl n det Vf.
Its differential H" nxn _+ ]lnxn induces another operator

(1.3) H’(Vf) nlVfl’-2Vf n adjVf.
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26, 1994.
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Both H and H vanish on conformal matrices. H is nonnegative due to Hadamard’s
inequality. When n 2, we find that H(Vf) 10f/O2l 2 and H’(Vf) 20f/O.
Therefore, a natural generalization of the complex p-harmonic integral to higher di-
mensions might be the functional

(1.4) :p[f] ja(IVfln n det Vf)p/2’ 1 < p < oc,

defined for all mappings f ft --, IRn in the Sobolev class W1,2-2 (, ]n).
For n > 2, the function H Itn - I+ is not convex. Another serious obsta-

cle in proving the existence of minima for :p is the lack of coercivity of H. In JILl,
using polyconvexity and mean coercivity, we succeeded in showing that for p >_ 2 the
functional :rp attains its minimum in the Sobolev class W1’ (ft, 1) with prescribed
boundary values of g E Wl’(ft, ln). The case 1 < p < 2 is still open. For p _> 2,
Liouville’s theorem asserts that the absolute minimizers of 27p in the class W1’ (ft, ]R)
must be Mhbius transformations (or constant mappings); see [G], [R1], [BI], and [IM].

Let f (f,..., fn) gt --* ]n, n 21, be a mapping of the Sobolev class
W’Z(t,n). Set N (?) and denote by VfZ*t the N N matrix of all/
minors of Vf. More precisely, the entries of Vft*t are indexed by ordered/-tuples
I (i,... ,i), 1 _< i <... < it <_ n, J (jl,"" ,jr), 1 _< jl <"" < jt _< n, and

Ox

Ox
These determinants are integrable functions on . For p _> 1, we introduce the class
P,t(gt,) of mappings f E Wl,t(t,n) such that VfZ*t LP(,INN).

In Lemma 2.1 of 2 we show that the expression Ht(A) IAt*tl2 N det A for
A nn is nonnegative and vanishes only when A is either a conformal matrix or of
rank less than 1. Thus an alternative to the p-harmonic integral in the complex plane
is the functional

(1.5) .p[f] j((IVft*tl 2 gdet Vf)

for mappings f P,t(gt, ]n). 9Vp is polyconvex for all 1 <_ p < c; see Lemma 2.3.
9p is possibly mean coercive, as it is if p >_ 2 e for some e e(n) > 0; see JILl.

Another functional of interest to us is

(1.6) 1/Y[f] =/ IVft*t(x)12[IVft*t(x)l 2 g det Vf(x)] dx

for mappings f 2a+2’t(t,n). The case 1 reduces to the functional offered by
Alibert and Dacorogna [AD] in two dimensions,

(1.7) [f] =/gt ]Vfl2(IVfl2 2det Vf) J(]fzl2 +

Our main result addresses the polyconvexity of the functional
THEOREM 1.1. Let be a positive integer, n 2l, 0 <_ a <_ 1, and A, B Inn.

Then

(1.8) W(A) W(B) >_ (4, At-t- Bt*z + A(det A- det B),



POLYCONVEX VARIATIONAL INTEGRALS 611

where J ]M(BTM) E ]NxN and A A(Bt-t) I are given explicitly by the
formulas

(x.9) 41Xl  - (ixl + 2]x- le)x+,

-41zl  - (IXi +  lX-I
for Z NxN (see 2 for notation used here).

This result is new even in two dimensions. Only the cases of a 1 (see [AD],
[ILl) and the case a 0, which is obvious, have been known. Our next result deals
with the mean coercivity of.

THEOREM 1.2. Suppose f,g e 2aW2,/(,n) are mappings such that f-g

’ , Then

(1.11) / IvY* I +

where we point out that 5 5(1, a) > 0 is independent of f, g, and .
In particular, we see that a minimizer f of subject to the Dirichlet condition

f-g ,t(,) automatically belongs to 2+2,t(,).
Theorems 1.1 and 1.2 allow us to apply the direct method in solving the following

minimization problem.
THEOREM 1.3. Let 0 a . 1, > O, and g 2+2,t(,n) be given. Then the

functional

(1.12) [f] e( Ivslt)2a+2 + [f]
attains its minimum in the class of mappings f wl,t(,n) such that f-g

Although we have shown that is coercive in the mean for all a 0, it ceases to
be polyconvex for large a. We address this problem in two dimensions in 4. Therein
we examine the range of parameter a for which W is rank-one convex.

2. Preliminaries from multilinear algebra. We begin by introducing some
matrix notations. Let be a positive integer and n 21, N (). We denote
by the space of n n matrices A, B, C,... and by gg the space of N N
matrices X, Y, Z, Spaces of matrices are equipped with the inner product (X, Y)
trace(XTy) for X, Y gxg and an associated norm X]2 (X,X). We also define
the matrix signum function

/ if X : O,
sgn(X)

0 ifX =0.

For A Inxn, we define At*t ]NxN

(At*t)/

where I (il,..., it) and J (jl,... ,jr) are/-tuples such that 1 _< il < < it _< n
and 1_< j < < jt _< n.
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It is standard in the theory of determinants that for A,B E nn, we have
(AT)l*l (At*l)T and (AB)t*t Bt*tAt*t. Hence if U is orthogonal, then Ut*t is also
orthogonal. We will need the following version of the Hadamard inequality, which
follows from [IL, Lem. 2.1].

LEMMA 2.1. Let n 21, N (), and A e Inn. Then

(2.1) Ht(A) IAt*tl 2 NdetA > 0

and equality occurs iff one of the following two conditions holds:
(i) At*t= 0, that is, rank(A) < l;
(ii) ATA AI, where A > O, that is, A is a similarity matrix.
For X (XJ) ]gN, we define the complementary matrix ]pYN by

I’ I’ J’X (-I)III+IJIxj, where and denote the/-tuples complementary to I and J.
Clearly, the transformation ~" NN ._..> ]NN is an idempotent self-adjoint operator,
which is an isometry with respect to the inner product in gY,

(.) x,
(e.3) {x, ?) (,
(2.4) (+, } {X, Y}

for all X, Y ]NxN.
Indeed, (2.2) follows directly from the definition, whereas (2.4) is implied by (2.2)

and (2.3).

(X,?> E(-1)IIl+lJl ,IyI’ i,
++J+ J, E (-1)lI’l+lJ’lxJ, yjI

I,J I’,J’

Ix, y).

For X ]NxN, we define the matrices X+ and X-, called the conformal and anti-
conformal parts of X, by

1
(X + .,), X-

1
(X ),(2.5) X+= {

and hence

(2.6) X X+ + X-.

For any X, Y 11NxN,

(2.r) (x+,v-) =o.

Indeed, by (2.3)and (2.4),

4(X+, Y-) (X, Y) (X, } + (., Y} (., } O.

In other words, the decomposition of X into conformal and anticonformal parts defines
an orthogonal decomposition of ]NN. Hence, if X X+ / X-, then

iXl -iX+l + [x-[,
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LEMMA 2.2. For any X, Y E NxN,

(2.9) IX+l- IY+l _> (sgn Y+,X- Y).

Proof. From the Cauchy-Schwarz inequality, we see that ]X+I _> {sgn Y+, X+)
and IY+I {sgn Y+, Y+). Hence (2.7)yields

IX+l- IY+l /8gn Y+,X+- Y+)= {sgn Y+,X- Y).

LEMMA 2.3. Let n 21, N (). For A ]Rnn, let X At*l. Then

(2.10) IX+l2 [X-[2 N det A.

In particular, the form [H(A)]p/2 2p/21X-Ip is convex with respect to the x
minors of A for all p >_ 1.

Proof. Using the Laplace expansion formula [DS, p. 46], in the penultimate step,
we get

-IX-I= (x,) E(--1) IIl+lJIlrlV’I’

I,J

de A Nde A.
I

Remark 1. For A x, and X Al* we have that xTf( det A I

3. Polyconvex conformal stored energies in even dimensions. Polycon-
vex integrands have been introduced by J. M. Ball [B] as a generalization of null
Lagrangians. For a thorough discussion of the subject, we refer the reader to [D] and
JILl.

DEFINITION 3.1. A function W ’ -- ]R is said to be polyconvex if for every
B ]nxn there exists B ]12nx2n such that

W(A) W(B) >_ {B, T(A) T(B)}

for any A n,, where T(A) denotes the 2 2n matrix of all minors of A of all
orders.

The main result of this section is the following.
THEOREM 3.1. Let 0 < a <_ 1, n 21, N (), where is a positive integer.

Then the matrix function Wa IRnn - given by

(3.1) N det A)
is polyconvex. More precisely,

(3.2) W,(A) W,(B) >_ (M,A* B*) + A(det A- det B),

where Jt/[ (B*), X(B*), and

(3.3) A/I(X) 4Ixl2"-2(Ixl 2 + 2lX-12)x/,
(3.4) A(X) -41xl2-2 (IXl 2 / clX-12)

for X [NxN.
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Our proof is preceeded by two lemmas.
LEMMA 3.2. Let S be an open subset of R and let h E C2() be a nonnegative

function vanishing on the boundary of S whose Hessian matrix is positive in S. Then

(3.5) h(a)- h(b)>_ (Vh(b), a- b

for all a, b S.
Proof. Inequality (3.5) is well known in the theory of convex functions if the

segment [a, b] is contained in . To generalize it, we denote by Ix, b] c [a, b] the
largest subsegment contained in S. If x = a, then x belongs to the boundary of S.
Accordingly,

h(x) h(b) >_ (Vh(b), x b).

Since h(x) 0 and a b ,k(x b) for some > 1, we obtain

(Vh(b) a b) =/(Vh(b), x b)
<_ Ah(x) )h(b) <_ h(a) h(b).

LEMMA 3.3. For 0 <_ a <_ 1, consider the function

(3.6) h(t, d) (t2 2d)a(t2 4d)

in S {(t,d) e 2. t2 4d > 0}.
Then its Hessian matrix

hdd hdt )H
htd htt

is positive definite.
Proof. The zero set and the support S of the function h are depicted in Fig. 1.

An elementary calculation shows that

(z.7) hdd 24-aa[2t2 --4d]a-212t2 + (1 + a)(t2 -4d)] >_ 0

and

(3.8)
det H 4a[2t2 4d]2a-3[(a + 1)3t2(t2 4d) + (a + 1)(2a + 1)(t2 4d)2 2(a 1)t4]

>0

as desired.

Proof of Theorem 3.1. From Lemmas 3.2 and 3.3, we infer that

(3.9) h(tA,dA) h(tB,dB) > r(tB,dB)(tA tB) + 5(tB,dB)(dA dB)

for all pairs (tA, dA) and (tB,db) from S, where T and 5 are the partials of h with
respect to t and d. More explicitly,

(3.10) T(t, d) 2t(t2 2d)-1 [a(t2 4d) + t2 2d],
(3.11) 6(t, d) -2(t2 -.2d)-1 [c(t2 4d) + 2(t2 2d)]
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FIG. 1.

for all (tA, dA), .(tB, dB) E S. Next, we define two real functions t, d" ]1NxN --+ I,

(3.12)

(3.13)

t(x)  lX+l
1 1d(X) -(IX+ IX-I

for X ]NxN.
To shorten notations, we write X At*t and Y- Bt*t for A, B ]1nxn.
According to (2.8),

(3.14) (t2 2d)(X) Ixl 2,
(3.15) (t2 4d)(X) 2lX-]2.

Hence for 0 < a < 1 in the definition of the function h introduced in Lemma 3.3, we
obtain that

(3.16) W(A) 2lXl "lx-I 2

(t2(X) 2d(X))"(t2(X) 4d(X))
h(t(X), d(X))

Due to Lemma 3.3, for any A, B Inn, we have

(3.17) W(A) W(B) >_ TB(t(X) t(Y)) + 6B(d(X) d(Y)),

where

(3.18)

(3.19)
WB 2X/IYI(-I)IY+I(2IY-I +
B -4IYI2(-I)(aIY-[2 + [YI).

We note that -B _> 0, because a _> 0 for all B ]nxn.
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We may now use Lemma 2.2. Accordingly,

t(X) t(Y) /(IX+l- Iy+J)
_> x/(sgn Y+,X- Y).

Finally, we conclude with the desired estimate

Wa(A) Wa(S) >_ (J4, Az-z- B*) + A(det A- det B),(3.co)

where

(3.21) 4 4[B*[e(-) 2l(B*)-le + [B*[e] (B*)+,

(3.22) A -41B*le(-)[l(B*l-le + IB*le
4. Mean coercivity. In this section we prove Theorem 1.2.
Proof of Theorem 1.2. To each ordered/-tuple I (i,...,i), 1 i < <

it 1, we assign two/-forms on , namely,

(4.1) df A A df, I dg A A dg.
The coefficients of these forms are the minors of Vf and Vg, respectively. Of
course, ( i[2) ]vfl,l] e L2a+2() and ( ]i]2) ]Vgt,t] e L2a+2(). The
hypothesis that f, g W,t(,) are essential to ensure that the forms I and
are closed in the distributional sense. Notice also that

(4.2) I I d (--1)k(f g)dg A A dg- A df+ A A df

Since f g 1,t (, n), it follows that the zero extension of I I,

I- in,
wi 0 in ,

remains exact in the entire space n. For each ordered /-tuple I, we consider its
complementary/-tuple I ordered in such a way that sgn(I, I) 1. Therefore,

(4.3.) I A I, df A A df A df A A df det Vf.
As before, the form w, e a+2(n) is also exact. We now use Proposition 9.1 in
[IL] with n 2l. Accordingly,

where 5 5(1, a)e [0, 1).
RecMling that wi -I and w, I, -I,, with the aid of Young’s inequality,

we routinely arrive at the estimate

(4.s 

for some e e(1, a) > O.
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On the other hand, for each !-tuple I, we have

(4.6)

0

_
1gII 2 -[-" II,I 2

Hence, summing .(4.5) with respect to I, we conclude with the desired inequality

+ fa
N det Vf]

for some 5 5(1, a) > O.

5. Existence of nearly conformal deformations. Having at our disposal the
polyconvexity and mean coercivity of the integrand W, we may now implement the
direct method of the calculus of variations.

Proof of Theorem 1.3. Let (fj}j>_i be a minimizing sequence in 2"+2’(Ft, ln)
for the functional " such that fj g E IV1’ (t, ]Rn)

Mean coercivity yields

(5.1) 6_.( [Vfjll) 2-b2 -6f [Vf;*/12a+2
_

’[fj]-4- [Tg/*/[2a+2.

This estimate, together with the boundary condition fj -g l/rl’/(’,]ln), implies
that the minimizing sequence is bounded in wl,t(Ft, In). Therefore, there is no loss
of generality in assuming that {fj }j_>l converges weakly to a mapping f. Of course,
f satisfies the Dirichlet boundary condition f-g ll’t(f/,In). It remains to be
shown that f minimizes 9r.

Clearly,

(5.2) (jf IVfl/) 2a+2 < lim inf (jf ]Vfj]/),oo2c+1

VfTM
_
VfTMUsing weak continuity of the minors (see [R2] [B]) we observe that _j. in
fl*lthe sense of Schwarz distributions On the other hand, by (5.1) the sequence
_

is bounded in L2a+2(,NN). These facts ensure that Vf}* is actually weakly
convergent in L+(2, INxN) and hence f 2+2,(a,In).

Also, by Proposition 5.2 of [ILl, we see that det Vf --+ det Vf in the sense of
distributions. By Hadamard’s inequality (2.1), we see that det Vf is a bounded
sequence in Ll+(t2), where we note that 1 + a > 1. These arguments show that
det Vf det Vf weakly in Ll+().

The final step requires the polyconvexity of W established in Theorem 3.1.

(5.3)
+ A(det Vfj det Vf).
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2o@2
From (3.21), we see at once that A/ A/(Vf*l) belongs to L"f(,INN),
which is the dual of L2a/2(,]NN). Similarly, by (3.22), A A(Vf*l) belongs
to L(a+l)/(t), which is dual to L+l(gt). Consequently, the right-hand side of (5.3)
converges to zero, which implies the inequality

(5.4) fa W(Vf) >_ liminf3-/a W(Vfj).
Combining (5.4) with (5.2) yields

[f] <_ liminf [fj],
j--c

completing the proof of Theorem 1.3.

6. Rank-one convexity. Considerable progress has been made in the study of
nonconvex variational problems in two dimensions. Specific classes of integrands have
been analyzed in great detail [AD], [A], [DDGR], [DK], [DM], [RS], [2].

These efforts resulted in showing that the sets of convex, polyconvex, quasi-
convex, and rank-one-convex matrix functions form an increasing sequence. All but
the last inclusion have been shown to be strict in two dimensions. In higher di-
mensions, the fact that rank-one convexity does not imply quasi convexity has been
established by V. verk in [1].

In the context of the quoted work, it is appropriate to summarize the results of 3
in two dimensions. When n 21 N () 2, Theorem 3.1 becomes the following.

PROPOSITION 6.1. The function Wa ]22 __+ ]1 given by

(6.1) W(A) IAI2(IAI2 2det A)
is polyconvex for all 0 <_ <_ 1.

Polyconvexity in the case a 1 has been proved in [AD] and JILl, and the case
a 0 is obvious. The precise values of a for which Wa is polyconvex, quasi-convex,
and rank-one convex remain unknown. A new step in this direction is the-following.

PROPOSITION 6.2. If -- _< c --< +v/-4 then the function Wa is rank-one convex.

Proof. Polyconvexity implies rank-one convexity. Hence it follows from Proposi-
tion 6.1 that Wa is rank-one convex for 0 _< a _< 1.

In [DDGR, Prop. 1.1], Dacorogna, Douchet, Gangbo and Rappaz found the neces-
sary and sufficient conditions for rank-one convexity in two dimensions. Accordingly,
Wa is rank-one convex iff

(6.2) O(u, v, y) 2[(a + 1)a 2a(a 1)y]u2 4auv + a + 1 2ay >_ 0

for all y, u, v 6 IR satisfying u2 + v2 _< 1, (u + v)2 1 <_ 2y <_ 1 (u v)2.
Part 1" Proof of (6.2) for 1 < a < 3-l- Since O(u,v,y) is linear in y,

it is enough to show that (6.2) holds for the maximal value of y, namely, y+
-(1 (u v)2) Therefore, (6.2) is reduced to proving that for all u2 + v2 < 1

(6.3) l(u,v,y+) 1 + (u v)(bu v) + 2(a 1)u2(u v)2 _> 0.

Using our assumption on a and dropping a nonnegtive term, we get

los(u, v, y+) _> v/ 3 + (u v)(bu v) _> (v/ 3)(u2 + v2) + (u v)(bu v)

0.
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Part 2: Proof of (6.2) for - <_ a < 0. It suffices to prove (6.2) for 12yl <: 1,
hence

Oa(u,v,y) >_ 1 -[a[(4 + 2[a- 1] + 2[a + 1[)
=1+8a>0

as desired.
the integrand Wa is not rank-onePROPOSITION 6.3. For 2 and < -5,

cotvex.

( v 2)=_<0 In Part 2, if u=Indeed, when a 2 in Part 1, then 2 5

-v 2 and 2y -1 and a is rank-one convex, then we infer that a > /-2 >2 3"
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THE GRADIENT THEORY OF THE PHASE TRANSITIONS
IN CAHN-HILLIARD FLUIDS

WITH DIRICHLET BOUNDARY CONDITIONS*

KAZUHIRO ISHIGE?

Abstract. We are interested in the asymptotic behavior of minimizers (as e 0) of the
variational problems under the Dirichlet condition

inf elVul2+-W(x,u dx uEWl’(f Rn),u=g on Off/

where W(x, .) is a nonnegative function with only two zeros a and/. Here a and/ are independent
of the space variable x. In this paper, we will show that the limit of a sequence of minimizers
(as e 0) is a solution of another variational problem without boundary condition. However the
limit variational problem has a boundary integral corresponding to transition layers near 0f. Our
analysis relies mainly on the theory of gamma convergence. In order to overcome the difficulty
of inhomogeneity of the boundary condition, we approximate g(x) by suitable piecewise smooth
functions near the boundary

Key words, phase transition, Cahn-Hilliard fluids, gamma convergence, singular perturbation

AMS subject classifications. 49J45, 49Q20

1. Introduction. In this paper, we will investigate the asymptotic behavior of
minimizers (u}>0 (as - 0) of the following variational problem:

1
inf( / [e]Vul2 + - W(x,u)l dx u E W1’2 (f" Rn), u g on 0gt },

where is a bounded domain in RN with C2 smooth boundary OFt and g is a Lipschitz
continuous function from 0gt into Rn. Here W(x,.) is a nonnegative continuous
function with only two zeros a,/ E Rn, and a,/ are independent of the space variable
x. This type of problem is related to the study of the phase transitions of Cahn-
Hilliard fluids. See [13], [18], and [20].

In [12], R. V. Kohn and P. Sternberg conjectured that minimizers of the varia-
tional problem

1
infl / [e[Vul2 +-(u2-1)2] dx u e

which is a special case of (PC), converge to a solution of

8p, {u 1} + 2 o ]d(u) d(g)ldT-lN_linf a
a

u e BV(), lu] 1 a.e.},
where d(t) f_ Is2 lids and 7-/g- is the N- 1-dimensional Hausdorff measure.
This conjecture was affirmatively solved by N. C. Owen, J. Rubinstein, and P. Stern-
berg in [18].

In this paper, we will study the asymptotic behavior .of minimizers of (P) and
extend the result of [18] to the vector case (n _> 2). Our proof for the vectorial case
is more complicated than that for the scalar case (n 1).

*Received by the editors March 30, 1994; accepted for publications (in revised form) August 24,
1994.

Graduate School of Information Sciences, Tohoku University, Aoba-ku, Sendai 980-77, Japan
(ishige@math.is.tohoku.ac.jp).
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Our approach is based on the theory of gamma convergence, in which the asymp-
totic behavior of minimizers {u}>0 of the variational problem (P) is characterized
by a solution of another variational problem without the Dirichlet conditions.

Recently, using the theory of gamma convergence, several authors have studied
the asymptotic behavior of the minimizers of the problem

(E,) inf  lVul 2 + dx u e fa u(x)dx m I’
where m is a constant vector in Rn. For the scalar case (i.e., n 1), see [1], [6],
[10], [12]-[17], and [19]. For the vector case (i.e., n >_ 2), see [3], [4], [9], and [11].
Our results on the problem (P) depend mainly on the study of the asymptotic-
behavior of minimizers of (E). However, there are several different aspects between
the asymptotic-behavior of minimizers of (P) and those of (E). In fact, minimizers
of (E) generate only an interior layer, while minimizers of (Pe) generate both an
interior and a boundary layer as e --* 0.

On the other hand, we can easily see that minimizers of (SP) satisfy the equation

(CRy)
e2Au- u(u- 1)(u + 1) 0 in t2,

u(x) g(x) on 0f/.

In this case, there are several results for the solutions of (CP) obtained by using the
method of matched expansion. Our results also seem to be closely related to [5] and

We give the precise hypotheses on the functions W(x, u) and g(x). Let W(x, u)"
gl x Rn - R be a continuous nonnegative function, and for any x E gl, W(x, u) 0
if and only if u a or . Here we denote two constant vectors independent of x by
a and . We assume that there exist two constants K1 and K2 such that

(1.1) < W(x,
ueO[K1 ,K2]

for all x E , v [K, K2]’

and

(1.2) g(x) e [K1, K2]n for all x e 0.

Moreover, we assume that for any e > 0, there exists a positive constant such that

(1.3) Iwl/2(x, ) wl/2(y, u)l

_
f.Wl/2(x, 71,)

for all x, y f with Ix- Yl < di and for all u E Rn.
In order to state our main theorem, we will introduce a Riemannian metric d

on R, which is a modification of the one introduced in [3] and [9]. For x E and
a, b E R, let d(x, a, b) be the metric defined by

{I(1.4) d(, , b) inf W/(, (t))l (t) ldt

CI([0, 1]" Rn), 7(0)= a, 7(1)= b}.
For example, in the case of W(x, u) (u2 1)2 and n 1, we have

d(x, -1, b) Is2 11ds for b -1.
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We now state our main theorem in this paper.
THEOREM 1. Let g O --. Rn be a Lipschitz-continuous function which satisfies

(1.2). Suppose that the function W satisfies (1.1) and (1.3). For e > O, let u be a
solution of the variational problem

1
inf{ ja [elVul2 + - W(x,u)] dx u e  lo.(x) a(x)}.

If there exist a positive sequence {i}--1 and a function uo(x) E Ll(t Rn) such that

(1.5) lim ei 0 and lim u uo in L(t R’),

then

W(x, uo(x)) 0 for almost all x e ,
that is, uo(x) a or for almost all x e t. Moreover, the set E0 {x e t[u0(x) a}
is a solution of the following variational problem:

(Po) inf{/ano.E d(x, a, )dT-lN_ +o d(x, vloa(x), g(x))dTlN_l

E c , Pa(E) < , v OE -- \E},
where Pn(E) is the perimeter orE in and vloa is the trace ofv on 0. Furthermore,
we have

lim eilVu,,I 2 +- W(x, u,,) dx 2
i--*c i n0* Eo

d(x, a, )dTlN_

+ 2 fOftnO* Eo d(x, (, g(x))dT-lN_l + 2 Oa\O*Eo d(x, , g(x))dT-lN_.

Here O*Eo is the reduced boundary of Eo.
Remark 1. It is not restrictive to assume that there exists a subsequence {Ue}__

satisfying (1.5). In fact, the following is proved in [9] and [11]" if there exist constants
C and R such that

(1.6) inf W(x, u) >_ Clu for lul >_ R,

then there exists a subsequence {u}= satisfying (1.5).
Remark 2. Consider two continuous functions W(u) and h(x), where W(u) satis-

fies condition (1.1) and h(x) is positive function in . If the function W(x, u) has a
form of h(x)W(u), then W(x, u) satisfies conditions (1.1) and (1.3).

It is worth noting that the proof of the vector case has completely different diffi-
culties relative to that of the scalar case (n 1). For the vector case, it is important
to select a minimizing sequence {’k(X, t)}=l achieving the value of d(x, a, g(x)). One
of the difficulties in the treatment of the vector case is that k(x, t) is not necessary
continuous in the space variable x. Hence it seems difficult to apply the method of
[18] directly. In order to overcome this difficulty, we approximate W(., u) and g(.) by
suitable piecewise smooth functions near the transition layer and the boundary 0Ft.
For further details, see Step 2 in 4.



PHASE TRANSITIONS 623

The plan of this paper is as follows: In 2, we present some preliminary results
and state Propositions A and B, which are crucial in our analysis. In 3, adopting the
method of [4] to our problem, we will prove Proposition A. In 4, we will construct
approximate functions {w}>0 to the minimizers {u}e>0 and prove Proposition,B.
In 5, we give some direct applications of the results obtained in the previous sections.

2. Preliminary results and main propositions. We first introduce the no-
tation used in this paper. Let 9t be an open bounded set in RN with C2 smooth
boundary 0gt. For any u E SN-1, we denote the open unit cube centered at the origin
with two of its surfaces normal to u by Q, i.e., if {1,..., N-1, } is a orthonormal
system of RN, then

We denote the Banach space of functions of bounded variation by BV(gt). We denote
the Lebesgue N-dimensional measure by N and set IEI N(E) for any measurable
set E of RN. Furthermore, we denote the N- l-dimensional Hausdorff measure by
7N-1.

In this section, we recall some properties of functions in BV(gt) and state two
propositions which are the hearts of the matter in our analysis.

For u e Ll(t), we say u BV(Ft) if and only if there are Radon measures
tl, t2,..., tN defined in 9t such that for 1, 2,..., N, the total variation of.# < c
and

for all e C(Ft).

In what follows, we write Vu (]-tl, I-t2,..., ]-tN). For any positive continuous function
h defined on 9t, we set

fa h(x)lVul =- sup{ f u div gdx g e C(" RN), 191--< h}.
If u --* u in LI(), then we have

(2.1) liminf__,0+/a h(x)lVul > Jf
On the other hand, for u BV(gt) and any continuous function (x, y) C( R),
the co-area formula is read as

(2.2) .f (x, u(x))IVu dt (x, t)dT-lN-l (X).
oo (x)=t}

Furthermore, even if 0 is a Lipschitz-continuous boundary, we can define the trace
of u on OFt for u BV(t).

For any measurable subset E of RN, let XE be the characteristic function of E.
If XE BV(t), we say that E has finite perimeter in t. Then we set

(2.3) Pa(E) jf [VXE[,
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We define the reduced boundary of E as 0*E. We say x E O*E if and only if

B
IVx I > o for all r > 0

and the limit (x) limr-0 r(x) exists with I-(x)l 1. We have

(2.4) / h(x)IVXEI aO’E h(x)dTlN_i.

For further details on functions of bounded variation, see [7] and [21].
For u e Ll(t Rn) and e > 0, we define F(u), Fo(u) by

if u e W1’2 (Ft" R) and u g on OFt,

otherwise,

d(x, a, )[VX{()=o}] + 2/o d(x., l, loFt(x), g(x))d’l-N_

if u BV(t an) and W(x, u(x)) 0 for almost all x f,
otherwise.

In order to prove our main theorem, we need the following two propositions, which
are crucial in our analysis.

PROPOSITION A. Suppose that {ve}>o is a sequence in Ll( Rn) which con-
verges in LI( Rn) as -- O+ to a function vo. If

(2.5) liminf F(v) <
e--*0+

then vo is a function in BV( Rn) such that W(x, vo(x)) 0 a.e. x e a, E {x e
f vo(x) a} has finite perimeter, and

(2.6) Fo(vo) < liminf F(v).
--0+

PROPOSITION B. Suppose that Wo LI( Rn) can be written as wo aXE +
3Xa\E, where E is a measurable subset of gt with finite perimeter. Then there exists
a sequence {w}>o in W1,2(f R’) which converges in Ll(t Rn) as O+ to wo
and such that

(2.7) limsup F(w) <_ Fo(wo).
e--0+

Using Propositions A and B, we can prove Theorem 1 in the same manner as in
[13]. For completeness, we will give the proof of Theorem 1.

Proof of Theorem 1. Let {u,}0 be a sequence in Wl’2(f Rn) with lim_o u
u0 in L1 (t. R=), where each u, is a solution of (P). From Proposition B, there ex-
ists a sequence {v}>o such that lim_o v a in LI( Rn) and lim sups_,o F(v) <
Fo(a) < (x3. Then we have limsupi_. F(u) < cx3, and from Proposition A, we see
that

(2.8) F0 (u0) < lim infF (u,),
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W(x, uo(x)) 0 a.e. x e f, and E0 {x e f uo(x) a} has finite perimeter.
Assume that u0 is not a solution of (P0), i.e., there exists 0 e BV(f Rn) such that

F0( o) < F0( 0).

From Proposition B, there exists a sequence {fi}>0 in W1,2(f Rn) such that

(2.9) limsup F,(2,) < Fo(2o) < Fo(uo) < lim inf F,, (u,, ).
e--0

Then (2.9) contradicts to the minimality of u,. Therefore, u0 is a solution of (P0).
Furthermore, from Proposition B and the minimality of u,, we have

lim F,, (u,,) Fo(uo).

From the definition of the functional F0, we obtain

f f
lim F,, (u,,) 2 [ d(z, 0, )d’N-1 +:2 ] d(z, o,
i Jn0.No JOflNO* No

+ 2 f d(x, , g(x))dN-1,
O*Eo

and the proof of Theorem 1 is completed, rl

It remains to prove Proposition A and B, which we will undertake in 3 and 4,
respectively.

3. Proof of Proposition A. From (2.5), it follows that there exists a positive
sequence {i}--1 such that lim_. ei 0 and limi__. F,(v,) liminfe0+ Fe(v,) <
oc. Furthermore by taking a subsequence if necessary, we can assume that {ve}i=1
converges to v0 a.e. x E f as +oe. Then by Fatou’s lemma, we have

(3.1) 0<_ W(x, vo(x))dx <_ lininf fa W(x, ve,(x))dx

_< lirninf + W(x, (x))] dx

< liminf eF,(v,) O.

Therefore, we obtain W(x, vo(x)) 0 for a.e. x in a.
In order to prove the remaining part of Proposition A, we can assume without

loss of generality that v, (x) E [K1 K2] for all x f. In fact, let v# be a function
which is obtained by truncation of each scalar component of ve, by K1 and K2 given

=(v ,,),in (1.1), i.e., for v ,, %,...,v
#J=max{K1 min{%j, K2}}, j=l 2, ,n.Ve

Then from (1.1) and (1.2), we have the following relations:

lim v#=v0 in Ll(gt "Rn), v#
i-+

g on

2 + W(x, dx < e lVv,,I 2 + W(x, ve,) dx.
i
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For the purpose of proving that vo E BV(f Rn), we will introduce a function
d R2 --. R+ as follows"

(3.2) d(, b) inf W1../(3,(s))

7 e C([0, 1]" Rn), (0) a, 7(1) b}
for all a,b e Rn, where W(.) infeg W(x, .). Here we set () d(a,) for
e Rn and for fixed a e Rn, and we can easily see that () is continuous. Then

from Proposition 2-1 in [3], we have (v) W’() and

lii:f fa IV((v))dx lii:f fa wl"2(v)Vv dx

< lim
1

On the other hnd, from the uiboundedne of {,,} in L( a), we cn ee
that (,,) (0) in L(). Thu wh fro (.)

and so (v0) e BV(). Therefore, by (3.1), we have (v0) e {(),(Z)} for
almost all x in , and we deduce that v0 BV( R).

Next we will prove inequality (2.6). In order to give the estimates of IVvel.
W/(x, v) on the boundary

Let be any bounded open set in RN with C . om the regularity of 0,
without loss of generality, we can extend the function W(x, v) to the domain x R.
Then from the uniform continuity of W(x, v) on ’ x [K1, K2], for any e > 0, there
exists a constant > 0 such that

(.) IWl/(x, ) W/(, )1 ,[1 + wl/(x, )]
for all x, y ’ with Ix- yl and for all v [K, K2]. rthermore, from the
regularity of 0 and g, there exists a function G in W,.( Rn) whose trace on
0 equals to g. Here for any v L1(" Rn), we set

v ifx ,
(3.4)

In particular, 9 W,2(’ R) and we have

[ Iw,,Iwl/(x, ,,)dx <sup

Therefore, from the weak compactness for measures (see [7, Tam. 2, p. 55]) and the
definition of ,, there exists a nonnegative Radon measure p on and a subsequence
{ei,}i, of {ei}l such that for any e C(’),

(3.5) lV+,,,,wl/2(x,+,,,)dx + _lV,WX/2(x,G)dx

as . In what follows, we omit the prime of ei, for simplicity.
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From the Lebesgue decomposition theorem (see [7, Thm. 3, p. 42]), we can write

# as a sum of the singular nonnegative measures # #ITIN_I[((tNO*E)UO)+#2.
Then we can prove the following lemma. The proof of the following lemma is given
by modifying the arguments of [4].

LEMMA 3.1. The singular measure #1 has the following properties:

(3.6) #1 (x) >_ d(x, a, )
(.) ,(x) > d(x, , (x))
(3.8) #1 (x) >_ d(x, , g(x))

’N-1 a.e. x in t N O’E;

-N--1 a.e. x in Ot O’E;

TIN-1 a.e. x in O "\ O*E.

Proof. We begin by proving the inequality (3.6). Let xo be any point in t N 0*E.
From the Radon-Nikodym theorem, we have #l(X) < for ?-/N-l-- a.e. x in (t
O’E) U 0t, and so we can assume #l(X0) < c. Then we have

-cx:) > #l(X0) limsup #(x0 -SB1)/7N-I({xo +SB1} CI
5-,0

and for any e C(B1) with 0 _< _< 1, we get

,(o +B)> f (-x0)o-t-SB1 s d#(y)

where

o+6Bi

y Xo )IVv iwl/2 (xo,v(y))dy

and

o+SB

y XO ) /2 W1/2 (y))]dy.IVvel[W (y, ve(y)) (xo ve

From Proposition 2-1 in [3], we have

and so from (2.1), we obtain
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On the other hand, from (1.3), there exists a nonnegative function e(6) with
lim6-o e(6) 0 such that

(3.z) I+/-1 < ()fo+ P(Y-X) [Vv’[wl/2(y’v(y))dy < +6BI).

In what follows, we denote e(6) by 06(1). Therefore, from (3.10)-(3.12), we have

/z(xo h-5B1) _> d(xo, o,l)7"[.N-l({xo --t--6B1} rl O’E)-k 06(1)#(Xo -k 6B1),

and so from (3.9), we obtain

1 (Xo) -- d(xo, o, )

and we conclude inequality (3.6).
Next we will prove the equality (3.7). Let xo be a point in O*E fq Ogt. Without

loss of generality, we can assume #(xo) < +oc, and we have

(3.13) fx (Xo y)iV)eilwl/2(y )ei)dy#(xo + 6B >_ .lim o 6..-,oo o+6B

xo y)]VGIW1/2(x G)dx

lim J + lim J + O((sN),

where

J=- fx qo(.x.-Y)lv6lW/2(xo ,,)dy
o+6B

and

J--
o+6B

/2(y, ,) Wl/2(xo, ’,)]dy.

By means of an argument similar to the one we used to prove (3.6), we have

(3.14) lim J > lim J xo y)IVd(xo o )l

_> qo i IVd(xo, c, o)[
o+6B.

-> f{xo+6B1}n(0n0*E) q ( X,, - Y ) d(xo, o, g(y))dT-lN_ (y)

and from (1.3)and (3.3),

(3.15) IJl < 06(1)

+ 06(1)

_< 06(1)[#(xo + 6B) + (N].
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Therefore, from [21, Lem. 5.5.4i p. 236] and (3.13)-(3.15), we obtain

#1 (Xo) )-- d(xo, a, g(xo)),

and so we prove inequality (3.7). Furthermore, we can prove (3.8) in just the same
way as (3.9).

For any E C(FtP), 0 <_ <_ 1, we have from (3.4)

(3.16) ilina jf [eilVve 1 ] ]:2 + --W(x, ve) dx > 2 .lim IVvelW1/2(x, ve)dx

fa IVGIWI/2(x, G)dx> 2i_+lim lV)eilwl/2(x, ve)dx 2
’\-

_> 2/d# 2/a,\(1 )IVGIW/2(x, G)dx.

Consider an increasing sequence j, j 1, 2,..., such that limj_ j(x) 1 for
all x E FtP, and taking the limit of (3.16) as j , we have

limi_inf Fe (ve) _> 2 d#.

Therefore, from Lemma 3.1, we obtain

f
lim inf Fe (ve) >_ 2 ]
i--cx JcqO, E

d(x,a,)dT-lN_

+ 2 foan0*E d(x, c, g(x))dT-lN_ + 2 fof\O*E d(x, , g(x))dT-lN_,

and the proof of Proposition A is completed.

4. Proof of Proposition B. First we prove Proposition B for the special case
where w0 -= a in Ft. We divide the proof into three steps. The arguments used to
prove the second and third steps are completely different from and more complicated
than the ones used in the scalar case. In the second step, we construct the essential
parts of we, whose energy tends to Fo(wo) as e 0. In the third step, we complete
the construction of we, matching the trace on OFt to coincide with the given function
g on OFt.

Before starting a proof of Proposition B, we present the following two lemmas.
The first lemma is obtained easily by means of the inverse-mapping theorem.

LEMMA 4.1. Let t be a bounded domain with C2-smooth boundary 0. For
x Ogt, let u(x) be a inner normal vector to Ot at x. Define a mappin9 r OFt
[0, oo) -- RN by

(4.1) t) x + t.(x).

Then there exists .a constant so such that r(OFt (0, so]) is contained in l) and the
C-smooth inverse mapping r-1 of r exists on r(O [0, so]).

LEMMA 4.2. (See [13] and [20].) Let f be an open bounded subset of Rg with
Lipschitz-continuous boundary. Let A be an open subset of RN with C2 and with
a compact, nonempty boundary such that TIN_I(OA N Of) O. Define a distance

function to OA, doA R, by

doA(X) dist (x, A).
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Then, for some 81 > O, doA is a C2 function in {0 < doA(x) < sl } with

(4.2) ]VdoAI 1.

Furthermore, lims_0 "]’N-I ({doA(X) 8}) ?-lg_ (OA N ) and

(4.3) I{x IdoA(x)l < s}l O(s).

Here don(x) denotes the distance function dist(x, 0fl). From Lemma 4.2, we
see that doa is a C2 function in a neighborhood of Off. We set s* min{s0, s}.
Furthermore, for x E 0gt, r > 0, and sufficiently small 5 with 0 < < s*, we set
Ofln(x Oft C? (x + rlQ(=)) and ftn(x

Now we begin the proof of Proposition B in the special case where wo
Step 1. Let xo be any point in 0t2. In this step, for any sufficiently small r > 0,

we will construct a family {w},>o C W’2(ft(Xo)’Rn) such that

(4.4) limsup elVwl2 +-W(xo, w) dx <_ 2d(xo, a,g(xo))7-lg_(Ot(xo)).

In this step, for simplicity, we set ft ften(x0 ).
In order to construct {w},>0, we fix e, 5 > 0, and we consider the following

ordinary differential equation:

(4.)
d [e/2 + W(xo,’(y(t)))] /2
(t)=

()-0.

Here we denote dg/(t)/dt by , and we assume that 7 e CI([0, 1]" [K1, g2]n), ")’(0) O,
7(1) g(XO). We set

el(t)l)e(t) [1/2 -t- W(xo,-,/(t))] 1/2 dt

for t (0, 1) and set T (1). Then Ce(t) is a monotone increasing function and

(4.6) T (1) _< e3/4. length of ’.

We set (t) -(t- 5), and we can see that )(t) satisfies (4.5) in [5,5 + Tel; we
define y(t) by

0,

(4.7) y(t) max{0, min{1,e(t)}} (t), 5 _< t _< 5 + T,

1, t>_5+T.

We partition into three subdomains t,i, 1, 2, 3 as follows:

(4.8)
,1 - {X ’ do(x) < + Te, ds(x)

_
?Te}
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where ds(x) is a distance function to U<t<8* rt[Ogtn (xo + ?OQ(xo))]. Here we define
w(x) on U=2,3 , as follows:

/(y(do(x))), if x e ,2,
(4.9) We(X) , if x e D,3.
We extend w to D,I in such a way that for any x
+ T, w(x) and

w 2/(g-g) + C/ C()- +C-.
For sufficiently small e > 0, we have the length of < e-/s and e5/s. Therefore,
we obtain

(4.10)
,1

c(/ + /)C-n_l(Oa,).
We note that constants C are independent of e and . On the other hand, for suffi-
ciently small > 0 and e > 0, we have 5 + T < S* min{s0, Sl} and we obtain from
Lemma 4.2 and (4.9)

elVw[2 + -W(xo, we dx
-2- ,3,

N -[e1/ + W(zo, ((doa(z))))]lVdoa()ld,

and from (2.2), we get

elVw[2 + -W(xo,w dx
i2,3 ,,

at -[1/ + (o,((t)))]a_

2 e-(e/2 + W(xo,(y(t))))dt,

where supsds()5+(a t(0a)). Then from (4.5), we obtain

2 [ 1 ] 1(4.11)

om the regularity of O and the definition of g(xo), there exists a constant
o independent of Zo (dependent only on 0) such that for any 0 < < o, we have

e _l(0an(zo)_(oag(o)Oa) 0. So fom Lemma 4.2, we have lim,eo
for any e (0, o). Here we set w’ w. Therefore, from (4.10) and (4.11), for any

(0, o) we obtain

(4.12) e]Vw’]2 + -W(xo,w’) dx
(o)

+-1(0an)[0(e/) + 0(e/) +0e(1)].
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Since for any e > 0 there exists a sequence of Ci-curves (/i}=l such that the length
of -i _< e-1/8 and

lim Wl/2(xo, "(t))I "(t) ldt d(xo, c, g(xo)),

by the diagonal argument and (4.12), we can construct a sequence {w}e,>0 satisfying
(4.4). Therefore, the aim of the first step is completed. []

Step 2. Let f be the domain {x E f" 5 < don(x) < s*} U<t<s.Trt(0f). In
this step, we construct a sequence {w}e,>0 in Wi,2(f, Rn) such that

(4.13) limsup  lVwffl 2 +-W(x, w) dx < 2 d(x,a,g(x))dT-lN_l.

In order to construct this sequence {w}e,>o, we partition 0f into subdomains.
In view of the regularity of 0f, for sufficiently small > 0, there exist p points

p{x}=l C 0f and a subset wr/of 0f such that

(4.14) 02 \ Ul<i<pOfr/(xi) c wr/, Ofr/(xi) fqOfr/(xj) , j, i,j 1,2,... ,p

and limr/_0 ’/N-1 (;dr/) 0. Here we note that p depends on y and limr/_0 p(r/) x.
Fix r/, 5, e > 0. For any E {1, 2,..., p}, from (4.12) we can construct functions

1,2 5w’m e W (gtr/(xi)) such that

(4.15)  lVw l 2 + -W(xi, w) dx_
2’N-1 (Ofr/(xi))d(xi, c, g(xi))

" UN_l(O,(Xi))[O(,/2) + 0(,1/4) + 04,+ (1)].

Then we define w,’ W,2( R) as follows:

wesm { w,m if x

a otherwise.

By the argument of Step 1, we can easily see that wm W1,2(f Rn). Then we
have

2 + -W(x,wm) dx

 lVw , ,Ol2 + W(x,w dx.

On the other hand, we have

 lVw l 2 + -W(xi, we) dx + W(x, we) W(xi, w) dx
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(for simplicity we omit the index 5, r of w,5,7). From (4.15), we obtain

P(7) P(7)

EIi <- 2 E[d(xi, a, g(xi))TlN_l(OaT(xi))l
i--1 i=1

-[-" O(/r]2) + 0@1/4) "b Ov,o.+5 (1),

and from (1.3)and (4.15),

P(7) P(7)

i=1 i--1 (xi)
<_ %(1)

i=1

We set r]2 e3/4. This inequality, together with (4.16) and (4.17), yields

(4.18)
1

limsup e]Vw’7(e)12 + -W(x,w’7(e)) dx
5,e--*0

<_ limsup 2E e(x,,,(x))n_(Oa,(x,)).
e--0

i=1

On the other hand, for any x E Of7(xi ), we have

Id(x, a, g(x d(x, a, g(x)
<_ Id(x, a, g(x)) d(xi, a, (x)) + Id(x, a, g(x)) d(xi, a, g(xi)) <_ 07(1 ).

Thus we obtain

P(7)

E d(xj, Ol, B(Xj))’N-1 (OaT(Xi))

_
d(x, c, g(x))dT-lN-1 + 07(1

<- foa d(x, a, g(x))dT-lg_l + 07(1).

Recalling (4.18), we can see that the sequence {w’7(e)Ie,5>o satisfies (4.13). Hence
5 w’7(e) and the claim of Step 2 is proved.we set w

Step 3. In this step, we complete the proof of Proposition B for the special case
wo a. For any 5, e > 0, we define w as follows:

5 { a if x E gt \ o,
we

w.5 ifxfth,

where f0 Uo<t<s*Trt(Oq) and w*he is a function constructed in Step 2. In f5 _=
,55 using a convex combination between g(x) and wFro \ fie, we construct %

i.e., for x E fro \

5(4.19) we(x doa(x) ,5 7r-1 (5
W el(oa)e(Trho doa(x)(X))+ 1

eo (x) (x))5 (x)

Here 7rh(x) and rdoa(x) are the functions appearing in Lemma 4.1. Then we can
easily see that w e (f) and w (x) g(x) for all x
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In order to estimate the gradient of w, we fix c, 5, {f/(x) }=I,P and w. We set

71
--11 {x . o ()(x) e u,sso(,(x))},
--1(4.20) {x ’r o o,()(x) Ux<i<0(a,(xi))},

Here (x) 1, 2 is the domain appearing in Stepand have 5 U U w. ,i
1. rthermore, for simplicity, we set

j(x) ;(;.(.)(x)),
5 ,5 -1,(x) 1()( o o.(.)(x)), x e a.

Then from Lemma 4.1, we can see that there exists a constant C such that ]Vj(x)l C
for almost 11 x 5.

Now in the domains ,1, ,2, and , we will estimate the gradient of w and
then from the construction of w in Step 2, weobtain the inequality (2.7). If x e w,

5see v, a in a neighborhood of x, and so for almost all x w, we have

CIW,,I + c.

So we obtain

For almost all x a, (xi), we have

doa(x)iVw2, < IVdo(x)l ’(x) + IV2’(x)l

+ IVdoa(x)] O(x)+ (1 da(x))[VO(x)[
Here from the argument in Step 1, there exists a constant C2 such that Vv’(x)]
C/(e5/s) for all x e ,. Moreover, we have

)(g- Ch/s.,, c(/%- (oa)/-1

So we obtain

+ 1 + e

For any x ,2(x), from Step 1 we see w(x) g(x) in a neighborhood of x.
Then from the Lipschitz continuity of g(x) on 0 and (4.19), we have

IVw2,’ _< IVdo(x)I Ig(xi) (x)l+ (1 do(x))6 IVl
<Cl(x) (x)l + C C + C.
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Therefore, we obtain

/o 1 ]vw + -W(z, w’") dx <_ C e - + e +

Let a(.) be a positive function with a(0) 0 such that lim0 g_l(Wn())
/a(e) 0 and limoeh/S/a(e) O. Set e ca(e) and define we w. Then
from (4.21)-(4.23), we obtain

(4.24) lim elVwl2 + -W(x, we) dx O.
eo a()

Therefore, from (4.13) and (4.24), we obtain

limsup lwl + W(, w) < (,,
Hence the proof of Proposition B for the special ce wo a is completed.

Next, using the arguments of Steps 1-3, we will prove Proposition B. First we
recall an approximation theorem for sets of finite perimeter by sets with. smooth
boundary. See [13].

LEMMA 4.3. Let be an open bounded subset of R with Lipschitz-continuous
boundaw. Let A C be a set of finite pemeter in fl with 0 < [A[ < ]fl[. Then there
exists a sequence of open sets {Ak} satisfying the following conditions:

(i) OA C;
(ii) (Ak n)AAI 0 as k ;
(iii) Pn(A) Pn(A) as k ;
(iv) -1(OA 0fl) 0;
(v) [Ak n[ [AI for all suciently large k.
We sume that the meurable set Eh a C2-smooth boundary in 9; otherwise,

the proof of Proposition B follows from Lemma 4.3 and the diagonal argument.
Using the same argument in [14], we separate the domain into six domains

follows:

n. { s n: do() + , do(x) < 0},

n., = { e do(x) + , do() < 0},, {x n do(x) g r + , do(x) > r + ’},

where do(x) is a distance function to OE appearing in Lemma 4.2. We note that
and 5e depend on 0 and OE respectively. Here we set we a in 9a and we
in . In the domains a,, 9a,a, and ,a, by using the argument of Steps 1-3, we
construct we such that

(4.25) limsup [e,Vw,2 W(x,w)] dx 2g d(x,,)d,N_,
0 a, EO

(4.26) limsup 11 +-w(,)
eO ,
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and

(4.27) limsup elVwl2 + -W(x, w) dx <_ 2 d(x, , g(x))dTlN_l.
eO ,9 2\OE

Furthermore, we separate the domain 2r into two domains gt and as follows:

{x e do(x) , doE(x)
(x e don(x) or doE(x)

By means of the same argument used to obtain w in Step 3, we can construct we
such that w(x) for x E t and

for almost all x E t2,

and we have, as lal- 0( /’ / ’),

1 ](4.28) lim. elVwl 2 + -W(x,w) dx lim
Ce

o -0 ’ +c + lal- 0,

Here we use the fact lim_,0 1+5/8/e --0 and lim_,0 el+5/8/t 0.
Therefore, we have from (4.25)-(4.28) that

lim sup 9f [elVw12+--,0 -elw(x’w)ldx<-2foEna d(xag(x))dg_l,
+ 2o d(x,a,)dT-lN_l +2fo d(x,,g(x))dTlN_l.

NOE t\OE

Furthermore, by the construction of w, we can easily see that w(x) g(x) for all
x 0f and lim_.o w wo in Ll(f R). Hence the proof of Proposition B is
complete. El

5. Corollaries of Theorem 1. In this section, we will give some corollaries
obtained from Theorem 1. From the definition of gamma convergence and by Propo-
sitions A and B, the result below follows.

THEOREM 2. Let F and Fo be the functionals from LI( R) into [0, c], which
are given in 2. Then

r- lim F Fo in L (t R) topology.
e--,0+

We recall the definition of gamma convergence (see [2]).
DEFINITION. Given (X, T), a topological space, and F,F X R, a family of

real (extended) valued functions, the sequence {Fn},-_l is said to gamma converge .to
F at x X if the following two conditions hold:

(i) o covt unc x --, x n (X, ),

F x <_ liminf Fe xn
n---(x)

(ii) there exists a convergent sequence Xn X in (X, T) such that

limsup F,(x) <_ F(x).
n---o
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When this property holds for every x E X, the sequence {Fn}n=l is said to gamma
converge to Fo and Fo F(T) limn_. Fn.

On the other hand, in Theorem 1, the sequence of minimizers {u}e>0 does not
always generate interior layers. For example, if we consider problem (SP) with g 0,
we have E0 D or q}. In addition, considering the family of local minimizers, from
Theorem 2 and the results of [12], we obtain the following theorem.

THEOREM 3. Let u0 E LI( Rn) be a isolated Ll-local minimizer of Fo, that is,

there exists a positive constant 5 such that Fo(uo) < Fo(v)
whenever uo v and IlUo --vllLl(:p _< 5.

Then there exist a constant eo > 0 and a sequence {ue}e<eo such that u is a local
minimizer of Fe and u --. uo in L(D Rn) as e --+ O.
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SOME A PRIORI ESTIMATES FOR A SINGULAR EVOLUTION
EQUATION ARISING IN THIN-FILM DYNAMICS*

STEPHEN H. DAVISt, EMMANUELE DIBENEDETTOt, AND DAVID J. DILLER$

Abstract. This paper considers the singular evolution equation ut A In u 0, particularly
the corresponding Cauchy problem. This equation arises in the study of thin film dynamics and as
the formal limit as m 0 of the porous-medium equation. Through the use of local sup-estimates,
similar to those for the porous-medium equation (see E. DiBenedetto and Y. L. Kwong, Intrinsic
Harnack estimates and extinction profile for certain parabolic equations, Trans. Amer. Math. Soc.,
330 (1992), pp. 783-811), and a global Harnack-type inequality, a critical decay rate for solutions in
three or more space dimensions as Ix] oc is found. In particular, if the initial data decays faster
than this critical rate, there is no solution to the Cauchy problem.

Key words, thin-film dynamics, ill-posed problem, porous-medium equation, global Harnack
inequality, finite extinction time

AMS subject classifications. 35B45, 35K65, 35Q35

1. Introduction. We establish a spectrum of qualitative and quantitative prop-
erties of nonnegative solutions to the singular evolution equation

(1) ut A In u 0 in If(N II(+

Singular equations of this type have been studied, primarily in one space dimension,
in, for example, [5] and [11]. This equation is singular since its modulus of ellipticity,
u-1, blows up at points where u 0. At such points, In u is not defined. We regard In
u as an element of p NLloc (I +), for some p >_ 1, so that (1) can be interpreted in the
sense of distributions. Precisely, we say that a measurable function u IN I+ -- +is a weak solution to (1) if

(2)

u, In u e Loc(]N x 1+) and, for all e C(lN x ]I+),

fjf (uCt + In uA)dx dt O.

The equation has theoretical significance as it arises in the two-dimensional Ricci flow
(see [10], [16]) and a physical significance in connection with the dynamics of thin
liquid films (see [3], [4], [15]). In one space dimension, it has also been proposed as a
model for the limiting density distribution in the kinetics of two gases moving against
each other and obeying the Boltzmann equation (see [6], [12]). Since our interest
is mainly in the physical aspects of the partial differential equation (PDE), we will
describe below some currently proposed models of film rupture and their connection
with (1). The equation can also be viewed, at least formally, as a limiting case of the
porous medium equation,

(3) v Avm 0, v _> 0, m > 0,
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when m 0. Indeed, the formal change of variables,

transforms (3) into

,t, (x, t) (x, nt),

tm 1
Ut A =0,

m

from which (1) follows, formally, by letting rn 0. This formal connection prompts
some of our analysis below. We will show that some peculiar properties of the porous-
medium equation, such as sup-bounds, semiconvexity estimates, and extinction in
finite time, continue to hold for solutions of (1), whereas others, such as behavior at
infinity, do not. A dramatic difference is that while the Cauchy problem in IN +
for the porous-medium equation (3) can always be solved globally in time for every
initial datum

u0 > 0 u0 C(N),
the corresponding Cauchy problem for (1) cannot be solved for this datum in space
dimensions N _> 3. Another difference is the behavior of the solutions as Ixl .
For any m > 0, however small, solutions of (3) have unrestricted behavior as Ixl - oc
(see [7]), whereas the behavior of solutions of (1) as Ixl is rather rigid. One of
the results of this note is that if N _> 3, any solution of (1) in ]N X (0, T) as Ixl -* c
decays no faster than Ix1-2.

In this note, we assume that u is a classical solution of (1) and derive some a
priori estimates on its behavior. The point here is to find estimates and properties
that are independent of any sort of lower bound on u. Thus, by a limiting process,
these are indeed a priori estimates and properties of the weak solutions in the sense
of (2).

1,1, Main results: Upper bounds and behavior at infinity, Nonnegative
solutions of (1) are locally bounded in RN l+ if

(4) u e L’[oc(It(N +), r > max 1, -We show by a counterexample that the indicated order of integrability is optimal for
a sup-bound to hold (see Remark 2.6). One of the interests of this result is that if

r n
u0 E Lloc(R ), then (4) holds, and then the local boundedness of u can be established.
This supplies necessary conditions for the forward Cauchy problem to have a locally
bounded solution.

For the porous-medium equation (3), local boundedness is guaranteed if (see [7])

(5) v e L[oc(Iy +), N(m- 1)+ 2r > 0.

Thus the integrability condition (4) can be regarded as the limiting case of the inte-
grability condition prescribed by (5).

These estimates are global in ]1N if, for some to > 0, the function x u(x, to),
roughly speaking, does not decay slower than Ix[ -2 as x oc. This is meant in the
sense that

(6) sup [Ixl2u(x, to)] < cx, for some r > max 1,-p>l
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Here, for a region t of finite Lebesgue measure and for f E LI(),

17;meas f dx

denotes the integral average of f over gt. If (6) holds, the solution u(., t) decays, for
t > to, pointwise no slower than Ix1-2 as x - oo. Such an upper bound, in the growth
of u, is optimal as shown by the lower bounds described below.

1.2. Main results: Lower bounds and behavior at infinity. We first es-
tablish that a solution u for which In u E Lloc(I+; Loc(]RN)) is bounded away from
0, locally in N X ]+. Here, we say that f Lloc (I+; Loc (]1g)) if, for each p > 0
and0<t0<tl <oo,

f If(x, t)l dx <_ C(p, to, tl).sup
tl <_t<_t2 JB

This is the content of 3.1. Then, using the estimates leading to this fact, we prove
in 3.3-3.5 that if N _> 3, solutions of (1) decrease, as Ixl- cx, no faster than [x1-2.
Thus the rate Ix1-2 of increase/decrease of u(., t) as x is optimal.

1.3. Ill-posed problems. A key fact is that the results indicated in the previous
sections hold for solutions of (1) originating from either initial or final data. Thus,
if N _> 3, neither the forward nor the backward Cauchy problem is well posed if the
data decay faster than Ixl -; as Ixl . Thus, in particular, if N _> 3 and if the
initial datum is compactly supported, neither the forward nor the backward Cauchy
problem associated with (1) is well posed.

1.4. Extinction in finite time. We can show that, if uo LN/;(IN) and
N _> 3, then any classical solution with this initial data must become extinct after
some finite time T. Furthermore, T is bounded by a constant depending only on N
and the LN/;(IN) norm of u0. We also indicate through a family of examples why a
result of this type is impossible for an initial datum uo Lr(Rg)r > -. This result
is merely a sufficient condition to guarantee that a solution has a finite extinction
time. The explicit solutions given by Example 1.5 below show that this condition is
not necessary for finite extinction to occur. This result can be viewed as the limiting
case of the corresponding result for the porous-medium equation. For the latter, finite

N(1.m)extinction occurs when the initial data is in Lr(N), where r 2 as long as
r > 1 (see [2]).

1.5. Background on thin-film dynamics. When a uniform viscous-liquid film
lies on a rigid plate, small disturbances to the planar interface can grow, leading to
the rupture of the film locally and laying bare the substrate. The instability is driven

by the presence in ultrathin films (100-1000) of van der Waals attractions that
drive thin regions to zero thickness. The van der Waals attractions can be modeled
as a potential, , of an extra body force, u3, where u is the local film thickness.
Williams and Davis [15] derive an evolution equation governing the dynamics, viz.

(7) ut + A In u + div (u3V(Au)) 0 in I2 x ]+,

with the upper sign corresponding to the unstable case above. When the lower sign

holds the van der Waals forces are repulsive and the uniform film is stable. The last
term represents the stabilizing effects of surface tension on the liquid-gas interface.
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Williams and Davis [15] numerically integrated the unstable version of equation
(7) in ll x + and found that in a finite time, t trt, there is a value of x for
which u 0, i.e., the film ruptures. Burelbach et al. [4] did more extensive numerical
computations and found that, at a rupture point, as t --. t, u tR- t, suggesting
that locally u (tR t)f(x), which corresponds to a solution of the unstable version
of (7) with the surface tension neglected. Thus the equations, locally, should be

(8) ut:kAlnu=O inlR2x+.

As mentioned in 1.3, most of our results hold for both the stable and unstable versions
of ().

1.6. Some explicit solutions. As a way of checking our analysis, we list here
some known explicit solutions of (1) in IN l+. Some are obtained from the explicit
Barenblatt-Pattle (see [13]) solutions by formally letting m 0, and others are new.

Example 1.1. For N 1 and A > 0,

A2(T- t)+u(x, t)
1 + cosh(Ax)"

Example 1.2. For N 1 and , > 0,

2t
(z, t)= t + II’x’"

Example 1.3. For N 2 and T > 0,

u(x, t) 8,X(T t)+
( + Ixl):"

Example 1.4. For N 2, fl > 0, and a > 0,

(x,t)

Example 1.5. For N >_ 3, , >_ 0, and T > 0,

(z, t)
N

2(N-2)(T-t)

2. Some sup-bounds. For what follows, we assume that we have a classical
solution to the Cauchy problem

ut A In u 0 in ]N X ]1+,
()

(, 0) 0(x), 0 e c().

In addition, we assume that u0 > 0 to make sense out of (9). Our estimates in this
section are entirely local and hold for classical solutions of (9) with no specification of
the behavior of u(x, t) as Ixl -. . These a priori estimates can be used to actually
construct weak solutions of (9) and to infer the asymptotic behavior of u(x, t) as
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For p > 0 and xo E ]1N, we let Bp(xo) {IX-Xol < p} denote the ball of radius p
about x0. If x0 0, then we write Bp(0) -- B. We let r be a real number satisfying

(10) r>max 1,-

and set

(11) r 2r- N.

For N _> 2, the requirement (10) is equivalent to mr > 0. In the estimates to follow,
we will denote by - and b generic positive constants depending only on N and r.

2.1. Local sup-bounds.
PROPOSITION 2.1. Let u be a classical solution to (9) and let r satisfy (10). Then

there exists a constant depending only on N and r such that

(12) IlU(’,t)llo ,S ( o) --< q (t-- r<s<tsup IlU(.,t)l[r,S2p(o) + p2

for all xo IN and for all 0 <_ T < t.
Proof. Without loss of generality, we may assume that Xo 0 and " 0. Let

0 < a < 1 and consider the sequences of radii and time levels

Pn=P(l/a2-n) and tn (1- 2-n-1).

Then P0 p(1 +a) and to t/4. Also, as n c, Pn decreases to p, and tn increases
to -. So, with Qn Bp. x (t, t), we have the following relations:

Bo(+) x ,t Qo D_ Q D_ C_ Qn-

_
Q

_ _
Qoo Bo x -,t

Let Cn C(Q) satisfy

Multiply the first term of (9) by the test function (u- kn+)+-2n and integrate over
Q. Here kn k(1 2-n), where k :> 0 will be chosen later, and Q Bpn x (tn, s),
where tn <_ s <: t. Note that k0 0 and, as n c, kn increases to k. Set

M supu.
Qo
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Then

(13)

(14)

Thus

(5)

Set

Then

Thus

2n //Q u kn+ r+ dx dT.

")’4 /f (u-kn+l)+dxdT"Ma2p2

Z5 (S kn+l )r+-l
dsA(e)

n+i
8

(5 kn+l)_ < 2( kn+)r+IA(,5)I <
kn+l k

Ta =//Q D:fn(u)nDndxdT

_// fn(u)(IDnl2 + nAn)dxd7".
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(16)

an ff[TaI <_ "y a2p2 [fn(u)ldxd

f/Q (u kn+l)r+dxdT.

Then, by combining (13)-(16), taking the supremum for 8 e (tn,t), and assuming
that _< k _< M, we find

(17)

sup

where

Yn =//Q u kn +dxdT

Since (u-kn+)_2 vanishes on the lateral boundary of Q=, we can apply the space-
time version of the Sobolev Embedding Theorem (see [7, Chap. 1, 3]), that is,

(18)
//Q [(u- kn+l)+n]2dxdT < 7 (//Q ID[(u- kn+l)-n]12dxdT)

By HSlder’s inequality,

Yn+l -"//Q (- ]gn+l) dxd"

<_ (u- kn+l)r+2ndxdT
N

(//o<_ [(u- k+)+Q] dxdT

where An {(x,t) e Qnlu(x,t) > kn+). Then, by applying (17) and (18),

(19) Y=+ <_
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To estimate

Yn -//c2n u kn +dxdT

>-//c2 (u- kn)+X{>k+l}dxdT

>_ (kn+l kn)rlAnl
r

Combining this with (19) yields

N

a2tkJ-4

where b > 1 is some number depending only on N and r. Thus (see [7, Chap. 1,
Lem. 4.1])

M Yo-lim Yn 0 if k > 7
[t)’a2-" --+-n--D 2r

Thus, with

M sup u,
Bp(l+a)[1/4,t]

Bpx(,t) (0"2t) N2-r2 p(+a)

udxdT + P--
for any p > 0 and 0 < a _< 1. Note that the term is included to satisfy the

assumptionFixR >thatoandk _>T > "0. Consider the sequences

n TE 2n+1
pn=R 2-i and tn-

i=o

Thus Bw x (tn, T) C_ Bv+ x (tn+l, T). Define (rn so that Pn+l pn(1 + rn). Then
it follows that an >_ 2-n-2. By applying (20) with t tn, p Pn, and a an,

(21)

sup u ’7’
Mn2l tn- tn-_____lurdxdT nt

p2Bo(t,t-) (an2tn-1) N-

<7

where

Mn sup u.
Bpn(tn,T)
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Thus, from (21),

Mn <_ 9/MnSrl utdxdT + R--,
2R

where 9/and b are constants depending only on N and r. Fix r/e (0, 1) and apply
Young’s inequality to (22) to arrive at

(23) Mn

_
r]Mn+l + 9/b’ T- urdxdT + R---.

2R

Then inductively, with F T- urdxdT
2R

k-1 T k-1

M0 <_ + }2 +
j--0 j --0

By selecting < - and letting

(24)

sup
BRX(,T)

T 2v--N

u<9/ T ---2-N urdxdT

[ (/o)’_<9/ T - sup ur(x,s)dx
0(8(T 2r

Then, by replacing T by t and R by p, (24) is exactly (12). [3

2.2. Local integral estimates.
PROPOSITION 2.2. Assume that u is a classical solution to (9) and that r > 1.

Then there is a constant 9/ depending only on N and r such that

(25) sup ur (x, s)dx < 9/ u (x, T)dx +
<s<t ,(xo) .,(xo) P

for all p > O, O < T < t, and xo
Remark 2.3. An estimate like (25) is impossible for solutions of the heat equation.

To see this, suppose that, for any solution v to the heat equation in B2p x (0, T),

for any 0 < t < T. Then fix R such that I > 0 and consider

C ,-
vc(x, ) -Select 0 < p < ]y]/2. If the estimate above is true for some r, then

C fB ’-’’e- dx < 9/(0, N, r, t, p)t-- .
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Of course, this is impossible, since the left side oc as C - c, whereas the right
side is independent of C.

Proof of Proposition 2.2. Again, we take x0 0 and T 0. Fix a E (0, 1] and
choose E C(Bp(I+)) satisfying

0 _< _< 1 in Bp(l+a),

(x) 1 in Bp,
7 inIDI, I1 <

(p) Bp(l+a).

Multiply the first term of (9) by ur-l and integrate over Q8 B(l+)p x (0, s).

0 l/Q8 (ut A In u)ur-dxdT

CdxdT + [Dur-l + D]dxd-
r u

(26) - ---dxd + (r- 1) u"-31Dul2dxd

+ ffQ ur-2DuDCdxdT

1
-T + (r 1)T2 + T3.
r

Since is independent of t,

(27) TI=/B u(x, s)(x)dX /B u)(x)(x)dxd-.
(l+)p (+)p

T3 r f D(ur-1)DCdxd-

-1 ffQ ur_ACdxd7.(28) r- 1

> --" ff Ur- dxd-.
-(p) JJ

By combining (26)-(28), using the fact that T2

_
0, and taking the 8upremum for

O>_s>_t,

(29) sup fB u(x,s)dx<_ fB u)dx+ ffQ u-ldxd.
o<<t . (+)

(p)

Then, by applying HSlder’s inequality to the last term of (29),

sup fB ur (x’ 8)dX fB udx
0<s<t p (+)p

(3o) - - P2rAN \O<_s<_t (+)p
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Fix R > 0 and consider the sequence of radii

n

Pn RE2-"
i--1

Select an so that Pn+l (1 + an)pn. Then

(31) an

Set

Then, by (30) and (31),

Pn+l Pn > 2-n-2.
Pn

f
sup
o<s<t JB

Ur (X, s)dx.

Yn < u)dx + 72n Yn-t

To complete the proof, use an interpolation argument analogous to that in Proposi-
tion 2.1. El

COROLLARY 2.4. If no E Lr(IN) and r > max{l,-}, then there is a constant ?
depending only on N and r such that

(32) 0<s<tsup jfN ur(x’s)dx<7N u)(x)dx.

Remark 2.5. Note that a closer analysis shows that we can take 7 1 in (32).
2.3. Global estimates.
PROPOSITION 2.6. Let u be a classical solution to (9) and let r > max{l,-}.

Then there is a constant /, depending only on r and N, such that

(33) sup u(. t) < 3’ t-llUoll
Bo(xo)

r,Bap(xo) nt-

Furthermore, if

(34)

then, for all t > O,

(35)

and, for all x IN,

Illuolll sup -/- [Ixl2uo(x)ldx <
p>l JBp

(36) Ixlu(x, t) - 9/

Illu(., t)lll < c

t /t-=lllolll;

Remark 2.7. For N 2, estimate (33) is sharp in the sense that no estimate
of this type is possible for r 1. To see this, consider the one parameter family
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of solutions uA given in Example 1.3. As can easily be checked, IluA(.,0)II1,R2 is

independent of A, whereas u.x(0,-)- .
Remark 2.8. For N >_ 3, estimate (33) is almost sharp in the sense that no

estimate of this type is possible for r < -. To see this, consider the one-parameter
family of solutions given by example (1.5). For r < , IluA(., 0)llr,s is bounded
independently of A, whereas u),(0,-) for some fixed number .

Proof of Proposition 2.6. (33) follows from Propositions 2.1 and 2.2. Fix x0 E ]N
and t > 0. If Ix01 < 2, then (36) is obvious. So assume Ix01 > 2. Then, from (33),

u (x)dx + i2

/ t-
ixolg

[Ixol2uo(x)]rdx
_

(o)

<_ / t- [Ixl2uo(x)]rdx + t

which proves both (35) and (36). [:]

Let gt be a bounded domain in ]N with smooth boundary OFt. For T > 0, let
"T X (0, T) and ST Ot (0, T). Consider classical solutions to the boundary
value problem

ut A In u 0 in tT,

(37) ulsr g, where g e C(ST),

u(x, O) uo(x), where u0

We assume here that g and u0 are strictly positive so that, by the maximum principle,
u > 0 in gtT, and the PDE in (37) is well defined in the classical sense.

PROPOSITION 2.9. Let u be a classical solution to (37) and let r > max{l,- }.
There exists a constant 7 depending only on N and r such that for all t > O,

The proof is very similar to that of Proposition 2.1.
multiply the PDE by the test functions

Select k > Ilgll,sr and

(u kn)-l+ Q,2 where kn k(1 2-), n 0, 1, 2,

Due to our choice of k, these test functions vanish on ST, and the cutoff function

n can be chosen to depend only on t. The proof can now be repeated with minor
changes.

3. Local lower bounds. In this section, we consider positive classical solutions
to (9). In addition, we assume that u <_ M and that u satisfies the semiconvexity
inequality,

u
(39) ut <-.t
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Remark 3.1. If u is a classical solution to (37) with g(x,t) c > 0, then the.
function W--(ln u),- satisfies

W -ulAW W (W + )
Clearly, W <_ 0 on the lateral portion of T and for t sufficiently small. If W has a
positive maximum at a point P in the interior of fT, then

U p

Thus u satisfies (39). Thus any solution to the Cauchy problem which is constructed
as the limit of solutions of this type satisfies (39) in the sense of distributions.

The PDE in (9) is well defined for u > 0. We will derive some .quantitative lower
bounds on u. We will do this in two stages. First, we establish some lower bounds
in terms of some integral norms of]ln ul, and then we convert these into pointwise
estimates.

3.1. Local lower bounds in terms of integral norms.
PROPOSITION 3.2. Let u be a classical solution of (9) satisfying the semiconvexity

inequality (39). F/x 0 < e < 1. Then there is a constant "y(e) depending only on N
and e such that, .for all xo E Rg and for all 0 < T < t,

(40) inf (lnu(x,t))_dx, 1, (l+e)lnt -Bp(xo)

Here 7(e) 70e-N(I+-), where 70 depends only on N.
Proof. Fix 0 < e < 1. Again, without loss of generality, we set x0 0 and - 0.

In u(., t)_< max/-y(e)f2p(xo)
If

B,(xo)inf In u(., t) _< max 1, (1 / e)In --then the proof .is complete. So assume the contrary. Set v In u, that is, u ev.
Then

Oev
(41) 0- Av 0.

For0<a<l,k<-max{1,(l+e) ln},anda= set

pn p(l + a2-n) and kn=k(1-an).
Then k+l < k, k0 0, and koo k. Also, notice that for our choice of a,
kn+l <_ kl k for all n _> 0. Furthermore, Pn+I < Pn, Po p(1 + a) and poo p.
Then, with Bn Bpn,

Bp(l+=) D_ Bo D_ BI... D_ Bn D_ Bn+I D_ D_ Boo Bp.
Let , e C (Bn) be a smooth cutoff function satisfying

0 _< ( <: 1 in B,

= 1 in B+,
4

[D[2, [A[

___
’7(ap)2 in B,.
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Multiply (41) by (k+l- V)+n2 and integrate over Bn.

(42)
0 /B (evvt v)(kn+l v)+2dx

T + T.

T2 Dv [2D(k=+l -v)+ + 2(k+1 -v)+nD,] dx

(43)

2 2[ID(kn+l v)+l + D(k+l v)2+D] dx

_< ID[(k+ v)+q]ledx + (p): (k+ v)+dx.

To estimate T1, notice that

Thus

us 1
vt---u t

(44)
lIB eV(kn+l V)T2ndxTl <--i

ekn+ /B< (kn+l -v)+dx.

kThus, by combining (42)-(44) and using kn+l

_
kl

_
l/e’

(4 -el++ (kn+l v)+dx.

Notice that

(k v)2+dx >- IS (kn+l v)+(kn v)+dx

(46) -- (kn ]gn+l)/B (kn+l -v)+dx

_> Ikla"(1 a)/B (n+l v)+dx.
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Thus, by combining (45) and (46), we have

(47) [D[(kn+l v)+n]12dx <_
(ap)2cn

Notice here we used the assumption that -k > max{1, (1 + e)In } to get that

k
e 1+-- (1 + e)p2

By applying Hhlder’s inequality, the Sobolev inequality, and (47), we get

n+l

(48)

N--2

<:: [(kn+l v)+n]--dx IAn(t)l

<_ 9//B ID[(kn+ v)+n]12dxlAn(t)l

<_ 9/bn /(ap)2 IA(t)l (kn v)2+dx,

where An(t) {x e Bn v(x,t) < kn+l}. Note here that b > 1 is some constant
depending on c. To estimate An(t)

(49) s
(kn v)2+dx >_ ]An(t)l(kn+l kn)2

k2a2n(1

From (48)and (49),

] bn (/B)1+-(50) (kn+l v)2+dx < 9/
2 a (kn v)2+dx

Set

Then, from (50),
n

Yn+l

_
9/ry 4

Then, as in the proof of Proposition 2.1, Yn --* 0 as n --, oc if

b@ !
-k > 7---Yoo
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Thus

inf v(x, t) < - v2 (x, t)dx
Bp 0""" (l+a)p

< sup _(., t) _(,t)
(7 \B(z+a)p (+a)p

Consider the sequence of radii given by

Pn P 2-y.
j=o

Select an so that Pn+ (1 + an)pn. Then an 2-n-

su. _(., t),

Mn+ <_ 7bnM
(-I-a p

v_(x, t)dx)

Thus, with Mn

To complete the proof, use an interpolation argument analogous to that in Proposition
2.1 to arrive at

inf v(x, t) < "y B v_ (X t)dx
Bp

2p

when infBp v(x,t) > max{l, (1 + e)In d}.t This proves the proposition. [:1

3.2. A representation formula. Fix x0 E ]IN and consider the Green’s-type
function for the Laplacian in the ball Bp(xo),
(51)

N-2 -N 2IX XoI2-N p2-N + 2 P (IX XoI P2), N_>3,

N=2,

_p2), N 1.

C(l x01; p)

One can easily verify that

C(l= =ol; p)lo.(=o) 0

and that

Moreover,

DC(Ix- ol; p). 0 IoB,(o) o.
P

Ix- xo[2-N p2-N

0 <_ G(lx xol; p) _< In p- In Ix xol,

p-Ix- xol,

N_>3,

N=2,

N=I.
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By direct calculation,

--WN(N- 2)6xo + N(N- 2)p-N,
AG(]x xol; P) -2r6zo + 2p-2,

-26o + p-,

N>_3,

N 2,

N=I,

where ON is the area of the unit sphere in N and o is the Dirac delta measure with
mass centered at x0. Thus, for all f E C2(p(x0)),

(52) f(x)dx f(xo) -- CN 1 Af(x)G(]X xo]; p)dx,
t,(xo) JBo(xo)

where

wN(N- 2)’
1
27r’
1
2’

N>_3,

N--2

N--1.

Remark 3.3. Pointwise representations, such as (52), have been used by Gilding
and Peletier (see [9]) in the context of the continuity of solutions to the porous-medium
equation.

Suppose that u is a classical solution to (9) satisfying u <_ M. In (52), take
f(x) In u(x, s). Then

(53) Lp(zo) In
u(xo, s)

dx CN
p(xo)

for all x0 E IN and s > 0.
From (39), the function

s --* In u(x, s)
8

is decreasing. So, by integrating (53) from - _< s _< t,

tU(X, T) CN fB(zo) t- T (o)
G(Ix xol; p) u(x, s)dsdx.

By appealing to Proposition 3.2 and selecting p so large so that

/92 >e, i.e., P>x/,
T

we have, for x Bp(xo),

1
In u(y, T) dy + (1 + e) In(55) In

U(X, T) < y(e)
Bg-o(xo) + T

By combining this with (54), we arrive at the following proposition.
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PROPOSITION 3.4. There is a constant 7(e), depending only on N and , such
that, for all xo E N 0 < T < t, p > V/--, and x Bo(xo

(56)
u(i T)

< G(lY xol; 2p) ut(y, s)dsdy
t T

Mt
+ V(e)In + (1 + e)In p2.

u(xo, t)

Proof. By combining (54) and (55),

1 -’y
G(ly xol; p) ut(y, s)dsdyIn

u(x, T---- <- t = T (o)

p2
(ln u(y, T))+dy + (1 + e)In + V In

T

t

u(zo,t)

t r (o)p

G(ly xol; p) ut(y, s)dsdy

Mt p2+ V In
TU(Xo, t------ + (1 + e In ). [:]

3.3. Pointwise lower bounds. Starting from (56), we estimate

CN G(Ix xol; 2p) ut(x, s)dsdxt- T 2,(o)

< CN /B G(Ix- X01;2p)u(x,T)dx
t T .(o)

I(xo, p, t, ).
With this notation and Proposition 3.4,

(57) U(X, T) >_ p21+2e ( TU(Xo’ t) )
for all

e-yI(xo,p,t,-)

x Bp(x0), and 0 < T < t. Note here that the constant , still depends on e.

Remark 3.5. If u(xo, t) > 0, for some x0 ]N and t > 0, then (57) guarantees
that u(x, T) > 0 for all x ]N and all 0 < T < t. This can be regarded as a global
Harnack-type estimate.

3.4. Asymptotic behavior as Ixl -- : The case N

_
3.

PROPOSITION 3.6. Suppose that N >_ 3 and that u is a classical solution to (9)
in N X (0, T) satisfying (39). Suppose that, for some 0 < " < T, c > O, /o > O, and
R>0,

(S) (x, ) < o /o Ixl > R.
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Then

(59) lim JB
Proof. Let R0 < 0 satisfy

C(Ixl; p)(x, T)dx

lnRA > 21n 3’a
T T

R > 0,

Ro>
Ro>R.

Notice here that Ro depends on %, a, R, and T. Let p > Ro. Then

B "YJA ln u(x,T)dx2o(ln u(x, r))_dx > -- (p;=p)

>_’,/ ln-ln
7" 7"

>_ ,ln

Here

Ann(p, 2p) {x e NIp <_ I1 2p}.

So, for p > R0, there is a 9’1 > 0 not depending on p such that

(ln u(x, T))_dx >_ ")/1 In
T

2p

Thus, from Proposition 3.2 with

we have

(60) -inflnu(x r) < /ft (lnu(x t))_dx
So 20

for all p > Ro. This constant 7 now depends on r, N, c, Ro, and 70. Select t so that
r < t < T. Then we can repeat the arguments beginning with equation (54) using
(60) instead of (40). In so doing, we arrive at the following analogue of (57)"

(61) u(x r)> (TU(O’t))Mt
e-’I(’o’t’")

for all p > Ro and Ix < p.
Now I(0, p, t, T) is an increasing function of p. If (59) does not hold, then there

is some constant C independent of p such that
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u(x, T) >_ C
Mt

for all x E ]1N. This contradicts (58).
Remark 3.7. Proposition 3.6 is still true for N 1 or 2. But, when N 1 or 2,

(59) is true for any u(., t) unless u(., t)= 0 almost everywhere.
Assume that the initial data u0 satisfies (34). In view of Proposition 2.6, the

corresponding solution decays as Ixl oc at least as fast as Ix1-2. Proposition 3.6
guarantees that u(x, t), in some sense, decays no faster than Ix1-2. This is meant in
the sense that a behavior of the type

7(T) for Ix > 1u(x, T) < (1 + Ixl2)[ln Ixl] TM

is impossible for any e > 0. Indeed, if behavior of this type did occur, then (58) would
be satisfied, whereas (59) would not be satisfied for 0 < T < t.

3.5. Asymptotic behavior as Ixl -- cx): The case N 2. As can easily be
checked,

lim [ G(lx-xl;p)dx= for allk>0.
J. ( + Ixl

Thus, contrary to the ce N 3, there might exist solutions decaying faster than

x-2 as x . Of course, this agrees with the explicit solution given by Example
1.2.

3.6. Some ill-posed problems for N 3. Suppose that the initial data u0
satisfies (34) and

( + xi)-
dx <

We claim that such a problem can have no solution satisfying (39). First, from
Proposition 2.6, we know that any solution to (9) with initial data satisfying (34)
must satisfy

(x, t) tx
Now, if we had a solution in NN x (0, T) for some T > 0, then let (x0, t) RN x (0, T)
be a point such that u(xo, t) > 0. Up to rescaling, we may assume that u N 1 in

x (0, T). So In (z, t) 0. Then

In dx In + In s In u(x, s) dx

>_ In u(xo, s)
+lns.

Then, by .applying (53) and integrating in ds from 0 < s < T, we have

CN/Bp(xo) G(Ix x01; p)u(x, T)dx <_ Cy (o) G(Ix x0l; p)uo(x)dx

+T(I In U(xo, T)).
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Thus
f

im / (Ix x01; p)(x, T)dx <
p--*o JBp(xo)

for all 0 < T < t. This, of course, contradicts Proposition 3.6. In particular, if N >_>_ 3
and uo e C(N), then (9) can have no classical solution satisfying (39). A weaker
result, that (9) can have no solution when uo E LI(IN)N _> 3, appears in [14].

4. Finite extinction time. In this section, we examine classical solutions of
(9) with a finite extinction time, i.e., solutions which become identically zero at some
time T. In particular, we find sufficient conditions on the initial data to guarantee a
finite extinction time. In addition, we find an upper bound for this extinction time.
We have several examples of solutions with finite extinction times. See Examples 1.1,
1.3, and 1.5.

THEOREM 4.1. Let N >_ 3 and uo L- (]RN). Then if u is a classical solution to
(9) there is a T > 0 such that u(x, T) 0 for all x e N. Furthermore,

T <
Proof. Let C(B2p) satisfy

0_<_< 1 inB2p,

1 in Bp,

[D[2, IAI <_ in B2p.

Multiply the first term of (9) by the test function ur2.

0 N (ut A In u)u 2dx

(62) 1 d

r+l dt u+l2dx + (ru-lDu2 + 2urD)dx
N N U

T + T +T

T2 LN IOu]2u-22dx
(63)

4 /A urdx">- -r ID[u]]2dx -p5 n(p,2p)

Here An(0, 2p) {x Nlp N IZl 2p}.

Ta=D-Ddz
(64) r DuDdx_

u(+ Dl)dz.

From (62)-(64), we obtain

(65)
d [f u,,+2dxJ+f ID[u_]12dx< ")’ fA u"dx.d- N N Y n(p,2p)
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Since vanishes on the boundary of B2p, we can apply the Sobolev Embedding
Theorem, i.e.,

N--2

Thus, with r -W-,

az

<-/B ID[ui]12dx"
2p

2p

From (65)-(67),

d u’2dx + "70 u’--dxdt
2

By HSlder’s inequality,

n(e, n(,

n(p,2p)
u-dx.

Thus
N--2

d
u 2dx + 7(N) u -dx

dt
20 0

N--2

" n(p,2p)
u- dx

From Proposition 2.2, if u0 e L (IN) then u(., t) e L (]N) for each t > 0. Thus,
by letting p - c, we have

df + 7(N)f < O,
dt

where

As long as f > 0, this imples

f(t) LN u- (x, t)dx.

f- (t) < f- (0) 7(N)t.

Thus we have

u(.,t)=O if t>

This is the desired result.
Theorem 4.1 is sharp in the sense that no theorem of this type is possible for

Lr(N) for any r > -. To see this, let 0 < a < 2, and consider the following initial
datum:

1
 0(x)
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For a wise choice of a, u0 e Lr(lN) for some fixed r > 2N-. Choose > 2--" By
Young’s inequality, we can show that there is a C > 0, depending only on a, , and
N, such that, for any T > C,

2(N- 2)T
T + Ixl 2 <- uo(x).

For T > C, consider the explicit solution (see Example 1.5)
N

7--2

UT(X t)
2(N- 2)(T- t)+

T+ + (T t) Ixl 2

Then

UT(X 0) 2(N- 2)T
Tz + Ixl

< uo(x).

This implies that for each T > C there exists a classical solution to (9) with initial
data uo(x) 1/1.i. which does not vanish at least until time T. Theorem 4.1,
however, is not entirely satisfactory because it does not predict an extinction time for
the solutions given by Example 1.5.
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ON THE DIRICHLET BOUNDARY VALUE PROBLEM
FOR A DEGENERATE PARABOLIC EQUATION*

T. KILPELINENt AND P. LINDQVIST$

Abstract. The Perron method for degenerate parabolic equations like ut div(IVulp-2vu) is
studied. The regular boundary points for the Dirichlet problem are characterized in terms of barriers.
In the particular case of the space-time cylinder G (0, T), a geometric characterization in terms of
a Wiener-type test is given for regularity.

Key words, parabolic p-Laplacian, the Perron method, regular boundary points

AMS subject classifications. 35K65, 35K60, 31C45

1. Introduction. It was observed by Sternberg in 1929 that the method devel-
oped by Perron [Pn] for solving the Dirichlet boundary value problem for the Laplace
equation can readily be extended to the heat equation. It is nowadays well known
that the Perron method applies to linear parabolic equations; cf. IF]. In this paper,
we study potential theoretic aspects of certain nonlinear parabolic equations; one of
our aims is to adapt the Perron method. The typical example that we have in mind
is the p-parabolic equation

Ou div(]Vu]p_2vu)
Ot

where 1 < p < cw. This equation is degenerate when 2 < p < and singular when
1 < p < 2. For the regularity theory of such equations, the reader is asked to consult
the recent monograph by DiBenedetto [DB].

In the elliptic case, the study of nonlinear potential theory of quasi-linear equa-
tions of the type

div(IVu[p-2Vu) 0

was initiated by Granlund, Lindqvist, and Martio in a series of papers, of which we
mention only [GLM]. An account of the elliptic nonlinear potential theory is given in
the monograph [HKM]. Needless to say, some parts of elliptic theory can be carried
over to the parabolic situation as such, while for others, parabolic proofs present new
difficulties.

In order to keep the presentation within reasonable limits, we have made a few
simplifying assumptions. The most noteworthy of them is that we treat the Perron
method only for bounded boundary values; this is not a serious restriction. We have
not included all of our results in this short outline; for example, the counterpart to the
celebrated condition of Petrowsky will be published elsewhere. On the other hand,
there are some basic questions that we have not been able to answer yet. One urgent
open problem is the parabolic counterpart to Wiener’s resolutivity theorem; see [W,
Thm. 32, p. 290] for the heat equation.

The paper is organized as follows. Section 2 is merely a discussion about the
choice of equations and the admissible extensions for the theory. Section 3 contains

*Received by the editors June 15, 1994; accepted for publication October 3, 1994.
tDepartment of Mathematics, University of Jyvskyl, P.O. Box 35, 40351 Jyvskyli, Finland

(terok@math.jyu.fi).
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basic definitions and expedient existence theorems. The p-superparabolic functions
are introduced in 4. Finally, 5 contains the Perron method; barriers and regularity
are discussed in 6.

2. Discussion. A genuine nonlinear parabolic potential theory should include
equations like

(I)
Ou
0-- div(]Vulp-2Vu)’

(II)
Ou
o n(lul-u)’

(IIi)
O(]u]P-2u) div(IVul-2Vu).Ot

They reduce to the ordinary heat equation ut Au for p 2 and m 1. On the
other hand, they all are special cases of equations of the type

0__U_U div(lulm-llVu]p-2Vu)Ot
and so one would be led to construct a potential theory for a wide class of equations

Ou
0-- divA(x, t, u, Vu).

In order to keep the presentation short and direct, we have modeled our approach
according to equations of the p-parabolic type

Ou
0 divAp(x, t, Vu),

where A(x,t, w) Iw[p-2w and 1 < p. < oc. This has the advantage that con-
stants can be added to solutions. The precise assumptions about 4p are listed in the
beginning of 3.

It is worth mentioning that, from a potential theoretic point of view, the third
equation seems to be the most natural one, for there solutions can be multiplied
with constants. As Trudinger has pointed out in IT, p. 225], the parabolic Harnack
inequality holds for equation (III) in the same form as it does for the ordinary heat
equation; see [M]. This is not the case for the p-parabolic equation (I); its Harnack
estimate needs an intrinsic formulation depending on the solution in question; cf.
[DB].. One of the reasons for basing our approach on the usual p-parabolic equation,
rather than on its homogeneous variant, is that disturbances propagate, as it were,
with infinite speed for the latter equation, while the p-parabolic equation enjoys the
finite-speed propagation property when p > 2 but not when 1 < p < 2. For 1 < p < 2,
there is an extinction phenomenon. We have favored this diversity. (See the note
added in proof on p. 682.)

To give the reader a feeling for this fascinating phenomenon, we mention the
fundamental solution obtained by Barenblatt in 1952 [B]. The Barenblatt solution to
the p-parabolic equation (I) is

p
+

1Substitute v lulp-2u in (III).
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It is defined for x E Rn and t > 0 and is compactly supported in x. Here p > 2 and
A n(p- 2) + p. The constant C is usually chosen so that

Bp(X, t) dx 1,

i.e., so that Bp(X, 0+) a(x), the Dirac delta function. When p --+ 2+ this approaches
the ordinary heat kernel,

However, the Barenblatt solution to the equation (iiI) is

1 < p < x. It does not have a bounded support.2

Another point is that, if u is a solution to equation (III), then the function v lul k
is a subsolution to the same equation when p >_ 2 and k >_ 1. Unfortunately, the
corresponding situation is not that simple for equation (I).3

3. Solutions and supersolutions. Let us start by giving the precise assump-
tions about the structure of the equation

(3.1) 0-- divA(x, t, Vu),

where 1 < p < c and (x, t) E , denoting a domain in Rn R. The solutions are
understood in the weak sense, u u(x, t), and

Ou Ou )VU Xl OXn

is the spatial gradient of u. The mapping

A" R x R x R R

is assumed to satisfy the following conditions:

2While the solution Bp can be normalized so that

Bp(X, ) dx 1

for each > 0, this is impossible to achieve for Vp when p = 2. The conservation law here is

Wp(X, t)p-1 dx 1

for all > 0.
3In this. respect, the "artificial equation"

Ou p-2 0u div(.Vu,p_2Vu)- o-
not mentioned above, would be the most favorable.
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(A) The mapping (x, t) H A(x, t, ) is measurable for all E Rn, and the mapping- A(x, t, ) is continuous for a.e. (x, t) E Rn It.
(B) There are constants 0 < < < such that

for all R= and a.e. (x, t) R R.
(C) For a.e. (x, t) e R= x R,

(t(z, t, ) t(z, t, )). ( ) > o

whenever # and , R’.
It is sufficient that ,4 is defined in gt R R=. The role of (A) is merely to

guarantee that composite functions like A(x, t, Vu(x, t)) are measurable. Condition
(C) implies uniqueness. For the p-Laplacian, the stronger inequality

is valid for p _> 2, and the inequality

([lv-2 I1P-2). ( ) > (p 1)1 12 I1p-2 + I1v-2
2

holds for 1 < p _< 2.
The solutions to equation (3.1) are functions in a local parabolic Sobolev space

satisfying

for all test functions C0 (Ft). The a priori assumptions on u are the same as those
in the definition below. It is essential that the time derivative ut does not appear
explicitly in the definition, for ut is merely a distribution.

From now on, we shall, for instructional purposes, state the definitions and results
only for the important p-parabolic equation. The general case is readily interpreted
from this. The only exception is the explicit barrier constructed in 6.2, where the
more general case is technically harder.

In what follows, Q will always stand for a parallelepiped

Q (al,bl) (a2, b2) (an, bn)

in Rn., and the space-time sets

QT Q x (O,T), Qtl,t2 Q (tl,t2)

in Rn R are called "boxes." In order to describe the appropriate function space,
we introduce the abbreviation

VV(t, t2; Q) C(ti, t2; L2(Q)) LP(ti, t2; Wi’P(Q)).

Thus u VP(tl, t2; Q) means that the mapping

t JQ lu(x,t)l dx
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is continuous in [tl, t2], the Sobolev derivative

W(x t) ( On(x, t)
\ OXl

exists for a.e. t E [t l, t2], and

In particular, the energy

is finite.

dt < oo.

DEFINITION. Let be a domain in Rn x R and suppose that u belongs to
Yp(tl, t2; Q) whenever the closure of Q (tl, t2) is contained in t. Then u is called
a solution in t of the p-parabolic equation

(3.2) 0--U-U div([Vu[p-2Vu)
Ot

ut + [Vu[p-2Vu V)dt dx 0

whenever C (f). If, in addition, u is continuous, then u is called p-parabolic in. Further, we say that u is a supersolution to (3.2) if the above integral is nonnegative
whenever C(gt) is nonnegative. A function v is a subsolution to (3.2) if-v is a
supersolution.

By parabolic regularity theory, each locally bounded solution of (3.2) has a p-
parabolic representative; for 1 < p < 2n/(2 + n), there are solutions that are not
locally bounded (see [DB]). (In the pure p-parabolic case, even the spatial gradient
Vu, but not ut, is HSlder continuous cf. [DB]. This is not true for solutions of the
general equation (3.1). We shall not use this feature in what follows.) We will need
a quantitative HSlder estimate. If u is p-parabolic in t and is a subdomain with
compact closure in gt, then the interior HSlder estimate has the form

(3.3) lu(x, tl) u(y, t2)) <_ "yI]u]],(]x y]a -6 It1 t21 a/p)

when (x, t), (y, t2) 2. Here the positive exponent a depends only on n and p, while
the constant /depends, in addition, on the distance between and 0gt, see [DB].

There is a principal, well-recognized difficulty with the definition. Namely, in
proving any useful estimates, one usually needs a test function that depends on the
solution u itself, for example, u?, where N is a smooth function. Then the time
derivative would contain ut, but ut does not necessarily exist as a function, so that

is not, strictly speaking, admissible. This difficulty can be treated in two different
ways: The first option is to use an equivalent definition in terms of Steklov averages as
in [DB, pp. 18 and 25]. Second, one can proceed using convolutions of u with smooth
mollifiers as in [AS, pp. 119-121]. Whichever the approach, the outcome is virtually
the same as if the "forbidden" quantity ut had been used at the intermediate stages,

/Q (lu] 2 + IVulp) dx dt
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yet eliminated from the final formulation of the estimates. This remark concerns our
proof of Lemma 3.1.

The parabolic boundary plays a crucial role for the Dirichlet boundary value
problem. The parabolic boundary of QT Q X (0, T) is

FT ( x {0})t] (OQ x (0, T]).

It consists of the bottom and the lateral sides, but the interior points of the top
are excluded. A main feature, distinguishing the parabolic theory from the elliptic
one, is that the p-parabolic functions are uniquely determined by their values on the
parabolic boundary.

Often it is convenient to use test functions that vanish only on the parabolic
boundary of (T. If is such a test function, then

if u is p-parabolic. This follows easily from the definition by taking or as the test
function, where r;e is the usual cutoff function that depends only on t. In other words,
e is piecewise linear, 0 < r;e < 1, r;(t) 1 for t < T-s, e(T) 0, and

We have a preliminary version of the comparison principle.
LEMMA 3.1. Suppose that u is a supersolution and v a subsolution to (3.2) in

QT Q x (O,T). If u and -v are lower semicontinuous on QT and v <_ u on the
parabolic boundary of QT, then v < u a.e. in the box QT.

Proof.4 If o E C(QT) is nonnegative, then

and

T/
(-- * / IWI-W V)dx dt >_ 0

T/
(V,- IVVI-VV" V) dx dt >_ O,

so that by adding them we have

((v- u) / (IVul-Vu- IVvl-Vv). v)dx dt >_ O.

Moreover, these inequalities remain true if u is replaced by u + s, where s is any
constant.

To complete the proof we choose (formally) the test function to be

(v u- s)+v,

where 0 < s < T is fixed and

T-s-t
(t): T s

0

ift

ift >

4In the case of two solutions with finite energies (they belong to VP(0, T; Q)), a proof based on
Steklov averages is given in [DB, Chap. VI, Lem. 3.1, pp. 160-161].
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Then has compact support and we refer to the discussion above to justify the use
of the time derivative of (v u )+ in the calculations. Integrating by parts, we
obtain

T

{ (IVulp-2Vu- IVvlp-2Vv) (Vu- Vv)dx dt
v>u+}

2(T e) (v u )2+ dt dx <_ O.

Since the first integral is nonnegative by the structural inequalities, we have that the
last integral is zero, and hence (v u- )+ 0 a.e. But this means that

v<_u+e

a.e. when 0 <_ t _< T- . Since s > 0 was arbitrary, we have the desired inequality
v _< u a.e. in QT. D

Remark. The above proof shows that a supersolution u is greater than a sub-
solution v on QT if v(x, O) <_ u(x,O) and for each t e (0,T) the function x -,

(v(x, t)- u(x, t))+ is in the Sobolev space W’P(Q).
We shall need a basic existence theorem.5

LEMMA 3.2. Suppose that is a continuous function on QT. Then there is
a unique p-parabolic function u that is continuous in QT and takes the boundary
values u on the parabolic boundary FT. Moreover, if belongs to VP_(O, T; Q), so
do8 u.

Proof. See [AL, Tam. 1.7, p. 318] or [L, pp. 162 and 166]. [:]

Remark 3.1. Using Lemma 3.2 repeatedly, one easily extends the existence result:
Suppose that is a union of finitely many boxes

and that 0 is a continuous function on the parabolic boundary F of .. Then there is a
unique p-parabolic function u, continuous on , that coincides with 0 on F. To verify
this, one just has to begin with the earliest boxes. Here the parabolic boundary F is
understood to be that part of the Euclidean boundary 0 of that lies in the union
of the parabolic boundaries of the boxes Qi (ti, Ti).

The obstacle problem is of fundamental importance to the nonlinear potential
theory. Roughly speaking, one is looking for smallest supersolutions that lie above a
given function . Again we require an existence theorem for the box QT.

LEMMA 3.3. Suppose that C(QT) is given. Consider the class of all
functions v VP(O,T; Q), continuous in QT, such that v >_ in QT and v

5In the recent literature, existence theorems are usually formulated for the Cauchy problem in
l (0, T] or l (0, ); cf. lEVI, [KV]. These results cannot easily be adapted to QT. A new
existence proof should be constructed on the basis of the a priori estimates in [DB], but, to keep the
presentation short, we give direct, though not quite adequate, references.
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on the parabolic boundary FT.
satisfying

Then there is a unique supersolution u in this class

Q
(vt(v u) + IVulp-2Vu (Vv Vu))dx dt

_> I(x, T) u(x, T)12 dx

for all smooth functions v in the aforementioned class.
Proof. See [AL, Thm. 3.2]. (To ensure that u is continuous, even when t T,

one may solve the problem in a slightly larger box, say QT+e, > 0.)
The unique supersolution given by the previous lemma is called the solution to

the obstacle problem. It is p-parabolic in the set {u > }.
The uniform Hhlder estimate combined with the basic existence theorem leads to

a convergence result.
LEMMA 3.4. Suppose that uk is a locally uniformly bounded sequence ofp-parabolic

functions in t. Then it has a subsequence that converges locally uniformly in to a
p-parabolic function.

Proof. Let be a subdomain with compact closure in t. By the interior Hhlder
estimate (3.3), the sequence uk is equicontinuous in = Hence Ascoli’s theorem allows
us to select a subsequence that converges uniformly on Z to a continuous function.
Exhausting t by an increasing sequence of such domains and performing a standard
diagonalization process, we find a subsequence, denoted again by uk, that converges
locally uniformly in t to a continuous function, say h.

It sufficies to show that h is p-parabolic in each box Qtl,t2 Q (tl,t2) with
closure in gt. To this end, let H be the p-parabolic function in Qtl,t2, continuous in
Qt,t2, taking the boundary values H h on the parabolic boundary Ft,t2 of
(Lemma 3.2). Let s > 0. For sufficiently large indices, we have

H-s=h-s<uk <h+s=H+s

on Ft,t.. Hence, by the comparison principle (Lemma 3.1),

H-e <_ u <_ H+e

in Qtl,t., so that

H-s<_h<_H+s

in Qt,t:. In conclusion, h H and hence h is p-parabolic.
Remark 3.2. If hi _< h2 _< are p-parabolic in QT and

2n
p>

n+l’
then there are three possible alternatives for the limit function h- limk_, h:

(1) h
(2) h is p-parabolic in QT; and
(3) there is T e (0, T) such that h is p-parabolic in Q, while h(x, t) when

This result is obtained by using the intrinsic Harnack estimate [DB, pp. 157 and 184].
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4. p-superparabolic functions. The supersolutions to equation (3.2) do not
form a good closed class. In particular, the Barenblatt solutions

t>O,

t<_O,

where A n(p- 2) + p, p > 2, and C is a real constant, are not supersolutions in
any domain containing the origin (0, 0). It is the a priori integrability that fails to
hold. In the elliptic theory an appropriate class, closed under monotone convergence,
is provided by superharmonic functions. We study an analogous definition in this
parabolic setting.

DEFINITION 4.1. A function u t (-,] is called p-superparabolic if
(i) u is lower semicontinuous,
(ii) u is finite in a dense subset of ,
(iii) u satisfies the comparison principle on each box Qtl,t2 Q (tl,t2) with

closure in : if h is p-parabolic in Qtl,t2 and continuous on Qt,t and if h <_ u on
the parabolic boundary of Qt,t:, then h <_ u in the whole Qt,tu.

The simplest interesting example is perhaps

0 whent<O,
t)

1 when t > 0.

This definition is the same as that used by Gehring [G] and Friedman IF] in their
linear theory. The original definition of Sternberg used trapezoids; cf. IS]. Watson
[W] has a different definition based on a representation formula, a counterpart to the
Poisson formula, with"heat balls" playing the role of fundamental domains. All of
these variants result in the same concept. To see this in our nonlinear theory, we will
later prove that (iii) can be weakened considerably.

Let be any domain with compact closure in . If h is p-parabolic in and
continuous in and if h <_ u on the (Euclidean) boundary 0.=., then h <_ u in the
whole ..

It is easy to see that (iii) implies this. It is clear if F. is a box, and it easily
follows for a union of finitely many boxes. The case where S is arbitrary is verified by
covering the set where h _> u + s, s > 0, with finitely many boxes. It is less obvious
that the comparison property above will imply (iii). We will return to this question
in Lemma 6.3.

It is immediately seen from the definition that if u and v are p-superparabolic in
Ft, then so are the minimum min(u, v) and the functions Au + #, where >_ 0 and
# E R are constants.

The result below implies that a proper version of a supersolution is p-super-
parabolic; in particular, the Barenblatt solution is p-superparabolic in the whole Rn

LEMMA 4.2. If u is a lower semicontinuous supersolution to the p-parabolic equa-
tion (3.2) in t, then there is a p-superparabolic function v in gt, defined by

(4.1) v(x,t) ess liminf u(y,s),
(y,s)-(x,t)

(x,t) t, such that v u a.e. in f.
p-superparabolic.

In particular, if u is continuous, then u is
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Proof. Since u is lower semicontinuous,

u(x, t) <_ lim inf u(y, s) <_ ess lim inf u(y, s) v(x, t)
(y,8)-(x,t) (y,8)-(x,t)

for each (x, t) E gt, whereas

u(y, s) dy dsu(x, t) lim 2riB(x, r)l t- (x,)

>_ ess lim inf u(y, s) v(x, t)
(,8)--(,t)

for a.e. (x, t) E gt by the Lebesgue differentiation theorem. Hence u v a.e. in
Moreover, it is clear that v is lower semicontinuous and that v is finite a.e.. To see
that v is indeed p-superparabolic, fix a box Q (ti, t2) with closure in . If h is
any p-parabolic function, continuous in Q x It1, t2], such that h _< v on the parabolic
boundary of Q (tl, t2), then h is a subsolution in Q (tl, t2) and, therefore, h _< v
a.e. on Q (tl, t2) by the comparison principle (Lemma 3.1). By (4.1), this inequality
holds everywhere on Q (tl,t2).

We next present two versions of the comparison principle. The first one is "ellip-
tic."

LEMMA 4.3. Suppose that u is p-superparabolic and v is p-subparabolic in a
bounded open set . If u and v are bounded and if

lim sup v() <_ lim inf u()
-o -o

at each point o on the Euclidean boundary On of , then v

_
u in

Proof. For fixed > 0, the set

e > +
is a compact subset of . Therefore, there is an open set D C such that K C D,
where D is a union of finitely many boxes Qi (ti, ti) and

OD cft\K.
Because v is upper semicontinuous, u is lower semicontinuous, and the parabolic

boundary F of D is compact, we find a continuous function 0 on F such that
v _< 0 _< it + a on F. If h is the p-parabolic function in D that coincides with
on F (see Remark 3.1), then we infer from the definition of p-superparabolic and
p-subparabolic functions that

v<_h<_u+

in D. Hence v <_ u + in t2", and the lemma follows by letting
In a similar manner, the reader easily establishes the following "parabolic" com-

parison principle:
LEMMA 4.4. Suppose that u is p-superparabolic and v is p-subparabolic in a cylin-

.der Vt G (tl,t2), where G c R is a bounded domain. If u and v are bounded and

lim sup v() <_ lim inf u()
--,o --o

at each point o on the parabolic boundary of , then v <_ u in

6The parabolic boundary is ( {t }) (OG Its, t2]).
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4.6, Parabolic modification The main tool in the Perron method is the mod-
ification of p-superparabolic functions. Let QT Q (0, T) be a box with closure
in . If u is p-superparabolic in t and bounded on QT, we define the p-parabolic
modification

{ u in f \ QT,
U=

v inQx [O,T],
where

v() sup{h()" h e C(Q’) is p-parabolic and h _< u on rr}.
Then it is clear that U _< u on t. Moreover, U is p-superparabolic in t and p-parabolic
in QT. To see this, choose an increasing sequence 0j of continuous functions on FT
such that

u- lim

on FT. Let hy be the p-parabolic function in QT that coincides with 0y on FT. Then
it follows from the comparison principle that the sequence h is increasing on
and that the limit function is v. Moreover, since the sequence hy is bounded, the
limit function v is p-parabolic by Lemma 3.4. Now it is rather immediate that U is

p-superparabolic in t.

5. The Perron method. In what follows, we let be a bounded open set in
Rn R. Let f 0t --, R be any bounded function; note that f is defined on the
Euclidean boundary of Ft. The Perron method aims at constructing a p-parabolic
function H in t that takes the boundary values f on 0t. Of course, this is not
possible in this generality. In this section, we shall construct two functions, the upper
and the lower Perron solutions HI and HI, that both correspond in a sense to f on
OFt.

A function u is said to belong to the upper class
and bounded below and

lim inf u() _> f()

at each point E OFt. Observe that the upper class/dy is never empty, for f is bounded
so that large constants are members of

The lower class I is defined analogously. It consists of p-subparabolic functions
v, bounded above, satisfying

limsupv() <_ f()

at each point E 0t; also, the constant -cx is in .
Next, the upper solution HI and the lower solution HI are defined by

Hy() inf{u() u

and

Hy() sup{v() v e

It follows from the comparison principle (Lemma 4.3) that v <_ u whenever
and v :I" Hence

HI



672 T. KILPELINEN AND P. LINDQVIST

in Ft. Since the boundary function f is bounded, both HI and HI are bounded by
the same constants as f.

THEOREM 5.1. If the boundary function f" 02 - R is bounded, then the Perron
solutions HI and HI are p-parabolic.

Proof. Fix a box Q,t,t. ( (tl, t2) with closure in gt; here Q is a rectangle in
R as usual. Next, choose a countable, dense subset

’’ {1, 2,’’ "}

of Qt,t. For each j 1, 2,... we choose a sequence of functions u,y in b/i such that

lim u,j (j) Hy (j).

Moreover, we are free to replace ui,j+l by min(ui,j, ui,j+l), and hence we have that

(5.1) lim ui,j k HI k
for each k 1, 2,..., j and for each j. For the p-parabolic modification Ui,j of ui,j in

Qt,t., it holds that

HI < U,j < u,j

and Ui,j is p-parabolic in Qt,t.. By passing to a subsequence, if necessary, we infer
from Lemma 3.4 that Ui,j converges locally uniformly to a p-parabolic function vj in

Qt,t. By again employing Lemma 3.4, we find a subsequence of vj that converges
locally uniformly to a p-parabolic function h in Qt,t.. By the construction, it is clear
that

h>_Hy

in Qt,tg.. On the other hand, by (5.1), we have that h Hy in the dense subset E of
,t,t.. Therefore, if u is any function from b/y, then its p-parabolic modification U in

,t,t. is not greater than u, and by continuity, U > h in ,tx,te. Hence

Hy>_h

in Qt,tz. It follows that HI h is p-parabolic in (t,t. and hence in f.
The lower solution Hy is treated completely nMogously.
Remark. Alternative proofs for Theorem 5.1 could be based on the Choquet

topological lemma as in [HKM] or on the argument in [GLM].
Example. Let Q (0, T) and suppose that f" 0 -- R is continuous. Then

the upper and the lower Perron solutions coincide and

Hy =Hy Hy

is the p-parabolic function that coincides with f on the parabolic boundary of f. As
anticipated, the values of f at the top of the box f do not have any influence on
the solution. Indeed, if h is p-parabolic in f and tkes the values f on the parabolic
boundary (Lemma 3.2), then the function

h(x,t) q
T- t

belongs to/Ay for > 0 and to/:y for e < 0. The result can be restated by saying
that f is resolutive.
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6. Barriers and boundary regularity. We shall define the barrier function for
the boundary value problem as in classical theory. It gives a necessary and sufficient
condition for the regularity of boundary points. This leads to some useful conditions
for regularity; for instance, an exterior sphere condition is established. Furthermore,
the regular boundary points of space-time cylinders are completely characterized in
terms of a Wiener-type test.

DEFINITION. Suppose that o is a boundary point of a bounded domain f c Rn

R. A function w is a barrier in f at the point 0 if
(i) w is positive and p-superparabolic in

(ii) lim inf w() > 0 if E Of, 7 o,
(iii) lim inf w() 0.

-.o
Although we have, for convienence, assumed that the barrier is defined in the

whole f, this is completely a local question" Let be another domain such that

for some open ball B centered at 0. Suppose that there is a barrier, say w, in f at
0. Let

m inf{w() e OB

Then m > 0 and it easily follows that the function

min(w, m) in B r3
V:

m in f\B

is a barrier in ft. Hence there is a barrier in f at 0 exactly when there is a barrier
in

THEOREM 6.1. Suppose that f" Of --, R is bounded and continuous at o
If there is a barrier in f at o, then

lim HI().lim HI()= f(0) -o--o

Proof. The proof is very classical. Let If()- f(0)l < for 0f with

I 01 < i and choose, by the aid of the lower semicontinuity of the barrier w, a
constant M > 0 such that

M w() >_ 2 sup If[

for f, I o[ < . Then the function M w / e + f(o) belongs to the upper class
b/I and has the limit f(o)+ at o. Similarly, the function -Mw-+ f(o) belongs
to the lower class I and has the limit f(0) e at 0. The theorem follows.

We call a boundary point (0 0 p-regular if

lim HI(()= f((0)
"o

whenever f" 0f R is continuous. This concept depends heavily on the equation.
For instance, it may happen that a point (0 E 0f is regular for the equation Au ut,
while it is not regular for the equation Au 1/2ut. Thus the term jtp-regular is
appropriate in the general case.

Because HI -H_I, we could replace HI by HI in the definition above.
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We have the classical characterization for regularity in terms of barriers.
THEOREM 6.2. A boundary point o of a bounded open set 2 is p-regular if and

only if there is a barrier in at o.
Proof. The sufficiency part was already established. To prove the necessity, let

o (Xo, to) and define

(x, t)
p 1

P

where is a constant with

0 < 2diam(gt) < n.

The function is p-subparabolic in f (Lemma 4.2). Then w He is a barrier in gt

at o because

lim w() (o) 0
-o

by the p-regularity of 0, and the other properties are immediate, for w >_ in f.
The theorem follows. [:]

Since the existence of a barrier is a local property, so is the regularity of a bound-
ary point. Moreover, if o is a p-regular boundary point of f, then o is p-regular
with respect to each subdomain to whose boundary it belongs.

Example. Exterior sphere condition. Let o (xo, to) E 0t. Suppose that there
exists a closed ball

{(x, t) lx x’l + (t- t’) < R}
that intersects with the closure exactly at o. We claim that 0 is regular if xo = x’.

For the construction of the barrier, we define

(x, t) e-" -", R (Ix x’l + (t t’))/,

where the constant a > 0 is to be fixed later. For (x, t) E fit sufficiently near to 0,
we have that

0<5_<lx-x’l, -2R0_<t-t’, Ro<_R<2Ro,

where we can take 25 _< Ixo- x’l, for instance. Keep in mind that it suffices to
construct a local barrier. An easy calculation yields

div(IVw]p-2Vw)

(20)P--llx xtIP--2e-(p-1)aR2 (? --p- 2 20/(p- 1)Ix x’l.2)_
(2a)P-l(n + p- 2- 2a(p- 1)52)e-(p-1)aR

and

wt 2e-aR2 (t t)
_
-4cRoe-aR.

Consider first the case 1 < p < 2. Choose a :> 0 so large that n +p- 2- 2a(p-
1)52

_
1. In order to have

div(lVwlp-2Vw) < w
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near 0 in t2, we have to verify that

(2a)p-2e-(p-2)aR >_ 2R0,

which is clearly the case if a is large enough, since p- 2 < 0. Thus w is p-super-
parabolic in a neighborhood of 0 in t2 by Lemma 4.2. Consequently, w is a local
barrier at 0, and 0 is therefore p-regular.

The case p- 2 is even simpler, and we leave it for the reader to explore.
Finally, let p > 2 and choose a so that

Then

and

so that

n +p- 2- 2a(p- 1)52 -1.

div(IVwIp-2Vw) <_--(20)P-le-(P-1)4aR

wt >_-4cRoe-aR]

div(lVwlp-2Vw) <_ Cwt,

where C C(p,a, Ro) > 0. Now, for A > 0 small enough, the function Aw is
p-superparabolic and hence the desired local barrier.

The restriction that xo = x is essential only to exclude the south pole (xp, t- Ro)
as atangent point (cf. the example after Theorem 5.1). Indeed, if

0 (x’, t’ + Ro)

is the north pole (the latest moment on the exterior sphere), then the function w
above is a barrier at 0, for

near 0 in this case, while

wt 2oe-aR2 (t- t’) > 0

div(IVwlP-2Vw) <_ 0

for a large enough.
As an application of the exterior sphere condition, we prove the characterization

of p-superparabolic functions, referred to in the discussion after Definition 4.1.
LEMMA 6.3. Suppose that u gt -- (-o, o] is lower semicontinuous in t c

Rn x R and finite in a dense subset of t. Then u is p-superparabolic if and only if
for each domain with compact closure in t2 and each h E C(), p-parabolic in ,
the condition h <_ u on O.. implies h <_ u in .

Proof. The necessity of the condition was discussed right after the definition of
p-superparabolic functions. To prove the sufficiency, let Qtl,t. Q x (tl, t2) be a box
with closure in Ft and let h C(’tl,t be p-parabolic in Qt,t2 such that h <_ u on
the parabolic boundary Ft,t of Qtl,t. Suppose that

Q (al,bl) X (a2,b:) x x (a,,b,).

For 5 > 0, 5 < t2- tl, choose a hyperplane P5 in Rn x R such that the points
(x, t2 -5), where xl al, and (y, t2), where yl bl, belong to P. Then let E be the
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subset of Qtl,t2 that contains the points (x, t), where t < s is such that (x, s) E P.
We easily infer from the exterior sphere condition that F is p-regular. For fixed e > 0,
we may choose 5 > 0 so small that

u(x, t) >_ h(x, t) t2---t
for (x, t) E P N 0Z. Let H be the Perron solution in .. with

t2---t
as a boundary function. Then H is continuous up to the boundary of E. Since we are
free to assume that u >_ 0, we have that

u>H

in .=., since the same inequality holds on 0Z. This means that

u(x, t) >_ h(x, t) t2+-t
for (x, t) , and by letting 5 - 0 and --. 0, we arrive at the desired inequality

u>h

in Qt,t..
Before constructing more barriers, let us recall that it may happen that a point

0 Off is regular for the equation Au ut, while it is not regular for Au 1/2u,.
Example: Heat balls. The heat balls play a central role for the more refined parts

of linear theory. They are defined through the inequality

(4(to-t))n/2exp -4(to_t) >c,

where c is a positive constant and t < to. In other words, heat balls are level sets
of the fundamental solution of the heat equation. It is an essential feature that the
"center" (xo, to) is an irregular boundary point of the heat ball, while all the other
boundary points are regular.

The parabolic balls are, by analogy, defined through the Barenblatt solutions
Bp. The inequality is now

to t) > c,

where t < to and p > 2. Then p-parabolic balls are bounded and from the exterior
sphere condition, we infer that its boundary points except the "center" (xo,to) are
regular. Indeed, the "center" (xo, to) is an iegular boundary point of the p-parabolic
ball.

To prove the irregularity we are free to assume that (x0, to) is the origin. We have
the inequality

>
+
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and t < 0. For simplicity, we have taken the normalizing constant in the Barenblatt
solution to be 1. Since the irregularity is a local question, we may restrict the range
of t further, say,

(.)-.x/ <t < O.

It suffices to show that the origin is an irregular boundary point of the subdomain

p
>

+

where -T < t < 0. This can be written as

x "-" 1

P (__t)l/ < 2--

For a sufficiently small value of the constant K, this contains the subdomain

u(x, t) < K,

where

1 B(-t)

Here B is a positive constant, to be specified later. The function u will do as "eine
Irregularitgtsbarriere," to quote an expression from [Py]. That is,

(i) u is p-superparabolic in the domain, where u(x, t) < K and -T < t < 0 (T
depending on p),

(ii) u(O, t) < O, when t < O.
Here (ii) is evident. Before proving (i), let us show how this implies that the

origin is irregular.
Consider the domain bounded by the surface u(x, t) K and the hyperplane

t -T; in this domain

t) < K.

If we assign the boundary values f to be K when -T < t _< 0 and u(x,-T) on the
plane t- -T, then the function

u(x, t) + e > o,

is in the upper class for f. Thus

Hi(x t) <_ u(x, t) +

and hence HI < u. But this implies that

lim sup H; (O, t) _< limsupu(O,t) _< 0,
t-,0-- t-,0--

so that Hy cannot attain the right boundary value K at the origin.
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The proof of (i) is a calculation. We may assume that K <_ 1. Direct derivations
and some minor manipulations with the resulting expressions yield

p 1

B( )
/ (--t)p/,X

> Bn(P 2) 1
A (-t)p/

(--t)p/A A(--t)P/
1 q--

P (_t)l/,X

/ (--t)p/A
1 q- ...p.. A- (_t)l/A

n 1 (2 + B(-t)/ (--t)P/A )"
The last expression is nonnegative if

B(p- 2) _> 2 + B(-T) ";p)

Take

p- 2- (-T)n(P-2)/

and choose T small enough for this to make sense.
This concludes our proof, rl

What is to happen in the future will have no influence on the present time.
The regularity or irregularity of a boundary point (0 (x0, to) E 0gt is completely
determined by times t < to. Let

a_ {(,t) e a. t < to}

and

+ {(x, t) e . t > to}.

Note that both t_ and t+ may be disconnected; however, it is easy to see that the
barrier characterization for regularity remains true for disconnected open sets.

THEOREM 6.4. Let o (x0, to) E 0. Then o is a regular boundary point of the
domain if and only if o is a regular boundary point of t_ or o 0_.

Proof. The necessity of the condition follows since gt_ C t, and therefore, either

o OCt_ or a barrier at 0 in t is also a barrier in t_.
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To establish the converse, suppose first that 0 OFt_. Then the exterior sphere
condition ensures that 0 is a regular boundary point of ft.

To complete the proof, suppose that 0 is a regular boundary point of Ft_. Given
the p-subparabolic boundary values

(x, t)
p 1

ix xolP/(p_ ) + to)
P

on Oft, where is a constant with 0 < 2diam(ft) < n, the lower Perron solution
H He satisfies the inequality

H>_>0

in f. Moreover,

(6.1) lim H() (0) 0.
-o

Indeed, let u be any bounded function in the upper class for in ft_. Then for each
s > 0, the function

supu ift>t0-s,v(x, t) u(x, t) if t <_ to

is in the upper class for in Ft. It follows that the restriction to ft_ of H coincides
with the upper Perron solution of in ft_. Hence (6.1) follows, since 0 is a regular
boundary point of ft_.

This means that H is a barrier at 0 in ft_. We claim that H will do as a barrier
in ft. To this end, we have to show that

(6.2) lim H() 0.
o

This is easy. f o ft+, there is notin to rove. 8o assume tat o + and
dene

H in

Then the restriction to Oft+ of qo is continuous at 0. Let

h H
be the lower Perron solution of qo in ft+. Then h H in Ft+. Indeed, if u
then ula+ E (ft+) so that

ula+ _< h

and hence

H<h

in ft+. For the reverse inequality, let v (ft+). Then

lim sup v(ff) _< () _< lim inf H(ff)
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for each E OFt+, so that v <_ H in t+ by the comparison principle. Thus h _< H
and we conclude that h H in +.

Since, by the exterior sphere condition, .the earliest points are regular, 0 is a
regular boundary point of Ft+. Hence

lim h() (o) O.
o

Since H h in t+, this and (6.1) yield (6.2).
Remark 6.1. The previous proof reveals an interesting fact. The restriction to_
of the Perron solution HI in gt coincides with the upper Perron solution of f in

gt_ no matter how the bounded function f is defined at points on 0_ \
6.1. Space-time cylinders. The regularity in the case of the elliptic p-Lap-

lacian can be characterized by a Wiener-type test [KM], while in the p-parabolic case,
no such characterization is known in general domains except for p- 2 [EG]. In this
section, we characterize p-regular boundary points for space-time cylinders.

Consider the cylinder Ft G (0, T), where G is a bounded domain in Rn. Then
each boundary point lying at the "bottom" ofgt is p-regular. Indeed, if 0 (x0, 0)
G {0} C OFt, then the p-parabolic function

w(x, t)
p 1

ix xo)p/(p_) + nt
P

is a barrier at 0. The boundary points of the bottom, i.e., points on OG {0}, are
easily seen to be p-regular by employing the exterior sphere condition. Moreover, it
is easily seen that none of the points (x0, T), x0 G, on the interior of the "top" is p-
regular (cf. the example after Theorem 5.1). To give a geometric characterization for
the regularity of the points (x0, t) on the "sides" OG (0, T] of the cylinder, we recall
that in the elliptic theory, a boundary point Xo OG is regular for the p-Laplacian if

lim hi(x f(xo)
X--XO

whenever f is a continuous function on OG; here hI is the Perron solution correspond-
ing to the boundary function of the p-Laplacian

div(IVhiIp-2Vhl) 0;

see [HKM]. Then a boundary point xo OG is regular for the p-Laplacian if and only
if

(6.3) fol(capp(-(x’t)\G’B(x’2t))) 1/(-l)dt-
tn-p t

where the p-capacity Capp(K, D) of a compact set K in D is defined as

D) inf fD IVIP dx,Capp(K,

where the infimum is taken over all e C(D) such that _> 1 on C; see [KM], [Ma].
THEOREM 6.5. Let xo OG and 0 < to <_ T. Then o (x0, t0) is a p-regular

boundary point of GT if and only if xo is regular for the p-Laplacian.
Proof. Since the future does not have any effect on the regularity (Theorem 6.4),

we are free to assume that to < T.
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Suppose first that 0 is p-regular and let 99 be a continuous function on cOG. Let h,
be the p-harmonic Perron solution in G with boundary values 99. Then the function

f(x, t) { h o(x)
if 0 < t < T,
if t 0 or t T

is bounded on (9GT and continuous at 0. Moreover, if u is a p-superharmonic function
from the "elliptic" upper class for 99 in G, then the function v(x, t) u(x) belongs to
the "parabolic" upper class for f in GT. Hence

liminf Hi(x,t < liminf ho(x).
(x,t)o

By the barrier characterization for regularity, we infer from Theorem 6.1 that

lim Hi(x,t) f(0);
(x,t)-.o

thus

liminf ho(x) > 99(xo)
X.--.X

whenever 99 is a continuous function on OG. Consequently,

99(x0) _< liminf ho(x) <_ limsup h,(x) -liminf h_o(x) <_ 99(xo)
X ggO X X C X

so that x0 is regular for the p-Laplacian.
To prove the converse, suppose that xo is regular for the p-Laplacian. Let 99(x)

Ix xol and let u be the solution of

div(IVulp-2vu) =-1 in a,

Then u is p-superharmonic in G and u(x) >_ Ix- xol, for 99 is p-subharmonic. Because
the Wiener test (6.3) is satisfied, we infer from [GZ] that

lim u(x) 99(x0) 0;
X"-*Xo

therefore u is a barrier for the p-Laplacian in G.
Define

v(x, t) u(x) + (to t).

Then

div(IVvlP-eVv) -1 vt

and it follows that v is a barrier at o with respect to

ato G x (O, to).

Hence o is a p-regular boundary point of Gto. Theorem 6.4 now implies that 0 is a
p-regular boundary point of GT. []
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6.2. Petrowsky’s condition. In 1933, Petrowsky established a sharp condition
for the regularity of the latest moment in time on 0fi in connection with the heat
equation; cf. [Py]. For example, for the one-dimensional heat equation ut ux, the
origin is a regular boundary point of the domain defined by

x2

< log[log(-t)l, -T < t < 0,
-4t

while the origin is not a regular boundary point of any domain defined by

x2

-4---- < (1 / e)logllog(-t)l, -T < t < 0,

ife > 0.
For the p-parabolic equation with p > 2 a good, but perhaps not sharp, condition

is that the origin is a regular boundary point of the domain

(_t)l/,X < A(-t) log(-t)l(v-2), -T < t < 0,

where A > 0 and a > 0 are any constants, and ,k n(p-2)+p is as in the Barenblatt
solution. (As p 2+ more elaborate calculations must be done if one wants to
achieve the logarithms in Petrowsky’s condition.)

The construction of the barrier is based on the choice

P (_t)l/,X + qo(t),

where

a > 0, and

f(t) -al log(-t)l,
o(t) al log(-t)l + C(-t)l-llog(-t)l(-1).

A rather straightforward but lengthy calculation shows that

ut div(IVul-Vu) >_ 0

in the domain, where u(x, t) is positive. Hence u is p-superparabolic in a convenient
domain.

This indicates how the barrier is constructed. However, the proof must be omitted
here, since the actual calculations would lead us way astray.

Note added in proof. It has come to our attention that the p-parabolic equa-
tion has a very strong physical application. The Barenblatt solution describes the
propagation of the heat after the explosion of a hydrogen bomb in the atmosphere.
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ON THE SIZE AND SMOOTHNESS OF SOLUTIONS TO
NONLINEAR HYPERBOLIC CONSERVATION LAWS*

RONALD A. DEVORE AND BRADLEY J. LUCIER$

Abstract. We address the question of which function spaces are invariant under the action
of scalar conservation laws in one and several space dimensions. We establish two types of results.
The first result shows that if the initial data is in a rearrangement-invariant function space, then the
solution is in the same space for all time. Secondly, we examine which smoothness spaces among
the Besov spaces are invariant for conservation laws. Previously, we showed in one dimension that
if the initial data has bounded variation and the flux is convex and smooth enough, then the Besov
spaces B(Lq), a > 1, q 1/(a + 1), are invariant smoothness spaces. Now, in one space dimension,
we show that no other Besov space with a > 1 is invariant. In several space dimensions, we show
that no Besov space B(L’q) with a > 1 is invariant. Combined with previous results, our theorems
completely characterize for a 1 which Besov spaces are smoothness spaces for scalar conservation
laws.

Key words, conservation laws, regularity, rearrangement-invariant spaces, Besov spaces
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1. Introduction. We are interested in the size and smoothness, as measured in
certain function spaces, of solutions u(x, t), x E lld, t > 0, to the scalar hyperbolic
conservation law

ut / V f(u) --O, x E lt(d t :> O,
(1.1)

o) uo(x), e

Here, the flux f maps into ]1(d and Vs. f(u) denotes the divergence of f(u(x,t))
with respect to the spatial variables x Rd. In general, classical solutions to (1.1) do
not exist for all time t > 0; indeed, at some time t > 0, which depends on f and u0,

the solution u to (1.1) will generally develop discontinuities known as "shocks" even
if the flux and the initial condition are smooth. One defines weak solutions to (1.1)
as functions u(x, t) that satisfy

.[u(x, t)t(x, t) + f(u(z, t)). V(x, t)] dx dt

+ 0) x 0

for all C1(Id+l) with compact support. Weak solutions are not unique; however,
by imposing restrictions, known as entropy conditions, on weak solutions u, it is
possible to select from these weak solutions the physically relevant solution to (1.1).
See [10], [16]. When we speak about the solution to (1.1), we shall mean this entropy
solution.
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We are interested in the question of which function spaces X, such as the spaces of
p-integrable functions Lp(Id) or the space of functions of bounded variation BV(Id),
are invariant under the differential equation. This means that if we denote the mapping
u0 u(., t)for fixed t > 0 by E(t) (i.e., E(t)uo u(., t)), then we are interested in
function spaces X for which there exists a constant C such that for for all u0 E X

[IE(t)uoIIx <_ Clluollx.
If the X norm (or quasinorm, or seminorm) in some sense measures smoothness of
functions, then we call X a regularity space for (1.1).

We first address the question of how to measure the size of solutions to (1.1). For
all convex functions r: --+ IR and under suitable conditions on f, entropy solutions
u(x, t) of (1.1) satisfy

(u(x, t)) dx <_ fd (Uo(X)) dx

for all t > 0; see, e.g., [11]. By setting r(u) lulp for 1 _< p < x, one sees immediately
that

(1,2) II 011L (  ).
One can show independently that (1.2) holds also for p . Thus, Lp(d), 1

_
p _< c, are invariant spaces for solutions u(x,t) of (1.1). Actually, one can prove
somewhat more, as we now discuss.

The solution operator E(t) of (1.1) is not only bounded on Ll(]l(d), but is .a
contraction in Ll(]d); i.e., if u0 and v0 are two initial conditions for (1.1), then

(1.3) [lu(. ,t) v(. ,t)l]L() <_ I[UO VOIIL(d), t ) O.

Thus, the nonlinear mapping E(t) is a contraction on X := L (Id) and is bounded
on Y L(ld). A simple argument, given in 4, shows that if a possibly nonlinear
mapping E(t) defined on X + Y := { f + g f E X, g Y} is a contraction on X
and is bounded on Y, then E(t) is a bounded mapping on all interpolation spaces
between X and Y as determined by the method of real interpolation. First results on
conservation laws show that E(t)uo is defined for each locally integrable function u0,

and, in particular, for each function u0 in L(d) _+. L(d), if f is globally Lipschitz
continuous. In our case, this means that E(t) is bounded on all interpolation spaces
between L(Id) and L(ld), and, in particular on Lp(Id) for 1 < p < cx. In addition,
many other spaces, such as the Lorentz spaces Lp,q(Id), 1 <_ p <_ x, 1 < q <_ cx, and
the Orlicz spaces defined on d, are interpolation spaces for L (d) and L(Id).
Calder6n [2] characterized the interpolation spaces between L1 (JRd) and L(Id) as
the set of all rearrangement-invariant function spaces on ]Rd; see 4. Thus, solutions
of (1.1) are bounded on all rearrangement-invariant function spaces on Id.

The main focus of this paper is the smoothness, or regularity, of solutions to
(1.1), which we next describe. Because of the appearance of shocks, E(t) does not
map C(Id) into itself. The question arises whether there is any other sense in which
the solution of (1.1) retains smoothness.

One should note that solutions of (1.1) are translation invariant, i.e., E(t)(uo)(x/
h) E(t)(uo(. + h))(x) for all x and h in d. Thus, from (1.3) we see that for all
h d,

(1.4) Ilu(’+h,t)--u(’,t)llL() <_ IlUo(’+h)--UOIIL(d).
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Therefore, with the usual norm for the Lipschitz spaces Lip(a, LP(ld)) given by

IlVllLip(o,Lp(]Rd)) :-- sup
OhEd

(1.4) implies immediately that

for all 0 < a <_ 1. In particular, the set of functions of bounded variation on Id,
ev(d), is invariant under E(t), since, by definition, Lip(l, Ll(id))= BV(Id).

The Lipschitz spaces Lip(a, Lp(Rd)), 0 < a < 1, are special cases of the more
general Besov spaces B(Lp(Id)) (see 3 for a definition), which depend on three
parameters 0 < < c, 0 < p

_
ec, and 0 < q

_
x). In fact, Lip(o,Lp(d))

B(Lp(d)) for 0 < a < 1 and 0 < p_< ec. For aBesovspace, the parameter a
determines the order of smoothness (roughly speaking, the number of derivatives).
The second parameter p specifies the space in which smoothness is measured, namely
Lp(d). The third parameter q allows one to make subtle distinctions in smoothness.
Of special interest are the spaces B :- B;(Lp(]d)). These are sometimes called
fractional-order Sobolev spaces because of their similarity to the classical Sobolev
spaces; in fact, B is identical to the Sobolev space W, r 1, 2,..., consisting of
functions from L2(d) that have all of their rth distributional derivatives in L2(d).

The main interest of the present paper is the classification of all Besov spaces
X B, 0 < p <_ c, 0 < a < c, for which u0 E X implies u(.,t) E X for all later
times t > 0. We shall determine all the regularity spaces of conservation laws among
these Besov spaces except for a certain set of values of a and p (with 0 _< c _< 1). We
use the remainder of this introduction to formulate and explain our results.

"We have noted that Lip(c, nl(id)), 0 < a _< 1, is a regularity space for (1.1) with
constant C 1. Once one knows the definitions, it is easily shown that all the Besov
spaces B(LI(d)), 0 < a < 1, 0 < q _< c, are regularity spaces, again withC 1.

Perhaps somewhat more surprising is the fact established in [6], [7], and [14] that
a T(C) (a + 1) -1 c > 0, are regularity spaces in one spacethe spaces BV N By(a

dimension provided that the flux f is suitably smooth. In some cases, for example for
the inviscid Burgers equation, the space B() is itself a regularity space (i.e., it is not
necessary to intersect this space with BV).

With these results in hand, the question arises whether any other Besov spaces
are regularity spaces for (1.1), to which we now attend. To explain the results of the
present paper, it is useful to give a diagram that organizes our knowledge of smoothness
spaces. We identify any smoothness space with smoothness c in Lp(]d), and in
particular the Besov space B, with the point (l/p, a) in the upper-right quadrant of
R2. The classification of Besov spaces as regularity spaces in one space dimension can
then be visualized as in Figure 1. The line segment connecting (0, 0) to (1, 0) represents
the Lp(R) spaces, or more generally the rearrangement-invariant spaces (which we
show in 4 are invariant spaces for (1.1)). The line segment with endpoints (1,0)
and (1, 1) represents the regularity spaces Lip(a, Ll()) or B(LI(Hd)), 0 < c < 1,
0 <: q _< c. The half-line /21 with slope one emanating from (1, 0) represents the
regularity spaces BT, - T(a) (c + 1) -1 already discussed. Each space to the
right of the line 1 contains some functions that are not locally integrable and hence
the conservation law does not have a solution for all initial values from these spaces
(i.e., the regularity question does not have a meaning). The line 0 emanating from
the origin with slope one separates spaces embedded in C(]1) (those above the line)
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L(R) Lp(I) LI(]I;() _1
P

FIG. 1. Smoothness spaces in one space dimension. The line segment from (1,0) to (1, 1)
represents the spaces B(L1 (R)), 0 < a < 1, 0 < q

_
x). The Sesov spaces in the open regions not

marked by question marks cannot be regularity spaces for (1.1).

and those not embedded in C(]R)(below the line). It follows that any space above the
line 0 cannot be a regularity space for (1.1) since, in general, continuous data u0
generate solutions with shocks. We prove in the present paper that for a > 1, none of
the Sesov spaces B(Lp(IR)) are regularity spaces except for the spaces B(), which
corresponds to points on

In one space dimension, we have not determined whether the spaces represented
by points in the parallelogram with vertices (0, 0), (1, 0), (1, 1), and (2, 1) are regularity
spaces for (1.1). All the same, we conjecture that all these spaces are regularity spaces
for (1.1). We are able to use techniques from approximation theory and interpolation
of operators to prove this for certain points in this region but will not report on this
here since the results are not complete and the arguments are quite technical. One
would hope that some nonlinear interpolation argument would settle all these cases.

Our results concerning regularity in one space dimension described above are, for
the most part, negative. It is possible, however, to prove some positive results for
regularity in one space dimension. We show, using a general argument, that if f is
uniformly convex and smooth enough and if u0 BV() B(L,(IR)) for a > 1 and
o" > T(a) 1/(a + 1), then for all t > O, u(. ,t) is in every eesov space Bq(Lp())
with (l/p, ) strictly inside the quadrilateral with corners (0, 0), (1, 0), (1, 1), and

The situation regarding regularity spaces in several space dimension is quite dif-
ferent. One might suspect that the Besov spaces B, T := (/d + 1) -1 are regularity
spaces for space dimension d > 1, since their one-dimensional counterparts (d 1)
are. (These are precisely the spaces of minimal smoothness that are embedded into
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L1 (]Rd), by a variant of the Sobolev embedding theorem.) However, we shall show in
this paper that under very general conditions on the flux f, none of the Besov spaces
B(Lp(]Rd)) with c > 1 are regularity spaces for (1.1). Again, we are not able to
completely settle the case 0< c _< 1. In Rd the lines/2o and 1 are to be replaced
by/2 and/21, which emanate from (0, 0) and (1, 0), respectively, with slope d. We
already noted that the spaces on the line segment with endpoints (1, 0), (1, 1) are
regularity spaces.

We feel that our negative results on regularity spaces in several space dimensions
give useful information about the structure of solutions to (1.1) and the behavior of
numerical methods for their solutions. In order to bring out this point, we first make
a few remarks about the connections between regularity and numerical methods. A
typical numerical method creates for discrete time values tn an approximation Un
to u(’, tn). The approximants un will lie in certain linear or nonlinear spaces
associated with the numerical method. Usually, En is a space of piecewise polynomials
with either a fixed or variable grid. The approximation power of such a method is often
(although not always) associated with the approximation power from the space En. In
any case, no numerical method can approximate better than the best approximation
from. E. The order of best approximation by elements in E, is characterized by the
smoothness of the function u(., t,) being approximated. It is therefore important
to understand when the solution u(., t) is in the smoothness space associated with
a given order of best approximation by elements in E. For example, the regularity
spaces Bra(c) characterize the classes of functions that can be approximated with a

given approximation order N- in L1 (IR) by free-knot spline functions with N knots.
This shows that numerical methods based on moving grids (in one space dimension)
should be effective in recovering solutions to scalar conservation laws. This is indeed
the case, as is shown in [12], [6], and [14], where numerical methods based on moving
grid finite elements are constructed that provide approximation order c for any c > 0.

In the multivariate case, there are no regularity spaces among the Besov spaces
B(Lp(IRd)), c > 1. The Besov spaces are homogeneous: they measure regularity the
same way in all coordinate directions. From another viewpoint, these Besov spaces
are characterized by very regular approximation processes such as approximation by
wavelets or splines with regular partitions. The elements in these spaces behave the
same in all coordinate directions. On the other hand, the "fluid transport" in conser-
vation laws can be very directionally dependent. To approximate well such a solution
at later time t > 0 requires finer resolution in directions where mass is accumulat-
ing. For example, if we were approximating by piecewise constants, we would need
elements that are finer in certain directions and coarser in others. This is not possible
with splines on regular partitions or wavelets. This is reflected in the fact that their
approximation spaces (the Besov spaces) are not regularity spaces for conservation
laws in several space dimensions.

2. Properties of entropy solutions to conservation laws. We begin by
recalling certain properties of the solution to (1.1) that will be used in what follows.
Let E(t) denote the evolution operator that associates to u0 the solution E(t)uo
u(., t) of (1.1) at time t > 0. Then E(t) maps L1 (IRd) + L(]Rd) into itself. Moreover,
E(t) is a norm-one, bounded operator on L1 (]d) and L(IRd)

(2.1)

Actually, E(t) is a bounded operator with norm one on each of the Lp(Rd) spaces
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1 <_ p _< Cx. This can be derived from the study of entropy-entropy flux pairs or
proved as in 4.

The operator E(t) is monotone in the sense that E(t)uo >_ E(t)vo whenever
u0 >_ v0 (see, for example, [3]) and preserves integrals

jf E(t)uo dx jf uo dx.

From these properties, one derives that E(t) is a contraction (see [3])

IIE(t)(uo) E(t)(vo)l[ <_ [[u0

Here and later, the unsubscripted norm always denotes the Ll(If(d) norm.
There is no simple description of the solution u of (1.1). However, in one space di-

mension, the following method of Lax [11] gives a useful analytic method for obtaining
u. We assume that the flux f is strictly convex. It follows that the transport velocity
a(u) :- f’(u) is strictly increasing on ]1( and is therefore invertible (under composition
of functions) on IR. We assume further that the initial condition u0 is continuous with
compact support. Any initial condition can be approximated to arbitrary accuracy in
the LI() norm by such functions. Under these conditions, Lax [11] shows that the
solution u(x, t) of (1.1) can be described by

t)  o(u(z, t)),

where y y(x, t) satisfies

(2.3)
x- y

a(uo(y)).
t

In general, there are many solutions y to (2.3). The one that satisfies (2.2) is deter-
mined as the solution to an extremal problem (cf. Theorem 3.1 in [11]).

Lax establishes various properties of the selection y(x, t). In particular, he shows
that for each fixed t > 0,

(2.4) y(., t) is increasing on I.

Shocks occur in the solution to (1.1) at points where y(. ,t) discontinuous. This can
occur when there is more than one solution y to (2.3) and we jump down from one
piece of the graph of u0 to another.

3. Besov spaces. In this section, we give the definition of Besov spaces and
several equivalent norms for these spaces, which will be used in the sequel. For a > 0
and 0 < p, q _< (x, the Besov space B(Lp(d)) is a space of functions with smoothness
a in Lp. The secondary parameter q gives a finer gradation of these spaces that is
important in many applications.

To describe these spaces, we use the difference operators A, r 1, 2,..., with
step h E ]td. These are defined inductively with Ah(v,x) := v(x / h) -v(x) and

A Ar-1 It follows thatA:=

A;(v, x):= E(-1)r+j v(x + jh).
j=0

With these differences, we can define the moduli of smoothness

wr(v,S)p sup o,
O_<lhl_<s
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for each r 1, 2, The rate at which wr(v, t)p tends to zero gives information about
the smoothness of v in Lp(d).

The Besov spaces are defined for 0 < a < r and 0 < p, q <_ oc as the set of all
functions v E Lp(d) for which

(/0 [8--a(Mr(V, 8)p] q q, 0 < q < ,
(3.2) VBg(L,(a))

sup S-W(V, S)p, q ,
sO

is finite. The conditions (3.2) require that wr(v, S)p behave like O(s) as s 0; the
exact requirement on wr(v, S)p varies with q and becomes stronger as q gets smaller.
We define the following "norm" for B(np(d))

Because we allow p and q to be less than 1, this "norm" does not always satisfy the
triangle inequality, but it is always a quasinorm, i.e., there exists a constant C such
that for all u and v in BT(Lv(S) ),

It can be shown that the above definition of Besov spaces does not depend on
the choice of r, since all values of r > give rise to equivalent norms and hence
the same space. We note that since (v,t)p 2[[v/,(), 1 p (the same
inequality holds with 2 replaced by 2/p when p < 1), we obtain an equivalent norm
or BT(i(n)) if we take the integral or supremum in (3.2) over only the interval
[0, 1]. Thus, membership of v in B(Lp(Sd)) is determined only by the integral or
supremum on [0, 1].

For certain values of the parameters, the Besov spaces are identical with other
smoothness spaces. For example, if 0 < p and 0 < is not an integer, then
B(ip(d)) Lip(,ip(Sd)) are the classical Lipschitz spaces. When , k is
an integer, we obtain the generalized Lipschitz spaces, for which w(v, s), r > k, is
used in place of w(v, S)p in the definition of the usual Lipschitz spaces. For p 2
and > 0, the Besov spaces B(L2(Sd)) Wa(i2(d)) are the Sobolev spaces.
The Besov spaces with q p, which we shall denote by B "= B(Lp(d)), are of
particular interest. These are sometimes called generalized Sobolev spaces.

The application of Besov spaces to approximation theory and interpolation of
linear operators leads to alternate characterizations of these spaces. We shall mention
two of these alternate characterizations that hold in the univariate case.

The first characterization describes the Besov spaces in terms of approximation
by linear spaces of spline functions. Let S, denote the set of all univariate piecewise
polynomials of degree < r that have global smoothness C(-2) and have break points
only at the dyadic integers j2-, j Z. For each f Lp(), we define

s(f)p :: s,(f)p inf ]]f

Then (see [8]), for 0 < < r, a function f is in B(np()) if and only if
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with the usual change to a supremum when q oc. Moreover, (3.3) gives an equivalent
seminorm for B(Lp(I)). It follows directly from (3.3) that B(Lp()) is continuously
embedded in B(Lp(I)) if a >/ or a and a < T.

Our second characterization describes the Besov spaces in terms of univariate
nonlinear approximation. For this, we let n :-" En,r denote the collection of all
piecewise-polynomial functions of degree < r on I that consist of at most n/ 1 pieces.
Thus S E En if and only if there exist n breakpoints x < x2 < < Xn such that
with x0 := -oo, xn+l := cx, the function S is a polynomial of degree < r on each of
the intervals (xi-l,xi), 1,...,n. No assumption is made about the smoothness
of S at the breakpoints. The set En is not a linear space, but it can be considered
a nonlinear manifold parameterized by the breakpoints and the coefficients of the
polynomial pieces.

We can describe certain Besov spaces in terms of their approximation by the
elements of En. For this, we define for f E Lp(I), 0 < p _< c,

(3.4) rn(f)p := an,r(f)p :-- inf
SEEn

which is the error in approximating f in the Lp(I) norm by the elements of Y]n.
Nonlinear spline approximation can be used to characterize certain of the spaces

B (see [15] and [9]). Ifr > a > 0 andT > 0 are given, and if there is apwith
0 < p < c such that - T(o,p):= (O + 1/p)-, then f e B(L()) if and only if

(3.5) [2naa2, (f)p]" < cz
n--1

and (3.5) when added to I[" IIL() gives an equivalent norm for B"

(3.6) Ilf[l7(L())[lfllL()+([2’r2(f)pl)n=l
Furthermore, (3.6) implies that B(a,p) is continuously embedded in B(z,p) if

Indeed, Br(a,p) is continuously embedded in Lp() (see [8]), and the family of spaces
Ba lies on the half-line with slope one emanating from the point (1/p, 0) in FigureT(,p)
1.

It may be useful to say a few words about the differences in the two character-
izations (3.3) and (3.5). The characterization (3.3) describes the space
in terms of approximation in Lp(IId). Thus the approximation is taking place in the
same space i. which the s ooth  ss m  sur d. I. cont   t, in (3.5) the
approximation takes place in the space Lp(Id) but the smoothness is measured in the
space Lr(Id); this is characteristic of nonlinear approximation. Since T < p, the class
of functions that can be approximated by the nonlinear family En is larger than the
class that is approximated by the linear spaces Sn.

4. Rearrangement invariant spaces. In this section, we shall give an ele-
mentary approach to finding invariant spaces based on interpolation of operators. We
begin by recalling some basic facts about the K-functional and its application to the
theory of interpolation of operators.

If (X0, X) is a pair of complete, quasinormed spaces embedded in a Hausdorff
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space A’, then for each v E X0 + X1, we form the K-functional

K(v,s) := g(v,s;Xo,X) := inf {IIV011Xo / 811VllIX1} 8

_
O,

v--vO+Vl

where the infimum is taken over all decompositions v v0 / v with v E X, i 0, 1.
It is easy to see that for fixed s > 0, K(., s) is a quasinorm and for fixed v, K(v,.
is an increasing concave function on +.

The K-functional was introduced by Peetre as a tool for obtaining interpolation
spaces X for the pair (X0, X). We recall that a complete quasinormed space X
contained in X0 / X1 is called an interpolation space for the pair (X0, X1) if each
linear operator T that boundedly maps X0 and X into themselves also maps X
boundedly into itself. For such a T, it follows that

g(Tv, s; Xo, X1) <_ M g(v, s; Xo,X), s > O,

with M the maximum of the norm of T on the two spaces X0, X1.
In view of (4.1), we can obtain interpolation spaces for (Xo, XI) by applying

to K(v,. a quasinorm defined for functions on R+. We mention in particular the
(0, q) norms, 0 < 0 < 1, 0 < q <_ c, which give the spaces Xo,q that consist of all
v X0 / X for which

1/q

(a.1) ]vlxo. .= s-Og.v,s..qds
8

is finite (with the usual change to a supremum when q c). It follows from (4.1)
that T maps Xe,q into itself for each 0 < 0 < 1, 0 < q _< c, with a norm not exceeding
M.

It is not possible to apply this interpolation directly to the operator E(t) asso-
ciated with (1.1) since it is not linear. However, the following simple remark can be
used in place of linearity. We say that an operator T is X0-Lipschitz on X0 + X if

liT(v0) T(vl)[[Xo <_ M011v0 vlIxo
for each v0, v X0 / X1 for which v v0 X0.

LEMMA 4.1. If T is a (possibly nonlinear) operator that is Xo-Lipschitz with
constant Mo on Xo + X and is bounded with norm .M on X, then T satisfies

(4.2) g(Tv, s) <_ M g(v, s), v e Xo + Xl, 8 ) O,

with M :--- max(M0, M1).
Proof. The proof is almost a triviality. Let s > 0. For a given e > 0, let v

vo / v be a decomposition of v that satisfies Ilvollxo / sllvllx <_ g(v,s) / e. Then
Tv (Tv Tv) + Tv and v vl vo E X0. Hence,

Since e > 0 is arbitrary, (4.2) follows from the definition of the K-functional. [:]
We now apply this lemma to the solution operator E :- E(t) for the conservation

law (1.1). The contractivity of the operator E on L(d) has a local variant. For this,
we assume that the flux f is in Lip 1. It follows that the transport velocity vector
f’(u) satisfies

h := sup IIf’()lle
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where Ilxllel -id__l xi I. Under this assumption, we have (see [10]) for any locally
integrable functions u0 and vo and any ball B(x, R) of radius R > 0 centered at the
point x,

(4.3) /B [E(uo)-E(vo),<_/ ,u0 v0[.
(x,R) (x,R+At)

In particular, if u0, v0 E L1 (Rd) + Lo (Nd) and u0 v0 E L1 (Rd), then taking a limit
as R - oc in (4.3) shows that E is Ll-Lipschitz on L1 -f- L with constant 1. Since
E is a norm-one operator on L, we can apply Lemma 4.1 and find

(4.4) K(E(uo),s;LI(d),L(]d))
_

K(uo, s;LI(]d),L(d)).

The K-functional for the pair (LI(d),L(Rd))can be described in terms of
rearrangements of functions. We refer the reader to the book of Bennett and Sharpley
[1] and Calder6n’s paper [2] for a discussion of rearrangements and the material that
follows in this section. The rearrangement v* of a function v LI(d) +L(d) is a
nonincreasing function defined on + that is equimeasurable with v, i.e,

meas{x e d lv(x)l > y} meas{x e + lv*(x)] > y}

for all y >_ 0. It follows that the rearrangement v* of any v Lp(Nd) is in Lp(+) and

(4.5) IIvlli,() -IIv*lli(+), 1 <_ p <_ oc.

It can readily be verified that the K-functional for (L1, L) is

(4.6) K(v,s;Ll(d),L(d)) v*(y)dy.

The Hardy-Littlewood maximal function v** of v* is related to the K-functional
K(v, s; L1 (d), L(Rd)) in the following way"

1 f0 1
v** (s) -s v*(y) dy -K(v,s;LI(N L(Nd))"

Using the functions v**, Calder6n defines a normed space X c LI(d) + L(Nd) as
rearrangement invariant if

f e X and g**(s) <_ f**(s), s >_ O, ==, g e X and Ilgllx <-Ilfllx.
Calderdn showed that the interpolation spaces for the pair (L1 (Rd), L(Ia)) consist
precisely of the set of rearrangement-invariant spaces.

As a consequence, from Lemma 4.1 we obtain the following.
THEOREM 4.2. If the flux f is in Lip 1, then for any t > O, the evolution operator

E E(t) for the conservation law (1.1) when applied to an arbitrary function uo
Ll(]d)

__
L(Rd) satisfies

(4.7) E(uo)** (s) <_ ;* (s), s >_ O.

In particular, E maps every rearrangement-invariant space X on Nd into itself with
norm 1.

Inequality (4.7) gives precise information about the relative sizes of uo and Euo.
For example, if we let d 1, f(u) u2, uo equal the characteristic function of [0, 1],
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uo E(uo) u(., 1/2)

u) l E(uo)*

1 x 0 x1

E(uo)** __
0 1 x 0 1 x

FIG. 2. For these figures, the flux is f(u) u2. The initial data uo X[o,1], its nonincreasing
rearrangement u, and u*, the maximal function of u. Similarly for E(uo) :-- u(., 1/2).

and t 1/2, then u0 u,
0, x<_0, 0, x<0,
x, 0_<x_<l, 1, 0_<x_<1/2,

E(uo)(x)=
1, 1_<x_<3/2,

and E(uo)*(x)=
3/2-x, 1/2_<x_<3/2,

0, 1 < x, 0, 3/2 _<x.

Note that for 1 < x < 3/2, u(x) < E(uo)*(x), yet, by Theorem 4.2 (or an easy direct
calculation), we have that

(4.8) < (x)

for all x > 0. See Figure 2.
Some examples of rearrangement-invariant spaces are the Lp(]d) spaces, 1 _< p _<

x, and the Lorentz spaces Lp,q(d), 1

_
p <:: cx:), 1

_
q _< cx; for p > 1, these consist
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of all v E L1 (JRd) + L(IRd) for which

(/0 )IlvllL,.(  ) :- (s)] q_ds -8

is finite. Other rearrangement-invariant function spaces include L log L and Orlicz
spaces.

We note that this analysis applies to any evolution equation that both satisfies a
maximum principle and is a contraction on L(Id), and, in fact, to any translation-
invariant, integral-preserving, contraction semigroup on LI() (see, e.g., [13]).

5. Regularity in Besov spaces, part I: Positive results. The remainder
of this paper concerns itself with the regularity of the solution u(-,t) of (1.1) as
measured in Besov spaces. We continue to use the notation T(a,p):= (a + l/p)-and B := B(L(Rd)).

It is well known that if the initial data u0 is of bounded variation, then the
solution u(. ,t) of (1.1) is of bounded variation for all positive time t and

for all t > 0. In addition, we showed in one space dimension [6], [14] that if f Cr+
is globally Lipschitz continuous and uniformly convex, and u0 BVB(,) for some
1 < a < r, then for all t > 0, u(., t) BV B(,) and

+ 1),

where C depends only on r, t, llf(+)lL, and lU0IBV; i.e., BVB,) is a regularity
space for (1.1). (For the inviscid Burgers equation,

where C depends only on a.) One can ask whether any other spaces B(L(N))
BV(N) are also regularity spaces for (1.1). As we have explained in the introduction,
this cannot hold for Besov spaces that correspond to points above the line 0 or below
the line 1 of Figure 1. Thus we can restrict our attention to spaces corresponding
to points in the region bounded by 0, 1, and the x-axis. Each Besov space in this
region is of the form Bg(L(,p)) for some p between 1 and infinity, 0 < q , and
a>0.

In this section, we show that if u0 BV B(,p), a > 1 and 1 p , then

u(. t) is in BVBz for all 1 < q < . and < l+(a- 1)/q. The points(,q)
(1/7(, q), ), 1 + (a- 1)/q, lie on the line segment joining the points (1, 1) and
(1/7(a, 1),a) in Figure 1; i.e., these spaces are intermediate to BV and B(,). In
the next two sections we show that, in general, u(. t) may not be in BV Bz tbrr(Z,q)
1 < q < whenever > 1 + (a- 1)/q. In particular, we can say that the B(a,p),
a > 1, are not regularity spaces for (1.1) for any values of p 1. As in [7], we can
remove the restriction of BV functions if f(u) u2.

We first prove the following lemma, which holds for general functions v, not
necessarily solution of (1.1).

LEMMA 5.1. g V BV B](a,) > 1, then v B(L(z,p)) for 1 + (
1)/p, 1 < p < , and pT(a, 1).
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Proof. The proof will be based on a standard interpolation argument. We take
as the BV-seminorm

IVlsv sup
s>0 8

Since for any r >_ 1, wr(v, s)l <_ 2r-lw (v, s)t, we have

,(v,) < c1(,) c slvlv
with C depending only on r.

We now assume that 1 < < r, and we write # := T(, 1) and A := (fl, p), i.e.,

1 1 1
=+1 and =fl+- =-+1.

Notice that

’,.)_-’ ’o) (1-’
that is, (1/,,fl) is a convex combination of (1/#,c) and (1, 1). We shall estimate

w(v,s)x. We use the abbreviated notation A(x) "= A(v,x)l. We let p’ be the
conjugate exponent to p, i.e., lip + lip 1. It follows from Hhlder’s inequality that

()d (z)() dz S (x) d () -/’ d

< Cll
-"<- )Bvlhlw(v, lhl).

since 1-/’"
By tking suprmum eor Ihl , e cn replace the left side by w(v, s) and

raise both sides to the power 1/A to obtain

(5.3) (,) < CII ’ (,)Z,BV8

Therefore,where we have used the fact that ( V)p .
P[_%(.)] d < C _+(.).BV

8 8

,,
[_(. ).].

d
CIvlgv

since r(, 1) alp and alp’. Raising both sides of this inequality to
the power 1/a shows that

IVlB<L.<o,,,<>> < Clvllvl p

B(,)

In the next theorem, we apply Lemma 5.1 to solutions of (1.1).
THEOREM 5.2. Let the flu f be strictly conve and in C+1. If uo is a function

of compact support in B](a,p) R BV(R) for some > 1 and 1 < p _< , then for any

later time t the solution u(. t) to (1 1) is in every Besov space B BV(N) for(Z,q)
all l N q < and O < < l + (a-1)/q.

Pro@ It may help the reader to refer to Figure 3 during the course of this proof.
We first assume that 1 < q < and 1 < 1 + (- 1)/q, and we choose auxiliary



SIZE AND SMOOTHNESS OF SOLUTIONS TO CONSERVATION LAWS 697

B

A C

D

G
F

FIG. 3. The parameters and spaces of Theorem 5.2. The points and the spaces are
A: 0), B-(a,p) .(a,p)(L-(a,p)()); B: a) Br(a;i)’ r(a,p)(Lr(a,,)(ll)); C: (r(a,l),a); D:

(.r.(cl,l) C’), S(c,,1)(-(cd 1)(])); : ,
-(’,r) ’) B (L.(,,r)()); F’(,q), (,,1)

), B (iv (I)); and G: (1, 1), BV(]I()) The lines o and l are as in Figure(,q)’ (,q) (,q)
1.

parameters a’, 3’, and s that satisfy 1 < a’ < a,/ < 3’ < 1 + (a’- 1)/q, T(a’, 1) <
T(a, p) and

1 1

(, q) + -,
i.e., T(3, q) ’(3’, S). Note that it is always possible to choose these parameters by
first choosing a close enough to a. It follows that 1 < s < .

We note that because u0 has compact support, u0 E BT(C,B) (Lr(a,p) ()) (point
A) implies that u0 e Ba (L (point B), 7(a’, 1) (a,p). NowT(a,p) (a’,l) (]1)) since < T

by the embedding theorems mentioned in 3 u0 is in B(,,1)(Lr(,,1)()) (point D),
since a < a.

Inequalities (5.1) and (5.2) and the fact that u0 e B(a,,1)(L(,,)(I))3 BV(I)
imply that u(., t) is in the same space for all t > 0. We can apply Lemma 5.1 to
see that u(., t)is in B(i,1) (L(z,,s)()) B’(a,,1)(L(z,q)(,)) (point E). Fi-
nally, because 3 < /3, a standard embedding theorem implies that u(. ,t) is in
B(Z,q) (Lr(/3,q)()) (point F), as required.

When q 1 or 3 < 1, the theorem follows from what we have already shown and

the fact that B is embedded in B for any/3 </. [-!
(,q) (,q)

6. Regularity in Besov spaces part II: Limits on regularity. Recall that
a smoothness space X is a regularity space for (1.1) if u0 X u(., t) X for
all t > 0. We have remarked that the spaces BV()N B(,) are regularity spaces
for (1.1), and we gave simple arguments in the introduction to show that spaces on
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or above the line :0 with c > 1 or below the line :1 cannot be regularity spaces for
X. We went on to show that if u0 is in any space X B’(,,p) N BV(I) for c > 1 and
1 < p < cx (i.e., between the lines 20 and :1), then the solutions u(., t) remained in

B for 1 < q < c and < 1+(- 1)/q for all time; we now show that the solution(,q)

of (1.1) is in general, not in any space B with 1 < q < cx) and/3 > 1 + (- 1)/q.(f,q)
In particular, no Besov space B for c > 1 and any a # T(C, 1) is a regularity space
for the one-dimensional conservation law (1.1). In this section, we analyze the inviscid
Burgers equation, and in the next section we treat general strictly convex fluxes f. In
8, we generalize these results to multivariate problems.

So we consider in this section only f(u) u2/2, c > 1, and T T(o,p) :=
(c+l/p)- for 1 < p < oc. For any and p, we construct initial data u0 E BV
such that the solution u(x, 1) of (1 1) at time i is not in any space B for 1 < q <-(/3,q)
and>l+(a-1)/q.

It is perhaps easier to first describe the solution u(x, 1) that we want to achieve
at time 1 and then explain how to find suitable initial data u0 that yields it. We
construct a set of functions Ck, k 1, 2,..., each of compact support on intervals
such that k [I[ is finite; our solution will be u(., 1) u :- -]k Ck(’-- Xk), where
the increasing sequence of points xk is chosen such that u(x, 1) has bounded support
and the supports of (.-xk) and Cj(.-xj) don’t overlap if j = k. The graph of
Ck(X Xk) is given in Figure 4. The rightmost portion of its graph has Nk steps with
height H :- 2-k and width Wk :-- 2-ak; on the left, a linear piece with slope 1/2
connects the top of the steps with the x axis. Precisely,

1/2x + NH,Ck(x)
(Nk n)Hk,
0,

x <_ -2NHk,
--2NkHk <_ x <_ O,
nWk <_ x < (n + l)Wk, O <_ n < Nk,

NW <_ x.

We choose Nk as the greatest integer such that NkHk

_
k-r. If Nk is zero, then

is defined to be zero. If Nk > 0 then

1
k_r <_ NkHk <_ k-r.

The integer r will be given later. We have

(6.2) IIkl 2NkHk + NkWk <_ 3NkHk <_ 3k-,
so k Ilkl < cx as claimed, and a set of points (xk}= can easily be chosen with the
required properties.

We obtain uo(x) by solving the associated backward problem

-0,

v(x, o) vo(x) 11,

X E ]d,

X ]d.

Then we take u0 v(., 1). Each jump in v0 smooths into a linear rarefaction wave
with slope -1, and the linear piece on the left of each Ck evolves into a steeper profile
with slope 1, but not yet a shock, at time 1. Thus, uo(x) := v(x, 1) -]k Ck(X Xk),
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-2NkHk + xk xk N}H} NkW} + xk

--2NkHk / Xk Xk NkWk + Xk

FIG. 4. The functions Ck(x xk) and Ck(x xk), from which uo(x) ’k Ck(x xk) and
u(x, 1) -]k Ck(x- xk). The dashed line indicates the linear approximation to Ck(x- xk) in
Theorem 6.1.

where the continuous function Ck takes the values

O,

x -2NkHk,
x nWk (N} n)Hk and

x (n + 1)W} (Nk n)Hk,
x=NW,

0<n<N,

is linear between these values, and is zero outside the interval [-2NkHk, NkWk]. Thus,
on the right, Ck consists of linear pieces with slopes alternating between 0 and -1.
See Figure 4. Note that k has 2Nk + 1 linear pieces and Ck has Nk + 1 linear pieces.

.It is easy to justify that Ul is the solution to (1.1) when t 1 with initial data
u0. For example, in the description of the solution given by Lax (see our 2), for t < 1
there is a unique solution y(x, t) to (2.3). When t 1 there is a unique solution to
(2.3) except at breakpoints of Ul. These correspond to the jumps in Ul.

We fix a > 1 and 1 < p < c and let r be the smallest integer that satisfies
(r- 1)T(O, p)/p > 1, or, equivalently, r > ap + 2.

THEOREM 6.1. Let 1 < p < oc and > 1 be fixed. The function uo defined
above is in B(,p) for -(a, p) (a + l/p) -1, while the function Ul u(. 1) with u

the solution to (1 1) for this uo and f(u) "= u2/2 is not in any space B for any.(,q)
l < q < oc and any / > l + (o- l)/q.
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Ba For this purpose, we use the seminormProof. (i) We first show that u0 . (,,)
(3.5) for B(a,p) that is defined using the approximation errors a2 (Uo)p. We fix a value
of n _> 1 such that 2n _> nr and we bound am(Uo) for m :- 2n+3 by constructing a
piecewise-linear approximant S to u0 as follows.

Recall that

supp(k) supp(k)= Ik [-2NkHk, NkWk].

Outside of [.Jk(Xk + Ik), we define S to be zero. Let zk := xk / NkWk be the right
endpoint of the support interval xk + I of (x xk). On each xk + I for 1 <_ k < n
(i.e., where u0 is largest), we define S(x) "= uo(x) Ck(x xk). Then S has at most

n--1 2n+l 2n+2-j=l (2Nj / 2) _< / 2n _< linear pieces to the left of the point z,-l. To the
right of Zn-, we define S as follows. On any interval xk + Ik, with n _< k _< 2n (where
u0 is of moderate size), we define S to be the continuous, piecewise-linear function that
passes through the points (Xk 2NkHk, 0), (xk NkHk, NkHk), and (x + NkWk, O)
(the dashed line in Figure 4). To the right of z2- (where u0 is smallest), we define S
to be identically zero; we call this semi-infinite interval i. Then S has at most 3.2n

breakpoints to the right of z_l and hence at most m 2n+3 breakpoints in all.
We consider next the error E(x) := luo(x)- S(x)I at points where E is not

2 the error is no greater thanidentically zero On any interval xk + Ik, k n,...,
Wk (since the slope Of the dashed line in Figure 4 is greater than -1) and E is nonzero
on a set of measure at most Nk(Wk + H) <_ 2NkH <_ 2k-. Hence

(6.3) E(x)p dx <_ 2Wk- <_ 2.2-kpk-r.
k+Ik

On the other hand, on Ioo, E(x) <_ N2,,H2, < 2-n" and E is nonzero on a set of
measure not exceeding

oo o0
1

k--2 k--2

(see (6.2)) with C (here and later in this proof) depending only on r, since r > 1.
This gives

(6.4) E(x)p dx <_ c2-np2-n(r-)

Adding the estimates (6.3) and (6.4), we obtain for m 2+3 and n sufficiently
large,

2

<_ I1 0 sll < +
k--n_

2-nrP2-n(r-) .+. c2-napn-r

< c2-napn-r

since r _> a and r > 1. This inequality also holds (trivially) for all n by simply
adjusting the constant C. Using this and the monotonicity of aj (Uo)p, we obtain that

a (u0)]" n-’(’)/ <
n=l n=l
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since rT(a,p)/p > 1 by our definition of r. This shows that u0 is in Br(,p) and
completes the proof of (i).

(ii) We show next that ul u(., 1) B(,q) for any 1 <_ q < x and >
1 + (a- 1)/q by giving a lower bound on wr,(ul,t)r(Z,q) for any fixed r’ > . We
consider any k for which Ck is not identically zero, and we examine A’ (k,x) for
h "= hk := Wk/r and Wk h < x < Wk, 1,..., N, i.e., just to the left of each
jump of height Hk in Ck. Since A’ (g, x) 0 for any constant function g, we have for
W h < x < W,

r’ r’ 2-k(6.5) Ah (k,x) Ah ( --(Nk ,)Hk,x) 1)’Hk (1)r’

since all values of Ck(x + jh) (Nk u)Hk 0 in (3.1) except for j 0. This holds
for x on a set of measure Nkh N}Wk/r’ >_ C2k-2- Ck-2-(a-1)k.

From (6.5), we derive for T T(, q) := ( + l/q) -1,

(6.6) Wr,(Ul,hk) >_ IHklk-r2-(-l)k= C2k(1--a)k-r,
for all k sufficiently large, say k >_ k0. Using the monotonicity of w,(ul, t) in t,
dividing the interval of integration in (3.2) into intervals [hk+l,hk) and discretizing
the integral yields

k=ko k=ko

because

3q+ 1-q-a
Ta+ 1--T--a-- t q .a+ 1

q
a= > O.q + 1 13q + 1 q + 1

Hence ul B []
T(/,q)"

The previous theorem can be used together with embedding theorems for Besov
spaces to show that none of the Besov spaces B(L) with (a + 1) -1 < 7 < a-1

are regularity spaces. That is, we can allow any value of s. A modification of the
construction of the theorem allows this conclusion for T a-1. We already remarked
that no such space with T > 1/a .or - < 1/(a + 1) is a regularity space. We leave
these details to the reader.

7. More general fluxes. We shall next show that the results of the previous
section are valid for more general fluxes f. We shall assume in this section that f is
a strictly convex function on ]R. Then a(u) := if(u) is strictly increasing and has an
inverse b a-1 under composition of functions. We shall assume that a(O) 0 and
therefore b(O) 0 (this assumption could be removed with a suitable change in the
construction below).

If a > 1, let r, u0, and Ul be defined as in the previous section. We consider the
solution v(x, t) to (1.1) for the flux f and the initial condition

(7.1) Vo(X) := b(uo(x)), x

The same argument we have given in 6 can be applied here to show that the solution
v(x, t) of (1.1) for t _< 1 with data v0 is the same as b(u(x, t)), where u(x, t) is defined
in the previous section.

The next two theorems will show that for every 1 < p < and a > 1, the function

v0 is in Br(,p), but v(. ,1) Vl is not in any space B(z,q) for any 1 < q < and
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> 1 + (a- 1)/q. We shall assume in these theorems that the flux f is in cr+l; it
follows that a and b are in Cr.

THEOREM 7.1. Let a, r, uo, and 7(a,p) be defined as above, and let 1
p < c. If b is in Cr[0, 1], then vo is in B(,p).

Proof. This proof is similar to part (i) of Theorem 6.1.
It is reasonable to expect that v0 will be as smooth as u0 since b is smooth, but

the proof is not completely trivial. We shall estimate the error in approximating v0 by
piecewise polynomials of order r with rn pieces. That is, we shall estimate the error
O’m(VO)p in approximating v0 by the elements of E,, in the Lp() norm. We first note
that since b(0) 0 and 0 < uo(x) < 1, for all x, we have 0 < vo(x) <
for all x N. This implies that vo Lp(R).

We fix an integer n _> 1 and we estimate am(Vo)p for m >_ Co2n with Co an
n--1absolute constant that is specified in the course of the proof. We let 1 := -k= (

x), 2 -k=n Ck(’-- Xk), and 3 := k>2 Ck(’-- Xk). These functions have
disjoint supports. From the definition of vo, we have

v0 b(l) + b(2) + b(3) bl + b2 + b3.

We first estimate O’m(bl)p. Recall that .is a piecewise-linear function on
with no more than C2n breakpoints. We shall now show that one can add at most
an additional Co2n breakpoints so that for any interval I in the resulting partition,
tgl (I) is contained in an interval of length 2-n. Indeed, the variation of k <_ 2/M" for
k 1,..., n; hence, we need only insert at most 2k-r2n + 2 new breakpoints for each
k 1,..., n- 1 to obtain the desired partition. For each of these intervals I, we let
PI be the Taylor polynomial to b of order r expanded at the center of 1(I). Then
PI(q21) is a polynomial of order r on I. We define the piecewise-polynomial function
S1 by S1 PI(1) for each I. Then,

Ilbl SIlIL(I) --IIb(I/1)- gI(ffl)llL(I) <--IIb(r)llL[O,1] 2-hr.
Since bl and $1 have compact support, it follows that

(7.2) rrn (bl)p < C2-nr, m > Co2n

with C not depending on n.
We can estimate am (b2) in a similar way. We have shown in the proof of Theorem

6.1 that there is a piecewise-linear function 2 with at most 3.2 pieces that satisfies

2Moreover, 2 Ek=n (k("-xk) with each (k(’--Xk) a piecewise linear function with
4 pieces and Var(k) Var(k) <_ 2k-. Therefore, as in the previous case of 1, we
can add new breakpoints and obtain a partition of R into at most C02n intervals I
such that 2 is linear on I and 2(I) is contained in an interval of length <_ 2-n. If
PI denotes the Taylor polynomial of order r of b expanded about the center of 2(I),
then PI(2) is a polynomial of order r on I. The piecewise-polynomial function $2 is
defined to be PI(2) on each I. Then, for each of the intervals I, We have

(7.3)
IIb SIIL() IIb() -b(2)llL() + IIb(’) P(’)IILo()

< IIb’llL[o,]2-n -4-II,b()llL[O,.ll2-n" < 6’2
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with C independent of n. Now, by (6.2), b2 and $2 vanish outside of a set of measure
at most Cn-r+l with C depending only on r. Hence, from (7.3),

1152 S211Lp() Cn(-r+l)/p2-na.

It follows that

(7.4) am(b2)p <_ Cn(-r+l)/p2-na, m Co2n.
Since b(0) 0 and ]3]]L() sup>2 k]]L() 2-, we have

Because b3 has compact support, we have

(7.5) am (b3)p C2-nr, m 1.

Now, v0 b + b2 + 53, and therefore the estimates (7.2), (7.4), and (7.5) give

am(Vo)p Cn(-+I)/p2-, m C02.
om our assumption on r, we have (r- 1)/p > 1 and therefore

[2 < .
=1

om the characterization (a.g) we obtain that v0 B(,pl.
We shall next show that Vl := v(., 1) is not in any B(,q), for 1 q < and

> ( 1)/q + 1. or this, we shall assume that

e (0,1)
for some c > 0.

THORgM 7.2. Ueder the assmptioes of Theorem 7.1 aed the added assmptio
(7.6), we have v B.(,q) for all 1 _< q < ad > ( 1)/q + 1.

Pro@ The widths of the constant states in b() are the same as for , and
because of assumption (7.6), the heights of the jumps are c2-. Therefore, the
same argument as given in the proof of part (ii) of Theorem 6.1 shows that (6.7) holds
with v b(l) in place of . Hence v is not in B(,q)

In summary, Theorems 7.1 and 7.2 give the following results.
TOaM 7.. Given that > 1 aed 1 < p and that the fl f to the

eivarite conserwtioe lw (1.1) has deriwtive a() f’(), which is strictl ie-

creasie9 ad whose ieverse fectioe b is ie C with (r- 1)(,p)/p > 1, ad also
satisfies (7.6), the initial coeditioe vo b(o) is ie B(, bt the soltio v(. ,1)
to (1 1) at time t 1 for this initial coditioe is not in B for 1 < q <(,q),
ad > ( 1)/q + 1. Consequently, oe 4 the spaces B](), 1/( + 1) are
reglarit spaces for (1.1).

8. Negulariy n several space dmensons. We shall next consider the
regularity of the solution to the conservation law (1.1) in several space dimensions.
The proof that the spaces B], ( + 1) -1, are regularity spaces for conservation
laws in one space dimension rests on the fact that they arise in the characterization
of approximation classes for methods of nonlinear approximation in (R) such as
wavelets and free-knot splines. The Besov spaces B]((Na)), (/d + 1) -1,
play the analogous role in nonlinear approximation in several space dimensions. or
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example, they arise in the characterization of nonlinear approximation by wavelet sums
(see [4]). One might expect therefore that they are regularity spaces for conservation
laws in several space dimensions. We shall show that this is not the case when c > i.

We assume that a(u) :- fP(u) is a continuously differentiable mapping from
I - Id and

(i) a(0) 0,

(ii) a’(0) = 0.

A slight change in the argument given below would allow the point 0 to be replaced
by any other point x E .

We write a(u) -: (al(u),... ,ad(u)). Without loss of generality, we can assume
that a (0) 0 and a (u) 0, in a half-neighborhood [0, r]] of 0. In order to utilize our
previous notation, we shall assume that al(r) i. However, a simple modification
of the arguments given below would treat the general case of 7. We denote by bl the
inverse function (under composition of functions) to al on [0, r/]. Then, bl is defined
on [0, 1] and satisfies condition (7.6).

THEOREM 8.1. Let a > 1 and 0 < - <_ x. If bl Cr[0, 1] for some sufficiently
large integer r > max(a, d) (described in part (ii) of the proof below), then the space
BT(L(Id)) is not a regularity space for the conservation law (1.1).

Proof. We shall consider the following three cases.
(i) a < d(1/T- 1)+.
In this case, the space B(L(Id)) contains functions that are not locally inte-

grable and hence this space cannot be a regularity space for (1.1).
(ii) a > 1, a _> d(1/-- 1)+, and a < 1/-.
We use our previous univariate notation -(a,p) (a + l/p)-. In this case,

we can write - -(a, p) for some p with 1 < p < x. We shall show that there is
an initial condition w0 of compact support that is in B(L(]d)) but the solution
w(., 1) E(1)w0 to (1.1) is not in B(L(d)).

We shall utilize the univariate construction of 7 with some modifications. For
our fixed values of a and p, we assume that r is chosen as in 6 and 7. Then, the
construction of 6 applies and we let u0 be the univariate function given in that section.
Further, we let v(., t) be the solution given in 7 to the univariate conservation law
(1.1) with initial condition vo bl(Uo) and transport velocity al. We recall that we
have shown in 7 that vo e B(L(I)) but vl v(., 1) is not in any of the spaces
B(z,q) for 1 _< q < c and >. 1 / (a 1)/q. In particular Vl is not B(L()).

We consider now the multivariate conservation law (1.1) with the initial condition

(8.1)  o(x) x e

with (x2,...,Xd) (X2)’’’(Xd) and a compactly supported C() function
that is one on a sufficiently large (to be chosen momentarily) interval I centered at 0
and satisfying IIIIL() 1. We denote by Q the cube Id. We let w w(x, t) denote
the solution to (1.1) at time t with initial condition wo.

Let t _> 1 be such that vo vanishes outside of [-t, t]. We claim that if the
sidelength of Q is chosen sufficiently large, then

W(X, t) V(Xl, t), a.e. x e [--2g, 2g] d 0 < t < 1

We now prove this claim. Since v0 (and hence w0) has compact range, for any
x d, la(wo(x))l <_ Co with Co an absolute constant and I" denoting Euclidean
distance. Hence, the transport-velocity vector always has length bounded by Co.
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Now, given x E [-2t, 2]d and 0 < t < 1, we consider all points y that can be
transported to x, that is, y should satisfy

(8.3) x y + ta(wo(y)).

If y and z are both solutions to (8.3), then when Q is large enough both points y and
z would have to come from Q (because of our estimate for the size of the transport
velocity). Then, (Y2,..., Yd) 1 and similarly for z. Hence the first components of
the vectors in (8.3) give y +tuo(y) Xl Zl +tUO(Zl). We have already noted in the
univariate analysis of 6 that this implies y z. Hence, (8.1) gives wo(y) wo(z)
and therefore (8.3) implies y- z. Thus, the function defined by

g(X,

with y the solution to (8.3), is well defined for x E [-21, 2t] d, and := (x, t) satisfies
the implicit equation

(8.4) Wo(X- ta()), x [-2g, 2]d, 0

_
t < 1.

A direct calculation shows that is a weak solution to (1.1) on [-21, 2t]d x [0, 1),
and since is continuous and piecewise Cr on subdomains of [-2t, 2l] d x [0, 1) wit.h
smooth boundaries, is an entropy solution of (1.1) in this region.

If we let t 1, then w(., t) converges in LI(]I(d) to Wl :- w(., 1). On the other
hand, as t --, 1, w(x, t) V(Xl, t) converges to vl (xl) a.e. on [-2, 2]d. This shows
that w (x) Vl (Xl), a.e. x [--2l, 2]d, and verifies our claim for t 1.

To complete the proof of the theorem in this case, we shall estimate the Besov
norms of w0 and w. We first show that w is not in B(L(d)). It is enough
to consider differences h hie1, el :- (1,0,... ,0) in the first coordinate direction,
with 0 < h _< 1/r. Then, A(wl,x) Arh (Vl,Xl)whenever Arh (Vl, Xl) 0 and
x [-2t, 2g] d. Hence,

II/k(Wl," )IIL(II) -- (4)- II/k(Vl, ")IIL(]), 0 < hi 1/r.

It follows that w(w, s) >_ w(vl, s), 0 < s <_ 1/r. Now, we know from Theorem 6.3
that Vl is not in the Besov space B{(L(I)) and therefore, since r > a (by an earlier
remark of 3),

1/’
(8.5)

8

We can replace v by Wl in (8.5) and conclude that Wl is not in B(L(d)).
Next, we show that w0 is in B(L(d)). Let s > 0 and let h (h,..., hd) d

satisfy Ih] _< s. We define the translation operator T(h) by T(h)g "= g(. + h), h e ]1(d.
We define the difference operator Dk by Dkg "= g(. + hie1 +... + hkek) g(" + hl el +

+ h-lek-1) for any function g on d. Then, Ah =1D. Therefore,

(8.6) A ED Dk
with the sum taken over all distinct r-tuples (kl,..., kr) with ky {1,..., d}.

We consider the effect of a general term in (8.6) on w0. Since all the operators
Dk, k 1,..., d, and T(h) commute, we can write such a term as

A ...A(8.7) Dkl "Dk T()AI h.2 hd’
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with 0 < ,2,..., ,kd and ,k2 +... + )d r j and some point in It{d. The difference
operator Alcl acts only with respect to Xl, and the remaining difference operators
in (8.7) applies only to x2,..., Xd. Hence,

Dkl "Dk,.(wo) T()A (v0, xl)A"x2 A"xa ( Xd)..(,)’"
Since E C, we have for tt "= min(1, T) and for a constant C depending only on d,
r, and #,

(8.s) (0, )" < c[-(0,
j=0

where for the purposes of this formula and the formulas below we define wo(v0, s)r :=
IIVOIIL() for all s. From Marchaud’s inequality (see, for example, 8 of Chapter 2 in
[5]), the jth term, j 7 0, r, of the sum in (8.8) for 0 < s _< 1 can be bounded by

CsTM [a-Jw.(vo, a)r]"
da

Csr. [a-Jwr(vo a)]"
a

Returning to (8.8), we obtain for s 1

(s.) -+ cTM [-xo,()(o, ).1"
j=l

It follows therefore from Hardy’s inequality (see, e.g., 3 of Chapter 2 of [5]) that

[_xlo,l()(o, ).]. es
8

(8.10) {<_ C IlvollL.() + Is X[o,](s)w.(vo, S)r]
ds

j=l
8

Since 0 _< s < 1, the terms sr-j-a can each be replaced by s-a. We have remarked
earlier that in the definition of the Besov norm, the integral in (3.2) can be taken over
[0, 1]. Since v0 is in Bar(Lr(IR)), we conclude that the right side of (8.10) is finite, and
therefore w0 is in B](Lr(IRd)).

(iii) r >_ 1/a.
This case can be proved in a similar way to (ii). We let be the solution to

the univariate problem (1.1) with transport velocity al for a compactly supported
univariate function 0 in C. We can choose 0 so that no characteristics meet before
time t I and at time t 1, "= (., 1) has a single downward jump discontinuity at
x 0 of size 1. Moreover, we can require that vanishes on (0, oo) and is continuous
on (-oo, 0).

As in part (ii), we consider the initial condition wo o90 with 90 as in (ii). Then
wo is in every space B(Lr(]Rd)). At time t 1, for h > 0 sufficiently small, we have

IAzel (Wl,X)l

_
1/2, x (xl,... ,Xd) e [--1, 1] d -h < x < 0

Therefore,

(8.11) cot(w1, s); _> Cs, s e [0, 1].
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This gives that

[Wl]TBar (Lr(Id)) k C oo s- ds.

Since aT _> 1, the last integral diverges and shows that w is not in B(L(Id)).
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NONUNIQUENESS AND UNIQUENESS IN THE INITIAL-VALUE
PROBLEM FOR BURGERS’ EQUATION*

DANIEL B. DIX?
Abstract. A sharp local existence and uniqueness theory for the initial-value problem for

Burgers’ equation is given in the Sobolev spaces Hs, -1/2 < s <_ 0. It is proved that these results
cannot be extended to any s < -1/2 because uniqueness fails. A particular nontrivial solution is
found which converges to 0 in the HS-norm as 0+.

Key words, uniqueness, nonuniqueness, initial-value problem, Burgers’ equation, Sobolev
spaces, distributional solutions

AMS subject classifications. 35A07, 35K55, 35Q53, 35R25

Introduction. It is now an established tradition in the mathematical study of
pure initial-value problems for evolutionary partial differential equations to pose these
problems for inital data in various Sobolev spaces X and to consider as solutions
mappings from a time interval [0, T] into X which may not have sufficient regularity
to qualify as classical solutions. The concept of a solution in the distributional sense
has been an especially fruitful one in the study of linear problems. And by default,
it has become the environment within which nonlinear problems are studied. This is
despite the obvious difficulty that there is no generally satisfactory way to multiply two
distributions to obtain another distribution. This fact leads us to suspect that if we
insist on considering nonlinear initial-value problems with distributional initial data
and distributional solutions then eventually, as the distributions become progressively
more singular, some departure from the linear pattern will be observed.

As an example of what we mean by the "linear pattern," let us consider how the
pure initial-value problem for the linear heat equation (see 1 for an explanation of
any unfamiliar notation)

on (0, T)
in $’() as t -. 0+

behaves in the scale of Sobolev spaces Hs, s E . If uo E Hs, then it is not hard to see
that there is a solution u C([0, T], Us) for all T > 0 (u(t)^(k) e-kto(k) for all
t :> 0). This solution satisfies the equation in the sense that both terms of the equation
are in r((0, T), Hs-2) and add up to zero in that space of distributions. Actually, u is
determined by a smooth function on (0, T) ]1( which is a classical solution of the heat
equation. Thus local (in fact global) solutions of the heat equation exist for (almost)
arbitrarily singular initial data. Furthermore, this solution is the unique one to this
problem in a very general sense. In order to make sense out of the initial condition,
we should have that the distribution u ;D’((O,T),Hs) be given by a mapping in
ioc((O,T),HS). It can be shown (see Theorem 2.1 below) that any such mapping
which satisfies the equation in the sense of D’((O,T),Hs-2) is uniquely determined
by its initial data (assumed in the topology of $() as t - 0+).

*Received by the editors March 12, 1994; accepted for publication September 22, 1994. The
existence theory is from the author’s Ph.D. thesis directed by Charles Amick at the University
of Chicago, 1988. The example of nonuniqueness was found while the author was a Postdoctoral
Member of the Institute for Mathematics and Its Applications, 1988-1989. The uniqueness theory
was obtained at the University of South Carolina.

tDepartment of Mathematics, 400E LeConte, University of South Carolina, Columbia, SC 29208
(dix@math.sc.edu).
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In this paper, we will explore, by the vehicle of a simple but canonical example,
what seems to be emerging as the "nonlinear pattern." Our example will be Burgers’
equation,

ut + UUx u 0 on (0, T) 1,

u(t) -. uo in Hs as t - 0+.

We will show that in a certain well-defined sense this initial-value problem is locally
well posed in Hs for s > -1/2 (local existence, uniqueness, and continuous dependence
on intial conditions) and that it fails to be well posed (in the same sense) when
s < -1/2. Although we do not know if local solutions must exist emanating from
arbitrary initial data in H, for any s < -1/2, we do know that the initial-value
problem fails to be well posed because such solutions can fail to be unique. We will
prove this by exhibiting a particular nontrivial solution v(t) of Burgers’ equation
which converges to zero in the H topology as t --. 0+, s < -1/2. Obviously, the
nonuniqueness is not a result of singular data but rather one of allowing a potential
solution to converge to its initial data in a too weak of a topology.

In order to justify our usage of the phrase "nonlinear pattern," we will now com-
pare our results with some obtained by Haraux and Weissler [7] for certain semilinear
parabolic equations. One particular case of their results concerned the pure initial-
value problem for the semilinear heat equation

tt --[t]nt- txx 0 on (0, T)
u(t) - uo in LP(]) as t -- 0+

in the scale of Banach spaces Lp, p _> 1. They showed that this initial-value problem
is locally well posed in Lp for p _> 2 but that it is not well posed for 1 _< p < 2 because,
again, uniqueness fails. Their counterexample was a nontrivial self-similar solution
which converges to zero as t 0+ in the LP-norm when 1 _< p < 2. Our counterex-
ample for Burgers’ equation is not (nor could be) a similarity solution: Haraux and
Weissler obtained no information about whether or not multiple solutions can arise
from any nonzero initial datum. In our example, we find infinitely many solutions
emanating (in a weak sense) from general initial data.

Our proof of the existence and uniqueness of solutions of the initial-value problem
for Burgers’ equation with initial data in H, s > -1/2, is a robust contraction-
mapping argument. The critical Sobolev index s -1/2 is where the argument fails to
yield a local solution for data of arbitrary size. This is probably a happy consequence
of the simplicity of Burgers’ equation and the fact that we set up the argument
in the correct norms. But our results do suggest that in other situations, if the
proper norms are used, breakdown of the contraction-mapping argument could signal
nonuniqueness. Other heuristics might be proposed to explain "why, the critical
index is s -1/2. For example, is it merely coincidence that if u solves Burgers’
equation, then so does u(x, t) Au(Ax, A2t) and []u( -, t)][/ s+l/2[[u(., A2t)l[/:/ 7
Unfortunately, we do not know how to give a generally applicable heuristic to detect
the critical index.

In contrast to the robustness of our existence and uniqueness theory, our con-
struction of the counterexample depends on the detailed knowledge of the solutions
of Burgers’ equation which was furnished by the Hopf-Cole transformation [8]. Al-
though this procedure will not apply to most other equations, the flip side is that we
obtain a detailed picture of what happens in the important special case of Burgers’
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equation. One can only conjecture at this point how much of that detailed picture is
generically true. We also remark that the Hopf-Cole transformation naturally yields
a local existence theory in L but not in Hs, s > -1/2. Our existence and uniqueness
theory has nothing to do with the Hopf-Cole transformation.

Lest the reader imagine that consideration of initial-value problems in Sobolev
spaces of negative indices is only sensible for parabolic equations, where one is saved,
so to speak, by the strong smoothing effect, we would like to point out the recent
work of Kenig, Ponce, and Vega [9] concerning the Korteweg-deVries equation

ut - UUx -+- Uxxx 0

u(t) uo

on (0, T) ],

in Hs as t 0+.
They showed, using contraction-mapping arguments, that this problem is well posed
in Hs for s > -5/8. The evidence is not yet compelling enough to identify s -5/8
as the critical Sobolev index for this problem. However, in light of our work, it is
not unreasonable to conjecture that there will be a critical index so _< -5/8 and that
uniqueness will fail for s < so.

One feature of any result asserting uniqueness of solutions of a nonlinear initiM-
value problem lying in C([0, T], H8) for s < 0 is the need to make rigorous sense of
the equation for every potential solution. The usual procedure, followed for example
by Kenig, Ponce, and Vega, is to prove that a solution exists in a proper subset of
C([0, T], H) and then to prove that it is unique only with respect to competitors
lying in that subset. That is because in order for something to be a competitor, we
must be able to decide if it satisfies the equation or not. Since we only know how
.to multiply functions, not general distributions, this proper subset invariably consists
only of functions. So the appearance of generality which results from discussion of
the space C([0, T], H) of distributions is an illusion, since all the potential solutions
are functions.

In this respect, the uniqueness theorem we present is different. We will give a
well-defined sense in which every element of C([0, T], H8) either is or is not a solution
of Burgers’ equation. Thus we avoid making the a priori restriction to a proper subset
of C([0, T], HS). However, from the standpoint of hindsight, our uniqueness theorem
shows that only functions in the proper subset occur as solutions. The idea behind
the way we make sense of the equation is derived from some fairly recent advances
in the nonlinear theory of generalized functions; c f. Colombeau [3], Biagioni [1],
Egorov [6], and Biagioni and Oberguggenburger [2]. The viewpoint of these works
is to replace the distributional setting, which has some inadequacies for nonlinear
problems, with the more general and more flexible setting of Colombeau generalized
functions. In this work, we extract from this above mentioned body of work only
the analytical ideas we need to address our problem, and hence we do not need to
discuss Colombeau generalized functions directly. In a sequel to this paper [5], we
will succeed in repairing the nonuniqueness herein descibed by explicitly adopting the
formalism of Colombeau generalized functions.

1. Notation.
J (0, c).
ut, Oxu ux denote the partial derivatives of u with respect to t and x, respec-

tively.
(hg)(k) [(k) f_ e-kg(x)dx is the Fourier transform of g. If u(x, t) is

a function of x E I and t _> 0, then u(t)^(k) is the Fourier transform of u in the x
variable alone.
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m(D), where m ]R - C is a function, is the Fourier multiplier operator defined
formally by the rule [m(D)g]^(k)= m(k)(k). Thus D -iOx.

((0, T)) is the space of Schwartz test functions; ’((0, T),X), where X is a
topological vector space, is the space of continuous linear maps 3((0, T)) --. X, i.e.,
the space of X-valued distributions.

g(IR) is the space of Schwartz tempered test functions; g’(IR) is its dual as a

topological vector space, i.e., the space of tempered distributions, g(R, X), where X
is a topological vector space, is the space of continuous linear maps g(N) X, i.e.,
the space of X-valued tempered distributions.

lu(x)]IL,() IUlL, where Lp LP(N) is the ordinary Lebesgue space.
Lo( X) is the set of measurable functions X (where is a subset of

contained in the closure of its interior and X is a Banach space) that are locally
(Bochner) integrable, i.e., they are integrable on every subset of which is compact
in Rn. When X N, we denote Loc(, Loc().

(k) (1 + k2) 1/2 for all k R.
H, where m , is the usual Hilbert-Sobolev space consisting of all tempered

distributions u such that (k)mg(k) L2(k). ]lU[H ]](k)g(k)llL(k).. m is the homogeneous Hilbert-Sobolev space of all u such that lk]mg(k)

L is the weighted Lebesgue space of all v(k) such that (k)v(k) L(k).

C(I, X), where I c is an interval and X is a Banach space, denotes the space
of all continuous mappings I X. BC(I,X) is the Banach space of all bounded
continuous mappings I X. C"(I,X) is the space of all n-times continuously
differentiable mappings I X.

B(a, b) f{ (1 x)a--lxb-1 dx is the Beta function, a > 0, b > 0.
BCs((O, T], Ur is defined in 2 before Theorem 2.3. BC,o((O, T], Ur is defined

at the beginning of 3.
F,r([0, T])is defined in 3.
CH is defined in Theorem 2.3. CI is defined in Theorem 3.4.

2. The homogeneous linear equation. In this section, we will consider the
following initial-value problem:

(2.1) ut Uxx 0 on (0, T) ,
(2.2) u(t) - uo in g’(I) as t 0+,
where u0 E $/(). First we shall show that if a solution to this problem exists in the
class Loc((0 T), HS), where s E I, then it is the only solution in that class. Then we

will show that if uo Hs, then u defined-by u(t)^(k) e-atto(k) not only lies in

/oc(J, Hs) and satisfies (2.1) and (2.2) but is actually much nore regular and satisfies
the equation in a classical sense. We will also introduce some natural function spaces
which contain the solution.

THEOREM 2.1. Suppose s , 0 < T <_ , and u Loc((O,T),HS). Since
-2) we have bothu Loc((O,T),H-2) C ’((0, T), H-2) and u Lloc((O,T),H

ut,u e ’((0, T), H-2).

If u is such that (2.1) is satisfied in ’((0, T), H-2) and (2.2) is satisfied for uo O,
then u 0 in ’((0, T), H).
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Proof. Let H8 --. H8-2 be the inclusion and let [u] denote the distribution
associated to the mapping u. Let [u]’ denote the distributional derivative of [u]
)’((0, T), HS-2). Since 9" Hs-2 -- L2_2 is a continuous linear isomorphism, we can
apply it to (2.1), which now reads

0,

to obtain [Yu]’ [y02u] 0 in D’((0 T) 2L_2) where we have used the chain rule
9"([u]’) (Y[u])’ and the property 9[u] [9"u], both of which are simple to prove.
Since 9=u E Loc((O,T),L2_2), we have that (9u)-2 E Loc((O,T),L2) and thus
(9"u)/-2 has a measurable representative which we will denote by u(t)^(k)3(k)-2
for all (t, k) (0, T) ]. u(t)^(k) is a measurable representative of the mapping 9"u.
Then 9:02u has a representative given by -k2u(t)^(k). So the Fourier-transformed
equation becomes [u(t)^(k)]t + [k2u(t)^(k)] 0 in ’((0, T) I). Here we have used
the isomorphism provided by the Schwartz kernels theorem [11], ’((0, T), ’(1))

’((0, T) x ), and the fact that under this isomorphism we have the correspondences

[9u] [u(t)^(k)],
[9"u]’ [u(t)^(k)]t,

Since u(t)^(k) and k2u(t)^(k) are in Loc((0 T) xlR), there exists a function v(t)^(k)
Lo((0 T) x I) which is absolutely continuous in t (0, T) for every fixed k
[v(t)^(k)] [u(t)^(k)], and if Ot(v(t)^(k)) is defined to be the classical t-partial deriva-
tive of v(t)^(k) whenever it exists (almost everywhere on (0, T) x I) and to be zero
elsewhere, then [Ot(v(t)^(k))] [u(t)^(k)]t; see [10, Thm. 9.5, p. 24]. Thus we have
the equation Ot(v(t)^(k)) + k2v(t)^(k) 0 holding for almost every (t, k) E (0, T) x I.
So by Fubini’s theorem, there exists a conull set S c such that for every k S we
have that Ot(v(t)^(k)) + k2v(t)^(k) 0 for almost every t IR. Since the product
of two absolutely continuous functions is absolutely continuous and the product rule
for differentiating the product holds, we have that if k S then Ot(ektv(t)^(k))
ektOt(v(t)^(k)) + k2ektv(t)^(k) 0 for almost every t (0, T). So ektv(t)^(k)
h(k) for all (t, k) E (0, T) x S, where h(k) is some function defined for k S. From
this equation, it follows that h Lo(IR and hence [hi i)’(ll). For every 0
we have f-o v(t)^(k)O(k) dk f-o e-kth(k)O(k) dk f_ h(k)O(k) dk as t 0+

by the dominated-convergence theorem. Let v E Loc((0, T), L2) be the mapping in-
duced by v(t)^(k). Then v(t) [hi weak-, in D’(IR) as t --+ 0+. On the other hand,
(:u)(t) 0 in ;’() as t 0+. This implies (Yu)(t) 0 weak-, in 8’(IR) and hence
weak-, in ’(IR) as t 0+. If [hi : 0, then there exist two disjoint weak-, open
neighborhoods of [hi and 0, respectively, and hence there exists an > 0 such that
v(t) # (5:u)(t) for all 0 < t < . But v(t) (u)(t) for almost every-t (0,T),
which is a contradiction. Hence [hi 0. So v 0 and therefore [u] [9-1v] 0 in
’((O,T),H).

One should compare our uniqueness theorem for (2.1) to the classical uniqueness
theorems for the heat equation (see Widder [12]), which cover even the case where
the initial data and the solution are allowed to grow exponentially as Ixl - c but
concern classical solutions.

THEOREM 2.2. Suppose s , Uo H, and u(t)^(k) e-ktto(k) for all t J
and all k e S { e R llto()l < oc}. Then u(t)^(k) induces a mapping v whose
inverse Fourier transform u 9=-1v satisfies u e Cn(J, Hr) for all n >_ 0 (an integer)
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and r >_ s (a real number). Furthermore, u(t) --. uo in Hs as t --, 0+ and the unique
C representative of u is a classical solution of (2.1).

Proof. The set S is conull in . First we will show that the mapping v induced
by u(t)^(k) satisfies v e C(J, L2) for all real r _> s. The following estimate shows that
v(t) E L2 for all t E J:

(2.4)
if t >_ (r- s)/2,

if t < (r- s)/2.

Now let t, s _> e > 0. A consequence of the mean-value theorem is the inequality

This will imply v C([e, oc), L2) since

IIv(t) v(8)[IL ll(k)-[-k=t -k=](k)O(k)llL=(k)
< V-llke(k)-e-llL)lluollHlt- 1.

So this first result follows since e was arbitrary. This immediately implies that u
-lvC(J, Hr).

Now we will show that u satisfies (2.1). If k e S, then Ot(u(t)^(k)) -k2u(t)^(k)
for every t e J. -k2u(t)^(k) induces the mapping 9=02u e C(J, Lr2_2). Therefore,
Ot((k)r-2u(t)^(k)) induces a mapping in C(J, L2) (namely (902u)3-2). Also since
u e C(J,H), we have that u e C(J,H-2) and thus (k)-2u(t)^(k) induces a
mapping in C(J, L2) (namely (9u)r-2). It follows that [(9=u)-2] [(0xu)2-2]
in D(J, L2). Now multiplication by 32- is a continuous linear map from L2 to

n2-2. So by the chain rule, [9u] [02xu]. Applying the chain rule again for the
continuous linear map 9-1 .L_22 __, Hr-2, we obtain [u] [02xu] O. So u satisfies
(2.3). Since both u and 02xu are in C(J, Hr-2), we have that u e CI(J,H-2).
Since r is arbitrary, this implies that u C(J, H) for all r E ]t(. By the chain rule,
02u e C(J,g-2). Thus u e C2(j,H-2) and this argument may be iterated to
show that u cn(J, H) for every n _> 0 and r . So there exits a unique C
representative of u. So u satisfies (2.1) in a classical sense.

Finally, we will show that u(t) - uo in H8 as t 0+.

Since 11 _< 2 and (k)2lo(k)l2 e Ll(k), we can apply the dominated-
convergence theorem.

Now we will introduce a family of specially weighted spaces which will be used in
our discussion of the initial-value problem for the nonlinear Burgers’ equation.

DEFINITION. Suppose T > O,s <_ r are real numbers. Let BCs((O,T],Hr) de-
note the class of all mappings u e C([0, T], H) N C((O, T], H) that also satisfy the
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condition

(2.5) IItlIBCs((O,T],Hr de._f 1
sup II(k)S(ktl/2)r-s[2Vu(t)](k)llL(k)V/ te[0,T]

BC((O,T],H) is a Banach space. This particular time-dependent weighting
causes the r s derivatives higher than the first s derivatives of u to be increasingly
deemphasized by the norm (2.5) as t --. 0+. Hence the H-norm of u(t) will be
bounded absolutely for all t (0, T) whereas the H-norm will be allowed to blow up
as t 0+ (assuming r > s). The fact that the solutions that we have found have this
sort of behavior as t --+ 0+ can be seen from estimate (2.4).

THEOREM 2.3. Suppose 0 < T< cx, s 6 IR, uo H8, and u(t)^(t)
for all t e (O,T) and all k e IR such that ]to(k)l < oc. Then for any real number
r > s, we have u e BCs((O,T],Hr) and IlU]]BCs((O,T],H) < CHIlUO]IHs, where Cg

Proof. The indicated continuity follows from Theorem 2.2. For the rest, we
estimate

supIlUlIBC((O’TI’H) V t6[0,T]

1__< sup ]]Z(ktl/2)r-Se-ktllL(k)
te[O,T]

IIL ( )I1 o11- .
3. The inhomogeneous linear equation. In preparation for consideration of

the nonlinear problem (4.1)-(4.2) and to make precise the relation of (4.1) to its
associated integral equation, we consider the following inhomogeneous heat equation"

(3.1) ut uzz f in D’((O,T),HS-2),

(3.2) u(t) --. 0 in g’() as t 0+,
where s and f fD’((O,T),H-9) will be more precisely specified below. The
usual procedure would be to specify some class of fs and then derive the properties
of the solution u. However, first we will do the opposite" we will define our class of
fs by the class where the solution u lives. This class of very general fs will be useful
in our uniqueness proof. Then we will show that if g and h live in the same class as u
does, then f O(gh) is contained in the class of fs. This result will, of course, have
immediate applications in the next section.

DEFINITION. Suppose 0 < T < oc and that s <_ r are real numbers. Define the
class BC,o((O,T],H) to consist of those u e BCs((O,T],Hr) such that u(O) O.

We embed BC,o((O,T],H) into $’(]R,Hs) in the following way. Suppose u
BC,o((O, T], H). Let v BC([0, oc),H) be the solution of the initial-value problem
(2.1)-(2.2) for the heat equation with initial data given by u(T). Define the mapping

BC(IR, Hs) by the rule

0 if t_< O,

t(t) u(t) if t 6 [0,T],
v(t- T) ift_>T.

This mapping fi determines an element of $’(IR, H8) in the usual manner.
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DEFINITION. Suppose 0 < T < oc and that s <_ r are real numbers. Define
Fs,r([0, T]) to consist of all f e ’(]1{, Hs-2) such that tt txx f in ’(N, H-2)
for some u e BC,o((O,T],gr). Define

defIIflIFs,([O,T]) IIUIIBCs((O,TI,H)

If V e BCs,o((O,T],Hr) also satisfies t-xx f in $’(N, H-2), then (u-v)t-
(u-v)xx 0 and u(t)- v(t) 0 in H as t 0+. So by Theorem 2.1 we have u v.
Thus the norm in Fs,r([0, T]) is well defined. Also, the map BCs,o((O,T],Hr)
F,r([0, T]) u H fzt t is an isometric isomorphism.

Notice that every f e F,r([0, T]) has compact support contained in [0, T]. If ]
denotes the Fourier transform of f in both the x and t variables, then ](k, T) can be
thought of as the restriction to the real line of an entire L2_2-valued function of T. t
can then be defined as the temperate L2-valued distribution (k, -) lim_o+ f(k, T--

ie)/(e + iT + k2). u can then be recovered by taking the inverse Fourier transform.
This procedure for recovering u from f can be made considerably more concrete when
f is known to be in a more restricted class, which we will soon discuss.

First we will need a lemma which wilt enable us to estimate f O(gh) when g
and h are in BCs((O,T],Hr).

LEMMA 3.1. Suppose a > O, r >_ 0 are.real numbers, and g, h E Hr. Then

]](ka)[gh]^(k)llL() <_ 2/4ll(Da)gliL=ll(Da)hllL=.

Proof. See proof of Lemma 2.3.1 in Dix [4]. rl

LEMMA 3.2. Suppose 0 < T <_ 1, -1 < s <_ 0 and r >_ 0 are real numbers. Then

sup t’l/ell(Dt/e)u(t)llL <_
te(0,T]

_< sup tll/ellZ(Dt/e)u(t)llL.
te(O,T]

+ sup IDl"3(Dtl/2)u(t)llL..
Proof. Since 0 _< t _< T _< 1, we have the estimate (1 + k2t)/(1 + k2) _> t for all

k E R. Thus till <_ (k)(ktl/2)-8 <_ Ikl + till Now the desired estimates follow
directly from the definition of BCs((O, T],Hr).

LEMMA 3.3. Suppose 0 < T < oe, -1 < s <_ 0, and r < 2s + 1/2 are real
numbers. Then there is a constant such that for eery pair of measurable mappings
g, h" (O, T] L, both satisfying the estimate

Mg sup
te(0,T]

we have u(t) 0 in Hr as t - 0+, where u" (0, T] - L2 is defined by the rule

u(t) e--D(t--)Ox[g(T)h(T)] dT

for all t (0, T].
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Proof. To see why the Fourier transform in x and the integral in T commute,
consult the proof of Theorem 2.3.3(1) in Dix [4]. Now estimate

(3.3)
l for Ik[3(k)re-k(t-r) llL(k II[g(T)h(’)]^(k)llL(k) d-

1 oo Ikl(k)re-k(t-)lli:(k)dT.<_ -MgMh vlsl

We have two cases. First of all, if r _< 0 then (k)r _< Ikl. It will be convenient to
assume r > -3/2. Once proved for such values of r, the result also follows for smaller
values. So we see that the integral in (3.3) is bounded by

t(/e+2-)/ell Iwll+e-"=i[i.()B((1/2 + 2s- r)/2, 1 + s).

This tends to 0 as t -+ 0+ under our assumptions. The second case is if r > 0.
This implies that 0 < r < 1/2+2s and thus s > -1/4. But we also have that
r < 2s + 1/2 <_ 1/2, and therefore/(k) _< 1 + Ikl for all k EIR. Thus the integral in
(3.3) is bounded by

t(/+e-)/ll Iwl+e-:llL()B((1/2 + 2s r)/2, 1 + s)

+t/4+S]lwe-"2]]L.(.)B(1/4 1 + s).

Clearly this tends to 0 as t --. 0+. So the lemma is true. D
THEOREM 3.4. Suppose 0 < T _< 1, -1/2 < s <_ O, r >_ O, and s <_ q < r + 1/2 are

real numbers. Let g, h e X, where X BCs((O, T], H). Then there exists a constant
Ci > O, depending only on q, r, and s such that Ox(gh) e Fs,q([O, T]) and

IlO (gh)llF., (IO,Tl) <_ CIT(8+/2)/2MgMh <_ C T( + / )/ llgllxllhllx,

where Mg suPte(O,T] tII/eI](Dx/7)g[[L. Furthermore, if u e BC,o((O, T], H)
satisfies (3.1)-(3.2) with f O(gh), then u can be recovered from f via the formula

-D2(t-’r)f(r) dr

for all t (0, T].
Proof. The plan of the proof is as follows: Let u be defined in terms of g and h by

the above formula. First we will show that u e BC,0((0, T], Ha). Then we will show
that u satisfies (3.1)-(3.2) with f O(gh). By Lemma 3.2, gh e LI((O,T),L1) C
LI((O,T),H-I), and thus O(gh) e LI((O,T),H-2). So f O(gh) is a distribution
in D’((0, T),H8-2) or in $’((lt(, H-2) in the usual way (define f to vanish outside
(0, T)). So if ut- ux f in D’((0, T), H-2) and ut f +u L((O,T),H-2),
we have that u is absolutely continuous on [0, T] with values in H-2. Therefore,
fit- fix f in $’((, H8-2). This shows that f F,q([0, T]).
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First we will bound the BCs((O,T],Hq)-norm of u. It suffices to do the case
where r _< q < r + 1/2, since the norm is a nondecreasing function of q. We will use
the second estimate of Lemma 3.2 to control u. Since k4(t- T)7" 0, we have the
inequality (1 + k2t)

_
(1 + (t T)k2)(1 -t- Tk2) holding for all k E ]R and 0 _< T _< t. So

Z(k) < Z(V’t )Z(k).

Using this inequality and Lemma 3.1, we have that

(Dx/) Oxe [g(T)h(T)] dT
L

IL J(kv/)qike-k2(t-) [g(T)h(T)]^(k) dT
L2(k)

t Isl/2 L<
x/ IlikZ(kx/7)-Z(kxlt )-:(-)

II(kvl-)[g(r)h(r)]^(k)llLo()dT
2/afl"l/ L Ilikl(kviT)-J(kx/-)e-llL()

dT< MM (t r)ll
21-1 L IIw/(wa-/)-/(w)e-: I1) da.-- ’Gel/2 tll4+sl2MgMh

a3/4(1 a)lsl

Estimating in a similar way, we get

/0 !1IDIDI(D/7) Oe-D(t-) [g(T)h(T)] dT
L

1 /0 IIIklJ(kvlT)qike-k2(t-) [g(T)h(’)]^(k) dT
n2(k)

II(kvr)[g()h(r)l^(k)llL()dT

Using Lemma 3.2, we can bound Mg by Ilgllx, and likewise for h. The integrals
remaining in these estimates can be shown to be finite when q r < 1/2 by a similar
argumentto that in the proof of Lemma 2.3.2 in Dix [4]. These two estimates together
give the estimate stated in the theorem.

The proof that u (0, T] --+ H is continuous is very similar to the proof of
Theorem 2.3.3(1) in Dix [4]. The fact that u(t) --+ 0 in Hs as t --+ 0+ follows from
Lemma 3.3. Thus we see that u e BC,o((O, T], H).

The proof that u satisfies (3.1) is almost exactly the same as the proof of Theorem
2.3.3(3) in Dix [4]. [:]
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4. Local existence in C([0, T], Hs), s > -1/2. In this section, we prove the
existence of a local solution to the initial-value problem

(4.1) ut + 1/20x(U2) uxx f on (0, T) IR,

(4.2) u(t) uo in H8 as t 0+,
where -1/2 < s _< 0, u0 E H8, and f E Fs,0([0, T]). At the same time, we will also
consider the nearby problems and how the solution we construct depends on u0 and
f. This viewpoint will then prove to be useful in our discussion of uniqueness in the
next section. This initial-value problem for s > 0 can be done in a similar way to (in
fact it is easier than) what we present here.

THEOREM 4.1. Let 0 < T < x, -1/2 < s <_ 0 <_ r, and constants K and L
satisfy the condition

2[CHK + LICIT(s+1/2)/2 < 1.

Let U be the closed ball in H centered at 0 and of radius K. Let V be the closed ball
in Fs,r ([0, T]) centered at 0 and of radius L. Then for all uo U and all f V, there
exists a unique u bl(uo, f) BCs((O, T], H) satisfying

llU]]BCs((O,T],H) < CIT(S+I/2)/2’

(4.1) in ’((O,T),HS-2), and (4.2). The mapping

U" U V --. BC((0, T],Hr)’(uo, f) L/(u0, f)

is Lipschitz on U V with respect to the metric inherited from H F,([0, T]).
Proof. Let X denote the Banach space BCs((O, T], H). Let Y denote the Banach

space F,([0, T]). If R > 0, consider the complete metric space XR defined to be the
closed ball in X centered at 0 and of radius R. Define A U V. Consider the
operator A:XR A X defined for every (u, u0, f) X A by the rule

jo lj0t(4.3) A(u, u0, f)(t) e-DtUo+ e-D2(t-)f(") d- e-D(t-)O[u(7)] d7

-D2(t-)for all t [0, T]. We are denoting by f e f() d7 the solution w of the inho-
mogeneous heat equation with right-hand side f and zero initial data that is uniquely
determined by f. We use this notation even though we have not demonstrated how
to make sense of it except for fs in a subclass of V. This will not cause any trouble,
though, since we will only be using the fact that the mapping from f to w is an
isometric isomorphism from Y onto BC,o((O,T],H) C X.

If we use Theorems 2.3 and 3.4, we find that

1 T(+/2)/2 2
u0, _< C.g + L +

1
f) f) {x +

So the conditions that A(., uo, f) map XR into itself and be a contraction there uni-
formly for (uo, f) 6 A are

1 /2R2CHK + L + =CIT(s+/2) R,

CxT(+I/2)/2R < 1.
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A necessary and sufficient condition that a number R > 0 exists satisfying these two
inequalities is that

2[CHK + LICIT(s+1/2)/2 < 1.

We are assuming this condition holds, and hence we know that there is a fixed
point u L/(u0, f) satisfying u A(u, no, f). For all (u0, f) E A, the fixed point
u L/(u0, f) is unique in XR, where R satisfies both of the above inequalities. In
particular, the fixed point satisfies the estimate we stated. On the other hand, any
solution u of (4.1)-(4.2) contained in the open ball we stated must first of all be con-
tained in X/ for some R satisfying the necessary inequalities and must also be a fixed
point u A(u, u0, f) (see Theorem 4.2 below). Hence u =/A(u0, f). By Theorems
2.2 and 3.4, the fixed point satisfies (4.1) in ’((0,.T), H-2) and (4.2).

In order to prove the asserted Lipschitz continuity of b/, let u /(uo, f) and
v H(vo, g) for (no, f), (vo, g) E A. Then

Ilu vllx IIA(u, no, f) A(v, vo, g)IIx
<_ IIA(u, no, f) A(v, no, f)IIx + IIA(v, no, f) A(v, vo, g)IIx
<_ llu vllx / CHIluo VOIIH / Ilf gllg.

Since a < 1, we therefore have

IlU(uo, :) U(vo, g)llx [CHllUo VOIIH + IIf gllY]..

The statement of this theorem shows that the local solution is as regular as f
is. However, it leaves the false impression that the time interval of existence should
shrink as the measured regularity of f increases. The largest time period T of existence
which can be obtained via the contraction mapping argument corresponds to r 0.
However, the relation between the regularity of f and that of u does not depend on
T at all, as the following result shows.

THEOREM 4.2. Suppose 0 < T < oc, -1/2 < s _< 0 _< r, u0 H8, f
Fs,r([O,T]), and u e BC((O,T],L2) satisfies (4.1)in :D’((0, T),H-2) and (4.2).
Then u satisfies the integral equation u A(u, u0, f), where the operator A is defined
in (4.3) and u e BC((O,T],Hr). In particular, if f O, then u e BC((O,T],H)
for all r >_ 0 and is represented by a smooth function on (0, T) x ]R which is a classical
solution of (4.1).

Proof. First we will show that u A(u, u0, f). This follows because u-A(u, u0, f)
solves the homogeneous heat equation with initial data zero and hence by Theorem
2.1 must vanish. We have u A(u, O, O) + A(O, no, O) + A(O, O, f). By Theorem
2.3, A(0, u0, 0) e BCs((O, T], H). By definition, A(O, O, f) e BC((O, T], H). By
Theorem 3.4, A(u, 0, 0) is almost 1/2 of an x-derivative smoother than u is (a priori).
Using this smoothing effect, in a finite number of steps, we can infer that u actually
lies in BC((0, T], H).

When f 0, we can iterate this same argument infinitely many times, showing
that u e BCs((O,T],Hr) for all r _> 0. Using equation (4.1), we can then infer
regularity of u in the t-variable (cf. the proof of Theorem 3.1(2) in Dix [4] for the
details). Thus we have that u is in fact represented by a smooth function on (0, T) x It(.

Since u solves (4.1) in a distributional sense, its smooth representative is a classical
solution of (4.1). rl
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5. Uniqueness of solutions in C([0, T], HS), s > -1/2. Our goal in this
section is to show that there is at most one solution u to (4.1)-(4.2) in C([0, T], HS).
Here 0 < T < x) is not necessarily small enough so that we know at least one solution
exists via a contraction mapping argument as in the previous section. Our first result
shows that solutions in BCs((O,T],L2) of (4.1)-(4.2) are unique without restricting
the size of the competing solution or the size of T.

THEOREM 5.1. Suppose 0 < T < c, -1/2 < s <_ O, uo E Hs, f Fs,o([O,T]).
Suppose u, v e BC((O,T],L2) are both solutions of (4.1) (in the sense that all three
terms are in ’((0, T), H-2) and sum to zero in that space) and (4.2). Then u v.

Proof. Let T denote the least upper bound of the set

{T" e [0, T][ u(t)= v(t)in H for all t [0,T"]}.

Since u, v C([0, T], H), we have u(T’) v(T’). Suppose, by way of contradiction,
that T’ < T. Define u u(T’) v(T’). Define f’ e Fs,0([0, T- T’]) as follows.
Let w e BC,o((O,T],L2) be such that wt- wxx f (see 3 for the precise sense

in which w is uniquely determined). Define w’(t) w(t + T’) -e-D2tw(T’) for all
t e [0, T- T’]. Clearly, w’ e BC,0((0, T- T’], n2). Let this w’ be considered as an
element of (, H) as in 3 and define f’ We will also use, as a shorthandWt--Wxx
for this construction, the notation if(t) f(t+T’) for all t e [0, T-T’]. Define u’(t)
u(t+T’), v’(t) v(t+T’) for allt e [0, T-T’]. Clearly, u’, v’ e BC((O,T-T’],L2) are
both solutions of the same initial-value problem and hence by Theorem 4.2 satisfy the
integral equations u’ A(u’, Uo, f’) and v’ A(v’, Uo, f’) on [0, T- T’]. Following the
proof of Theorem 4.1, we can choose a number T" (0, T- T] and a number R > 0
such that A(., u, f’) maps the closed ball in BVs((0, T"],L2) centered at 0 of radius
R into itself and is a contraction there, and both u’ and v are in this ball. By the
uniqueness of the fixed points of contraction mappings, we have that u’(t) v’(t) for
all t e [0, T"]. This implies that u(t) v(t) for all t e [0, T’ + T"], which contradicts
the definition of T. Hence T T and we are done.

Our next order of business is to make sense of the equation (4.1) for an arbitrary
function in C([0, T], H). First we note that X BC((0, T], L2) is a dense subset of
C([0, T], H); in fact, it contains the dense subset C([0, T], L). Let Y F,0([0, T]).
Define the nonlinear mapping B" X H Y u

where v(t) u(t)- e-Dtu(O) for all t e [0, T]. Since v e BC,o((O,T],L2), we
have t e Y. (Note also that vt vx ut Uxx in ’((0, T), g-), and
so in this sense we henceforth will write ut- Uxx Y.) Theorem 3.4 shows that
0(u2)/2 e Y. Thus B(u) is well defined on X with values in g Y. B can be
considered to be a densely defined discontinuous nonlinear operator (in C([0, T], H).
Let gra(B) c X Hs Y c C([0, T], H) H Y denote the graph of the opera-
tor B.

DEFINITION. Suppose (no, f) Hs Y. We say u C([0, T], Hs) satisfies (4.1)-
(4.2) if (u, u0, f) is contained in the closure of gra(B) with respect to the topology of
the ambient space C([O,T],H) g Y; i.e., there exists a family {(u, u, ff)}>0
contained in X H Y satisfying

Ii Ux" f+ 2
in V C ’((0, T), HS-2),

in Hs
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such that

u u in C([0, T], HS),
u u0 in Hs,

ff f inY

as --,0+.
Before we prove the uniqueness of solutions of (4.1)-(4.2) in this above-defined

sense, we will comment on the origin of this definition. The primary source of this
formulation comes from the theory of generalized functions; cf. Colombeau [3] and
Egorov [6]. In those theories, one associates to each distribution u
families {u}>0 of smooth approximations which converge to u as e --, 0+. One then
defines u(x) u(x, 0) and if(x, t) u(x, t) + 1/20x[u(x, t) 2] uxx(x, t Then one
has various senses in which one can impose the equation (4.1). The strongest sense
is that of equality of Colombeau g~eneralized functions, where one would require that
some norm of the difference f if, where {ff}>0 is a family of smooth approxima-
tions "canonically" associated to the distribution f, tend rapidly to zero as e - 0+,
where the rate of convergence could be made arbitrarily rapid by choosing a better
mollifier to generate the "canonical" smooth approximations. The weakest sense is
that ff should tend to f as distributions as e 0+. The weaker the sense in which
the equation is imposed, the more far reaching the uniqueness theorem. Our sense is
intermediate between these two extremes in that we require f --. f in the space of
distributions Y as e - 0+. Since we do not say anything about the rate of conver-
gence, e.g., o(eg), we also do not need to say anything about mollifiers or "canonical"
smooth approximations. Also, since we do not need u to be smooth in order to make
sense of the terms in the equation, we only require u E X.

The other source of inspiration for our formulation is the usual theory of densely
defined unbounded linear operators B between Banach spaces X and . In that
theory, the pairs (x, y) in the closure of the graph, provided that closure is itself
graph, are the ones where the equation Bx y makes sense. The graph of B can
be closed in X :P even if the domain of B is a proper subset of X. However, this
domain will in general depend on the space :P. In our application, we chose the target
space H8 Fs,0([0, T]) as generally and as naturally as we could see how to. This
choice leads to the nice property that the graph of our nonlinear operator B is closed
(see Theorem 5.3 below).

THEOREM 5.2. If O < T _< 1, -1/2 < s <_ O, uo H8, and f Fs,0([0, T]), then
there exists only one solution u e C([0, T],H8) to the initial-value problem (4.1)-(4.2)
in the above sense.

Proof. Let u, v e C([0, T], H8) be solutions to the initiM-value problem (4.1)-(4.2)
in the above sense. Arguing as in the proof of Theorem 5.1, we see that it suffices to
show that there exists a number T’ e (0, T] such that u(t) v(t) for all t e [0, T’].
Let Y Fs,0([0,T]). Define g IlUOlIH8 + 1 and L IlfllY + 1. Choose T’ e (0, T]
such that the condition in Theorem 4.1 is satisfied for T. Define fi.- b/(u0, f).
By symmetry, it suffices to show that u(t) (t) for all t [0, T’]. Let the family
{ (u, u, if)}>0 be given as above for the solution u. Assume e > 0 is sufficiently small
such that IluIIHs() < g and Ilfelly < L. Define t bl(u, if) e BCs((O,T’],L2)
to be the solution whose existence is asserted in Theorem 4.1. By Theorem 5.1, we
have u on [0, T]. By the continuity asserted in Theorem 4.1, we have that
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u converges to 2 in BCs((0, T’], L2) as e 0+. Since this implies convergence in
C([0, T’], H8), we have that u 2 on [0, T’].

THEOREM 5.3. If 0 < T <_ 1, -1/2 < s < O, and the densely defined operator B
is as we have described above, then the graph gra(B) is closed in

C([0, T], g8) x g Fs,o([0, T]).

Proof. Let the family ((u, u, f)}>o be given in gra(B) converging in the above
space to (u, uo, f). By Theorem 5.2, we have that if 0 < T <_ T is sufficiently
small, then for all To E [0, T T’] we have u(t + To) Lt(u(To), f (. + T0)) for all
t E [0, T’]. (f(. + To) refers to the shorthand notation introduced in the proof of
Theorem 5.1.) This implies in a straightforward manner that u BCs((O, T], L2) and
that (u, u0, f) e gra(B).

6. Nonuniqueness of solutions in C([0, T], HB), s < -1/2. Consider the
well-known "N-wave" solution of Burgers’ equation (see Whitham [13])

u(x, t)
x x/ e +t 1 + X/ze-x/(4)

where a > 0. In the above reference, Whitham remarks in passing about the difficulty
of interpreting this solution as a solution of an initial-value problem. We make the
following assertions about this solution:

(1) for every $(), we have lime_o+ f-oo u(x, t)(x)dx 0, and thus u()
0 in 8’ (I) as t --+ 0+;

(2) for every 1/4 < s _< 3/4, we have sup,>o

(4) if s < -1/2, hen II (t)ll = --+ 0 t --+ 0+.
To prove assertion (1), we firs integrate by pars:

u(x, t)(x) dx 2 ’(x) ln[1 + xe-x/(at)] dx.

Now define the following function:

t) [ ln[1 + v/-e-z/(4t)] if x2 _> 2t ln(a/t)V(X
0 otherwise.

Thus we have

u(x, t)(x) dx 2 ’(x)v(x, t) dx

e [ ’(x) + dx.+
x2<2tln(a/t)

The first integral in tends to 0 as t -- 0+ by the dominated-convergence theorem
since Iv(x, )1 <- ln2 for all (x,t) J, and for every fixed x E \ (0), we have
v(x, t) -, 0 as t -- 0+. The second integral can be bounded in absolute value by

411’115 ( ) ln(1 -+- V)[2t ln(a/t)]/,

which also tends to 0 as t 0+. Thus (1) is true.
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In order to prove (2) we introduce the new variable x(4t) -1/2

(6.1) t2811u(t)l12L C /_ t3/4-s _- tl/4-sal/2e-
2

It is an elementary calculation to show that for every 1/4 _< s _< 3/4, t > 0, and b > 0,
we have

1t3/4-s _]_ tl/4-Sb >_ - b3/4_s ]
2

(3/4- 8)3/4--s(8- 1/4)8-1/4

Using this estimate in the above with b al/2e we obtain

[e-](a/a-)
dx c e_2(.(s_i/4)

2

d.

This is clearly bounded if 1/4 < s <_ 3/4, and so (2) is true.
To prove (3), we rewrite (6.1) and estimate as follows:

t/llu(t)ll. c tl/2e(. + al/2 d

2<_(1/2) ln(a/t)

<_(1/2) ln(a/t)

tl/2e + al/2

2

2
4-- d c[ln(a/t)] 3/2.

Since this tends to c as t -- 0+, (3) is true.
To prove (4), notice that u- A(u, 0, 0) solves the heat equation with zero initial

data in a distributional sense and hence must be zero. Now use (2) and Lemma 3.3
to yield the result.

Since a > 0 can be chosen arbitrarily, we see that there are infinitely many
solutions in C([O,T],HS), s < -1/2, to (4.1)-(4.2) with u0 0 and f 0. This
phenomenon can be understood intuitively as follows. If v solves the heat equation,
then u -20x In v satisfies Burgers’ equation. The "N-wave" solution arises from
v 1 + -d-e-2/(4t), which is a solution of the heat equation with initial data
v0 1 + c5, where c > 0 depends on a and 5 is the Dirac delta distribution. When
we apply the function ln, however, the part tending to c5 makes no contribution in a

distributioaal sense. The number 1 is not special. We could consider the solution of
the heat equation with initial data

( lfvo(x) exp - uo(y) dy + cS(x)

since u -20 ln v would then satisfy Burgers’ equation with initial data u0 E L1.
The initial data would be assumed in the sense of Hs(N), s < -1/2, as one can show
using the same method as we used to prove (4) above. Thus there are infinitely many
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nonequivalent solutions emerging from every initial data in L1. Solutions u of an
inhomogeneous Burgers’ equation with f E LI([0,T] x ) can also be expressed in
terms of solutions v of the heat equation with a potential via the same transformation
u -20x In v [5]. Solutions of this variant of the heat equation can also be written
down explicitly using the Feynman-Kac formula. If we use the same initial data
v0 as displayed above in this formula, then we see that there is nonuniqueness of
solutions of the inhomogeneous Burgers’ equation of the same type. We will omit the
details.
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ANALYTICITY OF SOLITARY-WAVE SOLUTIONS OF MODEL
EQUATIONS FOR LONG WAVES*

YI A. Lit AND JERRY L. BONA$

Abstract. It is shown that solitary-wave solutions of model equations for long waves have
an analytic extension to a strip in the complex plane that is symmetric about the real axis. The
classes of equations to which the analysis applies include equations of Korteweg-de Vries type, the
regularized long-wave equations, and particular instances of nonlinear SchrSdinger equations.

Key words, nonlinear dispersive wave equations, solitary waves, regularity, analyticity, Kor-
teweg-de Vries-type equations, regularized long-wave-type equations, SchrSdinger-type equations
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35S30, 45E10, 45G10, 76B15, 76B25, 76C10

1. Introduction. This note is concerned with solitary-wave solutions of model
equations for long waves and aims to cast light on their regularity properties. The
prototypical example in view is the well-known travelling-wave solution

(1.1)
c/2

u(x, t) (x (c + 1)t) 3csech2 ---(x (c + 1)t)

of the classical Korteweg-de Vries equation

(1.2) ut + ux + uux + uxx O.

For any positive value of c, the function of x and t defined in (1.1) via the function c
of one real variable is an exact solution of (1.2) which is infinitely differentiable and
which decays rapidly to zero at +c. These properties are possessed by solitary-wave
solutions of a considerable range of evolution equations that feature a balance between
nonlinearity and dispersion. As these special travelling-wave solutions of nonlinear,
dispersive wave equations are known in many cases to play a significant role in the
long-term asymptotics of general classes of solutions, they have come in for detailed
study in the last couple of decades. Existence and regularity theory for solitary waves
has been developed recently by Benjamin et al. [3] and Weinstein [12]. Their results
apply to a broad class of model equations to be introduced presently. The outcome of
these theories is that the relevant profiles c of the solitary-wave solutions are often
positive C-functions having a single maximum and which decay monotonically to
zero at infinity, just as does the sech2 solutions of the Korteweg-de Vries equation
displayed above. Moreover, and all its derivatives lie in L1 C L.

In fact, the sech2-solitary-wave solution of (1.2) has further regularity than just
C-smoothness. The function in (1.1) defined on the real axis is real analytic
and admits an analytic extension to the complex strip {z x+iy :IYl < /c/2} It is
this latter property on which attention will be focused in the present study. While the
theory developed here seems to apply to a considerable range of equations, the ideas
are most transparently presented in the context of the following relatively concrete

*Received by the editors January 21, 1994; accepted for publication (in revised form) October 3,
1994.
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classes of model equations for waves in nonlinear dispersive media:

(1.3)
(1.4)

ut + ux + uPux (Mu) 0

ut + ux + uPux + (Mu)t 0

iut Mu + lulPu 0

(Korteweg-de Vries type),

(regularized long-wave type),

(Schrhdinger type).

In the first two models, p is a positive integer, while p is a positive even integer in

(1.5). The linear operator M is a Fourier multiplier operator defined by

(1.6) (Mv)() a()9()

whose nonnegative symbol a satisfies certain growth conditions to be spelled out
presently. The linear transformation M is called the dispersion operator and its
symbol a is related to the linear dispersion relation for the model in question (see
Benjamin [2] or Whitham [13]).

We intend to show that as a rule, solitary-wave solutions of these model equations
possess the property of being extensible to an analytic function defined on a strip in
the complex plane C, which lies symmetrically about the real axis N on which the
wave profile is ostensibly defined. This fact is interesting in its own right, but in
addition, it has implications regarding uniqueness [9] and appears to be useful in
assessing whether or not a particular solitary wave is actually a soliton (cf. [5], [6],

The plan of the paper is as follows. In the next section, a few convenient notational
conventions are introduced. In 3, the main result for travelling-wave solutions of
Korteweg-de Vries type and regularized long-wave type is enunciated and proved.
Section 4 is concerned with the analogous result for nonlinear Schrhdinger equations.
The paper concludes with a few comments about regularity issues related to those
discussed here.

2. Notation. By Lp Lp(N) for p in the range 1 _< p _< x, we mean the
standard class of pth-power Lebesgue-integrable functions on the real line N with the
usual modification if p oc. The standard norm on Lp will be denoted by lip.
The Fourier transform of a Lebesgue-measurable function defined on N is denoted
by and is defined to be

1 (x)eiXdx"(2.1) () v/

The convolution of two functions f and g defined on is written f g. Multiple
convolution of a function with itself will appear frequently, and it is therefore conve-
nient to introduce notation for this operation. If is a measurable function defined
on and n is a positive integer, define the function ?n by the recipe

,
and for n > 1,

// (x y)Pn-l(y)dy.
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By a solitary-wave solution of (1.3) or (1.4) for a given positive integer p and
dispersion symbol a, we shall mean a function : --* such that , ’, and Me all
lie in L2 and such that for some positive constant c, (x- ct) defines an L2-solution
of (1.3) or (1.4). A similar definition will be adopted later for solutions of (1.5). As
mentioned already, existence of such solutions for a wide range of symbols c has been
dealt with in the recent works of Benjamin et al. [3] and Weinstein [12].

For any x E JR, the greatest integer less than or equal to x is denoted by

3. Results for Korteweg-de Vries type and regularized long-wave mod-
els. After a preparatory lemma, the principal result for equations of the types de-
picted in (1.3) and (1.4) is stated and proved.

LEMMA 1. Let c > 1 be given. Suppose (x- ct) defines a solitary-wave
solution of (1.3) or (1.4) for a given value ofp and symbol c of the dispersion operator
M. Suppose also that for some positive constants A and r, () >_ AIIr for all I.
Then the function

+ 1)(c-

lies in L1 9 L2 and solves the equation

(3.e) (1 +

where 1/(c- 1) if is a solution of (1.3) and c/(e- 1) if is a solution of

Proof. Suppose defines a solitary-wave solution of (1.3) as described in 2. Then

(-c + 1)’ + P’- Me’ 0,

from which it follows that, at least in the sense of tempered distributions,

1 qp+l(3.3) [(c- 1)+ M]-
P + 1

constant.

Since each term on the left-hand side is an L2-function by assumption, the constant
on the right-hand side must be zero. Applying the Fourier transform to (3.3) and
using (1.6) leads directly to the desired result (3.2) with A 1/(c- 1).

Because c > 1 and M has a nonnegative symbol, it follows from (3.3) with the
constant equal to zero that

1
(3.3’) [(c- 1) + M]-1p+.

P + 1

Since H by assumption, the product cp+l is also in H. For any s , the
linear operator (c- 1 + M)-1 maps H8 into H8+r. Hence it transpires from (3.3’)
that Hl+r. In consequence, CP+ H1+, whence E Hl+2r, and so on. It is
thus inferred that H, from which it is adduced at once that

(3.4) (1 + 2)m 1()12d < cx

for any m. An immediate consequence of (3.4) is that L1 N L2, as stated in the
lemma.
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The same considerations lead to the advertised result when defines instead a
solitary-wave solution of (1.4).

With this simple lemma in hand, the main issue may be confronted. The idea
is to demonstrate that if defines a solitary-wave solution of (1.3) or (1.4), then its
Fourier transform has exponential decay at +de. In consequence, the Paley-Wiener
theorem assures that itself is analytic in a complex strip centered about the real
axis.

We begin with a special case of the main result, which will prove to be instructive
and which contains the essence of the argument that applies to the more general
situations.

THEOREM 2. Let an integer p >_ 1 and a wave speed c > 1 be given. Suppose that
as in iemma 1 defines a solitary-wave solution of (1.3) or (1.4) corresponding to

the dispersive symbol c(() I1m for some real number m >_ 1. Then there exists a
constant a > 0 such that for any # with 0 < # < a,

sup <

Proof. By Lemma 1, it suffices to prove (3.5) for the function defined in (3.1)
that satisfies equation (3.2).

For any k with 0 _< k _< m and A > 0, define the nonnegative function fk for
(>_0by

It is straightforward to determine that for all >_ 0,

(k
(3.6) fk() _<

k
k

k 1-where 6k () (1 ) if 0 < k < m, and 6, 6o 1.
Case I. m _> 1 is an integer.
Suppose that satisfies (3.2) and (3.4). When 0 _< k _< m- 1, (3.6) may be used

to conclude that

(3.7)

for any E N. On the other hand, for any n _> 0 and any 1 E 1, we have
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)n(i i+1) nt- p+l (p p+l)(p+l)
i--1

dp+ dp d2

<-
,+1 rl rp+l

i=
ri--n

p
rp+lp-t-1 (p-1)H(i- i+l)ri(i- i-t-1)

i--1

dp+ d2

where I(.)ri(.)l() -Ir()l and we have introduced the standard multiindex no-

tationr=(rx,...,rp+x), Irl=rl+...+rp+l, and rl!...rp+!" IfO_</<_m-1,
then using (3.7) in (3.8) leads to the inequality

(3.9)
1 (/r) 1

)1+

It follows from (3.7) and (3.9) that for any { E IR and any k with 0 _< k _< 2m- 1,
one has

(3.1o) V(P+I)(LJp/)I1

where, as mentioned previously, [] denotes the greatest integer less than or equal
to +/-.

m

It is intended to establish (3.10) for all values of k, and to this end we argue by
induction, supposing that the inequality (3.10) is true for all k with 0 <_ k <_ nm- 1
for a fixed integer n _> 2. Let k nm +l for some integer in [0, m 1]. Then (3.8)
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and the induction hypothesis allow one to infer the following inequality:

(.11)
1

1

*12(p/l)([_jp/l) [[ *’"* l(p/l)(]_...+ jp+l) Il()

E
lrl=(n-l)m+l

E
lrl=(n-l)m+l

(n- l)m +l r__p + 1
r

i=1
m

r

If inequality (3.10) is specialized to the case k 0, one infers that
Using this fact and the elementary formula

p+l

E(P+I)([-JP +1)
i=1

--(P+I)(PLmJ+I) <-(P+I)(P[I riJ--m +P+I

=(p+l) (p[(n-i)m+l]m +P+I) =(p+. 1)(p[n+./]+
(p+l) ([Jp+l)

one obtains

(3"12/ vET+,(,+)(L,/,+) I1
Using a specialization of the multinomial Abel identity (see [11, p. 26]), namely

(z,z, ,z)
M

Ikl=N i=1

N-1

(l2"’’M)-1 Qi)(i+N)
and the simple relation+(ri 1) ( 1)m + p 1, one obtains
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A(n-1)rn+l p, P
,...,

i’ nm + ) (r-l)m+-I(+ 11 k---- + 1

(p+l) --+1

-t- (n 1)m + l)
(n-1)m+g-1

The latter inequality, when combined with (3.11), (3.12), and the induction hypoth-
esis, yields

for any integer k _> 0 It follows that (3.10) holds for any ( E ]R and any integer
k>0.

Using the fact that E LI(N), we infer that

... llllllll
and so

(3.13) II (’+ )( L/mJp+1)-2

for any
To complete the proof for Case I, consider the sequence

1 (_)k-1 (p+l)( _2.+1(3.14) ak ki A- + 1 112111
for k 0, 1, 2,... Because the ratio takes the form

ak

ak+l
ak

)k+l--1k! ,k (+) + 1m

(p+l) (,+)’ +1)

(p+l) (m-’+l)

1 .l’e( 1 ) [(),11, lllll /
k +i I + p)m+kp
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it is readily seen that

Hence the power series
-;p/l>

k=oak#k converges for I#1 < mXl/’ 112111ep

quence of (3.13) and (3.14), it is seen that for any E N,
In conse-

u’ll I/’()1
k=O

k--O

provided I1 < ,/
-,+’,

ep II@llx Thus the function e’lell()l appears to be uni-
formly bounded for such choices of #, and this is the desired conclusion in case m is
a positive integer.

Case II. m > 1 is not an integer.
1+AmOIf mo Lm] and 0 maxoe< +e, then it follows from (3.2) that

(3 15) I(:)1 <
1 + Xl:l.o

V,>+II(:).

Now one may use (3.15) and induction as in the proof of Case I to prove that

o(P+l)Lk/mJ+l kP +1() () <- 1o - (/)(Lj/) I@1(:)

holds for any integer k >_ 0 and all E I. In consequence, the following inequality is
obtained for integers k and I:

o(P+l)LklmJ+l ( kPb([:.]
_

+1’" A/o m0

k-1

IId’ll .lld’ll-,(+)(LloJ+)-B

Thus it appears that for all I,

(p+l)(LklmoJp+l)

,x,<,o i111-(,+1)/,ofor any # satisfying 0 < # < cpe(p+)lmo
If the results just obtained for are translated into results about (, it appears

that if (x ct) defines a solitary-wave solution of (1.3), then

(3.17) supe’l:ll(j(:)l < oo



ANALYTICITY OF SOLITARY WAVES 733

for any it satisfying

.(_ 1)/( + 1)(+/()(+/ -+
0 <, < I1111 p(m, , )

ep

when 1 LmJ m, or for any satisfying

0(- 1)/( + 1)(,+)/o(e)(+)/o .+)

0 <, < epo(p+l)/m i1111 p(m, , )
whenlm0= [mJ <m.

On the other hand, if (x- ct) defines a solitary-wave solution of (1.4), then
(3.17) holds for this for any with

/(_ 1)/( + 1)(+)/(e)(,+),/ -+,
0 <, < I1511 (, , )

ep

when 1 [mJ m, or for any with

o/o(_ 1)/o( + 1)(+)/o(e)(+1)/o -+
o <, < p(+)/o I1111 (,, )
whenlm0= [mJ <m.

The theorem is thus seen to be valid if one chooses a p for solutions of (1.3)
and a P2 for solutions of (1.4).

An inspection of the proof presented above shows that the specific assumption
a() [ is not needed. Indeed, the presumption that there are positive constants
A > 0 and m > 1 such that

(3.18)

for all suffices for our theory. The lower bound in (3.18) implies that the
normalized Fourier transform satisfies

1 1

+ AIIm
and it is this inequality that is the basis for the estimates appearing in the proof of
Theorem 2. In consequence of these remarks, we can assert the following corollary to
the proof of Theorem 2.

COROLLARY 3. Let u(x, ) (x-) be a solitary-waw solution of he equation

u + u + uu (Mu) 0

or the equation

ut + ux + uPux + (Mu), O,

where p >_ 1 is an integer and M"() a()() with a() satisfying (3.18) for some
m > 1 and A > O. Then there exists a constant cr > 0 such that

for any it with 0 < it < a.
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The result concerning analyticity of now follows immediately from Theorem 2
or Corollary 3 together with the Paley-Wiener theorem.

THEOREM 4. Let satisfy the assumptions of Corollary 3 and let a > 0 be as in
the conclusion of this corollary. Then there is a function (z) defined and holomorphic
on the open strip {z e C: Izl < a} such that (x) (x) for all x e l.

Proof. Let # lie in the open interval (0, a). Choose a #1 > 0 satisfying 0 < # <
it1 < a. Then it follows that

(3.20)

Define the function

(z)=
1 /_ ()e-Zd

for any z x + iy EFt {z E C; I zl < }. Using (3.20) and the Paley-Wiener
theorem [10], one may conclude that q)(z) is a well-defined, analytic function on Ft.
Of course, Plancherel’s theorem implies that (x) (x) for any x

An immediate consequence of the analyticity expressed in Theorem 4 is the fol-
lowing interesting result.

COROLLARY 5. Suppose the hypotheses of Corollary 3 to hold and let be a

solitary-wave solution of (1.3) or (1.4). Then cannot have compact support, nor
can it be the case that in any bounded set S c I, there are more than a finite number
of points x, S such that (x.) . In particular, has at most finitely many zeros
in any bounded subset of

Remarks. It is worth contrasting the last result with that obtained for the evolu-
tion equation

(3.21) ut + uu + (uq)x 0,

where q > 1 is an integer. In equation (3.21), the dispersive term is singular, and
this fact accounts for the compactly supported travelling-wave solutions (compactons)
discovered recently by Rosenau (see Hyman and Rosenau [7]). As Corollary 5 shows,
such solutions are not possible when the dispersion is nonsingular.

In case the symbol a() I[m, where m is an even integer, one may establish
the analyticity of by recourse to the local theory of ordinary differential equations.
It is not immediately transparent even in this case that the real analyticity thereby
established extends to analyticity in a complex strip. However, a little work in this
context reveals the truth of this assertion. These methods make no impression in case
the symbol c does not generate a local operator.

4. Further extensions. It is the purpose of this short section to expand the
range of the discussion to include equations of Schrhdinger type as depicted in (1.5).
In (1.5), it is supposed that M is a dispersion operator with the symbol c as in (1.6)
and that p- 2r is an even natural number.

The travelling-wave solutions of (1.5) of interest here have the general form
etCw,o(x- Or), where w and 0 are real numbers with 0 < w < 2, say, and with

C a smooth function lying in L1 f L. Of special interest are the so-called
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bound states. These are standing-wave solutions of (1.5) for which 0 0, w > 0,
and I1 tends rapidly to zero at infinity. The function ,0 Cn defining a bound
state eiatn(x) satisfies the equation

(4.1) + Me-[[2r 0.

In the applications associated to Schrhdinger equations, particular importance is at-
tached to ground states, which are bound states that minimize energy subject to fixed
charge. The associated waveforms are analogous to solitary-wave solutions of (1.3)
and (1.4) in that they are real valued, even, and rapidly decreasing to zero at infinity.
Such solutions fall under the auspices of our previous theory.

THEOREM 6. Let > 0 and let be a ground-state solution of (1.5) that lies in

L1 ;q L2. Suppose p 2r, where r is a positive integer, and suppose the symbol a of
M to satisfy (3.18). Then there exist a a > 0 and a function On defined and analytic
on the strip {z x + iy lY[ < a} such that (I)a(x) Ca(x) for all x e .

The range of applicability of this result may be considerably broadened if the
dispersion operator is suitably specialized. Consider, for example, the special case
where a(k) k2, corresponding to the one-dimensional equation

(4.2) iut q- Uxx q-[u[2ru 0,

with r 1 corresponding to the classical cubic Schrhdinger equation. In this case, we
have the following simple lemma (cf. Bona and Soyeur [4]) relating bound states to
more general travelling-wave solutions. Define To H -- H by

(To ) (x)

LEMMA 7. Let be an H1-function and let Tee for some 0 E IR. Then
defines a bound state of (4.2) corresponding to the parameter w 1/42 > 0 if and
only if ,0 defines a travelling-wave solution of (4.2).

Suppose that eitb,,,e(x- Ot) is a travelling-wave solution of (4.1) corresponding
to a bound state enta(x) under the transformation in (4.3). Suppose also that
is actually a ground state. Then according to Theorem 6, is the restriction to the
real axis of a function (I)n that is analytic in a strip {z [.(z)l < or}. It follows that
,e is likewise the restriction to the real axis of a function ,e analytic in the same
strip, namely the function

V ,o(z)

While this result is a consequence of the general theory, such considerations are not
required in this special case. Equation (4.1) for Ca can be solved explicitly in case
M -02, and one readily finds that

Ca(x) A sech1/r (Bx),

where A =Q/(r + 1)gt and B -rye.
A more challenging situation arises when the symbol a(k) is a perturbation of

the Laplacean. Suppose that ,0 defines a travelling-wave solution of (1.5) by the
formula

(x et)"w,O
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Then ,0 satisfies the equation

-we i0’- Me + [[2r 0.

Guided by the considerations that arose when M -02 in (4.2) and (4.3), we write

,0(x) eiOX(x). A computation shows to satisfy the equation

(4.4) (-w + 02/2) i0’ + [12r 0,

where the symbol of the operator M is given by

() =(-o/).

Assuming that is real valued, equation (4.4) takes the form

(4.5) M + i0’ + (w 02/2) 2r+1,

or, in Fourier-transformed variables,

(4.6) [a( 0/2) + 0 + 02/2] @() 1().
Write a() 2 + (), where () k c][ for some constants m k 0 and c k 0.
Then the symbol on the left-hand side of (4.6) may be written as

+ ({ 0/2) + w 02 {2 + el{ 0/21 + ,
where w- 02 as before. If > 0, then obviously we have

(4.7) {2 + ({_ 0/2) + A + A21l 2

for suitably chosen positive constants A1 and A2. Because of (4.7), the theory de-
veloped in 3 may be brought to bear, and we ascertain immediately that has an
analytic extension to a strip in C centered about the real axis. In consequence of
the relationship between and , the same conclusion is drawn about . This result
is summarized in our last proposition.

PROPOSITION 8. Suppose the symbol a of the dispersion operator M to have
th om () + (), h () ii o som 0 ad m O. Lt
u(x, t) et,o(x Ot) be a travelling-wave solution of (1.5), where w 0 > O.
Suppose ,o(y) ei}Y(y), where is real-valued. Then there is a a > 0 and a

function ,o analytic in the strip {z ](z)[ < a} such that ,0(x) -,o(x) for
allx .

Remark. Equation (4.1) arises in more than one space dimension in the form

(4.8) iut Mu + [uIu 0,

where u = U(Xl,X2,... ,Xn,t) and M is a Fourier multiplier operator defined by

Mv(l, 2,...,) a(l, 2,...,) 9(1, 2,..., ).

avelling-wave solutions analogous to those considered in one dimension have the
form eiwtw,o(x- Or) where t,w and x,O n. Bound states correspond to
0=0.
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It follows readily from the techniques developed in 3 that a ground-state solu-
tion of (4.8) is the restriction to n of a function which is defined in a "strip"
{(Zl, z2,...,zn) e Cn I(zj)l < a, for 1 <_ j _< n} and comprises an analytic
function of n complex variables there.

In case M -A, then the n-dimensional analog of Lemma 7 allows bound
states to be related to general travelling waves via the operator To given by Tow(x)
e1/2O’Xw(x) and thereby to extend the results on analyticity to more general travelling-
wave solutions.

5. Conclusion. Solitary-wave solutions of the classes (1.3), (1.4), and (1.5) of
nonlinear, dispersive wave equations have been shown to possess an analytic extension
into a complex strip around their original domain of definition. This further regularity
property of such travelling-wave solutions lays the groundwork for a broader use of
complex-variable methods in the study of these equations. Such techniques have
already proven to be useful in discussing a number of thorny problems connected
with uniqueness and soliton behavior (cf. [1], [5], [6], [8], [9]). Perhaps the door now
stands ajar to further developments along these lines.

An interesting project for further study would be to determine the type of sin-
gularities that arise when a solitary wave is extended into the complex plane. The
examples in hand indicate that these extensions will be meromorphic or fractional
powers of meromorphic functions. We have conjectured this to be the case under
fairly general conditions, but a proof has remained elusive.
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THE LINEARIZATION OF THE INITIAL.TBOUNDARY VALUE
PROBLEM OF THE NONLINEAR SCHRODINGER EQUATION*

A. S. FOKAS AND A. R. ITS

Abstract. We consider the nonlinear SchrSdinger (NLS) equation in the variable q(x, t) with
both x and in [0, oo). We assume that q(x, O) u(x) and q(O, t) v(t) are given, that u(0) v(0),
and that u(x) and v(t) as well as their first two derivatives belong to L1 N L2(]+). We show that
the solution of this initial-boundary value problem can be reduced to solving a Riemann-Hilbert
(RH) problem in the complex k-plane with jumps on Im(k2) O. This RH problem is equivalent
to a linear integral equation which has a unique global solution. This linear integral equation is
uniquely defined in terms of certain functions (scattering data) b(k) and c(k). The function b(k)
can be effectively computed in terms of u(x). However, although the analytic properties of c(k) are
completely determined, the relationship between c(k), u(x) and v(t) is highly nonlinear. In spite
of this difficulty, we can give an effective description of the asymptotic behavior of q(x, t) for large
t. In particular, we show that as x, solitons are generated moving away from the boundary.
In addition, our formalism can be used to generate effectively pairs of functions q(0, t) and qx(0, t)
compatible with a given q(x, 0) as well as to determine the associated q(x, t). It is important to
emphasize that the analysis of this problem, in addition to techniques of exact integrability, requires
the essential use of general partial differential equations (PDE) techniques.

Key words, nonlinear SchrSdinger equation
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1. Introduction. For integrable equations, a method exists for solving the initial-
value problem on the infinite line for decaying initial data. For evolution equations
in one spatial variable, this method reduces the solution of the Cauchy problem to
the formulation of a certain classical mathematical problem called the Riemann-
Hilbert (RH) problem. A RH problem can be solved via a linear integral equation.
A distinguished property of integrable equations is that they can be written as the
compatibility condition of a pair of linear eigenvalue equations, called the Lax pair [1].
The associated RH problem is essentially determined by the x-part of the Lax pair;
the t-part of the Lax pair plays only an auxiliary role. In the case of the nonlinear
SchrSdinger (NLS) equation, the relevant RH problem is formulated in the complex
k-plane with a jump on Ira(k) O.

Many physical problems are formulated as initial-boundary value problems. For
example, such a problem arises in the modeling of certain ionospheric experiments
when one directs a radio frequency wave at the ionosphere. At the reflection point
of the wave, a sufficient level of electron plasma waves is excited and nonlinearity
becomes important. This problem gives rise to the NLS equation with x, tel0, c) [2].
Furthermore, several other physical problems can be reduced to initial-boundary value
problems. For example, such a problem arises in connection with optical switches [3]
and can also be modeled by a NLS. The occurrence of the Korteweg-de Vries (KdV)
equation on the quarter-plane is discussed in [21]-[26].
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Recently, a new formalism has been developed [4], [5] for studying initial-boundary
value problems on the half-infinite line for decaying initial and boundary data. This
formalism also reduces the solution of the initial-boundary value problem to the so-
lution of a single RH problem. However, for the formulation of this RH problem,
both the x- and the t-parts of the Lax pair play an important role. Actually, it is
the t-part which determines where, in the complex k-plane, the jumps occur. In the
case of the NLS, the jumps occur on Im(k2) O, which is a reflection of the fact that
the t-part of the Lax pair contains k2, which in turn is a consequence of the fact that
the NLS involves a second derivative in x. Here we study the initial-boundary value
problem for the NLS equation in detail. We show that the analysis of this problem
also requires, in addition to techniques from exact integrability, the essential use of
more general PDE techniques. In the cases studied so far, the exact methods could
be used to establish existence of global solutions as well as to study the properties of
these solutions. In contrast, in the problem studied here, exact methods are used only
to study the properties of solutions. It shows that a hybrid between exact methods
and general PDE techniques can provide a powerful approach for analyzing problems
of mathematical and physical significance. We expect that a wide class of problems
can be analyzed in a similar manner.

We consider the NLS equation

(1.1) iqt+q,x-2A[ql2q=O, x, te[0,), A=+I,

where q(x, O) u(x) and q(0, t) v(t) are given. We assume that

e e

xu(x) and x2u(x) e v(t) e L1 N

v(t) e L1 v’(t), tv(t), tv’(t), tv"(t) e

where H2 denotes that a function and its first two derivatives belong to L2; C2 denotes
that a function is twice differentiable, and prime denotes differentiation.

The cases , 1 and , -1 are usually referred to as the defocusing and focusing
cases, respectively. Equation (1.1) is the compatibility condition of the following Lax
pair for the 2 2 matrix w(x, t, k) [6]:

(1.3a) wx + ika3w Qw,

(1.3b) wt + Uw wC(t), U(x, t, k) . 2ik2a3 + iA]ql2a3 2kQ + iQxa3,

where a3 diag(1,-1), the 2 2 matrix C(t) is an arbitrary function of t, and Q(x, t)
is an off-diagonal matrix with 12 and 21 entries given by q and ,c, respectively.

We have developed the following linearization scheme for the solution of the initial-
boundary value problem of the NLS. Given q(x, 0), construct Sl+ and s2+ by s+ (k) @
l(0, k), s+2(k) . 2(0, k), where ( (x, k), 2(x, k))T is the solution of (1.3a) with
q(x, t) replaced by q(x, 0), satisfying the boundary condition

lim[(, 2)T exp(-ikx)] (0, 1)T.

Define b(k) by b s+ Is+2 Let c(k), k e I- t3iI+ be the boundary value of a function
meromorphic for k E II (I, II, III, and IV denote the first, second, third, and fourth
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0 1 Ae0 1-A[b[ ce0 1
III IV

1 -b(k)e- I

FIG. 1.1. The RH problem associated with the initial-boundary value problem of NLS. The x,
dependence enters only through O(x, t) 2i(kx + 2k2t).

( 1 0)c(k)e I

II

III IV
(lO)

FIG. 1.2. The RH problem for the focusing NLS with of q(x, O) O. The x, dependence enters
only through O(x, t) 2i(kx + 2k2t).

quadrants of the complex k-plane) with poles at the zeros of s2+ (k) and at the points
{kj}N, kj EII which are assumed to be different than the zeros of s+2(k) (generic
case); let cj denote the residues of c(k) at kj; also, c(k) --, 0 as k --, . Have s+(k),
s2+ (k), and c(k) solve an an problem for a 2 x 2 meromorphic function 2p with possible
poles only at {kj }N. This RH problem is depicted in Figure 1.1. Finally, determine
q(x, t) by q(x, t) 2i limk_,(k2p(X, t, k))12, k e I, where the subscript 12 denotes
the 12 components of the matrix 2p. The points {kj }N (which have the meaning of
the discrete spectrum of equation (1.3b) evaluated at x 0 and supplemented with
the boundary condition WlS+2 (k)- w2s+l (k) 0 at t 0) give rise to solitons which
always move away from the boundary.

In the case of q(x, O) O, the RH problem reduces to the one depicted in Figure
1.2; it is specified by the boundary values of c(k) on k I- t2 i1+, by {k }N, and by
(C }l

Unfortunately, although we have a complete characterization of the analytic prop-
erties of c(k), we have not found an effective way of computing c(k) in terms of q(0, t)
and q(x, 0). (For more details see the discussion below.) In spite of this fact, we can
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FIG. 1.3.

give an effective description of the long-time behavior (A -1):

(1.4)

where

q(x,t) -2j
exp[-2ijx 4i(y Ty)t iq]

cosh[2r5 (x + 4jt)- Ay]
+0(t-1/2),

x (1)t -- c,- +0 , j 1,...,N,

(1.5a) .(k). R(k).

(1.5b)

j - + arg cj

N

(kj-kl)+ E [sign(-j)-l]arg kj-

+-1 f-/4, log[1 + Ib(#)+ c(#)l 2] (# j)d#,
_

(.-)+
(.c)
Aj log 27y + log Icy

N

+ E [sign(t-y)- 1]log
l=lt

/.-/4 log[1 + Ib(#)+ c(#)l1
(,-) +,y

All k E II, thus all j < 0 and the solitons move away from the boundary. The
summation terms in the above equations describe the interaction among solitons, while
the integration terms describe the interaction between solitons and the dispersive part.

Discussion. The linearization scheme developed in this paper can be summa-
rized as follows: Given q(x, 0), construct b(k). Then, if c(k) is any suitably decaying
function meromorphic for k E II, the solution of the RH problem of Figure 1.1 gen-
erates the solution q(x, t) corresponding to initial data q(x, 0) and some boundary
data q(0, t). The main limitation of our result is that for given q(x, 0) and q(0, t), we
cannot construct c(k) by solving a linear problem. Nevertheless, we claim that for
any given q(x, 0) and q(0, t) satisfying (1.2), the corresponding function c(k) exists; in
other words, the RH problem of Figure 1.1 solves the initial-boundary value problem
(1.1) for general initial-boundary data.

The above RH problem is quite natural. To appreciate this we first recall the RH
problem that corresponds to the NLS with x (-oc, oo). This RH problem is depicted
in Figure 1.3. Comparing the RH problems of Figure 1.1 and Figure 1.3, we see that
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the jumps for k E N+ are identical. The jump for k E iN+ cannot have a nonzero
entry in the 12 position since e- is unbounded for k iN+. The jump for k iN-
follows by symmetry considerations. Finally, the jump for k N- follows from the
cyclic condition that the product of the jump matrices equals unity (this is a reflection
of continuity at k 0). The fact that c(k) has analytic continuation for k II can
also be easily understood. At t 0, the RH problem of Figure 1.1 must be reduced
to the one that defines q(x, 0). At t 0, the term e has analytic continuation in II.
Thus the jumps along the imaginary axis can be mapped to a jump on the negative
real axis. In this way, at t 0 one finds the RH problem of Figure 1.3 with 0 replaced
by 2ikx. This RH problem corresponds precisely to q(x, 0).

The fact that q(x, 0), q(0, t) and c(k) are related in a nonlinear way is a reflection
of the fact that qx(O, t) depends nonlinearly on q(x, 0) and q(0, t). To appreciate this,
we first recall the solution ofthe linearized problem

iqt + qxx O, x, t E [0,

where q(0, t) and q(x, 0) are given and decaying for large t and large x. This problem
can be solved by the sine transform. However, in order to draw comparisons with the
nonlinear problem, we shall use a Fourier transform,

O(k,t) dxeikxq(x,t).

The evolution of the Fourier data (k, t) is given by

(1.8) (It + ikCt iqx(O, t) + kq(O, t).

In equation (1.8), q(O,t) is known but q(O,t) is unknown (the sine transform is
precisely used in order to eliminate q(0,t)). This apparently ominous situation can
be bypassed by using the fact that the solution (k, t) of (1.8) is analytic in the upper
half of the k complex plane. It turns out that this requirement implies

(1.9) Ft(k, O) dteikt(iq(O, t) + kq(O, t)).

Given q(x, 0) and q(O,t) and using the substitution k e/4xflfi, p > 0, equation
(1.9) yields q(0, t). It is important to notice that if qx(0, t) and q(0, t) are arbitrary
functions, then the rhs of equation (1.9) will be analytic for k I U III. However, in
order for qx(0, t) and q(0, t) to be the boundary values of the solution of equation (1.6),
it is necessary and sufficient that the rhs of equation (1.9) has analytic continuation
across the positive imaginary k axis (c)(k, 0) is analytic for k I U II).

Before discussing the nonlinear problem, we emphasize that using these type of
analyticity arguments, it is possible to solve linear equations for which the standard
spectral theory fails. An example of such an equation is the linearized KdV ut+ux
0, for which there does not exist a proper generalization of the sine transform.

We now discuss the nonlinear problem. Let (l(t, k), b2(t,k))T be the solution
of the vector equation

(1.10) t + (2ikaa + ilq(O, t)laa 2kQ(O, t) + iQ(O, t)aa) 0

satisfying the boundary condition limt-.[(l, 2)exp(-2ik2t)] (0, 1)T. Let r(k) .
@1 (0, k)/@2(0, k). It turns out that for arbitrary decaying functions q(0, t) and q(0, t),
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r(k) is a meromorphic function for k e I U III and r(k) --. 0 as k - c. However, if
q(0, t) and qx(0, t) are the boundary values of the NLS, then in addition r(k) satisfies

(1.11) r(k) s+2 (k),

where Sl+ and s2+ are determined from q(x, 0) and are analytic for k e I U II. Equation
(1.11) is the analogue of equation (1.9). It shows that although the relationship
between q(x, 0), q(0, t), and qx(0, t) is highly nonlinear, its reflection in the k-plane
(scattering space) is rather simple: r(k) has analytic continuation across the positive
imaginary k axis.

There exists an invertible correspondence between the "potential" {q(0, t), q(0, t)}
and the scattering data r(k)" Given q(0, t) and q(0, t), equation (1.10) implies r(k).
Conversely given a meromorphic function r(k), one can find q(0, t) and q(O,t) by
solving a RH problem with the jump r(k) for k2 E . This provides an effective
way for deriving pairs of functions q(0, t) and q(0, t) compatible with a given q(x, 0).
Indeed, given q(x, 0), one first computes r(k) for k E I from equation (1.11). Let r(k),
k III be any suitably decaying meromorphic function. Then the solution of the
above RH problem yields q(0, t) and qx(0, t).

Unfortunately, given q(0, t) and q(x, 0), we cannot compute r(k) for k III by
solving a linear problem. This is a consequence of the fact that now we have a
"mixed" problem where one gives "half’ the potential, i.e., q(0, t) and "half’ the
scattering data, i.e., r(k), for k I. It turns out that this problem can be formulated
as a nonlinear RH problem and will be discussed elsewhere.

The study of the large-t behavior of q(x, t) reduces to the study of the large-t
behavior of the RH problem of Figure 1.1. Because the x, t dependence of this RH
problem is rather simple, it is possible to give an effective asymptotic description of
q(x, t) as t - x.

It Was mentioned earlier that the analysis of equation (1.1) requires an essential
use of general PDE techniques. This follows from the fact that in order to study
the map between {q(0, t), qx(0, t)} and r(k), one needs a priori estimates for qx(0, t).
The uniqueness and existence of a global solution for the NLS on the quarter-plane
is established in [13]. This result makes fundamental use of certain equations which
are the analogues of the first three conserved quantities. Therefore, this theory uses

L2 estimates. However, the methods of exact integrability are based on L1 estimates.
It is therefore crucial for us to extend the results of [13] from L2 to L1. This poses
significant technical difficulties. In this paper, following the ideas of [14], we show how
to get L1 estimates for q(x, t) for all t _> 0. The more difficult problem of obtaining
L1 estimates for qx(0, t) is discussed in [14].

There exist certain particular boundary conditions for which the difficulties dis-
cussed above disappear and the problem can be solved by exact methods. Such cases
are discussed in [15]-[20].

It is also worth mentioning that the condition (1.11) is similar to the restrictions
on the scattering data that appear in the boundary problem for the elliptic version of
the sine-Gordon equation [27].

Notation. We will use the following notation: an overbar denotes complex conju-
gation; a+ (k) denotes a function analytic for k C+ (upper half of the complex
k-plane); a-(k) denotes a function analytic for k E C-; +(k) denotes a func-
tion analytic for k I (first quadrant) U III (third quadrant); -(k) denotes a
function analytic for k II (second quadrant) t IV (fourth quadrant); the subscript
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p denotes meromorphicity instead of analyticity, for example ap+ (k) is meromorphic
for k E I tO III; if the matrix A is denoted by A (A+,A-), then A+ (A+,A+2)T
and A- (A-,A)T, denote the first and the second columns on the matrix A;
I 4 diag(1, 1).

Summary of results. In 2, we present the relevant formalism. (a) In 2.1, we
analyze the x-part of the Lax pair, i.e., equation (1.ca). We define the 2 x 2 ma-
trices o(x,t,k) and (x,t,k) as the solutions of equation (1.3a) specified by the
boundary conditions o(0, t, k) I, and lim_+m (x, t, k) exp(ikxaa) I, respec-
tively. We define the matrices (I)(x, t, k) and (x, t, k) by the equations (I)(x, t, k)
o(x, t, k)exp(ikxaa) and (x, t, k) (x, t, k)exp(ikxaa). These functions are ana-
lytic in the complex k-plane cut along Im(k) 0, they tend to the unit matrix as
k -+ oo, and they have unit determinant. Actually, (-, +), and the matrix
(I) ((I)+, (I)-) is an entire function with respect to k. The eigenfunctions (I) and
satisfy certain symmetry conditions involving complex conjugation. We define the
2 x 2 matrix Xp by

(1.12) X;(x,t,k) (V-(.,t, k), -(.,t,)/+(O,t,)),
x+ (,t,) (+(,t,)/+ (O,t,), +(x,t, )),

for k E C- and k e C+, respectively. The matrix Xp has unit determinant and
satisfies a certain jump condition

X; (x, t, k) X+p (X, t, k)F(x, t, k), k e IR,

where F(x, t, k) is a 2 x 2 matrix involving +(0, t, k) and 2+ (0, t, k).
(b) In 2.2, we use the t-part of the Lax pair to analyze b(0, t, k). This function

satisfies equation (1.3b) evaluated at x 0, where C(t) 2ik2a3 We define the 2 x 2
matrices (t, k) and (t, k) by the requirement that they satisfy the same equation as
(0, t, k), and that (I)(0, k) I, limt_+ (t, k) I. These functions are analytic in the
complex k-plane cut along Im(k2) O, they tend to the unit matrix as k --+ oo, and
they have unit determinant. Actually (-, +), and the matrix (}+, (-)
is an entire function with respect to k. The eigenfunctions ( and satisfy the same
symmetry condition as those satisfied by (I) and . We define the matrix Yp(t, k) by

,=+() v()

-(0, t,k), +(t,k) -(0, t k)

for k e I,..., IV, where the scalars ,2+ (k) and p(k) are defined by

(1.15)
s+2 (k) # 2+(0,0, k), k e C+; p(k) . P-(O,k)s+2 (k) (P(O,k)S+l (k),

1+() # ?(0, 0, ), e C+.
k E II;

The matrix p has unit determinant and satisfies a certain jump condition

(1.16)
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where the 2 2 matrix G(k) involves the functions b(k) and c(k), which are defined
by

(c) In 2.3, we formulate an RH problem whose solution gives the solution of the
initial-boudnary value problem of the NLS equation. Let the 2 2 matrix 2p(X, t, k)
be defined by

(1.18)

k C+;
(?)..(t,) 0

(?)l=(t,k) e-2ikx )(?,)**(t,) k C-.
1

Then the meromorphic function 2p(X, t, k), which has unit determinant, satisfies the
RH problem

(1.19)
2; t, (x, t, 2

The jumps of this RH problem are given in Figure 1.1. The possible poles of
2p(X, t, k) can occur only at the zeros of p(k) for k EII and at the complex conju-
gates of these zeros. The additional conditions on the residues of 2p have the usual
"solitonic" form (equation (2.4.1)in 2.4).

In 3, we discuss rigorous aspects of the formalism developed in 2. This includes
finding conditions on q(x, 0) and q(0, t) which guarantee the following:

(i) The linear integral equations for O(x, t, k) and (x, t, k) are uniquely solvable
for fixed t and k.

(ii) The linear integral equations for (t, k) and (t, k) are uniquely solvable for
fixed k.

(iii) The RH problem of Figure 1.1 is uniquely solvable.
The integral equations for (x, t, k), (x, t, k) and for (t, k), (t, k) are of the

Volterra type; therefore, they possess global, bounded, continuous solutions provided
that q(x, t), with t fixed, and {q(0, t), qx(0, t)} belong in L1. Furthermore, under
certain additional L2 conditions, O(0, t, k)-I, (0, t, k)-I, (t, k)-I, and (t, k)-I E

H1 for fixed t. This implies that the jump matrices of the RH problem of Figure 1.1
belong to H1. Also, this RH problem satisfies a Schwartz-reflection symmetry. These
two facts imply its unique solvability [7].

The most difficult part of the rigorous theory involves deriving L1 estimates using
PDE techniques. In 3, we show how this can be achieved for q(x, t) and xq(x, t),
where t is fixed. The analogous but more difficult result for qx(O,t) is established
in [14].

In 4, we use the elegant approach of [11] to study the asymptotic behavior of
q(x, t) as t -- c.2. The formal analysis. We first study the x-RH problem.

2.1. The x-problem. Let the 2 2 matrices (x, t, k) and (x, t, k) be the so-
lutions of equation (1.3a) specified by the boundary conditions (0, t, k) I and
lim__, exp(ikxa3)(x, t, k) I, respectively. The matrix (x, t, k) satisfies the
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Volterra integral equation

(2.1.1) (x, t, k) e- + de-(-)aQ(, t)(, t, k).

The eigenfunction (x, t, k) satisfies a similar equation with fo replaced by -f.
Letting

(...) (x, t, k) (, t, k), (, t, k) (, t, k),
it follows that satisfies the Volterra integral equation

(2.1.3) O(x, t, k) I + de-ik(-)Q(, t)(, t, k)e(-).

This equation, and the analogous equation satisfied by (x, t, k), imply that

= (-,+(.1.
=(+’e =

,I as

This notation is explained in the ingroduction. It is important to notice that, since
satisfies a Volerra integral equation wigh compacg supporg, is an entire function

with respect to k.
The eigenfunctions and have unit determinant. rthermore, they satisfy

cergain symmetry condigions. Suppressing for convenience of writing the , t depen-
dence, hese symmetries e

(.I.Sl

e() e; (), r() ?(, () r(, () =a().

Since he functions and are boh solutions of equations (1.a), they are re-
lated through an -independent matrix. Hence exp(-ika)((O,t,k))-1.
exp(ika). Using this equation and defining by equation (1.12), one finds the
jump condition (1.a), where he 2 x 2 matrix F(, t, k) is given by

(2.1.6)

1 -+(0, t, k)
Fll 1, F22 12+ (0, t, k)l 2’ FI2

+2 (0, t, k)
exp(-2ikx),

and (0, t, k) (0, t, k).

+(0, t, k) x(ek),F2 2+(0,t,k)

2.2. The t-problem. The eigenfunction (x, t, k) satisfies equation (1.3b). Eval-
uating this equation as x ---, cx, it follows that C(t) 2ik2a3 Hence (0, t, k) solves

(2.2.1) Ct(0, t, k) + 2ik2[a3, (0, t, k)] ((t, k)(0, t, k),

where

((t, k) 2kQ(O, t) iAIql2(O, t)aa iQ(O, t)a3.
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The matrix ((t, k) involves Q(0, t), which is known, but it also involves Qx(0, t), which
is unknown. The main idea of [4] and [5] is to solve equation (2.2.1) by formulating an
inverse scattering problem. The analysis is similar to that of 2.1. The eigenfunctions
((t,k) and^ t} (t, k) are the solutions of equation (2.2.1) specified by the boundary
conditions (I)(0, k) I and limt__+ (t, k) I, respectively. In analogy with equation
(2.1.3), ( satisfies the Volterra integral equation

(2.2.3) )(t, k) I + dTe--2ik(t--T)aa(T, k)(T, k)e2ik(t-r)a3.

This equation,and the analogous equation satisfied by (x, t, k) (where f is replaced
by ft imply that

(2.2.4) + ,- - +
,,,--I as k--.

This notation is explained in the introduction. The matrices ( and have unit
determinant, and they satisfy the same symmetry relations as those satisfied by
and (equations (2.1.5)).

It turns out that the following important relationships are valid between (0, t, k),
(t, k) and (t, k)"

kEI;

k E IV,

(2.2.6) +(0, t, k) 2+ (0, 0, k)- (t, k) + +(0, 0, k)+ (t, k) exp(-4ik2t), k e C+,

(2.2.7) -(0, t, k) - (0, 0, k)(+ (t, k) + (0, 0, k)(-(t, k) exp(4ik2t), k e C-,

where I and IV denote the first and the fourth quadrants of the complex k-plane.
To derive these equations, we use the fact that -E-1, +E, -E-1, )-E, t+E,
and (+E-1, where E -exp(2ik2t), are related through equations involving constant
coefficients. For example,

+(0, t, k) c+ (t, k) +-(t, k) exp(-4ik2t), k > O,

where a and 3 are t-independent scalars. Using/3 det(+ (0, t, k), t}+ (t, k)) exp(4ik2t)
and the fact that the rhs of this equation is a + function going to zero as t --. oc, it
follows that/3 0. Then, evaluating this equation at t 0, equation (2.2.5a) follows.
Equations (2.2.5b), (2.2.6), and (2.2.7) are derived in a similar way, where one also
uses the fact that (I) is an entire function in the k-complex plane. We also note that
equations (2.2.5b) and (2.2.7) follow from equations (2.2.5a) and (2.2.6) using the
underlying symmetry conditions.

Let us introduce the notation

(2.2.8) (0) --’. (0, 0, k), (0) (0, k), e exp(4ik2t).
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We define the 2 2 matrix ?p by

(2.2.9)

+(t,k) +(0, t, k))+(o)

(-(O,t,k) +(t’k))(k)

-(t,k) +(0 t,k))(k)

-(t,k))-(o,t, ), -o
for k e I,... ,IV, respectively, where the scalar functions p(k) and (k) are given by

p(k) # 7(0)+2 (0) (0)+ (0), (k) # +2 (0) (0) ’+1 (0) (0).(2.2.10)

In defining ?p, we use when possible (0, t, k) instead of (t, k) and (t, k); the scalars
appearing in equation (2.2.9), are chosen by the requirement that det ?p 1. Since
the det ?p is t-independent, it follows that det I?p 1 for k EII U III. For k E I, the
det ?p is given by

+ +(o) +(o) +(o) +(o)’
where we have used equation (2.2.5a): The rhs of this equation simplifies to 1 using
the 22 component of the equation ()-1 exp(_2ik2ta3)(O)exp(2ik2ta3), i.e.,
equation (2.2.11b),

(2.2.11) -’- ’7’ ’7 (o),

++ + 1+(o)-, ’7 ’+’7 (o).

A similar analysis implies that det ?p 1 for k IV.
The matrix ?p satisfies the following jump conditions"

(2.2.12) ?- (t, a) ?(t, )(t, ), e s;

(2.2.13) k e iI+" 1 22 1, 812 O, 21 -(0)e;2(O)p

(2.2.14) k
(i- (o))(k)

(2.2.15)
(o)1 12 --e- ek e +" ’ +(o)-(o)’ (o) (o)

(2.2.16)
k ]1- 11 1 R1R2, 22 1, 12 -R1e-l, G21 R2e,

where the scalar functions R1 (k) and R2(k) are defined by

(2.2.17) R 1+(o)+ (o) +(o)1+(o)
(o)1+(o) i-(o)+(o)’

R2 + -(0) (0) -(0)-(0)
v7(o)+ (o) ,-(o)+ (o)
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We now indicate how these jump conditions can be derived.
k E R+. Substituting the expression for ]Yp in equation (2.2.12) and using det

det- 1, one finds 11 1, 22 1/2+(0) (0), and

(0) 7 (0)’

Using equations (2.2.5) to eliminate 2+, 1+, -, and - and then using (2.2.11c) and
(2.2.11d), these equations become

(0) (0)
eo

Using equation (2.2.5) evaluated at t 0, these expressions yield the expression for
(12 and G21 given in equation (2.2.15).

k iR+. Substituting the expressions for 17p in equation (2.2.12), one finds

11 1, 12 --0, and

Using equation (2.2.5a) to eliminate 2+ and + and then using equation (2.2.11b), it

follows that (22 1. Using equation (2.2.11d), it follows that (2, (O)e/p+2 (0).
k iR-,k R-. The derivation of the jump matrices defined in equations

(2.2.14) and (2.2.16) is similar to the above and hence is omitted.
The number of independent functions appearing in the above jumps can be re-

duced by using the underlying symmetry conditions. Some of these functions can be
computed effectively in terms of initial data, while the rest, although dependent in a
nonlinear way on the boundary data, can be given an effective characterization in the
k-complex plane.

Let us summarize the main formal results of this subsection.
PROPOSITION 2.1. Let the 2 2 matrix value function p(t, k) be defined.by equa-

tion (1.14). Then p satisfies equation (1.16), where the jump matrices are depicted
in Figure 1.1 with replaced by 4ik2t.

The functions s+ (k) and s+2 (k) defined in (1.15) can be computed in terms of the
initial data q(x, 0). The function c(k) defined in (1.17) depends in a nonlinear way
on the boundary data q(O, t). These functions, which are called the scattering data,
have the following properties:

1. S+l (k) and s+2 (k) are analytic for k e C+; s+ (k) -- 0 and s+2 (k) -- 1 as
k --, .

2.

(2.2.18) Is2+(k)l 2 Als+(k)l 2 1, k 1.

3. c(k) is analytic in II except for possible poles, which can occur at the zeros of
s+2 (k) and at the points {kj }N kj II, which are the zeros of the function
p(k) defined in (1.15); c(k) 0 as k --+ x.

Proof. It is straightforward to derive the jump matrices appearing in Figure 1.1
from equations (2.2.13)-(2.2.16). The jumps on R+, ilR+ follow from the notations
introduced in (1.15), (1.17), the underlying symmetry, and the relation Is2+1-2
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1 Albl 2, which in turn follows from det (0) 1 and the underlying symmetry. The
jump on iR- follows from the underlying symmetry. Taking again into account the
underlying symmetry and the relation det (0) 1, it follows that for k E -,

(k)- (k) 1+()
i-(0) -(0)[+ (0)i- (0) ,+(0) (0)]

+(0)+ (0)i- (0) (0)( + 1+(0); (0))
i- (0)[+ (0)i- (0) +(0); (0)]

1+()+() 1+()+()
-R1.+(0)i- (0) +(0); (0)

Since R2 AR1, this implies the jump on - indicated in Figure 1.1.
The initial data q(x, 0) can be used to compute (x, 0, k), which in turn implies

(0, 0, k). Hence all of the components of (0, 0, k) can be effectively calculated in
terms of q(x, 0). Equation (2.2.18) follows from det (0) 1. Although the scattering
data c(k) depends in a nonlinear way on the boundary data q(0, t), its analytic struc-
ture can be characterized explicitly.’ The large-k behavior ofs1+, s2+, and c(k) follows
from the large-k behavior of pl+ (0, 0, k), 2+ (0, 0, k), , and -. The possible poles
for c(k) appear at the possible zeros of s2+ (k) and of p(k). This completes the proof
of Proposition 2.1.

Remark. If one investigates the direct and inverse problems associated with equa-
tion (1.3b) without assuming a relationship between q(0, t) and qx(0, t), one finds that
the basic scattering data is the reflection coefficient r(k) defined by

1+(o,)(2.2.19) r(k) @2+(0, k)

The only analytic restriction on r(k) is that it is meromorphic in I U III. However, in
our case, since q(0, t) and qx(0, t) are the boundary values of the NLS equation, there
exists a relationship between q(0, t) and qx(0, t). It is quite interesting that although
this relationship is highly nonlinear, its representation in the scattering space is very
simple: r(k) has analytic continuation for k EII. Indeed, equation (2.2.5a) evaluated
at t 0 becomes

1+(0, 0, ) +(0, )
+(0, 0, k) +(o, )’

But +(0, 0, k) is analytic in I t2 II, hence r(k) has an analytic continuation across
iI+. The function c(k) is related to r(k) through the equation

(e.e.e0) (k)
(s2+(k))(1 A :i()-())(),r

2.3. The RH problem. In this section, we formulate a RH problem, whose
solution gives the solution of the initial boundary value problem of the NLS equation.

PROPOSITION 2.2. Let the 2 2 matrix Zp(x,t,k) be defined by equation (1.18).
Then the following hold:

(i) 2p(X, t,k) has unit determinant and it satisfies the RH problem (1.19).
(ii) ,p(X,t,k) is a meromorphic function in the complex k-plane cut along

Im(k2) O. Its possible poles can occur only at the zeros of p(k) for k e II and
at the complex conjugate of these zeros.
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(iii) The eigenfunction q+(x, t, k) and the potential q(x, t) can be obtained from
t,

(2.3.1)
+(x, t, k) 2p(X, t, k)(0, 1)T, k e C+; q(x t)= 2i lim (k2p(X,t,k))12, k E I

k---o

where the subscript 12 denotes the 12 components of 2p.
Proof. For convenience of writing, we drop the subscript p in lY.
(i). We first note that the jump matrix F(x, t, k) defined in equation (2.1.6) can

be written as

(2.3.2) F(x, t, k) ? (t,k) e2ilcx 1 0?(t,)

Now consider the jump conditions for 2p(X, t, k).
k E I+. Equations (1.18), (1.13), and (2.3.2) yield

1

[p+ (X, t, k)]-l (x, t, k)

( 1

where ]Yj (t,k). Equation (1.16)implies

?(t,k) -2ikx )?(t,k)
e

k O.
1

Y22G21 (t, k),

F(x, t, k)
Y

1 0 1

0)( 1 ?-? e-2ikx)1 0 1

G G 112(t,

Using these equations it follows that

[2p+ (x, t, k)]-l (x, t, k)
21 (t, k)e2ikx 1 0 1

e-i(kx+2k2t)aG(k)ei(kx+ukt)a.
k iN+. Equation (1.18) yields

[((x’t’k)]-12;(x’t’k)-- I (1
1

J

0 /? e2ix 1

Equation (1.16) implies

1) G, 12 G21(t,k)
Using these equations, it follows that

( 1
[2; (X, t, k)]--I2 (X, t, k)

21 (t, k)e2ikx 01 ) e-i(kx+2kt)aaG(k)ei(kx+2k2t)aa
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The derivation of the jump conditions for k E 1- and k E iI- is similar to the above
and hence is omitted.

(ii). Let k I. Using the definitions of Xp(X, t, k) and p(t, k) for k G I, i.e.,

(@+(x,t,k) )Xp(X t, l) +2 (0, : tg)
t+ (X t, k) 21 (t, ]) 2A- (t, k) 722(t k) 2+ (0, t, k)

equation (1.18) yields

(2.3.3)

We will show that at the possible zeros of 2+ (0, t, k), denoted by ko,

(2.3.4) O+(x,t, ko) + +2 (t’k) +(x,t, ko)e2 O, ko e I,+ (o)

hence the possible poles of ,p(X, t, k) for k I can occur only at the fixed possible
zeros of s2+ (k).

To derive equation (2.3.4), we first relate +(x, t, k) to +(x, t, k)e2, and to
-(x, t, k)e2ikx through an equation with x-independent coefficients. Evaluating this

equation at x 0 it follows that

(.3.5) +(x, t k)
+(x, t, ) +(0, t, k)
+(0, t, ) -(0,: )- (x, t,), e c+.

Equation (2.3.4) follows from equation (2.3.5) evaluated at k ko. Indeed, when
k ko, 2+ (0, t, ko) 0, hence equation (2.2.6) yields

+1(0, t, ko) 8+2 (ko) (t, ko) - 8+1(ko)+l (t, ko)e-4ikt,

(2.3.6) 0 s+2 (ko)4 (t, ko) + s+1 (ko)(P+2 (t, ko)e-4ik]t, ko e I.

These equations together with det 1 imply b+ (0, t, ko)2+ (t, ko) -s2+ (ko).
Let k II. Instead of equation (2.3.3) we now find

(2.3.7)
kII.

p(k)

Again it can be shown that if 2+ (0, t, ko) 0, k0 II, then

t (t ko) +(x, t, ko)e2ix 0, ko II;(2.3.8) + (x, t, ko) + p(0)

hence the possible poles of p(, t,k) for k E II can occur only at the fixed possible
ro of (). ,qio (.3.8) foo,v from q,,io (.3.) id? , H,
i.e.,

p() (t, k)+ (0, t, ) (t, k)+ (0, t, k).
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The absence of singularities of ,p(X, t, k) at the possible zeros of -(0, t, k) can
be proven in a similar manner; alternatively, one can use the underlying symmetry.

To conclude the proof of statement (ii) it remains to notice that s+2(k) cannot
have zeros in I. In fact, if s2+ (k0) 0 for k0 e I, equation (2.2.6) implies

o+(0, , k0) +(k0)+(, k0), k0 e .
This means

4,+(t,/0) -- 0, t --, +o,

which contradicts det 1 for all t > 0. Taking into account that s2+ (k) participates
in the definition of 2p only in the first quadrant I, we conclude that the function
2p(X, t, k) can have poles only in the quadrants II and III and that these poles occur

at the zeros of p(k) and p(k), respectively. As we will see in 4, this fact implies that
the possible solitons of the initial-boundary value problem (1.1) move away from the
boundary.

(iii). Equation (2.3.1b) follows from the large-k asymptotics of equation (1.3).
We conclude this subsection with a discussion of the appropriate data needed to

solve the RH problem.
PROPOSITION 2.3. The RH problem for 2p is uniquely specified by the following

data, called scattering data: (i) c(k) for k e ]1(- U i+; (ii) S+l(k) for k e I; (iii) the
zeros of s+2 (k) for k e C+; (iv) the zeros (kj}N of p(k) and the residues (cj}N of c(k)
at these poles.

Proof. Indeed, (ii) and (iii) together with equation (2.2.18) yield s2+ through
the solution of a scalar RH problem. Then, c(k), s+, and s2+ specify all the jump
conditions. The possible poles of 2p can occur at the possible zeros of p(k). The
additional conditions on the residues of 2p are given in the next section (equation
2.4.1)).

It is worth mentioning that p(k) 0 for k E i+. Indeed, equation (2.2.5a)
implies that for k i+, s+(k) p(k)+(O,k) and s+2(k) p(k)+2(O,k). Thus
p(k) 0 since s+ and s2+ cannot vanish simultaneously.

Remark 1. The above analysis is valid for the generic situation, i.e., we assume
that all zeros of 2+(0, t, k), of s+2(k), and of p(k) are simple, they do not coincide
with each other, they do not lie on the cross Imk2 O, and there is a finite number
of them.

Remark 2. The function c(k), k I- UiI+, satisfies certain restrictions. Indeed,
since it is the boundary value of a function meromorphic in II and decreasing as
k c, c(k) satisfies the following infinite set of conditions:

M

(2.3.9)
1 c(k’) N c-f

2ri -ui+ j=l "=

or

(2.3.10)
1 jf c(k)(k- 1)-ndk

2ri

N M

E cj(kj- 1)- + E c-f(k- 1)-j=l j--1

where k-, j 1,..., M are the zeros of s2+ (k), and c- are the corresponding residues
of c(k). As a set of independent parameters for c(k), one can take the whole set of its
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poles and the corresponding residues {kj, k, cj, c- } supplemented by

cj c k E R- U iR+(), R ()-
_ _

?j=l ’=

Having {a(k); kj, kf, cj, cf }, one can reconstruct c(k) in closed form. Also, in order
to reconstruct s (k), one needs to know Z(k) 4 Res (k). Thus the set of independent
parameters for our RH problem are

where a(k) and fl(k) are real-valued decreasing functions defined on the whole line,
kj, kf e II, cj, cf e C{0}. In particular, this means that the functional dimension
of the set can be represented by two complex-valued functions defined on the half-line.

2.4. Solitons. It turns out that the zeros of p(k) give rise to solitons.
PROPOSITION 2.4. Assume that p(k) has a finite number of simple zeros for

k II. Let these zeros be denoted by {kj}. Let {cj} be the corresponding residues

of c(k). Then the following hold:

(i) The first column 21) (x, t, k) of2(x, t, k) has a simple pole at kj, j 1,..., N,
and the second column 2)(x, t, k) of 2p(X, t, k) has a simple pole at j, j 1,..., N;
the corresponding residues satisfy the equations

2()(x,t,) o()2()(x,t,), () . e(x + et),
(2.4.1) kj

res 2() (x, t, k) je-()2(1) (x, t, j).
kj

(ii) Equations (2.4.1) together with the jump condition (1.19a) and the asymptotic
condition (1.19b) characterize the function Zp(x,t, k) uniquely.

(iii) The RH problem (1.19), (2.4.1) can be solved as follows: Let 2(x,t,k) be the
solution of an RH problem satisfying the same jump conditions as 2p(x, t, k), but with
c(k) and b(k) replaced by co(k) . c(k)II=l (k- kj)/(k- f) and bo(k) b(k)II=x (k-
)/(k k). This RH problem is regular, i.e., 2(x, t, k) has no singularities in the
complex k-plane. Then 2p(X, t, k) can be found from 2 through the equation

(2.4.2)
2(x,t,)

(kI + BN)(kI + BN-1)"" (kI + B1)2(x,t,k)
0

nj=(_

where the 2 2 matrices B1,..., BN are independent of k. These matrices can be
determined recursively by solving the algebraic equations

(I + e12-(,t,l -e(,tl o,
(2.4.3)

(jI+Bj)2y_l(x,t,y) (-,d(z,t)l )=0,
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where

2j(x,t,k) (kI + Bj)2j_l(x,t,k), j 1,...,N- 1, o 2,

IItN= (k kt)
4ikyt)1,t exp(2ikx +(2.4.4) d(x, t) c IIN= (k )

The RH problem for 2, and the algebraic equations for B,...,B in the focusing
case -1, are always solvable.

Proof. Z(x, t,k) is given by equations (2.3.3) and (2.3.7) for k in the first and
second quadrants, respectively. Since s (k) has no zeros in I, is analytic for k I,
while the first column of 2 has poles for k II at the zeros of p(k), i.e., at the points
k,..., kN, which are simultaneously the poles of c(k). For k i+,

( 1 0)(2.4.5) (x, t, k)
-c(k)e 1

(x, t, k).

Because (t, k) is an entire function, both sides of equation (2.4.5) have an analytic
continuation into the second quadrant of the complex k-plane; moreover, 2(x, t, k)
has no singularities at k,..., kN. This shows that the lhs of equation (2.4.5) has no
singularities at kl,..., kN as well. Similar considerations apply for k III; thus

1p(X,t, k)(_c(k)eo ) and 2p(X,t,k) ( -c()e-O(k)

have no singularities at kj and kj, respectively. This implies equations (2.4.1).
In order to prove statement (ii), we suppose that p(X, t, k) is another solution of

the RH problem (1.19), (2.4.1). The function (k),
1,

has no jumps at k2 . Its only possible singularities (det 2p 1) are at the points
kj and j. For k II, one can rewrite as

(k)=(k)
-c(k)e 1

(k)
-c(k)e 1

which shows that (k) has actually no singularities at k. Similar considerations Nr
k III show that (k) has no singularities at either. These Nets together with

(1.19b) imply that I.
The essence of deriving the statement (iii) is the usual idea of using Darboux

transformations to solve an RH problem with signularities. We need to show that the
function 2p defined through (2.4.2)-(2.4.4) satisfies the RH problem (1.19), (2.4.1). In
fact, by construction, the matrix 2p satisfies the correct jump condition, and 2 I
as k . Also,

() 1(p2) (x, t, k) P(k)(kI -- B)j_l (x, t, k) 01 II/N_-l(k l)’
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where

Pj(k) (kI + By)(kI + BN-1)... (kI + Bj+I).

This yields equation (2.4.1a) as a direct consequence of equation (2.4.3a); actually,
since det Pj(kj) 0, these two equations are equivalent. Similarly, equation (2.4.15)
follows from (2.4.3b).

Due to the underline symmetry of the jump conditions, the regular RH problem
for Z(x, t, k) is always solvable (i.e., there exists a vanishing lemma [7]). In order to
discuss the solvability of the algebraic equations (2.4.3), we rewrite them in the form

kj 0 ) W210 k

(()1 2j_ (x,t kj) 1Wj 2j_l(X,t, kj) -dj(x,t)

This implies that the system of the algebraic equations for the matrices B1,... BN
is solvable iff

(2.4.6) detWy=0, j=I,...,N, Vx, t>0.

For A -1 (focusing case), equations (2.4.6) are always valid. Indeed, the symmetry

(2.4.7) 2(x, t, k) t,

yields the formula

(2.4.S) W1 a2Wla2,

or

(2.4.9) det W1 -I(W1)II2 + I(W1)21] 2,

where (W1)11 and (W1)21 denote the 11 and 21 components of W1. Since det 2 1,
(W1)11 and (W1)21 cannot be zero simultaneously, and equation (2.4.6) is valid for
j 1. The function 21 satisfies the same symmetry condition (2.4.7) as 2, and
det 21 (X, t, k) (k k)(k 1) # 0 for k k2, 2; repeating the above argumen^ts,
it follows that (2.4.6) is valid for j 2 together with the symmetry condition for Z2.
Similar considerations apply to j 3,..., N. This completes the proof of Proposi-
tion 2.4.

In the defocusing case, A 1, the above arguments regarding the solvability of the
algebraic system (2.4.3) are not valid. In this case one has to replace (72 in equations
(2.4.7) and (2.4.8) by al. This implies that the + sign in (2.4.9) is replaced by the
sign. Actually, the asymptotic analysis of 4 suggests that the solvability condition
(2.4.6) does not hold in the defocusing case. In other words, solitons do not exist for

3. Rigorous considerations. We first discuss the x-problem. Let O(x,t,k)
be defined by the integral equation (2.1.3). Let (x,t,k) be defined by a similar
integral equation with f0 replaced by f. If q(x, t) e LI(I+) in x, these integral
equations have continuous and bounded solutions for fixed t and k. Furthermore,
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(I) and have the analytic dependence in k indicated in equation (2.1.4). Also the
Riemann-Lebesgue lemma implies that (I), I as k - c. If q(x, t), xq(x, t) e
LI(+) N L2(+) in x, then (0, t, k) e HI() in k.

In summary, if

q(x,t), xq(x,t) e LI(+)NL2(+) in x,

then the formal results of 2.1 are justified. In particular the jump condition (1.13)
is valid and the coefficients (0, t, k) I of the jump matrix (2.1.6) belong to H1 ().

We next consider the t-problem. Let ((t, k) be defined by the integral equation

(2.2.4). Let (t, k) be defined by a similar integral equation with f replaced by ft.
If q(0, t), qx(O,t) e LI(+), these integral equations have continuous and bounded
solutions for fixed k. Also, ( and have the analytic dependence in k indicated
in equation (2.2.4) and (I), --+ I as k - . Furthermore, if in addition, q(O,t) E
L2(F+) and the first derivatives of q(0, t) and qx(0, t) e LI(+), then (0, k)- I e
L2 for k2 G . Finally, if in addition, tq(O,t), tqt(O,t), tqtt(O,t) L(+), then
(0, k)-IGHlfork2E.

In summary, let

(3.2) v(t) -# q(O, .- q (O, t).

If

(3.3) v(t) e L f3 L2(+), v’(t), w(t), w’(t), tv(t), tv’(t), tv"(t) e L(I+),
then (t,k) and (t,k) exist and are related through a matrix (0, k) such that

(0, k) I H for k2

In 2.2, we formulated an RH problem which involves (0, t,k) in addition to
((t, k) and (t, k). The function (0, t, k) satisfies equation (2.2.1), which is uniquely
determined in terms of v(t) and w(t). On the other hand, (x, 0, k) satisfies equation
(1.3a), which is uniquely defined in terms of u(x) q(x, 0). The equality of (0, t, k)
and (x, 0, k) at x t 0 is guaranteed iff

(3.4) u(0) v(0).

The relationship between (0, t, k), ((t, k), and (t, k) involves the matrices

(0,0, k) and (0, k), which under the assumptions (3.1)-(3.4) belong to H1 and
have the analytic dependence indicated by the appropriate superscripts.

THEOREM 3.1. Assume th.e following:
(i) Equations (3.1), (3.3), and (3.4) are valid.
(ii) All the zeros of 2+2 (O,t,k), of s+2 (k) (defined by equation (1.15a)), and of p(k)

(defined by equation (1.15b)) are simple, they do not coincide with each other, they
do not lie on k2 , and there is at most a finite number of them. The function p(k)
has no zeros if 1.

Then, the 2 x 2 matrix 2p(X,t,k) defined by equation (1.18) has unit determinant
and satisfies, the ump conditions (1.19). The jump matrices are defined in terms

o] (0, 0, k) and (0, k), which satisfy (0, 0, k) I, (0, k) I HI. The matrix

Zp(x, t, k) is a meromorphic function in the complex k-plane cut along Irn(k2) O.
Its possible poles can occur only at the zeros of p(k) for k II and at the complex
conjugate of these zeros. The matrix ,p(X, t,k) can be obtained by solving the RH
problem of Figure 1.1. This RH is always solvable. The solution q(x,t) of the NLS
can be obtained from q(x, t) 2i limk_,(k,p(X, t, k))12, k I.
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Proof. It follows from Propositions 2.1 and 2.2 and the following properties of
the jump matrices: (a) they are H1 functions; (b) their product equals unity, which
guarantees continuity at k 0; (c) they satisfy certain symmetry conditions involving
complex conjugation and transposition. These symmetry conditions imply that there
exists a vanishing lemma [7], i.e., the homogeneous RH problem has only the zero
solution.

The main technical difficulty associated with the scheme presented in this paper
is to find conditions of u(x) and v(t) which guarantee the assumption (3.1) as well as
the assumption that w(t), w’(t)

It was shown in [13] that if

(3.5)

then

u(x) e H2(l+), v e C2(+), and u(0) v(0),

(3.6) t q(,t) is continuous from + into H2(I+)
and

(3.7) tqt(,t) is continuous from + into L2(+).
Following Sung [14], we shall show that under some additional conditions on u(x),
assumption (3.1) is valid.

LEMMA 3.1. Assume that in addition to assumptions (3.5),

(3.8) xu(x) and x2u(x) e L2(+).
Then equation (3.1) is valid.

Proof. We shall first show that the assumption xu(x) e L2(I+) implies that
q(x, t) e nl (+) for fixed t.

The NLS equation and its complex conjugate imply

Iql (q-).

Thus

Ot x2lql2e-dx f x2e-X(q0 -q)dx

-i ez )e   q)ez

[4x]qllqe- + 2sx21ql]qxle-]dx

=4 le-q]lxqe-dx+4 e q Ixqe-ldx.

The maxima of exp(-ex/2) and sx/2exp(-x/2) are 1 and l/e, respectively; thus
the lhs of the above equation is not greater than

4 1+ Iql

Let

(t) @ xq(x,t)e-
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where L(+) indicates L2 in the variable x. Then

(3.9) (1)0t(2)_<4 1+- max
e t[0,)

Assuming that xq(x, 0) e L2(]+) and letting -- 0, equation (3.9) yields that xq(x, t)
e L(+).

Since q(x, t) and xq(x, t) e L(+), the identity

q(x, t)dx [(1 + x)q]
(1 + x)

dx

implies that q(x, t) e L(+).
We shall now show that the assumption x2u(x) e L2(+) implies that x2q(x,t)

e L(1+). Let

Similar considerations as above yield

Ot s + Iql Iq- d a +

Thus if zq(z,O) L(R+), exists, and since zq(z,t) L(N+), it follows that
q(, t) e (+).

4. he asymptotic analyss, in order to determine the large-t behavior of the
solution q(z, t), one needs to study the large-t asymptotic behavior of the oscillatory
RH problem (1.19). The corresponding problem for integrable equations on the full
line was first studied in [8] (see also [9], [12], and the review [10]). A rigorous and
elegant approach to studying the asymptotic behavior of RH problems has recently
been developed in [11]. In what follows we shall use this new approach.

We first study the solution 2(z, t, k) of the regular RH problem corresponding to
the RH problem (1.19) (see Proposition 2.4 (iii)).

THEOREM 4.1. Under the assumptions of Proposition 2.4, the soltioe 2(z, t, k)
of the regular RH problem correspoedie9 to (1.19) satisfies the asymptotic eqatioe

(4.1) 2(x t,k)- (I+O(t-1/2))(5(k))3 t-c 0<A<
x
<B<

uniformly for IIrnkl >_ e > O. The scalar function 5(k) is given by

(4.2)
1 ko ln(1 Alb(k’) Ac(k’)12)dk, k0=5(k) exp

k’- k 4t

Proof. The method of [11] can be thought of as a nonlinear steepest-descent
method. The stationary point and the directions of the steepest descent associated
with exp 2i(kx + 2k2t) are given by k0 -x/4t and Irn(i(k- k0)2) 0, respectively.
This implies that we must deform the original RH problem to one defined on the
above steepest-descent contours (see the solid lines of Figure 4.1). We now discuss
how this deformation can be achieved.

The jump matrix along the positive real axis can be factorized into two triangular
matrices. Using this factorization, we find
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FIG. 4.1.

0 1 ,kbo(k)e 1

Suppose that bo(k) is a rational function with appropriately chosen poles such that
bo(k) is analytic in region 8. Since e- and e are analytic and decreasing in regions
8 and 1, respectively, it follows that the relevant jump matrices can be absorbed into
2- and 2+. In this way, one can eliminate the jump along +. Let co and

(4.4)  o(k)  co(k),

be appropriate rational functions. Then regions 9 and 10 can be handled without
difficulty since the factorization of the jump matrix for k0 < k < 0 still has the
"correct" triangularity. Also, the jumps along the broken lines separating regions 1
and 9 and regions 8 and 10 disappear. However, the factorization of the jump matrix
for k < k0 has the "wrong" triangularity,

0 1 -)foe 1

i.e., the jump matrix involving e- cannot be absorbed into 2+. To overcome this
problem, one introduces the function 5(k). This function is analytic in the complex
k-plane cut along (-cx, k0]; along this cut, it satisfies the jump condition

(4.6) 5+(k) 5_(k)(1 Alb(k) A(k)12), k e (-,k0].
This jump is precisely chosen by the requirement of reversing the triangularity of the
jump along (-oe, ko). Indeed, if

(4.7) I?V(x, t, k). 2(x, t, k)(5(k))-3

and if G denotes the jump matrices associated with 2, then the jump matrices asso-
ciated with are given by Go 53G5-. The jump matrices of the RH problem

(4.8) -(x, t, k) I?V+ (x, t, k)Go(x, t, k), k2 e , l - I, k - x,
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possess the correct triangular factorizations:

Ao(k)5-2(k)ee 1 0 -b(k)52(k)e-el )’ k E l+,

1
ao(x,t,k)

0

ro(k)52(k)e-O ) ( 1

1 -0(k)6-2e

0 ], k e [ko, 0],
1

Go(X, t, k) _o()5_.()
el_lro()l 1 0

1-lr(k)12 k < ko,
1

where 6+(k) 5(k + i0), k E . The first two equations above follow from equations
(4.3) and (4.5). For the derivation of the third equation above, we use equation (4.6)
and the fact that Ib(k) (k)] Irol (see the definitions of b0 and co in Proposition
2.4 (iii)).

The triangular factorizations of Go imply that the jumps along the real axis can
be eliminated. The jump condition along the broken line separating regions 2 and 3
is given by

( 1 0)?- =?+
C05--2e0 1

this shows that the jump matrix can be absorbed into I/+. The proof continues
similarly for the jump along the broken line separating regions 6 and 7. Hence, the
function

(4.9) X(x, t, k) I?V(x, t, k)K(x, t, k),

where K(x, t, k) is given by

bo([c)5-2(k)e 1 co(k)5-2(k)e 1 0

o(,), )-o()o(i (/)e-e
1

_A ro() 5-2(k)e 1 0 1
1-- ,kro (k)ro ()

0 1 Aro(k-)-2(k)e 1’0 1

for k 1, 2,..., 9, 10 respectively is a sectionally holomorphic function satisfying the
RH problem depicted in Figure 4.2 (also X --* I as k oc). The IH problem for
X(x, t, k) has the crucial property that its jump matrices decay exponentially to the
identity away from the stationary point k0. This, just like the classical steepest-
descent method, implies

X(x, t, k) I + O(t-1/2
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FIG. 4.2. The deformed RH problem arising in the asymptotic analysis of the initial-boundary
value problem of NLS. The x, dependence enters only through 0(x, t) 2i(kx + 2k2t) and 5
5(k; ko), ko -x/4t.

for k away from k0. Indeed, if F and (0 denote the contours and the jump matrices
of Figure 4.2, then

1
(4.11) X(x,t,k) I + k’

for k not on F. Taking into account the a priori estimate [X+ (x, t, k)l <_ const and
using the classical Laplace’s method to the integral of the rhs of equation (4.11), one
finds equation (4.10).

This concludes the proof of Theorem 4.1 in the case that b0 and co are rational.
The general case can be reduced to this case following the construction of [11].

Remark 4.1. In the solitonless case, 2p Z, and Theorem 4.1 givesthe asymp-
totic solution of the RH problem (1.19). Using equation (2.3.1b), which relates q(x, t)
to 2, and the asymptotic relation (4.1), it follows that in the solitonless case,

(4.12) q(x,t)=O(t-1/2), t--, 0<d<-X <B.

We now consider the case that poles {ky }N do exist. We assume ,k -1.
THEOREM 4.2. Under the assumptions of Proposition 2.4, the solution ,p(X, t, k)

of the RH problem (1.19) satisfies the asymptotic equation

(4.13) p(X,t,k) (I+O(t-1/2))s(x,t,k)(5(k))
uniformly for IImkl >_ > O. The scalar function 5(k) is defined in equation (4.2).
The matrix function 2s(x, t, k) is given by the algebraic equations (2.4.2)-(2.4.4) with

-1,
Proof. Equation (4.13) is a direct consequence of Proposition 2.4, Theorem 4.1,

and the equation 5(kj)
Remark 4.2. The function 2s is nothing but the matrix eigenfunction correspond-

ing to the pure N-soliton solution q(x, t) of the NLS equation with parameters {kj }1N
and {c(5(k))-2}N. This implies that

(4.14) q(x, t) qs (x, t) + O(t-1/2 ).
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Using the well-known formula for the N-soliton solution of the NLS (or the algebraic
system (2.4.3) directly), one can easily extract from (4.14) the asymptotics of q(x, t)
along the soliton rays, given in (1.4) and (1.5).

Remark 4.3. Just as in the classical steepest-descent method, one can improve
estimate (4.10) by calculuating the contribution from the stationary point k0 in closed
form. It turns out [12] that the corresponding model RH problem can be solved
explicitly in terms of parabolic cylindrical functions. The analysis is similar to that
for the full-line problem presented in [10]. This leads to the following formula for the
dispersive part of the asymptotics of q(x, t):

(4.15)
X--1/2 exp { ix2- io x} 2),q(x,t)--0 (’---)t 2i02 (--tt)logt (--) O(t-1/

where the amplitude a and the phase o are given by

1
log[1 + ]b(k)+ c(k)]2],(4.16a) a2(k)

371"
 0(k) + + +

k N

(4.16b) + arg r(-2iae(k)) + 4f log I# k]d2() + 2 arg(kj k)sign(j k).
j=l

Remark 4.4. One can use equation (4.16a) to replace log[1 + [b(k) + c(k)[ 2] in
the integral terms of equations (1.5) by 4va2. This shows that these terms indeed
represent the interaction of solitons with the dispersive part.

Remark 4.5. In the case of the NLS on the full line, one can use equations (4.16)
to solve b and c in terms of c and 0. However, in our case, this cannot be done since
to define b and c, one needs two real functions defined on the whole linear (see Remark
2 in 2), while a and 0are real functions defined in the half-line. This is a reflection
of the fact that the information traveling towards the boundary is lost as t . In
the case of zero initial data, waves travel away from the boundary, no information is
lost asymptotically, and the asymptotics of q(x, t) can be used to recover c and hence
q(O,t).
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STABILITY OF THE BUNSEN FLAME PROFILES IN THE
KURAMOTO-SIVASHINSKY EQUATION*

DANIEL MICHELSONt

Abstract. The stability of the conical stationary solutions of the Kuramoto-Sivashinsky equa-
tion ut + A2u + Au -t- 1Tul2 c2 in one and two space dimensions is studied. It is shown that these
solutions are unstable in the whole space. Next the problem is studied in the one-dimensional (1D)
case in a bounded interval Ixl _< and in the 2D case in a disc 0 _< r < with natural boundary
conditions. It is proved that for a large slope c the above stationary solutions are stable. In the 1D
case part of the proof is computer assisted.

Key words. Bunsen flames, Kuramoto-Sivashinsky equation, computer-assisted proofs

AMS subject classifications. 34A34, 34A45, 35A50

1. Introduction. It was shown in [2] and [3] that the Kuramoto-Sivashinsky
equation

(1.1) ut + A2u + Au + IVul 2 c2, u u(x, t), x E R or x E R2

possesses stationary conical solutions. In the context of combustion theory these
solutions represent Bunsen flames on infinite linear or circular burners. From the
mathematical point of view, in the one-dimensional case these are the solutions of the
ordinary differential equation (ODE)

(1.2) y,, + y, c2 y2, y(x) u’(x), -oc < x < x,

which satisfy the boundary conditions

(1.3) y(+/-c) mc

and in the two-dimensional case these are the radial solutions u(r) of the ODE

(1.4) r+-r +-r y+ + y= y(r)= (r),

with the boundary conditions

(1.5) y(0) y"(0) 0, y(c) -c.

In [2] it was proved analytically that for large c the problem (1.2), (1.3) has an odd
solution. The result of [7] implies the uniqueness of a bounded solution of (1.2)
for large c. Problem (1.4), (1.5) is apparently not amenable to analytical treatment.
Nevertheless, the existence of solutions for (1.4), (1.5) was established in [3] for 0.27
co < c _< c by a rigorous computer-assisted proof. The uniqueness for large c (for
small c uniqueness is not expected) was not proved; however the computer program
verified the following transversality condition.

Transversality condition. Let y0 be a solution of (1.4), (1.5) such that

 0(0) 0

*Received by the editors August 27, 1993; accepted for publication (in revised form) August 24,
1994.

tDepartment of Applied Mathematics and Computer Science, Weizmann Institute of Science,
Rehovot 76100, Israel.
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and let y be the solution of the linear problem

[(d2 l d)(d 1)(d 1) 1(1.7) n Yo Y r + -r -r -r + -r + r + -r + 2yo y 0,

(1.8) y(0) y" (0) 0, y’(0) 1.

Then, for large r the vector (r) (y(r), y’(r), y"(r)) is transversal to the stable
two-dimensional manifold A2(r) of the flow defined by (1.7).

Note that the condition y(0) y"(0) 0 is imposed because we wish the cor-
responding u to be a solution of the partial differential equation in the plane. The
above transversality condition was shown to hold for the computed radial solution
yo(r) in the range co < c _< oc. Our yo(r) is negative for r > 0. In [4] the computer
also checked that for large c

(1.9) yo(r)/r + yo(r) < 0 for r > 0.

We conjecture that the above condition defines Yo uniquely. In the 1D case the
transversality and the negativeness of yo for large c is proved analytically (e.g., see [6]).

Thus we take the existence of yo and the transversality condition for granted and
pose the following question: is the corresponding solution uo(x) stable in .the sense of
the evolutionary problem (1.1) with a fixed c? Since in [4] it was shown that rotating
solutions bifurcate from uo, the answer should be negative. Actually, uo turns out to
be linearly unstable also in the space of radial functions. The precise statement is as
follows.

THEOREM 1. For each s in the domain T

{ /Ims 2

(Ims)
4 }(1.10) :D- sCI0<]Ims1<2c,0<Res< \]

the eigenvalue problem

+ zx + zx + N 0, e

has radial ezponentially decreasin9 solutions. In the 1D case the correspondin9 fnc-
tion v(x) depends on z R and is even.

As follows from the general theory of linear parabolic equations, the Cauchy
problem for (1.1) when linearied at 0 is well posed in a proper sense. Let the initial
condition in (1.1) be 0 + ere v, where v is the eigenfunction in (1.11). Since the
nonlinearity in (1.1) is weak, one can easily prove that the difference -0 will grow
exponentially in time for t _< const, log e-.

Yet, numerical experiments show that the Bunsen flame profiles are stable for
large c. The reason for it is the boundedness of the domain of z. Hence we consider
(1.1) in a bounded domain

(1.12) Ft’0_<r_<10in2D or Ixl_<10 inlD.

Let u0 be the conical stationary solution of (1.1) in R2 or R1. We will impose the
following boundary conditions:

(1.13) u u0, Au Au0 at OFt
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or another pair

(1.14) u u0, u u0 at 0t2.

In the 1D case Au is replaced by uxx and u by ux. It is also possible to set similar
boundary conditions that are independent of u0

(1.15) u=0 and An--0 atcOt

or

(1.16) u--0 and u--c at

In the latter case one should first find a stationary radial solution 0 that satisfies
(1.15) or (1.16) and then study its stability. In the 1D case for large c we will consider
more general nonlinear boundary conditions

where

and S+ Ca --. C2 are smooth mappings that satisfy

(1.19) S+(u,u’, -S_(u,-u’, ,-u’") and S+ (0, -1, 0, 0) 0

so that (1.17) is invariant under the transformation x --+ -x. We will assume that
the differential dS+[0,-1, 0, 0] of S+ at (0,-1, 0, 0) satisfies the Lopatinsky condition
for the equation

d4u 2du
(1.20)

dx4 dx
su 0, Res >_ 0.

Namely, let /3, 4 be the two roots of the equation

(1.21) 4 2 + s 0, Res _> 0

in the half-plane Re _> 0. Then we request that the vectors

(1.22) dS+ [0,-1, 0, 0]. (1, Ai, A/2, A/3)T, 3, 4

are independent for all Res _> 0.
Concerning the existence of a stationary solution we will prove the following result

in 3.
THEOREM 2. Under the transversality condition, (1.1) with boundary conditions

(1.15) or (1.16) and large loc1/3 has a stationary solution to close to no. The same
result applies to the 1D problem with boundary condition (1.17) and large c and 1.

Concerning the stability of the stationary solution we will prove the following
main result.

THEOREM 3. For each lo > 0 there exists c*(lo) such that for c > c*(lo) the
stationary radial solutions no(r) and to(r) are asymptotically stable in the sense of
the corresponding evolutionary problem for (1.1), with boundary conditions (1.13),
(1.14) and (1.15), (1.16), respectively. In the 1D case the same result holds for the
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boundary condition (1.17) and c > c*,loc1/3 > l*, where c*,/* are some constants
independent of lo.

The stability of the stationary solution for large c is linked to the eigenvalue
problem

(1.2a) s+zX+2or v=0, v=v(z), zelorxR,
where o is the solution of the equation

(1.e4) + 1-rrr rr y2, (0) 0, y

and in the 1D case, the solution of

(1.) ’"= 1 , (0) "(0) 0, () -.
In the 2D case, (1.23) has no exponentially decreasing solutions as Ixl --. cx with

Res _> 0. This follows from the property (1.9) of Y0. In the 1D case we would need
y(x) < 0 for x > 0 but this is not the case. Therefore we need the assistance of a
computer. The proof is carried out in interval arithmetic and is completely rigorous
module human or hardware errors. In 5 we show how to restrict problem (1.23) to a
finite domain of s" 0 _< Res _< .164, 0 _< Ims _< 1.6. Due to its length (about 800 lines,
not counting the interval arithmetic library) the computer program is not included,
but it can be obtained from the author upon request.

2. Instability in the unbounded domain. Since we are mainly concerned
with the case of large c, it is convenient to rescale problem (1.1) as follows:

(2.1) Unew C2/3Uold, Xnew cl/3Xold, tnew C4/3told

Then (1.1) becomes

(2.2) ut + A2u + aAu + [Vu] 2 1, 0 <_ a c-/ <_ ao.

The corresponding eigenvalue problem is

(2.3) sv + Av + aAv + 2U’oV 0,

where y0 u is the solution of

(2.4)
+ -rrr rr + Y + a rr + -r

y(O) y"(O), y() -1.

y= 1-y2,

In the 1D case the equation for Y0 is

(2.5) y"’+ay’=l-y2, y(O)=y"(O)=O, y(oc)=-l.

As x -. x the limiting characteristic equation is

(2.6) s + + aA2 2 O.



STABILITY OF THE BUNSEN FLAMES 769

For large Isl with Res > 0, two of the roots of (2.6), say A1, A2, have negative real
parts and two, 3, 4, have Re A > 0. If iw is imaginary, then s lies on the line

8 --02
4 --0022 -- 2iTand for 0 < Iwl < o1/2 the corresponding s has Res > 0. Denote by :D the domain of

s bounded by the above line and Res 0,

{ (I s Ims
(2.8) s e CI0 < IImsl < 2a/, 0 < Res < a

This is nothing but the domain 7) defined at (1.10) in the transformed variables. It
is easy to see that for small s E 7:), (2.6) has three roots, A1, A2, A3 with Re A < 0 and
one A4 with Re A > 0. By continuity this result holds for all s E T) while for s outside
7) and with Res > 0, (2.6) has two roots A,A2 with negative and two roots A3, A4
with positive real parts. Now, fix s T). First consider the 2D case. Equation (2.3)
for a radial function v(r) becomes

(d2 l d)
2

(d2 l d) dv
(2.9) sv + + -r-r v + a + -r-r v + 2yO rr =0
with initial conditions

(2.10) v’ (0) v"’ (0) =0.

The function Y0 has an asymptotic expansion

(2.11) Y0 -1 + E bir-i’
i--1

bl -a/2, b2 c2/8

(see [3, (3.21)]). In the case when all roots Ai of (2.7) are distinct and have different
real parts, (2.10) has four independent solutions v with asymptotics

(2.12) vi(r) er E hint-n"
n--O

In our case A4 is always distinct and has a distinct real part, but ,1,/2,3 may
have multiple real parts, e.g., Re A Re ,2 for Res 0. Still, one can choose
four independent solutions such that vl, v2, v3 are exponentially decreasing while v4
is exponentially increasing (actually, va is as in (2.12)). In the neighborhood of r 0,
yo(r) could be expanded into converging power series with odd powers of r (see [3]).
This implies (see [4]) that the solution v of (2.9), (2.10) in a neighborhood of r 0
could be expanded into a series

(2.13) v(r) E anr2
n--O

where ao and a are free parameters. We can choose two independent solutions 1 and

2 by selecting pairs ao 1, a 0, or ao 0, al 1. Since i aj=l cijvj, 1, 2
we can select a linear combination k191 --k292 such that is a linear combination
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of vl, v2, v3 only. Thus, for any s E T) we obtain a solution v of (2.9), (2.10) that
decays exponentially at infinity.

In the 1D case Y0 approaches -1 along the stable 2D manifold defined by (2.5)
(see [2]) and has the asymptotics

(2.14) yo(x) --1 t_ O((xReAo),
where A10 is the root of the equation

(2.15) A3 + aA 2 0

with Re A < 0. Again we have four independent solutions vi(x) of the equation

day dv dv
(2.16) sv + +a + 2yo 0

with va exponentially increasing and v, v2, v3 exponentially decreasing. The solutions
1, 2 that satisfy (2.10) will be defined by initial conditions (0) 1, (0) 0
and 2(0) 0, g(0) 1. Again we obtain a linear combination kll + k22
that decays exponentially as x . This completes the proof of Theorem 1.

3. The existence of a stationary solution in a bounded domain. Let us
consider a more general situation. Given a system of ODEs in R

(3.1)
dx
d f(x, t-l), t0 t < ,

where f depends smoothly on x and t-, and

(3.2) f(0, 0): 0, dxf(O, 0)= (10 M20 ) 1 > 0, Re M2 < 0.

Let xo(t) be a solution of (3.1) that tends to 0 as t . We are looking for a solution
of the problem

(3.3) x’ f(x,t-1), to t tl, x(to) e , S(x(tl),t) O,

where ? ?(p) is a smooth curve in Rn with 7(0) xo(to) and S" Rn x R R
is a smooth map in a neighborhood of zero with S(0) 0. It is assumed that 7’(0)
is transversal to the stable manifold n-1 (t) of the system (3.1) at t t0 and that
dS(O, 0) does not vanish on the eigenvector el (1, 0,..., 0)T of the matrix df(O, 0).

LEMMA 3.1. Under the above conditions, problem (3.3) for a suciently large t
has a solution x(t) such that

t eX(t_tl(3.4) Ix(t) xo(t)l < K IS(xo(tl),t ),

where K does not depend on t and m is a constant (to be defined later).
The proof is bed on a standard normalization procedure for the solution map

[t0,t] x(to) x(t) in a neighborhood of xo(to). Let us partition vector x as
x (Xl,X2),Xl R1, x2 Rn-. Without loss of generality we may assume that
the stable manifold ,_(t) is given by the equation Xl 0. Then the differential
A(t-1) df(xo(t), t-) has the block triangular form

(3.5) A(t-1)
A21 A22
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Since the function xo(t) has an asymptotic expansion

(3.6) xo(t) clt-1 + c2t-2 -- clt-1 + O(t-2),
the entries of A(t-1) are

(3.7) al ,1 + mt-1 + O(t-2),
Now normalize the variables

(.s) x(t) xo(t) + 5c(t)p(t, tl),

System (3.1) becomes

A21 O(t-1), A22 M2 + O(t-1).

p(t, tl) el(t-tl)

(3.9) ’(t) (t-1) +
where Z] has the same form as in (3.5) but with

(3.10) 1 O(t-2) and A22 /2 + O(t-1) M2 )11 -}- O(t--1).
Solve (3.9)on an interval t e [t*,tl] with.given 2(t*). Let us represent the solution as

(3.11) (t) e()(t-t*)hc(t*) + A(t), A2(t*) 0.

Then A2 satisfies

(3.12)
A’= .(t-1)A + (0, O(t-1))T(t*) + O(t-2)(t*)

+ p(t, tl)O([:[ 2) (t-1)/k + g.

Note that

(3.13) Re A(t-1) <
0 -cI

Multiplication of (3.12) by A2 and integration over the interval I It*, t] yields

(3.14)
2

cxlA(t)l -cllAll22 + KIIt-IIIlIAlll + IlgllllllAlllo
/ IIg2i1211A2112,

where [l" lip are the Lp norms on I and g (gl, g2) is partitioned according to x.
Hence, for t* > (4K) -1,

(3.15)
llAllo K(llgllll + llgll) K((llt-2lll + llt-ll)l(t*)l

/ llp(t, tl)lll(llAIIo / l(t*)l)2).

It is easy to see that the norm lip(t, tl)l]l is uniformly bounded for all to _< t*< tl < oo
while Iit-2111, Iit-1112 - 0 as t*,tl -+ 00. Thus, for small 12(t*)l < 77, and large t* _> t
(3.16) IIAII < K((t*)-llel2(t*)l + I(t*)l)
uniformly in tl. Now, if we differentiate (3.11), (3.12) with respect to the initial vector
(t*) and proceed as above, we obtain

(3.17) IIOA/O(t*)llo

_
K((t*)-1/2 4-I(t*)l).
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Thus, for large t* the map

(3.18) [t*, t] 2(t*) --+ (t)

in the neighborhood of 0 approximates in the C norm the linear map exp(fi.(0)(t-t*))
uniformly in the parameters t* _< t <_ t < .

Now return to the problem in (3.3). Rescale the curve 7(P) as

(3.19) p(to, tl )-lp, /() (p(to, t )- (/(p) 7(0)).

By the transversality assumption ’(0) "’(0) has a nonzero component (0). With-
out loss of generality we may assume that to coincides with t. Denote by (i5, t) the
curve

(3.20) (i5, t) [t0, t](i), ’ (’1, ’2).

It follows from (3.11) and (3.17) that

(3.21) 1(i5, t)l _< c,l (5, t)l, ’ 0/05

for all 1i51 < 51, where cl and 51 are independent of t and tl. It follows then again
from (3.11), (3.16), and (3.17) that for any e > 0 there exist 52 and t2 such that for
t2 <_ t <_ t and 1i5[ < 52

(3.22)

Since for large t*, d[t*, t], when restricted to the first component, is close to identity,
therefore

(3.23) I’ (5, t)l > 3 for all 151 < 2 and t2 < t < tl.

The problem in (3.3) could be rewritten as a single equation

(3.24) S(xo(tl) + (,tl),t1) O.

Recall that xo(tl) O(tl). We can apply to (3.24) the implicit function theorem
where t-1 0 serves as a parameter. Indeed,

dxS(xo(tl +
(3.25)

(dxS(O,O) + O(ll,tl))z(,tl)(el + O(e))

is for small [15[ and t{-1 of a constant sign and bounded away from zero. Hence, (3.24)
has a locally unique solution

(3.26) i5 O*(S(xo(tl),tl)).
The corresponding trajectory x(t) xo(t)+ p(t, tl)zy(,t) then satisfies estimate
(3.4).

The above lemma obviously applies to the equations in (2.4) and (2.5). The
vector x (y,y’,y")T,t X, or t r. The curve 7(P) is given by the vector x(to)
corresponding to the initial condition y(0) y"(0) 0, y’(0) p0 + p. In cases
(1.15) and (1.16)the value of S is (d/dr +r-1)y(r) and y(r)+ 1 correspondingly. The
eigenvector el corresponds to x (1, A3, A)T where A3 21/3 is the positive root
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of (1.21) for s 0. Clearly the condition d=S(0, 0)el 0 is satisfied. In the case of
the general boundary condition as in (1.17) one should eliminate the first component
u, since u f y dx is defined up to a constant. Since the Lopatinsky condition
is assumed to hold also for s 0, we obtain that the vectors d=S+. (1,0,0,0)T
and d,S+. (1,3,32,,33)T are independent. Let be a row vector orthogonal to
d,S+(1, 0, 0, 0)T. Then the boundary operator S . S+ will satisfy the conditions
of the lemma. Finally, note that all estimates of Lemma 3.1 apply uniformly to (2.4)
and (2.5) for all 0 _< a _< a0. In particular the lower limit for tl loc1/3 could be
fixed for all a as above.

In the radial case the value of S(xo(tl), t-1) corresponding to y0 as in (2.11) is

(.) () + 0()/ -- + o(-)
in the case of (1.15) and

(.2s) vo() + 1 __-1 + o(-)

in the case of (1.16). In the one-dimensional case, as follows from (2.14),

(.2) . s(o, v(), v:’(), v,"()) O(e).
By (3.4) the derivative o of the stationary solution o will satisfy in the radial
case

(3.30) Io()- o()1 < Kt--(-)(-), 0 <_ <_ t,

where ,30 is the positive root of (2.15) and 6 > 0 is arbitrarily small while K depends
on 6 but not on and a. Here and elsewhere we denote by the vector

(3.31) (y, y’, y").

In the 1D case

(3.32) I0(x)- 0(x)l < KezRl" e-(3-5)(z-r), 0 <_ x _< 1.

If we make o(r) and uo(r) coincide at r l, then the difference 0(r) uo(r)
ff(Yo(r)- yo(r))dr will satisfy the same estimates as in (3.30) and (3.32). This
completes the proof of Theorem 2.

Recall that the function yo satisfies (1.9). In the next section we will need the
same inequality for )o.

LEMMA 3.2. In the radial case the function rio for small a and large satisfies

(3.33) flo(r)/r -t- lto(r) 0 for 0 r 1.

Proof. First consider the case of the boundary condition (1.16). In view of (3.28)
we can replace the constant K in (3.30) by K(a +/-1). Since yo(r) + yo(r)r- has
the asymptotics -r- + O(r-2) it follows that for r sufficiently large, say r _> r0 and
small a +/-1, inequality (3.33) holds. Now, for 0 _< r _< r0,

(3.34) 1(9o(r) yo(r))r-1 qt_ (9o(r) yo(r))’ 2 sup 195() yS(:)l
0_<_<r

and is estimated by the right-hand side of (3.30). Since at the same time yo(r)r-1 +
y(r) < -6 < 0, for large we obtain (3.33).
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In the case of boundary condition (1.15), the operator S d/dr + r-1 when
applied to )o vanishes at r 1. In the notation of Lemma 3.1 the vector $0 is
represented by x(t)

(3.35) x(t) xo(t) + p(t, tl)(e()(t-t)(to) + A(t)).

By (3.16) and the block form of A in (3.10), it follows that for large t0,AS(t) and
A’(t) are o(Sc(to)). Recall that by (3.21), (t0) 0(5c1(to)). Now apply to (3.35)
the operator S(., t-1). For tl >> to we obtain

(3.36) S(x(t),t) S(xo(t),tl)+dxS(O,O)e(to)+o(l(to))=0.
Here S(xo(tx),t 1) equals yo(tl)t + y(t) -t + O(t-2) < 0 and hence
dxS(0, O)e2(to) t-(1 + o(1)) > 0. The derivative with respect to t

S(x(t),t-1)’-- S(xo(t),t-1) + p’(t, tx)(dxS(O,O)e(to)
+ o((t0)))+ p(t, tl)o((to)).

Now, S(xo(t), t-l)’= t-2 + O(t-3) > 0, and

(3.38) p’(t, tx) p(t,t)(/kl + mt-1) > 0 for large t.

Since p(t, tl) p’(t,t) and 12(t0)l 12(t0)[ IdxS(O,O)el(to)l, the above deriva-
tive is positive and hence S(x(t), t-x) < 0. Thus (3.33) holds for r0 <_ r _<l where r0
is large but independent of 1. The range of 0 <_ r <_ r0 is treated as before.

4. The stability of the radial stationary solution. Let o(r) be the radial
solution found in the previous section. Namely, 0 fi (r) is a solution of the equation
in (2.4) with initial condition o(0) /(0) 0 and boundary conditions (1)+
r-o(1) 0 in the case of (1.15) and 0(l) -1 in the case of (1.16). We assume
that 0(r) satisfies estimate (3.33). We will study the eigenvalue problem

(4.1) (sI +

where f is a disk r _< l, with boundary conditions

(4.2) Av v 0 at

or

(4.3) vr v 0 at 0.

Denote by the unbounded operator L that acts in the space of functions that satisfy
the boundary conditions (4.2) or (4.3). Our main result is the following theorem.

THEOREM 4.1. For a c-2/3 and loc1/3 with lo and c as in Theorem 3 the
spectrum a(-) lies in the half plane Res < -50, where 50 > 0 depends on lo but not
on C > C*.

Note that (4.1), (4.2) and (4.1), (4.3) are well-posed elliptic problems that satisfy
the Lopatinsky condition. The adjoint problem is

(4.4) (I + )v ( + A2 + aA -r- 0 ) v=0
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with the same boundary conditions as for the direct problem. Hence we should only
check that both the direct and adjoint problems have no eigenvalues with Res _> 0.
Moreover, since for large positive s both operators sI + and (sI + )* have zero
kernel, the index of sI + is zero and, by continuity, it remains zero for all s. Hence
it is enough to show that problems (4.1), (4.2) and (4.1), (4.3) have no nontrivial
smooth solutions with Res > 0.

For that sake multiply (4.1) by v in L2(t) and take real part. We obtain

(4.5) aes Ilvll 2 + II/kvll 2 -allVvll 2 +/ft(-0r-1 -)]v]2 0,

where ]. is the usual L2() norm. The imaginary part of the product yields

(4.6) IImslllvl 2 2110llllvll. llVvll IIoll(billvl 2 + blllVvll2).

Multiply both sides of (4.6) by b2 and add to (4.5). We obtain

(Res + blIms b2blllol[)llvll (a + b2brlllol)llVvll
(4.7)

+ (-or-1 -)lvl2 + IIvll 2 o.

Recall that by Lemma 3.2 the last integral is positive. Since our problem does not
depend on the polar angle we may assume that

(4.8) v(x) invn(r).

Recall that v vanishes on 0. Hence

)(4.9) Ilvll (1/A,l)llVVnll (l/n, IIvll,
where A,I i8 the first zero of the nth Be88el function J(r). Therefore

(410) llVvll <zllll -Zo,lllll < 1111
provided

(4.11) n /n,1 > 10.
Thus (4.5) implies that v 0 for n as above and any s with Res _> 0.

Now let bl and b2 in (4.7) be bl a1/2, b2 c3/2/110[[. Then we obtain

(Res + 3/1Im81/11o11 e)llvll e 2llVvll / IIAvll _< 0.

But if

(4.13) Res + a/lImsl/ll011 > 2e

the left-hand side of (4.12) is positive. Thus it remains to study the eigenvalue problem
(4.1) for v as in (4.8) with bounded

(4.14) n _< no 10xfl
and s in a neighborhood of zero. For this sake we will need the following elementary
result.
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LEMMA 4.1. Given a system of linear ODEs

(4.15) x’(t) A(t,p)x(t), x(t) e Cn, to <_ t < oc

A(t, p) has a form

A(t, p) A() (p) + AA(t, p),

where

(4.18) ReA) (p) _< #1 < #2 ReA (p)

and partition the vector x (x) according to the above blocks. Then, for any 1,

there exists tl such that the space X of solutions of (4.15) for t >_ tl splits into
direct sum X XI (R) XII with the following properties:

(i) if x E X then

(4.19)

(ii) if x XH then

(4.20) [x(t)[ <

(iii) the restrictions X(t),XiI(t) of XI, XII to any t e It1, c) depend continu-
ously on p at p O.

Proof. By substitution x(t) -- x(t)et’t we may assume that #1 0 #2. Let x(t)
be a solution of (4.15) that tends to 0 as t --. (x. Multiply both sides of (4.15) by Rx
in L2[t, ) where R cI (-I) and take real part. We obtain

1 c
(4.21) XII(tl)2 + min(--c,2)[[x < [xI(tl)] 2 + [[AA] [[X]] 2

where ]]. lip is the Lp[t, ) norm. Take c < e and tl large enough so that ]]AAJJ <
min(-cp p2) Then [xH(t)[ < ex(t)] for all t > t and the solution x(t) is

uniquely determined by xi(tl). The existence of a solution in L2[t, ) for any xi(tl)
could be proved by iteration scheme (d/dt- A()(p))x() AAx(-1). The second
inequality in (4.19) follows from the estimate

i
,l x (t)l + Ix(t) 

(4.22) 2 dt

(,1 + +
provided IIAAII(1 + el) < 52. Thus X1 is identified with the space of the above
solutions x(t). Denote by x(.,p) G XI the solution of (4.15) with given xi(t) a
and consider the difference Ax x(., p) x(., 0). Then Ax satisfies

(4.23) (Ax)’ A(t, 0)Ax f (A(t, p) A(t, 0))x(t, p).

By applying to (4.23) the same procedure as in (4.21) we prove that IAxzi(tl)l - 0 as
IIA(., p)- A(., 0)I1 0. Hence X(t) depends continuously on p 0. The space XH

(4.16)

where A()(p), AA(t, p) depends continuously on a vector parameter p at p 0 and
IIAA(t,p)ll 0 as t c uniformly in p. Let A()(p) have the block form

(4.17) A() (p) A) (p) (R) A (p),
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could be taken as the space of solutions x of (4.15) with initial condition xi(tl) 0
and arbitrary Xli(tl). Then

i., lxzz(t)l(lx.(t)l -Iz(t) > (-x)lxz(t)l +
Idl. Ix()l: e 0

provided IIAAII < min(-,1,e#2). Hence the estimate Ixi(t)l < exlxiI(t)l is valid
for all t tx. The second estimate in (4.20) follows as in (4.22). The continuous
dependence of Xzi(t) on p follows om the definition of XII(tX).

Now let us apply the lemma to our situation. Extend the function 0(r) to be
equal yo(r) for r > and consider (4.1) for v as in (4.8) with n bounded in (4.14).
We obtain the equation

(4.) +++o =o = +-le
_

+
II l/lITThen the vector V (v=, v=, v=, v corresponds to x and r to t. The small

parameter p (s, a, 1-1). At p 0 we obtain the equation

(4. +o =o.

The leading part A( (p) corresponds to the operator

(4.27) s + rr
At p 0 the eigenvalues of A() are

d) d+ rr 2d-"

We define

)1,2 21/3(-1/2 +/- i23), 3 21/3, Aa 0.

(4.28) #1 -1/2 21/3 -f- 5, /42 -.
Then, for small p, the condition in (4.18) is satisfied. By (3.30), AA also satisfies the
conditions of Lemma 4.1. In the sequel we will follow the notation of Lemma 4.1.

Let XI and XII be defined as in Lemma 4.1 and Pi(t,p),Pii(t,p) the projec-
tors corresponding to the direct sum Ca Xi(t,p) @ XlI(t,p). Denote by Xo(t,p)
the 2D space of vectors x(r) that correspond to the solutions of (4.25) with ini-
tial conditions (2.10). Clearly Xo(t,p) depends continuously on p --+ 0. Note that
Xo(t, O) r-1Xi(t, 0) 0. Indeed, otherwise (4.26) would have a nontrivial solution that
decreases exponentially as t cx. This would violate estimate (4.5) with s a 0
and )0 Y0. By continuity, for a fixed t and small IP],

(4.29) IPzz(tl,p)x(tl)l > lx(0)l, IPz(ti,p)x(t)l < Kllx(0)l

for all the above solutions x E X0. The vector functions Pix and Piix are also
solutions of (4.15) and hence their components xi and xii satisfy estimates (4.19),
(4.20), respectively. Now assume that x(t) satisfies the boundary condition

(4.30) Sx(1) O,
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where S corresponds to (4.2) or (4.3). It is easy to see that S satisfies the Lopatinsky
condition at infinity. Namely, S does not vanish on the vectors x with the zero
component xx 0. (Recall that the decomposition of x (x.,x.) corresponds to
the eigenvalue decomposition A1, A2 and A3, A4.) Hence, for small IPl and c1

(4.31) for all x e Xii(1).

Now

(4.32) 0 Sx(1) SP(I, p)x(1)+ SPI(1, p)x(1)

where by (4.19), (4.20), and (4.29)

(4.33)

and

(4.34)

and therefore

IPx(1,p)x(1)l < Ip(t,p)x(t)le(,+)(t-t)

IPii(1.p)x(1)l >

(4.35) IsP.(Z. )x(Z)l > 5 5 1x(o)1 

Since #2 -c2 > 1 -}-(2, for large independent of x and p the second term in the
right hand side of (4.32) will overweigh the first one. This completes the proof of
Theorem 4.1. Clearly, our proof also applies to the case of the boundary conditions
(1.13) and (1.14). One should merely replace 0 everywhere by y0.

Finally, let us remark that it was essential in our proof that the boundary condi-
tion is such that the energy estimate (4.5) holds. Thus we could restrict the problem
to a finite number no of ODEs. This is essential, since the above value rl where the
connection between the inner and outer solutions is made grows very fast with n.
The alternative is to restrict and use (4.9) for n > K1. But then the asymptotic
expansion of Lemma 4.1 would not be applicable to vn(1).

5. The stability of the one-dimensional stationary solution. In the 1D
case the integral in (4.5) is replaced by f(-y)lvl2 dx. The graph of the function
-y is displayed below in Fig. 1. Thus the integral is not positive. Actually our
computation shows that it is negative for v x. Since y 0 exponentially as

Ixl oc, the function v x could be modified so that v -. 0 exponentially as x --+ c
and still

(5.1) [Iv"ll22 + (-y;)lv[ 2 dx < O.

Moreover, one can also construct an even function v that decreases exponentially
as Ixl > cx and for which the above quadratic form is negative. Our (noninterval)
computations also show that if the norm IIv"ll2 in (5.1) is increased by a factor K >_ 1.3
then the resulting quadratic form is positive in the space of even function in H2(R).
We mention these results here without proof only to explain why the energy method
does not work in the 1D case.
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Recall that our rescaled eigenvalue problem is

(5.2) L(s, o)v -- 8v -- v(4) -- o/v
u -- 290(x)v’ 0,

with boundary condition

(5.3) dS:l:[’o(l)]W(l) O,

where dS+[’o(1)] are the differentials of S+ at the points o(+l). Recall that o(x)
is an odd function of x. Since S+/- are related as in (1.19) it follows that v(-x) is
also a solution of (5.2), (5.3). Hence vl v(x) + v(-x) and v2 v(x) v(-x) are
correspondingly even and odd solutions of (5.2), (5.3). Thus, without loss of generality
we can consider the equivalent problems

(5.4) L(s, a)v O, 0 <_ x <_

with boundary condition at x--l

o

and the boundary condition at x- 0

(5.6) (a) v’ (0) vm(0) 0

or

(b) v(0) v"(0) 0.

Since the problems (5.4)-(5.6) are uniformly Lopatinsky well posed for all large
and small a, it follows that for Isl > K0 with K0 independent of a and the above
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problems have only trivial solutions. Now, for Is[ _< K0 and small a + 1-1 we wish to
reduce these problems to the equation

(5.7) sv + v(4) + 2yov 0, 0 _< x < c,

with boundary conditions (5.6). Regarding the latter problem we make the following
claim.

THEOREM 5.1. Problem (5.7), (5.6) has no exponentially decreasing solutions for
all s E C with Res > 0.

The reduction is carried out in the same way as in 4. The parameter p
(s, a, 1-1), but the central point p 0 is replaced by P0 (so, 0, 0). The roots A(s)
of (1.21) for Is[ < K0 and Res _> 0 are separated: aeA1,2(s) < 0 and aeA3,4(s) _> 0.
Hence in a neighborhood ofP0 we may choose #1, #2 so that (4.18) holds. The constant
matrix S in (4.30) is replaced by dS+[-o(l)]. Still, since dS+[0()] by assumption
satisfies the Lopatinsky condition (see (1.22)), estimate (4.31) holds for large 1. The
reduction to problem (5.6), (5.7) then follows from (4.32)-(4.35).

Thus it remains to prove Theorem 5.1. Since y0(0) 0 and v satisfies the condi-
tions in (5.6), we obtain the one-dimensional analog of (4.7). Namely

(Res + b2[Ims[- b2bl ]lyo [[o [[vll 2 b2b- [[yo l[o ][v’ 2

f0oo+ dx + I1 "11 <_ o.

Our computer program verified that

-Y > -0 =-0.164 and Ily011 < 1.23.

For the left-hand side of (5.8) to be positive definite it is sufficient that

(5.10) 1 (b2blllyollo)2 < Res 60 + b21Imsl- b2blllyoll.

It is easy to check that the lowest bound on Res is

(5.11)

and is achieved when

iimsl)4Res >0- 21ly011

IImsl IImsl 3(5.12) bl- 211yollo ’ b2- 4llyol]4.
Since problem (5.7)-(5.6)is invariant under complex conjugation we may assume that
Ims > 0.

Thus, it remains to prove Theorem 5.1 in the domain

(5.13) s E 7)" 0 <_ Res <_ 0 0.164, 0 _< Ims _< 211y0116/4 < 1.6.

We believe that this could be done by tedious hand computations in a way similar
to [1]. Namely, one can expand Y0 and v into a power series near x 0 that is valid
up to x 4 and to match it with exponential asymptotics of y0 and v for large x.
Instead we preferred a computer-based proof that involves millions of operations but
requires that the reader only check a conceptually simple program.
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The procedure of the proof is similar to the one in [3] and [4]. Unlike the real
parameter c in [3] we have now a complex s. This forced us to modify all elementary
interval arithmetic subroutines to include also the complex intervals. The domain

was subdivided into 40 small rectangles and for each of them the program ran
separately. To manage rectangles in :D of size 0.08 the dependence on s was
expressed by Taylor formula of order 2. Also the estimates of the asymptotics of v for
large x were carried out uniformly in s. Interested readers can obtain the program
and the relevant analytical formulas and estimates from the author upon request.
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ASYMPTOTIC EXPANSIONS WITH ERROR BOUNDS FOR THE
COEFFICIENTS OF CAPACITY AND INDUCTION OF TWO

SPHERES*

ANDREW H. VAN TUYLt
Abstract. Asymptotic expansions are obtained for the coefficients of capacity and induction of

two spheres which hold as the distance e between the spheres tends to zero, starting from expres-
sions in terms of definite integrals obtained earlier [A. H. Van Tuyl, Electrostatic problems for two
conducting spheres, SIAM J. Math. Anal., 20 (1989), pp. 1293-1320]. Bounds for the remainders
are given which hold uniformly for all ratios of the radii of the spheres. These asymptotic expan-
sions are used to obtain an asymptotic expansion for the capacity of the spheres with respect to
the infinite sphere with a uniform bound for the remainder and to find the asymptotic behavior of
the capacity of two spheres. The asymptotic expansion for the capacity of two spheres with respect
to the infinite sphere is also found directly from a definite-integral representation involving elliptic
functions, leading to a smaller uniform bound for the remainder. Finally, the asymptotic behavior
of the coefficients of potential is obtained, and the behavior of the potential difference and charge
density as two spheres approach contact with given total charges is found.

Key words, coefficients of capacity, coefficients of capacity and induction, capacity, coefficients
of potential, two spheres, charge density, asymptotic expansions

AMS subject classification. 31B20

1. Introduction. The potential outside two charged conducting spheres and the
charge density and total charge on each sphere were first given by Poisson [18] for
both separated and tangent spheres. Further work was carried out .by Plana [17] us-
ing eoisson’s methods. Kirchhoff [11] corrected errors in [17] and [18] concerning the
charge densities at the inner axial points as two spheres approach contact with equal
radii and potentials and transformed some of Poisson’s series to more rapidly con-
vergent forms. Maxwell [14] discussed both separated and tangent spheres, obtaining
new forms for the series expansions of the coefficients of capacity and induction in
terms of dipolar coordinates. Barnes [2] expressed the coefficients of capacity and
induction of two spheres in terms of the logarithmic derivative of his double gamma
function [3]. Russell [20]-[25] carried out extensive investigations in order to facilitate
the calculation of the coefficients of capacity and induction and related quantities.
The latter quantities include the capacity of two spheres with respect to the infinite
sphere and the capacity of two spheres. A summary of some of Russell’s results is
included in [12].

The capacity of two spheres has been of interest in connection with the conduc-
tivity of granular materials (Keller [10] and Batchelor and O’Brien [4]). The leading
term of the asymptotic expansion of the capacity as the distance between the spheres
tends to zero was obtained in [10], and an approximate constant term was added in
[4]. Additional terms were obtained by Jeffrey in [9] by the use of the method of
matched asymptotic expansions. Love [13] and Rawlins [19] have obtained the com-
plete asymptotic expansion by different methods when the radii of the spheres are
equal. However, both results are in error by the same factor due to misprints in [28].

Russell [20] obtained several terms of the asymptotic expansions of the coefficients
of capacity and induction of two spheres by use of a generalization of a result due
to Schlbmilch [26]. However, results of the present paper show that some of his

*Received by the editors October 20, 1993; accepted for publication (in revised form) August 19,
1994.
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coefficients are in error. Buchholz [5] obtained the complete asymptotic expansions
when the radii of the spheres are equal by use of the Mellin transform, but without
an estimate for the remainder. The method of [5] was generalized in [8] to the case of
unequal spheres, and numerical calculations were carried out in [8] to determine the
optimum number of terms of the asymptotic expansion for a given separation of the
spheres.

In 4 of the present paper, asymptotic expansions are obtained for the coeffi-
cients of capacity and induction starting from integral representations involving el-
liptic functions [27]. Bounds for the remainders are found which hold uniformly for
0 <_ rl/r2 <_ x in specified ranges of s of the form 0 < <_ s0, where rl and r2 are
the radii of the spheres. In the first part of 5, the results of 4 are used to obtain an
asymptotic expansion of the capacity of the spheres with respect to the infinite sphere
with a uniform bound for the remainder. A separate derivation of this asymptotic
expansion is then carried out starting from an integral representation involving elliptic
functions, and an improved bound for the remainder is obtained. The results of 5
also give the known expression for the capacity of two tangent spheres with respect
to the infinite sphere and an integral representation involving hyperbolic functions.

In 6, the asymptotic behavior of the capacity of two spheres as the spheres
approach tangency is found. When the radii are equal, the results of 4 are used to
obtain the asymptotic expansion considered in [13] and [19] with a uniform bound for
the remainder. In 7, the asymptotic behavior of the coefficients of potential as the
spheres approach tangency is obtained. Also, the asymptotic behavior of the potential
difference as the spheres approach contact with given total charges is found. Finally,
in 8, the results of 7 are used to find the behavior of the charge density at the inner
axial points as the spheres approach tangency with given total charges. A special case
of interest is that in which the total charges are in the same ratio as the corresponding
charges on two tangent spheres. These results are given in equivalent forms in [17]
and [18], and agreement with the present results is found after correction of some
misprints in each reference. Several misprints in [18] have been pointed out in [17].

2. Dipolar coordinates. As in [27], dipolar coordinates r/, 0, and are defined
by

1
+(2.1) x + ip ia cot

(2.2) y=pcos, z=psin,

with a > 0, p > 0. The coordinate surface 7 constant is a sphere with (a, 0, 0)
and (-a, 0, 0) as inverse points. The sphere 7 7 has radius a cschl7 land center
at x a coth 71, Y z 0. Hence, when r/1 > 0 > 72, the sphere 7 r/1 contains the
point (a, 0, 0) in its interior, and 7 r/2 contains (-a, 0, 0).

Let the spheres r/= 71 and r/= r/2 have radii rl and r2, respectively, and let the
distance between the spheres be s. Then as shown in [27], we have

(2.3) a
V/(e + 2r)(e + 2r2)( + 2r + 2r2)

2( + rl -+- r2)
and

(2.4) T]I sinh-
a, /2 =-sinh-

a

?1 r2
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When rl r2 r, (2.3) simplifies to

I v/( +(2.)

As --, 0, we have

(e.6) v[1 + o()],

(2.7) rh v/-K{[1 + O()],
rl

(e.8) := V[l+ o()],
r2

and

(2.9) ?1 72 2a-[1 + O()],

where

(2.10) 2rlr2
r +r2

3. Integral representations for the total charge. The total charges on the
spheres in the first problem are given by

(1 Cll V1 -}- C12V2,
Q2 C12V1 -}- C22V2,

where C and C22 are the coefficients of capacity and C12 is the coefficient of induc-
tion. From [15, p. 89], we obtain

(a.2) Cll a
sinhN

n=O

c --N8

(3.3) C12 -a
sinh N6’

n--0

and

eN(?+n.)
(3.4) C22 aE sinh N6

n--0

where 5 h r/2 and N n + 1/2.
In [27], these series have been expresed in terms of definite integrals involving

elliptic functions. Let q exp(-5), and let the modulus k be defined implicitly by

(3.5) log q 1 T/2 :rK’/K,
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where K is the complete elliptic integral of the first kind and K K(kr), k2 1-k2.
Also, let

(3.6) q, e-rK/K’ er2/ log q.

It follows from (2.0) and (3.5) that q exp(-2x and q’ exp(-2-r2V/)
as e - 0. As in [27, nq. (6.5)-(6.7)], we have

(3.7) Cll--
aKk fo K t iaKk iK
r2

Re sn--[tr + i(rtl + ?2)] CSC dt + r’ sn--(lr + rt2),

(3.8) C12=
r2

ns
r 2K

csc csc - dr,

and

2iaKk iK
(3.9) 622 Vii sn--( + rt2).

4. Asymptotic expansions for the coefficients of capacity and induction.
Writing (3.5) in the form rt2 -rK/K and substituting in (3.7), using the addition
theorem for snu and Jacobi’s imaginary transformation, we obtain

aKoo [K It aK(2KrI)(4.1) Cll 71.2
Im cs --(2rr + it), k’ csc dt + --CSr ’rr k’

Referring to [29, p. 512], with q’ defined by (3.6), we have

aK {fo sinhKt- csc dt
CI 2rK cosh gt 2gr/1

R-r-cs K,"

qt2n
(4.2) +4E 1 + q’’ cos

n--1
.K.i... sinh csc dt

aK { Krh
+-7 ct-7- 4

oo q,2n 2nK }El+ q,2n
sin K’

n--1

which converges for e > 0. We find that

(4.3)
nKt t

sinh csc dt

Hence, denoting the first sum on the right of (4.2) by S, we have

r
o

r q
(4.4) ISl < " E qtn

2 1 q’"
n--1
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Similarly, denoting the second sum by $2, we see that

(4.5) IS21 < E q,2n q,2
I q,2"

We therefore have

(4.6) Cll
aK { f0 sinh Kt- csc... dt

2rK cosh Kt
-7 cos 2# - cot # + R(1) },

where

(4.7) # Krl/K’=
?]1 ?’]2

by (3.5) and

(4.8) ]R() < 41,S11 +
It follows from (2.4) that 0 _< # _< rr, with # 0 when r2/rl 0, and # = r when
rl/r2 O. We see that this range of # is sufficient, since (4.6) is periodic in # with
period r. We see that R(1)1 O(q’) as -+ 0.

We can verify that

(4.9)

We obtain

Kt" sinh r csc dt

cosh Kt
-7 COS 2#

fK/K’( sinhu ) --K’u 1)= 2 -1 (K’u du

J0 coshu cos2# \ 2K csc2K
sinh 1 e-+2

0 (cosh u cos 2)u u

+2
1 e- du

--.
J0 u

rK/K’ ( K’u K’u ) du 4
(4.10) \ csc 1 --u log-.

by direct integration, and we find from [1, Eq. 5.1.39] that

(4.11)
1 -e-=’

ao u du=lOg,Ki +7+El

--log(lo--) + 2 log r + 7 + R()/2.

By use of the inequality

(4.12)
OO --u --a
--du < ---,
U a

a>0
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[1, Eq. 5.1.19], we obtain

IR(2)I 2 du
rK/K’

KI -2K/K’

We have

sinh u 1 e-2u

(cosh u cos 2#) u u

when 0 _< # _< r and u _> 12. Hence,

=(1-e-2u) 2cos2#-e-u 1 2e-u cos 2# + e-2u

( + -)( + -) -1 e-u u
e_,-u

< 2.000031
U

rK/K’ [ sinh u
(4.15) (cosh u cos 2#) uJO

1 e--2u] du I + R(a)

where

/0[ sinhu
(4.16) I

(cosh u cos 2#) u

and by (4.12) and (4.14),

1
u

e-2U ] du

(4.17) IR(3) < 2.000031 du
K/K’ U

< -4.00007q’ (’-5-)lgq

for 0 _< #

_
r and -logq <_ r/12. As in [27, Eq. (la.)], we have

sinh u

cosh u cos 2#)2

Substituting (4.18) into

(4.19)
dI foo sinh u du

d#
-2 sin 2# cosh u cos 2#) u

and interchanging summation and integration, we obtain

dI zr 1 1

d# 2 (rn + #)2 (zrn- #)

=-d-- + 1--r
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where (z) dlogr(z)/dz. Hence,

(4.21) =_
rr -cot#+c,

where c is a constant to be determined. The substitution # rt/4 yields

f0 tanhu _2u () r
(4.22) c e du + + -.u

We obtain

tanh u -2u rr
(4.23) u e du log

from [7, Eq. 3.551.9], and as in [7, Eq. 8.366.4], we have

(4.24) (_1. -- 31og2
r

\4] 2

Substitution of the preceding in (4.21) gives

(4.25) I= - (#) r

r
cot # 7 log (4rr).

Finally, we can obtain an asymptotic expansion for the first integral on the right-hand
side of (4.9) by use of the identity

(4.26)
n

x csc x 2 E (-1)m
x2m
(2m)’ (1 22m-1)B2m

rn--0

B+ (t) sin 2xt dt-t
(2n+ 1)!sinx

[16, p. 32], which holds for real x +nrr, n >_ 1. Noting that (-1)n+lB2n+l(t) > 0
for 0 < t < 1/2 and referring to [16, pp. 19 and 22], we find the inequalities

(4.27)

l/2 fol/20 < (--1)n+l B2n+l(t)sin2xtdt < (--1)n+lx B2n+(t) dt
JO

=(-l’n+12n+2:x
(-1)n+lx(2-2’-I 1) B2n+22n+2"

Hence,

(4.28)

sinh u
1

K’u K’u du

a0 cosh u cos 2# - csc- 1 ---u
2 E (-1)m+l(22m-1- 1)B2m K’ m

cos 2>
U2m-1 du + R41

a 0 cosh u cos 2>
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where

(4.29)

Noting that

2(22n+1-1)]B2n+211Kt)2n+3(2n+ 2)[ -COS 2# e-u

0 cosh u cos 2#

7r(22n+l-1)[B2n+2’(Kt)2n+2(2n+ 2)’
fg/g’ COS 2# e-u

!J0 cosh u cos 2tt

u2n+2 du
gtsin 2K

U2n+ du.

(cos 2# e-U)2 _< 1 2e-u cos 2# + e-2",

we have

(4.30)

cos 2# e-cosh u cos 2#
cos 2# e-u le-’

1 2e-" cos 2# + e-2u

2e--

V/1 2e-u cos 2# + e-2u

2e-U
1 -e-

for 0 < # < r, u > 0. Hence, referring to [1, Eq. 23.2.7], we obtain

K/K’
(4.31)

cos 2tt e-u u2n+ du
cosh u cos 2#

(x t2n+le--u
<2

1-- e- du 2 (2n + 2) (2n + l)!

for 0 _< # _< , n _> 1, where (s) is the Riemann zeta function. It follows from (4.29)
and (4.31) that

(4.32) ]R(n4) < 2(2n + 2)(22n+12n+2-1)]B2n+21 (_K)
2n+2

for 0 <_ # _< r, n >_ 1. Finally, by use of the inequality

(4.33) (-1)n+l(22n-1 1)B2 < r_2

[1, Eq. 23.1.15], we obtain the simpler bound

(4.34)
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0 <_ # <_ , n >_ 1, since (2n + 2) decreases monotonically toward 1 as n >_ 1
increases. In (4.34), the inequality (4) < 1.0825 is used. In terms of the variable
log q =-rKr/K, we have

(4.35) (logq) 2n+2

IR(4)I < 2.165(2n + 1)!\ 22

for 0 <_ # <_ , n >_ 1. It follows that (4.28) is an asymptotic expansion which
holds uniformly with respect to # in the interval 0 _< # _< r. We see that it is also a
convergent expansion, since integration and summation can be interchanged in (4.28).

As in [27], we obtain a more convenient, but divergent, asymptotic expansion by
writing

(4.36) (-1)m+1(22m-1- 1)B2m K’ 2m

cos 2# e- u2m-- du
J 0 cosh u cos 2p

(--1)m+l(2m-1- 1)N2m g’ 2m

-1d +Rcosh cos2
where

(4.37)
n

( )R(n5)--- E (--1)m+1(22m--1-- 1)B2m K’ 2m

m--1 (2m)!

t2m- du.
K/K’ cosh u cos 2#

The inequality

(4.38) tne-t dt < 2xne-x,

x >_ 2n, n >_ 0, follows either from the asymptotic expansion with remainder of the
incomplete gamma function, or by integration by parts and induction. From (4.30)
and (4.38), we obtain

(4.39) . ( cs2tt--e-u )u2m-lduK/K’ cosh u cos 2#
< 2.00002 u2m e-Udu

rK/K

e-rK/K’<4.00004

when K/K’ >_ max(12, 4m- 2), m _> 1. Hence, replacing K’/K by -logq and
using (4.39), we have

-4.00004 E (-1)m+l(22m-1- 1)B2, q, log q
m--1 (2m)!
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(4.40)
n

-4.00004 E 21-2"qlgq
7r2

m=l

-4.00004 () q
’lOgq
r2

__5.34q \(
___
)logq

when 7rK/K’ >_ max(12, 4n- 2), n >_ 1. From [6, p. 38], we have

cos2#-e-(4.41
cosh u cos 2#

U
2m-1 du- (-1)m+l(2r)2mB2m2m ()"

Finally, from (4.6)through (4.41), we obtain

(4.42)
a {log(-2)C11 -log--

+ En (22m_ _(2m)!l)B2mB2m()m (lg q)2m -+- Rn}
m--1

where

(4.43) Rn R(1) + R(2) + R(3) + R(n4) +. R(n5)

Similarly, starting from (3.9) and using the same transformations as in (4.1), we obtain

(4.44)

aK
C22 Cll - cot t

a {lg( -2 ) (#)
-+- En (22m_ _(2m)l)B2mB2m()m (lg q)2m

m--1
+Rn}

We see that when ]2 0 is substituted into (3.2), we obtain the expression for
-C2 with q e-nl. We then have rK/K r]l, and hence # K/K r. It
follows that we can obtain the asymptotic expansion for C12 from that for -Cll by
substituting It r. Proceeding in this way, we find that

(4.45)
a { log (-l_2q)C12 log q
n (22m_1 1) (B2m)2 q)2m }+ E (2m)Im

(log -+- nnl=,r
m=l

When the radii of the spheres are equal, we have

(4.46)
a {log(-2)C11 C22 -log----- + 9’ + 2 log 2

2 En (22m-1-l)2(B2m)2(1-O)
m=l
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since (1/2) ---- 21og2 [1, Eq. 6.3.3] and B2m(1/2) -(1 21-2m)B2m [1, Eq.
.1..].

When e is sufficiently small, we can obtain more convenient bounds for the ex-
ponentially small remainder terms R(1), R(2), R(3), and R(n5) as in [27, 9]. From the
inequality

(4.47) n! > nne-n
for n > 1, we obtain

x2n+le_,--x/2

(, + )!

(4.48)

2n+1
X ) e2n+l_x/2 1

<
2n + i V/2r(2n + 1)

< < O.Ol4aa, : > a(2n + 1),

(16)
a 1

< V < 7.7.2 x 10-7 x > 16(2n + 1),

n 1, since x2n+le-x/2 is decreasing in each case. Similarly, we find that

(x2n+le-x X e2n+l_ 1
(4.4) (e + ) < 2 +

when
we obtain

x2n+2-x/2 X 2n+l-x/2 2n + 1
(4.50) (2n + 1) < 2n
under the same conditions as (4.48). For u > 7 and n 1, the inequality

(4.51) u2n+2e-(u/2-)(2+) < uae-3(u/2-)

follows from the fact that the le-hand side is then a decreasing function of n. om
(4.50) and (4.51), we find that

x2n+2e-x/2
< 0.a4929, > 8(2n + 1),(4.g2)

< 164e-1@ < a.4aa74 x lO-, > 16(2n + 1),

n>l.
With -2/log q, we have q e-/. When z 8(2n + 1) and n 1, we

see that q’ e-. om (4.4), (4.), (4.8), and (4.g2), it follows that

2q’
(1 + 2q’)IR(1)I <

l-q’

(a.) < .esoe( - )x--< 2.1947(2n + l)}x-2n-2
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when x >_ 8(2n + 1) and n >_ 1. Similarly, from (4.13), (4.17), (4.40), (4.48), and
(4.49), we obtain

(4.54) IR() < 0.0000002(2n + 1)!x-2n-2,

(4.55) IR(3)I < 0.05822(2n + 1)!x-2’-2,

and

(4.56) IR() < 0.0778(2n + 1)!x--when x _> 8(2n + 1) and n >_ 1. Finally, from (4.34), (4.43), and (4.53)-(4.56), we
have

(log q’+(4.57) IRnl < 9.14 (2n + 1)!\ 2r

for 0 p when -logq r2/4(2n + 1) and n k 1. As we further restrict the
interval in which lies, the exponentially small remainder terms eventually become
negligible with respect to Ra). In particular, we obtain

(o)(4.8) IR < 6.80199 (2n + 1)

when 0 N and -log q N /8(2n + 1), n 1. We see that the coeNcient in

this bound differs from that in the bound for R4) by 4 in the fifth decimal place. We
find that I11 < g4.9(1/24) 0.00017 when -log q < /12. When log q -/12
and r r 1, we have e 0.172.

To obtain the explicit dependence of CI, C, and C on e, we find from (a.g),
(4.7), (2.7), and (2.9) that

(4.59) log q 2[1 + O(e)]

and

(4.0) [1 + o()],

where

(4.1) = r + r2

and a is given by (2.10). We therefore have

(4.e) c o e + o(o)

(4.) c= o -e 1-- +o(o)

and

(4.4) Cl - o( + o(o)

ase0.
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Terms of the asymptotic expansions for Cxl, Cx2, and C22 corresponding to the
preceding have been obtained by Russell [20], but without an investigation of the
remainders. It can be shown that the terms of the asymptotic expansions for C1
and C22 in [20] agree with (4.42) and (4.44), respectively. However, the asymptotic
expansion for C2 in [20] is given only through the first five terms, with the coefficients
given as rational fractions. Comparison with (4.45) shows that the second, third, and
fourth coefficients in [20] are too small by a factor of 1/2.

5. The capacity of two spheres with respect to the infinite sphere. Let
V V, and let Q and Q2 be the charges on spheres 1 and 2, respectively.
Then the capacity of the spheres with respect to the infinite sphere is given by

c
V

It follows from (3.1) that

C -- Cll -- 2C12 + C22.

We find from (5.2) and (3.9) that

1 iaKk
Q1/V--C11+C12= Cq- r sn

i(+71 -I- +72)

1 iaKk
(5.4) Q2/v c22 + c12 c- ----sn

i(+71 -I- +72)

and

(5.5) (QI Q2)/v=
2iaKk iK(+7++72)2aK (2Kr+7 ).--------sn as k’

5.1. An asymptotic expansion for C. It follows immediately from (4.42)-
(4.45) and (4.57) that

c =._a{_()logq -(1-/+)?r -2-
+ 2E B2mB2m -B22m (log q)2m

where

log q) 2n+2

(5.7/ IR,,I < 36.6(2n + 1)t

for 0 _< # _< r when -log q _< r2/4(2n + 1) and n _> 1.

5.2. A smaller bound for ]Rnl. We can obtain a smaller bound for IRnl by
starting from the integral representation

(5.8) C -+2-+ Re ns
KtTr ]tK

(t + 2i+72) ns + csc csc dt,
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which follows from (3.7) through (3.9). Proceeding as in 4, we find that

C-
r2

-Imcs --(21r +it)’k’ +Imcs ,k’ +---csc dt- coth + csc csc dt(5.9)
aK sinh Kt t t
rg’ cosh gt -7 -ff - -- cos 2#

2nKl )fo nKt t}K’
-1 sinhcosdt’ 1 +qt2n (+ 4

qt2n
cos

n=l

where the series converges for all e > 0.
Denoting the sum in (5.9) by S and using (4.3), noting that the integrand is _> 0,

we have

f nKt t
(5.10) IS] < 2E qt2n

Jo
sinh --K-7 cos dt

n=l
o

< r qn
i q"

n=l

Hence,

(5.11)

where

(5.12)

aK{o ( sinh gt

C= - cosh gt ’- cos 2#

We find that

j0( sinh Kt

cosh Kt- cos 2#

(5.13)

Kt K’ t) t }-coth- +- csc csc dt + R(1)

Kt K t) t
-coth+-csc cscdt

2
sinh u

coth
u Ku Ku du

J o cosh u cos 2# - csc -ff 1 --u
( sinhu

_coth
u 2)du+2

cosh u cos 2#
+ -u u

( sinhu u)du-2 coth
gig’ cosh u cos 2# u

-4 --+ csc2
2K u2

du.
K/K’ 2 JO

We first have

f du fg/g’[(K’)2 K’u 4] 4K 4K
-4 + - csc22K u2

du=-
K/K’ u2 JO rK’ rK’

u sinh u du
)2 coshu- cos2# u

(5.14)

Next, writing

R(2) 2 coth-
K/K’

(5.15)
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we find that

u sinh u< coth-
2 cosh u cos 2#

< 2(1 + e-U)e-u
u > 0

< 2.0001 e-u u>12.

(1 cos 2#)(1 + e-U)e-(1 e-)(1 2e- cos 2# + e-2)

Hence, by using (4.12), we obtain

(5.17) 4.0002f e- du

K/K’ U

-8.0004q’

when rrK/K’ >_ 12.
While the integral

(5.18) I coth -u sinh u _2 du
2 cosh u cos 2#

+
u u

can be evaluated by comparison with (5.6), it can also be evaluated directly by use
of (4.21). We have

(5.19) I=- b +b 1--rr +c,

where c is a constant. Substituting it r/2, we obtain

(5.20) c 2 cschu +u

From [7, Eq. 3.529.1], we have

f0(1- -cschu) dU=log2.--(5.21)
u u

Finally, substituting (1/2) -7- 2 log 2, we obtain

1[ () (I=- + 1-- +27

Proceeding as in 4, using (4.26) and (4.27), we have

(5.23)

sinh u
coth

u K’u K’u du

a o cosh u cos 2#
csc 1 u

2 E (--1)m+l(2m-1-- 1)Bm K’

m--1 (2m)! -sinh u

o cosh u- cos 2# -coth. -1d +Ra),
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where

(5.24)

We note that the integrand in the last integral is positive when u > 0.
Denoting the integral in (5.24) by I and using (4.41), we obtain

)III< coth
u sinh u

u2n+1 du
2 cosh u cos 2#

fo
cx I:F COS 2.-- e-u lt2nq_

kcosh u 1 cosh = ,]
du

From [16, p. 22] and (4.33), we have

2(27r)-2n-2(2- 2-2n-1)(2n + 2)!
1 2-2n-1

where

(5.29) R(n4)-- E (-1)m+1(22m-1- 1)B2m K’ 2m

m:l (2m)! -o ( sinhu cothU)u2m_ldu.K/K’ cosh u cos 2#

Finally, from (5.24)-(5.26)and (3.5), we obtain

1 2-2n-2 (log q 2,+2

IR3) 4-
1 2-2n-1

(2n + 1)!
\ 27r2 ]

< n(2n + 1)

0,n 1.
As in the case of (4.28), (5.23) is both an asymptotic and a convergent expansion.

Proceeding as in (4.36) and (4.37), we write

(--1)re+l(22m-l- 1)N2m g’ 2m

(g.28)
sinh

coth m-1 d
o cosh cos2

( )(--1)m+l(2m-l- 1)Bm K’ m

I(coshsinhcos2 ch)m-1 d +)
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By use of (5.16) and (4.38), we find

( )coth -u sinh U U2m
K/K, 2 cosh u cos 2#

2.0001 m-le-Ud
K/K

4.0002 e-rg/K’

-1 du

when rK/K’ >_ 12. Proceeding as in (4.40), we then obtain

(5.31)

n (_1)m+1(22m_-2.0001q’Tr log q E (2m)!m--1

-2.0001r_______ q’ log q E 21-2m
m--1

log .q’-1.3334q’
2.2 ,]

2m--1

when -logq _< r2/4(2n + 1), n _> 1. Next, Proceeding as in (4.53)-(4.56), we find
that

(5.32)
4.38934 (2n + 1)[ x-2n-2,
0.11644 (2n + 1)! x-2n-2,
13.4640 (2n + 1)! x-2n-2,
0.01941 (2n + 1)! x-2=-2

when x > 8(2n + 1), n > 1, where x 27rK/K’. Finally, with R R(1) A- R(2) -4-
R(3) + R(4), we have

(5.33)
log q’ 2n+2

[nl < lS.0 (2n + 1)! ]

when -log q _< r2/4(2n + 1), n _> 1. The exponentially small remainder terms R(1),
R(2) and R(a) become neglibible with respect to R(n3) as we further restrict the interval
in which lies. When 0 _< # _< r and -log q < 2/8(2n + 1), n _> 1, we obtain

(5.34)
71. )

(2n+2)
13.4644 (2n + 1)!

We see that the coefficient in this bound differs from that in the bound for R(n3) by 4
in the fourth decimal place.

5.3. The capacity of two tangent spheres with respect to the infinite
sphere. From (2.6), (2.9), (2.10), and (3.5), we have

aK fir2(5.35) lim o’/2,
0 7rK rl + r2
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and from (4.60)and (4.61),

(5.36) lim # =/.
---+0

Noting that # and log q are continuous functions of for >_ 0, we find from (5.6)
and (5.7) that C is a continuous function of e at e 0. Hence, the capacity of two
tangent spheres with respect to the infinite sphere is given by C() lim_0 C, and
we find from (5.11), (5.18), (5.22), (5.35), and (5.36) that

( sinhu u 2)du(5.37) C() a
cosh u cos 2/

coth + -u --u
(5.38) [-()-(1-)-2,1
when 0 < < . When rl r2 r, (5.38) simplifies to

(5.39) C() 2r log 2.

Finally, the well-known results

(5.40) Q)/V=limQ1/V=a[ ()1-o -’-
(5.41) Q)/V=limQ2/V=a[ ( )]-o -/- 1-

and

(5.42) (QO) QO))/V -olim (Q Q2)/V --a cot

follow from (5.3)-(5.5).
Poisson [18, pp. 56-59] has given expressions for Q)/V, Q)/v, and C() in-

volving integrals between 0 and 1. When these integrals are evaluated, his expressions
reduce to (5.40), (5.41), and (5.38), respectively. Also, the result (5.42)is given on

page 59 of [18]. Expressions for Q0) and Q0) in terms of (z) are given in the second
and third editions of Maxwell’s treatise [14] but not in the first edition (1873).

6. The capacity of two spheres. With Q -Q2 Q, the capacity of two
spheres is defined by

Q
(6.1) Co

V1 V2"
From (3.1) and (6.1), we have

(6.2) Co D/C,

where

6.3) D CllC22 C122
and C is the capacity of the spheres with respect to the infinite sphere. When the
radii of the spheres are equal, and hence CI C22, we have

1
(C11 C12).(6.4) Co
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Let

(6.5) Cll

(6.6) C22

and

log q log q + 11
a

log (-l_g2q) ]+ d’log q

a (.iog)__1212(6.7) C2- log -,q
where Cll, C22, and C12 are defined by (4.42), (4.44), and (4.45), respectively. It
follows from (5.2) and the preceding that

(6.8) C a--(ll 212 -- 22).log q

From (6.3) and (6.5)-(6.7), we obtain

a (11 212 -- 22)log --2
(6.9) D + 1122 2
Finally, from (6.2), (6.8), and (6.9), we have

a [log ( -2 ) 1122-2 ](6.10) C0 logq + 11 212 + 22
For suciently small e, we can obtain close upper and lower bounds for Cll, C22, and
CI from (4.42) through (4.45) and (4.57). Similarly, bounds for C can be obtained
from (5.6)and (a.aa).

When the radii of the spheres are not equal, it follows from (4.42)-(4.45) and
(6.10) that

a
(a.) c0 -og (./) + (1 ./) + 7 + O[0og q)]

as e 0. When the radii of the spheres are equal, we find from (4.42), (4.45), and
(6.4) that

(.1) c0= o +
(-1 )(em) og q

++ (2m)lm 2
m=l

where, by (4.57),

(6.13) [R < 18.3(2n + 1) [lg q)2+2"--2
/ \

when -log q _< 7r2/4(2n + 1) and n > 1.
The asymptotic expansion (6.12) has been derived by different methods in [13]

and [19], but the result obtained in each case differs from (6.12) by the factor 4.
Agreement is obtained after correcting some misprints in [28, p. 232] and expressing
the capacity in the same units as in (6.12).

1The factor 2 in (31) should be replaced by 1/2, and both right-hand sides of (32) should be
multiplied by 4r.
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7. Asymptotic behavior of the coefficients of potential as e --, O. The
potentials V1 and V2 are given in terms of the total charges on the spheres by

(.1) V1 pIQ1 + P12Q2,

V2 P2Q + p22Q2,

where Pll, P12, and p22 are the coefficients of potential of the spheres. It follows from
(3.1) that

C22 C12 ell(7.2) Pll D P2 D P22 --D--’
where D is given by (6.3). As in the case of Co, we can obtain upper and lower bounds
for pl, p12, and p22 for sufficiently small e by use of the results in 4.

From (4.62)-(4.64) and (5.38), we find that

(7.3) Pll 1 -+ ’g, 1 + 7 log + O[(log e)

+O[(log )-2] },

O"1 a /3 + " log T(z.5) P=UST + + O[(log e) -2] }.
It follows from (7.1) and the preceding that both V and V2 are asymptotically equal
to (Q1 + Q2)/C(O) as e 0 and, hence, that V1 V2 0 as e 0. When r r2
and Q Q2, we see that V V2 for all e.

From (7.2) and (7.1) together with (4.42), (4.44), and (4.45), we obtain

(7.6) o{(V V2)D -log--- -[ (1- )+ "] Q1--[ ()Tr q- ")/] Q2
+ V ) ] (Ol 0/(o q/ + oI(o q/l

Using (4.59)-(4.61), we find that

(7.7)

where

1
D() C() log(a/e) ()(1 5) ,? }() + (1 ) + 2"y

When r r2 r while Q1 # Q2, noting that all higher-order terms in (7.6) are
multiplied by Q1 -Q2, we find that (7.6) simplifies to

(7.9) Y V2
( )[1 + o()]

r[1/2 log (r/e) 9’ log 2]"
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We see that the sum of the first two terms of the numerator of (7.7) vanishes
when

Q/Q Q(O)/Q(O) (1 B/r) + /

(Z/) +

where Q1 (0) and Q2() are defined in (5.40) and (5.41), respectively. Noting that

(7.11) #-3 rl -r2
r 3(rl + r2)2 + O(s2)’

(7.12) (log q)2 2(rl + r2)
e + 0(2),

fir2

1B2[B2(#/r)-B2] 2 ( 1) +O(s)
2 r r

1 rr2
12 (r +r2)2 +0()’

we then find that

(7.14) V1 V

where D() is given by (7.8). We see that this is the potential difference which results
when two charged tangent spheres are separated slightly. When r r2, the potentials
remain equal for all values of s.

8. Asymptotic behavior of the charge density at the inner axial points
with Q1 and Q2 held constant. As in [27], the charge density at the inner axial
point of sphere 1 is given by

(8.1) VI + V2) DDllo= 2
1[0=r +(V1-V2)D12[o=r,2

where

Dlo== (r/a)sin 3 (ale)3/2 exp[- 2-17r2((7/)1/2][1 -- 0(8)]

and

D21o= (2re)-[1 + O(e)]

as 0. When (7.10) does not hold, it follows from (7.7)-(7.9) and (8.1)-(8.3) that

1 ,),1Q+ [ (/3 ,),1Q+o /[D(o)+o()]D1]o:,r--27r{-[b (1-/3)+ )+
(8.4)
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when rl r2 and

(8.5)

when rl r2 r and Q1 = Q2.

(Q1 Q2)[1 + o()]
2rer[1/2 log (r/e) /- log 2]

When (7.10) is satisfied and r r2, we find from (7.14) and (8.1)-(8.3) that

(8.6) D1 [O=r Ol rl r2 b’ 1 - + Qi(06(r + r2) + r2 r

1 [1 Q(0)
2 Ql(o)] + O(e)}/[D() + O(e)].

We see that

(8.7) Dllo=, O[(Elog) -1]

when (7.10) does not hold and that

(8.8) D1]o= O[(log e) -1]

when (7.10) holds and rl r2. When (7.10) holds and rl r2 r, we have

(8.9) Dl,o= O{(r/)a/2 exp[- 2-17r2(r/6)l/2]}
To the order of approximation shown in (8.4)-(8.6), we have

(8.10) Dlo=. -Dlo=
However, when (7.10) is satisfied and rl r2, we see that

(8.11) Dllo=r D21o=r
for all values of e.

Results corresponding to (8.4) and (8.6) are given in [17] and [18]. However, both
[17] and [18] contain misprints. After correction of these misprints and evaluation of
some definite integrals, it can be shown that the results in [17] and [18] are identical
to (8.4) and (8.6). While the first few terms 0f the asymptotic expansions of the
coefficients of capacity and induction enter into these results, it was not known in [17]
and [18] that these expansions are divergent. Also, the existence of the exponentially
small contribution to DI[=, was not known. As noted in the introduction, the
asymptotic behavior of D11[0=r was first found by Kirchhoff in [11].
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INFINITE TOEPLITZ AND HANKEL MATRICES WITH
OPERATOR-VALUED ENTRIES*

ALBRECHT BTTCHERt AND BERND SILBERMANN*

Abstract. Infinite Toeplitz matrices with operator-valued entries arise, for example, when
interpreting Wiener-Hopf integral operators on L2(0, (x)) as matrices acting on the direct sum of
countably many copies of L2(0, 1). This paper concerns the question of asymptotically inverting
such infinite Toeplitz matrices by having recourse to their finite principal sections. As expected
from the corresponding theories for the scalar and matrix-valued cases, this problem leads to the
investigation of compactness properties of infinite Hankel matrices. By introducing the concept of
Qn-compact operators on spaces of square-summable sequences with values in a separable Hilbert
space, criteria for the applicability of the finite section method to Toeplitz operators with symbols
in C + Ha, in PC, or with locally sectorial symbols are established.

Key words, infinite matrices, Toeplitz operators, Hankel operators, projection methods
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1. Introduction. Let be a separable Hilbert space and let /2(T/) stand for
the Hilbert space of all sequences f (fn)n=O with values fn E T/for which

n--0

A function a defined on the complex unit circle T and taking on values in/:(), the
C*-algebra of all bounded linear operators on , is said to belong to L (:()) if it
is weakly measurable and

]lallo ess sup I]a(t)IIr.() < oc.
tET

Each function a e L(()) induces both a Toeplitz operator T(a) and a Hankel
a cx)operator H(a) on/2(7-/). If we denote the Fourier coefficients of a by { n}n=-cx),

1 / a(eiO)e_ino dO,an :=
271"

then T(a) and H(a) are the bounded operators on/2() given by the infinite matrices
a cxj-k)j,k=O and (aj+k+l)j,k=O, respectively. The function a is in this context usually
referred to as the symbol of the operators T(a) and H(a).

Toeplitz and Hankel operators have been studied for a long time in the scalar
(dim 7{ 1) and matrix (dim T-/< c) cases; see [12], [5], [6] for "centennial" interim
reports on the development. Much less is known in the operator case (dim c).
The pioneering works in this direction are certainly the papers by Rabindranathan
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[17] and Page [16]. Recent interest in this topic has come up with works by Treil [22],
Gohberg and Kaashoek [13], [14] and the authors [7].

An important question in Toeplitz theory concerns the replacement of the equa-
tion T(a)f g, i.e., the discrete Wiener-Hopf equation

(1) E aj-kfk gj (j O, 1, 2,...),
k=0

by its truncations (= finite sections) Tn(a)f(n) Pug,

n

(2) E aj-kf(k) gJ (j O, 1,..., n).
k=0

Here, by P, /2(:H) /2() we denote the projections defined by

(3) Pn (go, gl, g2, .) - (gO, gl, gn, O, O, .),

and we let Tn(a) stand for the compression P,T(a)Pn]ImP,. If there is an no _> 0
such that equations (2) have a unique solution f(") E ImPn for every g E/2(7_/) and
every n _> n0 and if f(") converges in /2(7_/) to a solution f e /2(f) of (1), then
the finite-section method is said to be applicable to T(a). We write T(a) e H{Pn}
in this case. Some authors speak of the "projection method" instead of the "finite-
section method"; we prefer the latter name, since there are many other projections
methods (including various Galerkin-Petrov methods) one might apply to solve (1)
approximately.

Here now is also the place to remark that Toeplitz matrices with operator-valued
entries are not considered for academic purposes only. First, quarter-plane Toeplitz
operators (with scalar-valued symbols) are nothing but Toeplitz matrices on /2(/2)
whose entries are themselves Toeplitz matrices. Secondly, in [13] it was pointed out
that Wiener-Hopf integral operators may be "discretized" to become Toeplitz oper-
ators with operator-valued entries. This observation enabled Gohberg and Kaashoek
to establish a first Szeg5 limit theorem for the Fredholm determinants of truncated
Wiener-Hopf integral operators. Moreover, by having recourse to Toeplitz oper-
ators with operator-valued entries, the authors and Harold Widom [8] were able
to prove a certain continuous analogue of the Fisher-Hartwig formula for Toeplitz
determinants--up to now no other way of obtaining this analogue is known.

In the matrix case (dim 7-/< oc), there is a well-known strong interplay between
Fredholm criteria and the finite-section method for Toeplitz operators on the one hand
and compactness properties of Hankel operators on the other (see, e.g., [12] and [6]).
Page [16] showed that studying compact Hankel operators on/2(7_/) with dim T/= oc
is also of interest; he proved the following operator-valued version of the celebrated
Hartman theorem:

(4) H(a) a e C(K(7-/))+

Here K: stands for the ideal of all compact operators, C(K(7-/)) denotes the continuous
functions of T into K(?-/), and Ha(,(Tl)) is the algebra of all a La((?-l)) for
which an 0 for all n >_ 1. In what follows, we abbreviate the set on the right of
(4) to C: + Ha. Using (4) it is easy to realize that C: + Ha is, in fact, a Banach
subalgebra of La((Tl)) (remember R. Douglas and D. Sarason for the scalar case!),
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and this almost immediately yields a Fredholm theory for Toeplitz operators T(a)
with a e C: + H on /2(.) (see, e.g., [5, p. 90]). The finite-section method for
Toeplitz operators generated by C: + H functions was disposed of in [7]; note that
if a is of the form identity (e H(:(?-/))) plus trace-class operator
which is the situation we are usually confronted with when studying determinants,
then C: / H is just the algebra that satisfies us.

Nevertheless, when dealing with operators on/2() in the dim x case, the
concept of compactness should be replaced by what we will call Qn-compactness.
With Pn given by (3), put Qn I- Pn, that is,

We say that an operator K E (/2(T/)) is Qn-compact (and write K E Q) if QnK

__
0

and KQn 0 as n --. , where here and in what follows, denotes uniform conver-
gence (= convergence in the norm of (/2(7-/))). Since Qn Q and Qn -- 0 strongly
as n - c, every compact operator is necessarily Qn-compact. The archetypal exam-
ple of a Qn-compact but not compact operator on/2(7-/) is the Hankel operator H()
generated by the function (eio) eioI. We have

I 0 0

H() 0 0 0
0 0 0

and if dim 7-/= oc, then H() is clearly not compact, while QnH() H()Qn 0
for all n, implying that H() is Qn-compact.

It is easy to see that even H(a) e Q for every a C((7"l)). Indeed, if we denote
by Crna the nth Fejer-Cesaro mean of a, then

II(a- Ona)(eix)[[ < ila(ei(x+8)) a(eX)ll
sin -2e dO

- sin n + 1’

from which we infer that Ila all- 0 s n - , implying that

IIQnH(a)l [[QnH(a a)ll lia o(1) (n -- x).

(A different argument of verifying that H(a) is Qn-compact for every a e C((?-/))
was given in [14].) We will show that, in fact,

(5) H(a) e Q == a e C((T/))+ H((?-/)).

A consequence of (5) is that C + H (- abbreviation for the set on the right-hand
side of (5)) is a closed subalgebra of L(t:(t)). We will use (5) in order to establish
the following result on the applicability of the finite-section method.

Ira e c + g, then T(a) e H{Pn} if and only if both T(a) and T() are
invertible.

Here and throughout what follows, denotes the function obtained from a by
(e) := a(e-o). It is well known that in the case dim T/ _> 2, the invertibility of
T(5) is in no way related to the invertibility of T(a).

Functions in C+H cannot have jumps. To provide results for Toeplitz operators
induced by functions with jumps and other discontinuities, we use the localization



808 ALBRECHT B(TTCHER AND BERND SILBERMANN

technique introduced in [19] and developed further in [5] and [6] to establish the
following criterion.

/f a e L((H)) is locally sectorial (in a sense that will be specified below), then
T(a) e H{Pn) if and only if both T(a) and T() are invertible.

The preceding theorem is in particular applicable to certain piecewise continuous
functions, i.e., to functions a E L((T/)) with the property that the one-sided limits
a(T + 0) E (7-/) exist for every T T; this class of functions will henceforth be
denoted by PC(()). In the dim7-/ < oc case, the local sectoriality of a function
a PC((?-I)) can be deduced from the Fredholmness (and thus all the more from the
invertibility) of T(a). We have not been able to prove such a result for a PC((?’I)).
However, using results on the finite section method for quarter-plane Toeplitz oper-
.ators with piecewise continuous symbols established in [3] and [6] or employing the
"numerical symbol" constructed in [20], we can prove the following theorem.

If a e PC(C + E(?-l)), i.e., if a e PC((?-l)) is a function with values in

C + K(7-/)-= {hi + K" a e C, K e (7-/)},

then T(a) e H{Pn} if and only if both T(a) and T(5) are invertible.

2. Continuous symbols. The purpose of this section is to prove that if a
C((?-l)), then T(a) e II{Pn} if and only if T(a) and T() are invertible. The proofs
we will give are straightforward and are not based on any sort of heavy machinery. A
few general remarks are nevertheless in order.

It is well known (see, e.g., [12]) that if a e L((7-l)) and T(a) e H{P}, then
T(a) and T(5) are necessarily invertible. If, on the other hand, T(a) is known to
be invertible, then the applicability of the finite-section method is equivalent to the
existence of an no _> 0 such that T,(a) ImPn --* ImP is invertible for all n >_ no
and such that

sup
__n0

We may express this also in the following form: if T(a) is invertible, then T(a)
H{Pn} if and only if there are sequences {Rn}, {Rn} and {Cn }, {Cn} of operators in
(ImP) such that

RnTn(a) Pn + Cn, Tn(a)Rn Pn + Cn,

sup llRnll < oc, sup [[Rn]l < cx), IICn[[ -- 0 and IICII
n n

A key role in the investigation of the finite-section method is played by the oper-
ators W (n 0, 1, 2,...) which are defined/2() by

Wn (go, gl, g2, .) (gn, gn-1, go, O, O, .).

For example, with these operators at hand, one may easily understand why T(5) must
be invertible if T(a) e H{P}. We have W P and WnT(a)W T(5), whence

sup ]]TI(5)]] sup ]WnTI(a)Wn]] sup
nno nno nno

We finally remark that the Hartman-Wintner theorem also holds in the operator-
valued case (see, e.g., [7])" if T(a) is invertible in E(/2()), then a is invertible in
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Let us now turn to continuous symbols.
operators is defined by

Recall that the set Q of Qn-compact

Q={KE(/2(?-/))" QnKO and KQnO as nc}.
As pointed out in the introduction, we have H(a) e Q whenever a e C((7-/)).

The following theorem is a special version of Corollary 8 of Devinatz and Shin-
brot’s paper [10]. It was independently established in [7] for symbols in C((?-/))+
H((T/)) and in [14] in the form presented here. The two proofs given below are
proofs in the spirit of [5].

THEOREM 2.1. Let a e C((7-/)). Then T(a) e II{Pn} if and only if T(a) and
T(5) are both invertible operators on/2().

Proof. Suppose T(a) and T(5) (and thus a and 5) are invertible. One then may
write down the identity RuTh(a) Pn + Cn with

Rn PnT-l(a)Pn + Wn(T-l({t) T({t-1))Wn,
Cn -PnT-I(a)H(a)H(-I)QnT(a)Pn WnT-()H()H(a-)QnT({t)Wn

(see [5, p. 61]). Clearly, sup IIRnll < oc, and since H(-1) and H(a-1) are in Q, it
follows that H(-)Qn - 0, H(a-1)Qn - O, implying that IICnll - 0 as n -- oc.
In a similar way, one can show that Tn(a)Rn Pn + Cn with ]]Cnll --* 0 as n --

The preceding proof makes use of a curious identity. A perhaps more natural
approach is based on the following fact, which has been known for a long time and
has been employed by various authors in several contexts (see, e.g., [10], [4], [2], [21]).

LEMMA 2.2. Let X be a linear space, P and Q be complementary projections
on X (i.e., p2 p, Q2 Q, p + Q I), and A be an invertible operator on X.
Then the compression PAPIImP is invertible on ImP if and only if the compression
QA-1QIImQ is invertible on ImQ. In that case,

(6) (PAP)-IP gn-lP- PA-1Q(QA-1Q)-IQA-1p.
The simple proof, which merely amounts to verifying (6), is omitted (see, e.g.,

[5, p. 61]).
Now denote by l (7-/) the Hilbert space of all square-summable 7-/-valued doubly

infinite sequences (fn),=_ and identify/2(_/) as a subspace of l(?-/) in the natural
way. Let P stand for the orthogonal projection of l (7-/) onto/2(7-/), put Q I- P,
and define the "flip operator" J on l(?-/) by (Jf)n f-, (n 0,+/-1,+/-2,...).
The Laurent operator L(a) induced by a function a L((?-t)) is given by the
matrix (aj-k)j,=_. Traditionally, one simply writes a instead of L(a). With these
notations, we may write Toeplitz and Hankel operators in the following form:

T(a) PaPIImP T(5)- JQaQJIImP
S(a) PaQglImP H(5) JQap[ImP.

Second proof of Theorem 2.1. Suppose the operators T(a) PaPlImP and T(5)
gQaQglImp are invertible. Lemma 2.2 then tells us that T(5-) gQa-lQglImp
and T(a-) Pa-lPlImP are also invertible. Using formula (6), we get

QT-I(a)Q Q(Pap)-IPQn
Qpa-IPQ QnPa-Q(Qa-IQ)-IQa-IPQn
Qpa-lpQn QnPa-IQj(JQa-IQj)-IjQa-IPQn

(7) QnT(a-1)Qn QnH(a-1)T-I({z-1)H(-I)Qn.
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The second term of (7) goes uniformly to zero because H(a-1) is Qn-compact. The
first term of (7), the operator QnT(a-1)QnlImQn, has the same matrix as T(a-). It
follows that the left-hand side of (7), the operator QnT-(a)QnlImQn, is invertible
for all sufficiently large n and that II(QnT-l(a)Qn)-lQnll < 211T-(a-1)l for all n
large enough. For these n, we deduce from Lemma 2.2 and formula (6) that

(8) (PnT(a)Pn)-Pn PnT-(a)Pn-PnT-l(a)Qn(QnT-(a)Qn)-nT-(a)Pn,

and since the norm of the right-hand side of (8) does not exceed

we obtain that T(a) H{P). [:]

3. Q-compact Hankel operators and C -]- H symbols. It is easy to see
that the collection Q of all Q-compact operators is a closed subset of (?-/). If
dim?-/ c, then Q : and hence Q cannot be a two-sided ideal of (/2(?_/)).
However, Q is a two-sided ideal of certain C*-subalgebras of (/2(T/)). Let Jt denote
the smallest closed subalgebra of (/2(?_/)) containing the set

{T(a) a L((?-/))} tJ {H(a) a L((?-/))} tJ Q.

PROPOSITION 3.1. Q is a closed two-sided ideal of A.
Proof. It suffices to show that QnT(a)K

__
0 and Q,H(a)K

_
0 whenever a

is in L((-I)) and K Q. Given any > 0, choose no so that IlK- P,oKII
]lQnoKII < s. We have

and because

it follows that

an+l
QnT(a)P, an+2

an-no+l Ian-no+2

IIQT(a)Poll 2 <_ (no + 1) E Ilakll2
k)n

if only n is large enough (note that L(C(7-l)) C L2((7-/)) and hence E Ilall < c).
This proves that QnT(a)K - O. It can be shown similary that Q,g(a)g

The classical Nehari and Hartman theorems were extended by Page [16] to the
operator-valued case: if a E L((7-/)), then

(9) IlH(a)ll dist (a, H(g(7-f)) ),
where dist refers to the distance in L(.(7-l)), and we have

(10) H(a) E 1E(7-f) a c C(K:(7-/))+ H((7-/)).

PROPOSITION 3.2. Let a e L((TI)). Then

(11) H(a) e Q == a e C(.(7-l))+ H((7-l)).
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In what follows, we abbreviate the set on the right-hand side of (11) to C + H.
Proof. Since H(g) 0 for g E H and H(f) for f C, we see that

H(a) for every a f + g C + H. To show the reverse implication, note
first that IIQnH(a)l IIH(x_n_la)ll, where Xk(t) tk (t e T), and then use (9) to
obtain

IIH(X-n-la)ll dist(X-n-la, H) dist(a, Xn+IH) >_ dist(a, C -t- H).

Thus, if IIQnH(a)l -. 0 then dist(a, C + H) 0, and we are left with showing that
C + H is closed.

This can be done most easily with the help of the Zalcman-Rudin lemma (see,
e.g, [6, p. 75]), which says the following: if E and F are closed subspaces of a Banach
space X and if there exists a sequence (Sn}nC__0 of operators Sn E :(X) such that
supn IISII < oo, Sn(X) C E for all n, S,(F) c F for all n, and ]]Snu- ull- 0 as
n cx) for all u E, then E+F is a closed subspace of X. The closedness of C+H
follows from this lemma with X Lo((TI)), E C((?-l)), F H((TI)) and
Sna ana, where ana is the nth Fejer-Cesaro mean of a.

PROPOSITION 3.3. C + H is a closed subalgebra of
Proof (in the spirit of L. Coburn (see [18, p. 102]) and M. G. Krein [15]). We

already know that C + H is closed. To prove that C + H is an algebra, take
a, b C + H and note that

Qng(ab) QnPabQJ QPaPbQJ + QnPaQJJQbJ
QnT(a)H(b) + QnH(a)T().

Clearly, QnH(a)T() O, while Proposition 3.1 gives that QnT(a)H(b) O. Con-
sequently, QnH(ab)

_
0 and Proposition 3.2 finally implies that ab

An operator A Jt will be called Q-Fredholm if it is invertible modulo Q-
compact operators, i.e., if A+ Q is invertible in 4/Q. The group of invertible elements
of a unital Banach algebra will henceforth be denoted by G.

PROPOSITION 3.4. Let a C + H. Then

T(a) is Q-Fredholm ==v a e G(C + H).

Proof. Let RT(a) I + K with R e (/2(7./)) and K e Q. Then

IIRII IIT(a)fl] + Ilgfll >_ Ilfll Vf e/2(7-),

and hence

Denote the bilateral shift on l() by U By replacing g with Ung in the
last inequality and taking into account that Un is an isometry, we get

IIR]] IIU-nPaPUngll + IIKPUngII + ]]U-nQungll >- ]]gll Vg l(/).
Obviously, U-nPUn I, U-nQUn O, and u-npaPUn L(a) strongly as
n . Since

[[KPUng]] <_ II(K- KP.o)PU"gl] + ]]KPnoPUngl]
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and IIPnoPUngll 2 <_ IIg_nll 2 +... + ]lg_n+noll 2 O(1), it follows that KPUn --, 0
strongly. Consequently, IIRII IIL(a)gll >_ IIg]l for all g e l(/-/), which implies that
a GL(Tl).

To show that even a G(C + H), consider the identity

(12) 0 Paa-lQJ PaQJJQa-QJ+PaPa-QJ H(a)T(5-)+T(a)H(a-).

Multiplication of (12) by R from the left and by Qn from the right gives

0 RH(a)T(5-1)Qn + H(a-1)Qn + KH(a-1)Qn.

From Propositions 3.1 and 3.2, we infer that H(a)T(5-1)Qn 0 and KH(a-1)Qn --,--*
0, implying that H(a-1)Qn O. Starting with T(a)S= I+K and 0= JQa-lap gives

QnH(a-1) 0. Thus H(a-1) E Q and therefore a- E C 4-H by Proposition 3.3.
The implication 4== of the present proposition follows immediately from the

identities

T(a)T(a-1) I H(a)H(-1), T(a-)T(a) I H(a-1

in conjunction with Proposition 3.1 and 3.2.
The following result was established by Devinatz and Shinbrot [10] with the help

of other methods.
THEOREM 3.5. Let a C 4- H. Then

T(a) C H{Pn} T(a), T() C G(/2(/-/)).

Proof. Since a-1 C + g whenever T(a) is invertible (Proposition 3.4), the
second proof of the Theorem 2.1 can be literally used in the situation considered
here.

We remark that the first proof of Theorem 2.1 also works in the present setting:
the only modification is that we now may not conclude that H(a)H(-I)Qn

_
0

because H(-1

due to Proposition 3.1.

4. Localization. We now consider operators of the form T(a) + K, where a

L(,(TI)) is a possibly discontinuous function and K is a Qn-compact operator. No-
tice that adding a perturbation K is not an academic, subject. Many of the operators
currently emerging are not pure Toeplitz operators but turn out to be perturbed
Toeplitz operators. Our main result in this section implies the following. Suppose
a L((Tl)) and T(a)+ K and T() are invertible. If in a neighborhood of each
point T E T the function a coincides with a function a for which T(a) H{Pn},
then T(a) H{Pn}. The proof of this result is based on the approach developed
in [19].

Denote by F the linear space of all sequences {An}=0 of operators An (ImPn)
such that

(13) II{An}ll := sup IIAnll < cx.
n>0

With the operations {An}{Bn} := {AnBn}, {An}* := {A} and the norm (13), the
space F is a C*-algebra. Let J stand for the collection of all sequences in F of the
form {PnKPn + WnLWn + Cn} with K,L Q and IICnll 0 as n --, . Finally,
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define $ as the smallest closed subalgebra of F containing J and all sequences {Tn(a)}
with a E L((7"l)). Clearly, $ is a C*-algebra.

PROPOSITION 4.1. J is a closed two-sided ideal of S.
Proof. That J is closed can be seen as in the dim 7-/= 1 case, for which we refer

to [5, p. 67].
To prove that J is an ideal, we first show the following implications:

(4) L Q == WnLWn --* 0 strongly,

L,K Q WnLWnK O.

Given any s > 0, we can find an no such that

IIWLW WnPnoLWnll < /3 Vn >_ no.

For n _> no, the matrix of WnPnoLWn is AnO BnO with

A, W PnoLQ-noWho, B WnoPno LPn_noW-o.
Clearly, ]IAn]I < /3 if n is large enough. For every f e/2(7_/), we have

Bnf WoPoLP,oW-of +WnoPnoLQ,oWn-nof
and IILQmo < /6 if m0 is sufficiently large. Since

PmoWn-nof (fn-no,..., fn--no+mo, 0, 0,...),

it follows that ]]PmoWn-ofl] < /6 for all sufficiently large n. Thus, we have shown
that IIWnLWf[[ < ellfll for all f e /2(7-/) and all sufficiently large n. This proves
(14). To establish (15), choose n0 so that IlK- Pnogll < s and IlL- PoLII < and
note that ]IWnLWnKII does not exceed

IlWnLWn(K- PnoK)ll + IlWn(L- PnoL)WnPnoKII + ]]WnPnoLWnPnoK]]

The assertion now follows from the observation that WnPnoLWnPno has the matrix
0 0(An 0) with An WnoPnoLQn-noWno as above.
Now we can easily check that J is an ideal of S. What we must show is the

following: if a L ((7-/)) and K, L E Q, then each of the six sequences

{PnT(a)PnLPn}, {PnT(a)WnLWn}, {PnKPnLPn},
{PnKWnLWn}, {WnKWnLPn}, {WnKWnLWn}

belongs to J. For the last three sequences, this is immediate from (15). We have

PnT(a)PnLPn PnT(a)PnoLP, + PnT(a)Pn(L- PnoL)P,,

and since T(a)Pno Q by Proposition 3.1 and IlL- PoLll is as small as desired if
only no is large enough, we deduce that (P,T(a)P,LPn} J from the closedness of J.
That the second and third sequences are in J follows similarly from the representations

PnT(a)WnLWn WnT(5)PnoLW + WnT(5)Pn(L PnoL)W,
P,KPnLPn PKPoLPn + PnKP(L- P,oL)P. D
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Now let A be any operator on/2() and suppose we have a sequence {An} E S
which converges strongly to A. We write A E H{An} if the operators An "ImPn
ImPn are invertible for all sufficiently large n and f(n) A-lpng converges in/2(7_/)
to a solution f of the equation Af g for every g /2(). In the case where An
PnAPnIImPn, we write A H{Pn} in place of A II{An}, which is in accordance
with our previous notation.

Again let A e (/2(7-/)), {An} e S and suppose An - A strongly. Then
{WnAnWn} is also a sequence in S. We claim that every sequence in S has a strong
limit. To see this, it suffices to verify that Tn(a)(a L((t)), PnKPn (K Q),
and WnLWn (L Q) converge strongly. But the strong convergence of Tn(a) and
PnKPn to T(a) and K, respectively, is obvious, while (14) tells us that WnLWn con-
verges strongly to zero. It follows that, in particular, WnAnWn has a strong limit;
this limit will be denoted by A (although it depends not only on A but also on the
sequence {An }).

Finally, for {An} S, we denote by {An} the coset {An} / J in the quotient
algebra S/J.

THEOREM 4.2. Let A (/2(7_/)), {A_} S, and suppose that An A strongly.
Then A H{An} if and only if A and A are invertible in (/2(7-/)) and {An} is
invertible in S/J.

Proof. The "only if" part can shown by standard arguments (see [5, p. 68]). So
assume A, ., and {An} are invertible. From the invertibility of {An}, we deduce
the existence of a sequence {Rn} S such that

AnRn Pn + PnKPn + WnLWn / Cn

with K, L e Q and IICn 0. Put

Rn Rn PnA-1KPn Wnft-ILWn
Since {PnA-1Kpn / Wn.-lLWn} e J, it follows that {R} e S. Clearly,

(16) Ant.n Pn / Pn(K- AnPnA-IK)Pn / Wn(L- WnAnWnfft-lL)Wn / Cn.

We claim that if {Bn} is any sequence in S and K any Qn-compact operator,
then BnK - BK as n - . To show this, we may restrict ourselves to the cases

where Bn is Tn(a), PnLPn or WnLWn with L Q. We have

Tn(a)PnK T(a)K -QnT(a)K PnT(a)QnK - 0

since T(a)K Q by Proposition 3.1 and K Q by assumption. Since PnL -- L and

PK K, we obtain that PnLPnK LK. Finally, from (14) and (15), we infer

that WnLWnK - 0 O" K. This proves our claim.

From what has just been shown, we obtain in particular that

K- AnPnA-1K
_
K- AA-1K O,

L WnAnWn-IL
__

L- fl-L O,

and hence (16) may be written in the form AnR Pn / C with IICnll-- 0. In a
similar fashion, one can find a sequence {R} E S such that RAn Pn + C with

C - 0. This implies that A H{An}. D
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The following extension of Theorem 3.5 is an immediate consequence of the pre-
ceding theorem.

THEOREM 4.3. Let a e C + H and K e Q. Then

T(a) + K e H{Pn} T(a) + K, T() e G(/2(7-/)).

Proof. Because Wn(T(a) + K)W T(5)+ WKWn converges strongly to
(recall (14)), we get the implication "==:>." Conversely, suppose T(a)+ K and T()
are invertible. We must show that {T(a)+ K} {Tn(a)} is also invertible.

Since T() is invertible, we have - e C + H and thus a-1 e C + H by
virtue of Proposition 3.4. Consequently, H(a)H(-) and g()H(a-) are in Q due
to Propositions 3.1 and 3.2. It remains to write down Widom’s identity

Tn(a)Tn(a-1) Pn PnH(a)H(t-1)Pn- WH(t)H(a-1)W

and to observe that {PnH(a)H(5-1)Pn + WnH(5)H(a-1)Wn} e J.
Let C be the smallest closed subalgebra of (/2(7_/)) containing all Toeplitz oper-

ators T() with e C((Tl)). Using Proposition 3.2, one can easily show that every
operator A e C is of the form A T()+ K with A e C((9-l)) and K e Q (note
that Q is in fact the quasi-commutator ideal of C, i.e., the smallest closed two-sided
ideal of C containing all quasi-commutators T()- T()T() (, 2 e C((TI))).
Thus, Theorem 4.3 implies that if A e C, then

A e H{Pn} A and . := lim WnAW are invertible.

This is also the right place to give an interlude on so-called paired operators,
which may be viewed as singular integral operators in matrix disguise and are, in the
case of continuous coefficients, a nice example of Q-compactly perturbed Toeplitz
operators. Given a,b e L(E(TI)), the paired operator induced by a and b is the
operator aP + bQ (= L(a)P + L(b)Q) on l (7-/). Define Pn on l (7-/) by

:)n ((Xj)?----x) (...,0,0, X--n--I,...,X--I,X0,...,Xn,0,0,’’’)"

We write aP+bQ e H{Pn} if the operators An 7n(aP+bQ)PnlImTn are invertible
for all sufficiently large n and f(n) A7)g converges in l() to a solution f of

(aP + bQ)f g for every g e 1(7-/). The mapping

C l(?-/) la(7-/) (R)/2(7-/), f JQf (R) Pf

is a Hilbert-space isomorphism, and C(aP+bQ)C- and CPC-1 are given on
by

(JQbQJ JQaP)PbQJ PaP g(b)

respectively. Hence,

aP + bQ e II{Pn} H(b)

H()) and (Pn 0 )T(a) 0 P

H()
T(a) )eli{( Pno

Further, the mapping D 12 (7-/) (R) 12 (7-/) --+ 12 (7-/(R) 7-/) defined by

D (fo, fl,...) (R) (go, Hi,...) (f0, go, f, gl,..-)
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is also a Hilbert-space isomorphism, and we have

D
H(b) T(a)

-=T
0 a b

D (Tn()PnH(b)Pn
PnH(t)Pn ) D_I _Tn( O) _t..PnH(OTn(a) 0 a b 0

Consequently,

aP + bQ II{T’n} <=== T(c) + K II{Pn},

,0) andK=H(awhere c (0 a b 0)" If a, b E C((?-/)), we are in the situation covered

by Theorem 4.3 (only with 7-/(R) 7-/in place of "H). Since T(e) T (0 ) is invertible
if and only if T(b) and T(8) are as well, we arrive at the following result, which
was stated in a different form and proved by other methods (and under the a priori
assumption that a and b be invertible) in [14].

THEOREM 4.4. Let a, b C((?-l)). Then

aP + bQ II{Pn} aP + bQ and PbP + QaQ are invertible. D

A moment’s thought reveals that the above argument is also applicable to opera-
tors of the form aP + bQ + L, where a, b C((J-l)). and L is a Qn-compact operator,
that is, an operator for which T)nL

_
L and LT)n

_
L. In that case, we have

aP + bQ + L II{T’n } aP + bQ + L and PbP + QaQ are invertible.

We now turn to Toeplitz operators with discontinuous symbols. Let C(C) denote
the C*-algebra of all complex-valued continuous functions on T. If C(C) and I
is the identity operator on J-/, we define I E (J-/) in the natural way (as (R) I). In
case I is followed by another operator a (?-/), we abbreviate IA to A.

Two functions a, b L((7-l)) are said to be locally equivalent at a point

inf{[[99(a- b)[[: C(C), (-) 1} 0.

THEOREM 4.5. Let a L((?-l)) and K Q. Suppose T(a) + K and T(8) are
invertible and a is at every point T T locally equivalent to a function a
for which {Tn(a)} is invertible. Then T(a) + K II{Pn}.

Proof. By virtue of Theorem 4.3, we are left with showing that {Tn(a)} is
invertible. This will be done by making use of the local principle of Allan and Douglas
(see, e.g., [6, Thm. 1.34]) in the algebra S := S/J.

The mapping 7: C(C) --+ S, {Tn(I)} is readily seen to be a C*-algebra
homomorphism. Moreover, 7 is injective: if {T(I)} {PnKPn+WnLWn+Cn} is in
J, then T(I) K is Qn-compact, whence IIT(I)II IIQnT(I)Qnll 40, implying
that 0. It follows that -),(C(C)) is a commutative C*-algebra isomorphic to C(C)
and thus that the maximal ideal space of -y(C(C)) may be naturally identified with T.

For E C(C) and b L((n)), we have

{Tn (flI)}r {Tn (b)}r {Tn (b)}r {Tn (bcflI)}r {Tn (b) }r {Tn (flI)}r,

and hence /(C(C)) is contained in the center of S. For - e T, denote by J the small-
est closed two-sided ideal of S containing the set {{Tn(I)} e C(C), (-) 0}.
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The local principle of Allan and Douglas says that {T,(a)} is invertible in S if and
only if for every - E T, the coset {Tn(a)} +J is invertible in S/J. But it is easy
to see that {Tn(a)} +J {Tn(a)} + J, and because {T(a)} was assumed to
be invertible, so all the more is {Tn(a)} / J.

Since, by Theorem 4.3, the element {T(ar)} is invertible whenever T(a)
H{Pn}, the preceding theorem is also true with the phrase "for which {T(a)} is
invertible" replaced by "for which T(a) e H{Pn}."

We also remark that Theorem 4.5 extends to localization over the algebra QC(C)
of all quasicontinuous functions, i.e., the operator-valued version of Theorem 7.32(i)
in [6] is valid.

5. Locally sectorial symbols. The essential range JR(a) of a function a

n((?-/)) may be defined as the spectrum of the Laurent operator n(a)
A scalar-valued function a L((C)) L(C) is called globally sectorial if :(a)
is contained in some open half-plane whose boundary passes through the origin. There
are at least two possibilities of extending the concept of sectoriality to operator-valued
functions.

A function a e L(:(7-/)) is said to be globally analytically sectorial (a e GAS)
if there are b, c G(/) and an s > 0 such that

Re (ba(t)ch, h) >_ llhll 2

for almost all t T and all h 7-/. Thus, if we denote by (a) the Hausdorff range
of the function a,

(a) := {(ah, h):a e :(a), Ilhll 1},
then a GAS if and only if there are b, c G(’l) such that (bac) is contained in
the right open half-plane.

We call a function a L((Tl)) globally geometrically sectorial (a GGS) if the
convex hull of its essential range, conv :(a), consists entirely of invertible operators:
conv : (a) c G(?-l).

In the scalar case (dimT 1), we have GAS GGS, whereas in the dim7-/> 1
case GAS c GGS but GAS GGS (see [1]).

A function a L((TI)) is said to be locally analytically or geometrically sec-
torial (a LAS or a LGS) if a is at every point " T locally equivalent to some
function a. in GAS or LGS, respectively.

Functions in GAS are fairly well understood. One can show (see, e.g., [6, p. 104])
that the following are equivalent:

(i) a GAS;
(ii) there is a d E G(T/) such that (ad) is contained in the right open half-

plane;
(iii) there exist both an operator e G() and a number q (0, 1) such that

IlI- a(t)ell _< q < 1 for almost all t e W.
PROPOSITION 5.1. If a GAS, then T(a) H{Pn}.
Proof. Let e and q be as in condition (iii) above. Then

IlI- T(a)T(e)ll <_ IlI- cell <_ q < 1,

which gives the invertibility of T(a), and

liRa- Tn(a)%( )ll < I1 - a ll < < 1.

The latter inequality implies that Tn(a) is invertible for all n large enough and that
IIT-(a)ll < Ilell/(1- q).
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THEOREM 5.2. Let a E LAS and K Q. Then

T(a) + g e II{Pn} == T(a) + K, T(5) e G(/2(7-/)).

Proof. This is immediate from Theorem 4.5 and Proposition 5.1. [:]

We remark that Theorem 5.2 also holds for functions a which are locally analyt-
ically sectorial over QC(C) (see Theorem 7.32(i) of [6]).

6. Piecewise continuous symbols. Let PC(E(TI)) denote the C*-algebra of
all functions a in L(:()) having one-sided limits a(T+O) at every point T T.
At T T, a function a PC((Tl)) is locally equivalent to the function x-a(’-
O) + x+a(T +0), where X+ stand for the characteristic functions of the half-circles
{Te+ 0 < 0 < }. Thus, a LAS if and only if for every T T there are
br, cr GE.(TI) such that (ba(T :i: O)cr) is contained in the right open half-plane,
and a LGS if and only if for every T E T the line segment

[a(T--0), a(T+0)] {(1 --#)a(T--O)+ #a(T+O) # [0, 1]}

is contained in G(T/).
Theorem 5.2 tells us that if a PC(E.(TI)) is in LAS, then T(a) H{Pn} if

and only if T(a) and T(5) are invertible. For matrix-valued functions a PC(.(7-I))
(dim < oc) it was shown by Clancey [9] that

(17) T(a) is Fredholm a LAS == a LGS

(also see [6, Thin. 4.70]). Consequently, in the dim T/< c case we have the equiva-
lence

(18) T(a) e H{Pn} T(a),T(5) e G(/2(7-/))
for every a e PC((TI)). We have not been able to carry over (17) and (18) to the
dim 7-/= oc case for general a e PC(()). However, we will extend (18) and part of
(17) to symbols a in PC(C / K:(?-/)) (recall the last paragraph of the introduction for
the definition of PC(C+K:(?-/))). To do this, we present two independent approaches.
The first is based on the theory of quarter-plane Toeplitz operators, while the second
makes use of an approximation argument.

Here is the first approach. We now identify/2(/) with the Hilbert-space tensor
product 12 (R) -, where 12 :=/2(C). Then if X+ are as above and a, b :(7-/) are any
operators, we have

(19) T(x_a + x+b) T(X-) (R) a + T(X+) (R) b

with T(X+) :(/2). Furthermore, if dim 7-/= x (and only this case will be considered
in the following), we may without loss of generality assume that 7-/= 12. Thus, we
may think of (19) as an operator on 12 (R) 12 (the 12 space of a quarter-plane).

Let B denote the smallest closed subalgebra of (/2) containing the set {T()
PC(C)} and let B (R) B be the closure in (l2 (R)/2) of the set of all operators

that are representable as finite sums of the form ’j Uj (R) Vj (Uj, Vj S). In other
words, B (R) B is the C*-algebra tensor product of two copies of B. Hence, if in (19)
the operators a and b lie in B, then T(X-) (R) a + T(X+) (R) b belongs to B (R) B, and
operators in B (R) B are fairly well understood (see [11] or [6, pp. 363-369]).

THEOREM 6.1. Let a PC(B). Then

T(a) is Q-Fredholm a LGS.
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Proof. For - e T, put A T(X-) (R) a(-- O) + T(X+) (R) a(T + 0). Standard
application of localization techniques gives that T(a)+ Q is in G(,4/Q) if and only if
A + Q is in G(A/(2) for every T E T. Since A E B (R) B and B (R) B is a C*-subalgebra
of ,4, we obtain

A + Q G(A/Q)
====:> A.,- + Q e G((B (R) B + Q)/Q)

A.,- + (B (R) B rl Q) e G(B (R) B/(B (R) B F1Q)).

Denote the compact operators on 12 by K: := 1C(/2). It is well known that K: is a subset
of B When interpreting/2(7_/) as 12 (R) 1-/, the operators Qn we have been working
with so far may be identified as Qn (R) I. Using this, it is easy to show that B (R) B A Q
is nothing else than K: (R) B. Hence,

A + Q G(A/Q) 4====> A.,- + K: (R) B E G(B (R) B//C (R) B).

Invertibility criteria in B (R) B//C (R) B were established in [11] (see also [6, pp. 363-369]
for an alternative approach). All we need is the following. Suppose we are given a
finite sum Bj (R) Cj e B (R) B in which each Bj is a Woeplitz operator, say T(bj).
Then

T(bj) (R) Cj +/(: (R) B e G(B (R) B//C (R) B)

4=:=> -((1 -#)bi(t-O) + #b(t+O))Cy e GB V(t, #) e T x [0, 1].

Application of this criterion to A produces

A.,- +/C (R) B e G(B (R) B/K: (R) B)
,<:==> (1 -#)a(T-O) + ,ua(-r+0) e GB
.=. [(-0), (+0)] c ()

V#e [0,1]

(for the last equivalence, note that B is a C*-subalgebra of (7-/)).
THEOREM 6.2. Let a PC(B) and K Q. Then

T(a) + K E H{Pn} 4==V T(a) + K, T(5) C G(12(7-l)).

Proof. Suppose T(a) 4- K and T(5) are invertible. By Theorem 4.5, we are left
with showing that

{Tn(a)} + J e G(S/J) VT e T,

where a x_a(T--O)+ x+a(T+O). We have

(20) T,() Tn(X-) (R) (-O) + T.(X+) (R) (+0).

The algebra F defined in 4 for/2(7_/) will be denoted by F in case 7-/ C. Let S
stand for the smallest closed subalgebra of F containing all sequences {Tn()} with
PC(C) and let J be the collection of all sequences of the form {PnKP+WLWn+Cn}
with K, L E KS := K:(/2) and IICnll-- O. One can show (see [6, Prop. 7.27]) that J is
a closed two-sided ideal of S.
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Now recall that 12 (R) 12 may be identified with /2(Z+ Z+), where Z+ Z+ is
the discrete quarter-plane. Interpreting 12 (R) 12 in this way allows us to think of the
projections Pn:/2(/2) _/2(/2) defined by (3) as acting by the rule

(gjk}j,k>0 (hjk)j,>o hj, ( gj if J n,
-’ 0 if j>n.

It is therefore convenient and also fits in with the notation of the preceding paragraph
to replace Pn by P I in this context.

Denote by Y the C*-algebra of all sequences (An}=o of operators An e(Im(P@
I)) such that (An} := SUPn>0 An < . For example, if Tn(a)is given by (20),
then (T(a)}0 e Y. Moreover, given a finite collection of sequences (Uj) ) e S
and a finite collection of operators V(J) e B, it is clear that the sequence

(21) Uj) @ V(j)

n:O

belongs to V. The closure in Y of all sequences of the form (21) with (Uj) } e S and
V(y) B is denoted by S@ B, while J @ B will stand for the closure in Y of the set of all
sequences of the form (21) with {Uy) } e J and Y(j) e B. The sequence {Tn(a)}no
defined by (20) obviously belongs not only to Y but even to S B. An invertibility
criterion in S@ B/J @ B can be obtained by the method of [6, pp. 381-389]. We merely
quote the result for sequences of the form {T(b) @ Q}=0. One has

In the special case (19), we get, as in the proof of Theorem 6.1,

+ S e a(S S)

Since T(a)+ K is invertible, we deduce from Theorem 6.1 that [a(T--0), a(T +0)]
is contained in G() for every T T. Hence, {Tn(ar)} + 3 is invertible in
S /3 , and because clearly 3 @ c J nd S @ c S, it follows that all the more
{Tn(a)} + J is invertible in S/J.

We emphasize once again that C + () c and therefore Theorems 6.1 and
6.2 hold in particular for a PC(C + ()).

Let us finally present another approach to prove (18) for a in PC(C+(n)). We
denote by B the smallest C*-subalgebra of S containing all sequences {Tn(a)} with
a PC(C + ()) and we let G stand for the collection of all sequences {Cn} B
such that C 0 as n . Clearly, G is a closed two-sided ideal of B. rthermore,
let B denote the smallest C*-subalgebra of (/2()) containing all operators T(a) with
a PC(C + ()) and make B B become a C*-lgebra by defining the algebraic
operations on the ordered pairs (T, T2) B B componentwise and the norm as
(T,T2)[ max{T[[, [T2]}. The mapping a: S B B which associates with
every sequence {A} the pair of the strong limits (limnAn,limn WnAnWn)
is a C*-algebra homomorphism. Since G is contained in the kernel of a, we have a
well-defined C*-algebra homomorphism

S/ , {An} + ({An}).



TOEPLITZ AND HANKEL MATRICES 821

A dense subset of B is the set B0 of all sequences {An } which are finite sums of finite
products of the form

(22) An EHTn(aij),
j

where aij PC(C + K:(T/)) have at most finitely many jumps. Notice that

(23) a({An}+G)_ (EI_IT(aj),EHT(5y))
in case An is given by (22).

THEOREM 6.3. The mapping a" B/G B B is an isometrical C*-algebra
isomorphism of BIG onto a (B/G).

Proof. Let {el,e2,...} be any orthonormal basis of 7-/ and denote by Sk the
orthonormal projection of J-/ onto the linear hull of {el,...,ek}. Further, let Bk
denote the smallest C*-subalgebra of B containing all sequences of the form {Tn (fI /
SkhSk)}n=O, where f e PC(C) and h e PC(1C(J-l)). From [20, remark on p. 39], one
can easily derive that

(24)

for every sequence {An} Bk. Now consider An of the form (22) and write aj.--

fijI + hij with fj PC(C) and hj PC(l(7-l)). Since hj has at most finitely
many jumps, the essential range of hij is a compact subset of/(:(J-/). So Lemma 4.1

k fjI + SkhjSk converges in PC(1C(TI)) to aij as k --of [7] implies that aij
Using (24) for {An} e Bk, we obtain

and passage to the limit k -- oc yields

]1a ({E Hj T,(ai) } + G)11- 11{ EH Tn(aj)} +
and thus (24) for every sequence {An} B0. Since B0 is dense in B, we arrive at the
assertion. D

THEOREM 6.4. Suppose a PC(C + tC(J-l)) Then

(25)

if and only if both Ei I]j T(aij) and Ei I-Iy T(hiy) are invertible. In particular, if
a PC(C + ](Tl)) and K Q, then

T(a) + K e n{Pn} T(a) + K, T(a) e G(12(j-l)).

Proof. Define An by (22). The inclusion (25) holds if and only if {An} + G is
invertible in B/G, and from Theorem 6.3 we infer that {An} zr- ( is invertible if and
only if the two operators on the right of (23) are invertible.
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SHARP ESTIMATES FOR COMPLETE ELLIPTIC INTEGRALS*

S.-L. QIU AND M. K. VAMANAMURTHY*

Abstract. Monotonicity and convexity properties of certain functions defined in terms of com-
plete elliptic integrals are studied and sharp functional inequalities for these functions are obtained,
thus answering some open questions.

Key words, concave, convex, elliptic integral
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1. Introduction. For r e (0, 1), let r’- (1 -/,2)1/2. The functions

K(r) (1 r2 sin2 t)-l/2dt, K’(r) K(r’)
dO

(1.2) E(r) (1 r2 sin2 t)l/2dt,
JO

are called the complete elliptic integrals of the first kind and second kind, respectively
[BF], [BO], [BB]. Basic properties of these functions can be found in [WW].

It is well known that these elliptic integrals are indispensable tools for many
applications in mathematics, physics, and engineering [C]. They play an important
role in quasiconformal theory (see [LV], [AVV1]-[AVV4], [Vu], and [Q1]). Recently,
many new properties were obtained for these functions and several conjectures and
open problems were put forward [VV1], [VV2], [AVVh]-[AVV7]. Among them are the
following three conjectures:

(i) The function /1 + rK(r)/K(x/7 is increasing from [0,1) onto [1, /).
(ii) The function r’eK(r) is strictly concave on (0, 1).
(iii) For each r e (0, 1),

/2 K(r) /2
(1.3) 1 + - < log(4/r’) < 1 + -.
Conjecture (i) appears in [AVV6] and [AVV7], while (ii) and (iii) appear in [AVVT].

In this paper, we derive some monotonicity, concavity, and convexity properties
of certain functions defined in terms of elliptic integrals, from which some sharp
functional inequalities follow. In particular, we shall prove that conjectures (i)-(iii) are
true. By presenting a double inequality stronger than (1.3), we shall derive lower and
upper bounds for the function (8 + r2)K(r)/log(4/r’) which improve the inequalities

(8 + r2)K(r)(1.4) 9 < < 9.1
log(4/r’)

for r (0, 1). We observe that (1.4) is Conjecture (5) in [AVV6].
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We often write K,K’ and E,E’ instead of K(r),K’(r) and E(r),E’(r), respec-
tively, when the argument of the function is clear from the context.

Some of the main results of this paper are as follows.
THEOREM 1.1. The function f(r) /1 + r K(r)/K(v/-) is strictly increasing

from [0, 1) onto [1, /).
THEOREM 1.2. The function g(r) r’eK(r) is strictly decreasing and concave

from (0, 1) onto (4, e/2).
THEOREM 1.3. For each r E (0,1),

(1.5)
1 K(r)

1 + -r’ < log(4/r’)

{ (1), r1’2}<min 1.013872. 1+7r’2 1+

These two inequalities are asymptotically sharp as r tends to 1.
THEOREM 1.4. For each r (0, 1),

(s + + r (s +(1.6) 9 < < < 9.096.
8 log(4/r’)

The lower bound is sharp, and the upper bound 9.096 cannot be replaced by a constant
less than 9.09437.

Remark 1. The first inequality in (1.4) has been proven separately by R. Kiihnau
and S.-L. Qiu (see [K] and [Q2]). Our present proof, however, is very simple as it is
an immediate consequence of the first inequality in (1.5).

2. Preliminary results. In this section, we obtain some elementary properties
of K and E which are needed for proofs of the main theorems stated in 1.

THEOREM 2.1. (1) The function fl(r) E(r)_r,2g(r) i8 strictly decreasing and
4concave from (0, 1) onto (1, ). In particular, for r e (0, 1),

1+ --1 (l-r)<
r2 4

E(r) r’2K(r)
(2) The function f2(r) [E(r)-r’2K(r)]/(1-r’) is strictly decreasing and concave

from (0, 1) onto (1, ). In particular, for r (0, 1),

(r ) E(r)-r’2K(r) {r r’}(2.1) 1+ -1 (l-r)<
1-r’

<min ,1+
1-(E(r)-r’2K(r)) i8 strictly decreasing from (0, 1) onto(3) The function f3(r) r,21og(rAr

(1/2
(4) The function fa(r) (a + r2)E(r) (a r2)K(r) is strictly increasing (de-

creasing) on (0, 1) /f and only if a < 1 (a >_ 4). Moreover,

(0,) ira < 1,
fa((0, 1)) (0,2) ira=l,

(-, 0) ira >_ 4.

(5) For each a e [4,x), fh(r) E(r)/(a- r2) is strictly decreasing from [0, 1]
onto [a1_1, ].

(6) The function f6(r)= r’2(g(r)- E(r))/r2 is strictly decreasing and concave

from (0, 1) onto (0, ).
(7) The function fT(r) (E(r)E’(r) K(r)E’(r) + r2K(r)K’(r))/r2 is strictly

decreasing from (0, 1) onto , oc).
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(8) The function fs(r) (K(r) E(r) +log r’)/r2 is strictly increasing from (0, 1)
onto (-, log 4 1).

Proof. (1) By differentiation,

f (r) (K E)- (E r’2K)
r (E- r’2K)2

which is positive and has the form 0/0 at r 0. The ratio of the derivatives of
the numerator and the denominator is 1/(2r’2K)so that the result (1) follows from
[AVVh, Tam. 2.2(3)] and the l’nhpital monotone rule [AVV7, Thm. 1.24].

The limiting values are clear.
(2) By differentiation,

r E- rK
r’ (1 r’)2"

Since (E- r’K)/(1- r’) 2 is strictly increasing from (0,1)onto (,1)[AVV6, Thm.
3.7], f(r) is negative and strictly decreasing on (0, 1), yielding the monotonicity and
concavity of f2.

Next, from the equality

+
J0

cos2 t
dr,

V/1 r2 sin2 t
r and f2(1)= 1we see that f2(0)=

(3) The function f3 has the form 0/0 at r 1. The ratio of the derivatives of
g which is strictly decreasing, bythe numerator and the denominator 21og(4/r,)-l,

[AVVh, Thm. 2.2(5)], so that f3 has the same property by the l’Hhpital monotone rule
[AVV7, Thm. 1.24]. The value f3(0)= 1/log4 is clear, while f3(1)= 1/2 by l’Hhpital’s
rule.

(4) By differentiation and simplification,

so that the assertions follow.
(5) Since f4(0)= 0 and

r
(4 a 3r2)E,

r(a r2 2 f5 (r) f4 (r),

the monotonicity of f5 follows by (4). The limiting values are clear.
(6) By differentiation and simplification,

e(K E) :E
r3

which has the form 0/0 at r 0. The ratio of derivatives of the numerator and the
denominator is

2rE K E
3r: 3----

which is positive and increasing by [AVV6, Whms. 1.3 and 2.1(6)]. Hence the result
follows by the l’Hhpital monotone rule [AVV7, Thm. 1.24].

(7) By differentiation and simplification,

2
(E- r’2K)(E’- r2g’) < 0
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from which the monotonicity of f7 follows. Since

f7 (r) E’ E r’2K
r + K(K’ E’),

we see that fT(0) oc and fT(1) .
(8) The function fs has the form 0/0 at r 0. The ratio of the derivatives

of the numerator and the denominator is (E- 1)/(2r’), which again has the form
0/0 at r 1. The ratio of the derivatives of the numerator and the denominator is
(g- E)/(4r2), which is strictly increasing by definitions (1.1) and (1.2). Hence fs
also has the same property by the l’Hbpital monotone rule [AVV7, Thm. 1.24]. The
end values are clear.

LEMMA 2.2. (1) The function fg(r) (9 r2)E(r) 3(3- r2)r’2g(r) is strictly
increasing from [0, 1) onto [0, 8).

(2) On (0, 1), the function

flo(r) 3(-75 + 34r2 15r4)r’2K(r) + (225 214r2 + 21ra)E(r)

has exactly two zeros r and r2, rl < r2. Moreover, fo(r) > 0 for r E (0, r) kJ (r2, 1),
and fo(r) < 0 for r e (r, r2).

(3) On (0, 1), the function

f(r) (162 153r2 + 32r4 9r6)K(r) 6(9 r2)(3 r2)E(r)

has exactly two zeros r3, r4, r3 < r4. Moreover, fll(r) > 0 for r (0, r3) (-J (r4, 1),
and fl (r) < 0 for r

(4) The function f12(r)= log(4/r’)-{r2(9-r2)g(r)/f9(r)} is strictly increasing
on (0, r3] and on (ra, 1), and strictly decreasing on (r3, ra).

(5) On (0, 1), the function f2(r) has a unique zero ro (sin29, 1/2) such that
f12(r) :> 0 for r e (0, to) and f12(r) < 0 for r e (to, 1).

Proof. (1) Since

f(r) r(13- 9r2)K(r) > O,

the monotonicity of f9 follows. Clearly, fg(0)- fg(1)- 8 0.
(2) By differentiation and simplification,

lf r;
where gl(r) (-540 + 60r2)E + (541 462r2 + 225r4)K, and

rt2
(2.4) --g (r) g2(r),

r

where g2(r) [(1 + 258r2 +45r4)(E-r’2K)/r2] -(264- 720r2)r’2K. Clearly, gl (0)
r/2, gl(1) cx), g2(0) -527r/4, and g2(1) 304.

By [AVV5, Whm. 2.2(3)(7)] or Theorem 2.1(1), g2 is strictly increasing on [0, b],
where b- v/264/720- v/ll/30 > sin 37. Since

g2(sin 37) 79.37... > 0,

g2 has a zero r5 (0, b) such that g2(r) < 0 for r e [0, r5) and g2(r) > 0 for r (rh, b).
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On the other hand, for r E (b, 1), it is clear that

g2(r) > (1 + 258r2 + 45ra)(E r’2g)/r2 > O.

Hence, r5 is the unique zero of g2 in [0, 1], g2(r) < 0 for r e [0, rh), and g2(r) > 0 for
r 1].

It now follows from (2.4) that gl is strictly decreasing on (0, rh] and strictly
increasing on [rh, 1). Since

gl (sin 32) -30.09... < 0,

gl has exactly two zeros r6, r7 e (0, 1), r6 < rT, so that gl (r) > 0 for r e [0, r6) [.J(rT, 1]
and gl (r) < 0 for r (r6, rT).

Consequently, it follows from (2.3) that fl0 is strictly increasing on (0, r6] and on
[rT, 1) and strictly decreasing on [r6, rT]. By computation, we have

fl0(0)=0, f10()=-2.19.., and fl0(1) 32.

Hence, the result (2) follows by the piecewise monotonicity of flo.
(3) Clearly, f11(0)= 0 and f11(1)= oc. Since

< 0,

the result for fll follows from the derivative

r

by (2).
(4) Assertion (4) follows from the derivative

[fg(r)]2f2(r) rKfll (r)

by (3).
(5) First, we have

and

-I

9r
lim r2

llr2 3r4 r2(9 r2) sin2t
dtfl(O) 2 log 2 - -o V/1 r sin2 t

0

18
21og2- - > 0

since

{(4) fg(r) (9r2 r4) } 0f12(1) rli log -fi K + r’K
r’fg(r)

--:-K =limr’K=0
r--,l
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and

lim
f9(r) r2(9 r2)

0
r--.1 r’f9(T

by l’Hhpital’s rule. Hence, by (4), fl has a unique zero ro in (0, 1).
Next, by computation, we have

f =-0.0002... and f(sin29) =0.0007

Hence, r0 E (sin 29, 1/2).
LEMMA 2.3. (1) The function fa(r) (5- r2)E(r)- (5- 3r2)r’2K(r) is strictly

increasing from [0, 1) onto [0, 4).
(2) The function fln(r) (50- 15r2 + 9r4)r’2K(r)- (50- 40r2 + 6rn)g(r) is

strictly decreasing from [3/23, 1) onto (-16, f4(3/3)].
(3) The function f5(r) log(4/r’)-[r2(5-r2)K(r)/f3(r)] is positive and strictly

on /
Proof. (1) By differentiation,

fa(r) 9rr’K > O,

0 < r < 1. Clearly, f13(0)= 0 and f3(1)= 4.
(2) We have

fn(r) 3r((35 7r2)E + (-35 + 26r2 15ra)K}
,/2 19 15r2 (35 7r2) sin2 t

3r3 dt
0 1 r2 sin2 t

f/2 [(19 15r2)/(35 7r2)] sin2 t
21r3 (5 r2) dt.0 1 r2 sin2 t

It is easy to veri that (19- 15r2)/(35- 7r2) for r e [3/23, 1). Hence it
follows from the above equalities that

21r3 f/
o @1 r sin t

21
-r(5 r2)[2E (2 r2)K]

for r e [V/3/23, 1), which is negative by Theorem 2.1(1).
Clearly, fla (1) 16.
(3) By differentiation,

(2.6) [f13(r)]2f5(r) rgf14(r).

Since

f4(r) < 0 for all r [22 1) by (2). The result now follows from (2.6).
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3. Proofs of main theorems. In this section, we prove the theorems stated
in 1.

Proof of Theorem 1.1. First, it is clear that f(0) 1. By l’HSpital’s rule, we get
f() .

Next, by differentiation,

(3.1) 4r(1 r)(1 + r)3/4K2(x/)f’(r)
4K(x/-)[E(r) r’2K(r)]

+ K(r) {r(1 r)K(v) 2(1 + r)[E(v/ (1 r)K(x/)]}

By Theorem 2.1(2) and [VV2, Lem. 2.2(5)], we have

rg(v/-) > 2[E(x/)- (1- r)g(v)]

for r e (0, 1). Hence, it follows from (3.1) that

4r(1 r)(1 + r)3/4K2(x/)f’(r
> 4K(x/’)[E(r) r’2K(r)] 4rK(r)[E(v/-) (1 r)K(v)]

4r2K(r)K(x/-) { E(r)r2K(r’2K(r) E(x/7) -rK(v r)K() }
Hence f’(r) > 0 for each r (0, 1) by Theorem 2.1(2).

By Theorem 1.1, one can derive lower and upper bounds for (r2)/p(r), where

K’(r)(.) () ()’
0 < r < 1, which is a very important special function in the theory of quasiconformM
mappings [LV].

COROLLARY 3.1. For each r (0, 1),

,()
(3.3) 1 <

1 + r2
<

#(r) <(1 + r2)3/ < 2.

Proof. By [AVV7, Thm. 3.31], for each r e (0, 1),

K’() e
l + r2

< K’(r) <
l + r2"

Hence, by Theorem 1.1, for each r E (0, 1),

,() / g’()
#(r)

(1+ f(r2)K,(r)

< (1 + r2) 1/4 K’(r2) 2

K’(r) < (1 + r2)3/4 < 2

and

#(r2) (1--r2) l/4K’(r2)K’ :> (2)1/4#(r) 2 (r) 1 - r2

Here f(r) is as in Theorem 1.1.



830 S.-L. QIU AND M. K. VAMANAMURTHY

Remark 2. In [QV], it was proved that the function #(r2)/#(r) is strictly decreas-

Next, we have

1 r’2(K E)(3.4) r’3e-gg"(r) -5{(E- r’2K) 2 + }- 1.

Define G(r) {(E- r’2K)2 + r’2(K E)}/r2. Now we want to estimate G(r) by
investigating two cases.

Case 1:0 < r _< sin 68. In this case, by Theorem 2.1 (1) and (6), we have

( E(b) b,2K(b) )
2

<
b +

for r E (a, b] C (0, 1). Making use of this inequality, we get the following estimates by
computation:

G(r) < G1 (0, sin 30) 0.950..., r e (0, sin 30],
G(r) < Gl(sin30,sin43) 0.984..., r e (sin30,sin43],
G(r) < G(sin 43, sin 52) 0.994..., r e (sin 43, sin 52],
G(r) < Gl(sin52,sin58) 0.986..., r e (sin52,sin58],
G(r) < G(sin58,sin62) 0.977..., r e (sin58,sin62],
G(r) < Gl(sin62,sin65) -0.976..., r E (sin62,sin65],
G(r) < G (sin 65, sin 68) 0.987..., r e (sin 65, sin 68].

From these inequalities, it follows that

(3.5) (r) < 1 for r e (0, sin 68].

Case 2: sin 68 < r < 1. In this case, we consider the function G2(r) r2G(r)
r2. Since E _> 1, we have

(3.6) 1G2(r 2K(E- r’2K 1) + 3E- 2
r

> 1 2rtK. 1 (E r’2K)
r’ G3(r), say.

Since r’K is strictly decreasing on (0, 1), G3(r) is strictly increasing on (0,1) by The-
orem 2.1(3).

ing from (0, 1) onto (1, 2). Hence

1 < #(r2)/#(r) < 2,

so that (3.3) improves this result.
Proof of Theorem 1.2. First, by differentiation,

g’ (r) e
g E r’2K r2

rr

which is negative by (2.1), so that g(r) is strictly decreasing on (0,1).
Clearly, g(0)- e/. By (2.5), we have

g(1) exp{ lim (log r’ / K) } 4.
r---
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Hence, for r E (sin68, 1),

G3(r) > 1 + 2K(sin 68) [E(sin 68) cos2 68g(sin 68) 1]
0.015... > 0,

showing that G2(r) is strictly increasing on (sin 68, 1) by (3.6).
Since G2(1) -0, we get

or equivalently,

2 (r) < 0 for r e (sin 68, 1),

G(r) < 1 for r e (sin 68, 1).

Now it follows from (3.4) that g"(r) < 0, for each r e [0, 1), by (3.5) and (3.7). This
yields the concavity of g and completes the proof.

COROLLARY 3.2. For each r (0, 1),

rte/((r) 4
l-r< <1.

er/2 --4

The lower and upper bounds are asymptotically sharp as r tends to 1 and O, respec-
tively.

Proof of Theorem 1.3. First, we prove the following inequalities"

(3.8) 1 + r’2 < log(4/r’) < 1.013872 1 + r’2

for r (0, 1). For this, consider the function

1 K(r)
0 < r < 1,h(r)

9 r2 log(4/r’)

h(0)with h(0)= 7r/(36 log2) and h(1)= <
By differentiation,

(3.9) h’(r) f9(r)f12(r)/ r r’(9 r2) log

where f9 and f12 are as in Lemma 2.2. Hence, by Lemma 2.2(1),(4), and (5), h is
increasing on (0, r0] and decreasing on (r0, 1), and consequently,

(3.10) h(1) < h(r) <_ h(ro)

for each r e [0, 1), with r0 e (sin 29, 7).
Next, we have

1 K(ro) K(1/2)(3.11) h(ro)
9 r log(4/r) <

(9 1/4)log(4/cos29)
0.126733... < 0.126734.

Now, (3.8) follows from (3.10) and (3.11). Moreover, the lower bound in (3.8) is
asymptotically sharp as r tends to 1.
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Next, we prove that

(3.12) K(r) lr,2
log(4/r’) <1+ 0<r<l.

l_t2 l_t2 for r E [0 a] where aIt is easy to show that 1.013872(1 + gr _< 1 /r 61633

0.94205 Hence,

K(r) lr’2 forr e (0 a](3.13) log(4/r’) < 1 +

Next, define

1 K(r)H(r)
5 r2 log(4/r’)’

0<r<l.

Clearly, H(0)
20 log 2

and H(1)= 1/4 > H(0). By differentiation,

(3.14) [ 4]
2

rr’ (5 re) log 57 H’(r) f13(r)f15(r),

where f13 and f15 are as in Lemlna 2.3.
By Lemma 2.3(a)

f15(r) > f15(1)

{( 4 )r’ f13(r)-r2(5-r2)}=lim log -K + K =0
r-*l 7 r’fl3(r)

because of (2.5) and the fact that

lim
fl3(r) r2(5 r2)

0

by l’Hhpital’s rule. Therefore, by Lemma 2.3(1), it follows from (3.14) that H(r) is
strictly increasing on [x/r/2, 1), and hence,

1
(3.15) H(r) < H(1)-

for r [v//2, 1). In particular, (3.15) holds for r (a, 1). Hence,

(3.16) log(4/r’) <l+r’2lorry(a,1).

Now, (3.12) follows from (3.13) and (3.16). Finally, (1.5) follows from (3.8) and
(3.12).

Proof of Theorem 1.4. First, by (1.5), we have

(3.17) (8 + r2)K(r) >log(4/r’)
(8+r2)(9-r2)

>9

for r e (0, 1). The two inequalities are sharp at r 1. Thus, the first and second
inequalities in (1.6) hold and the lower bound 9 is sharp.
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Next, by [Q2, Proof of Thm.], we have

(3.18) (8 + r2)g(r) < max
(8 + r2)g(r)

1Og(4/rt) sin 41 <r<sin 42 log(4/rt)
for each r e [0, sin 41] U [sin 42, 1].

For r e (sin 41,sin 42), h(r) is strictly decreasing by Lemma 2.2(5). Here h(r)
is as defined in the proof of Theorem 1.3. On the other hand, it is easy to verify that
(8 + r2)(9 r2) is strictly increasing on (0, 2) and strictly decreasing on (22’ 1).
Therefore, for sin 41 < r < sin 42,

(8 + h(r)(8 + r2)(9 r2)

< h(sin 41)(8 + sin2 42)[9 sin2 42)

< (9 0.669052)(8 / 0.669152) 1.79925
9 0.656152 1.6677

9.0959... < 9.096.

Combining the above estimate with (3.18) yields the third inequality in (1.6).
Finally, the upper bound in (1.6) cannot be replaced with a constant less than

9.09437, since

(8 + r2)K > (8 + 0.656052) 1.79915
44 log 0.75465log 7 r-sin 41

9.09437... Yl
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ON SOME SHARP REGULARITY ESTIMATIONS OF L-SCALING
FUNCTIONS*

KA-SING LAUt, MANG-FAI MAt, AND JIANRONG WANDS

Abstract. Let f be a compactly supported L2-solution of the two-scale dilation equation and
a be the L2-Lipschitz exponent of f. We prove, in addition to other results, that there exists an
integer k _> 0 such that (i) h2a[ lnh[ f_c [f(X "[" h) f(x)[2dx p(h) as h 0+, where p is

a nonzero bounded continuous function with p(2h) p(h), and (ii) for s > c, there exists a non-

bounded continuous q (depends on s) with q(2T) q(T) and T.(8,,)(1,,T) f_TT [8]()[2dwzero

q(T) as. T o,:). The above a and k can be calculated through a transition matrix. These improve
the previous result of Cohen and Daubechies concerning the Besov space containing f and Villemoes’s
result on the Sobolev exponent of ].

Key words, asymptotics, compactly supported L2-solutions, dilation equation, Fourier trans-
formation, Lipschitz exponent, spectral radius, regularity, Tauberian theorem, wavelet

AMS subject classifications. 26A15, 26A18, 39A10, 42A05

1. Introduction. The existence, regularity, and orthogonality of the compactly
supported L2-solution (notation: L2-solution) of the two-scale dilation equation

N

(1.1) f(x) cnf(2x n)
n--O

have been studied in great detail (e.g., [CD], [CH], [D], [DL1], [DL2], [El, [HI, [LW1],
IV], [W]). In much of the literature, the techniques and emphases are on the frequency
domain, i.e., the consideration of the Fourier transformation of (1.1),

where too(w) 1/2 ’ Cuein and ](w) f-o f(x)e-i’xdx" On the other hand, there
are linear algebraic methods on the time domain which also yield many important
results concerning continuous solutions ([DL1], [DL2], [CH], [W]) and LP-solutions
[LWl].

In this paper, we continue our study through the second method. For the L2-

case, the existence and regularity results in [CD] and IV] are largely derived from the
(2N- 1) (2N- 1) matrix WN associated with the operator A on functions in the
frequency domain defined by

(which was introduced in [CR]). The matrix WN actually comes out more naturally
in the time-domain consideration. For g e n2() supported in [0, N], if we let a(g)
denote the autocorrelation vector of an (g) f g(x + n)g(x)dx, n] < N, and Sg(x)
Nn=o cg(2x n), then

1
(1.e) a(Sg) WNa(g)

*Received by the editors February 4, 1994; accepted for publication (in revised form) August 4,
1994.

tDepartment of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, PA 15260.
SHouston Advanced Research Center, 4800 Research Forest Drive, The Woodlands, TX 77381.
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(Proposition 3.1). This is the most basic and important relationship in the L2-

consideration. Note that if g is an Lc2-solution of (1.1), then Sg g, and it follows
that a(g) is a 2-eigenvector of WN. Villemoes IV] essentially proved that (1.1) has
an Lc2-solution if and only if WN has a 2-eigenvector which is positive definite. Here
we will give another characterization of the existence of the L2-solution based on

WN and two other associated matrices To and T used in [DL1], [DL2], [CH], [W],
and [LW1]. We also simplify a theorem of Cohen and Daubechies [CD, Thm. 4.3]
concerning the eigenvalues of Wg and the Riesz basis property.

Our main objective is to consider the regularity of the Lc2-solutions. Assuming
c 2, let

hmx max{l+l" +k is an eigenvalue of W+N nd I+ = 2}

(W+N is Certain truncation of WN to the positive coordinates) and let

a ln(Amax/2)/(2 In 2);

then 0 < a _< 1. In IV], Villemoes proved that if f is an Lc2-solution of (1.1) and if
r < a, then f_ Iwr](w)12dw < oc so that f is in the Sobolev space g() for r < a,
and the Sobolev exponent of f is a. By using the Littlewood-Paley method, Cohen
and Daubechies [CD] showed that f is in the Besov space B’ for all r < a (an
equivalent definition of Besov space B’0 is suPh>0 ]lAhfll2 < oc, where Ahf
f(. + h) f(.) [P]). They left out the critical case when the exponent r a. Here
we obtain some sharp estimations of the regularity of f and the decaying rate of ],
which improve the previous results.

THEOREM 1.1. Let f be an L2c-solution of (1.1). Let m be the highest order among
those eigenvalues of W+N such that ]A] Amax; then

h2l lnhlm- o+
IAhfl 2 p(h) + o(h)

as h --+ 0+, where p is a nonzero bounded continuous multiplicative periodic function
of period 2 (i.e., p(2h) p(h), h > 0). (The order of an eigenvalue A is the power of
the factor (x- A) in the minimal polynomial.)

If we define the L2-Lipschitz exponent of g L2() by

1n2-Lip(g) inf{s" 0 < limsup -TiiAhBII},h--+0+

then it follows from Theorem 1.1 that the L2-Lipschitz exponent of the L2-solution
f is a, which is also the Sobolev exponent of f for 0 < a < 1. To study higher-order
regularity, the usual assumption is the/-sum rule, > 1. Here we do not need such a

hypothesis, we use the/th-order difference A(ht)f to define the L2-Lipschitz order for
0 _< a _< (Amx has to be redefined). Theorem 1.1 can be extended accordingly with
the exception that when a is an integer, then the logarithmic factor can be of order
m-1 orm-2.

For the frequency domain, we have the following asymptotic result (including
higher-order a).

THEOREM 1.2. Under the above assumptions, for any s > a

T2(-) (ln T) -T
1]()12d q(T)
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as T oc, where q is a nonzero bounded continuous function with q(2T) q(T); if
( is not an integer, then k m 1; if (x is an integer, then k m 1 or m 2.

Theorem 1.1 corresponds to Theorem 5.4 later in the text. The main idea of
the proof is to extend the identity (1.2) to another autocorrelation vector (I)(h)
[(I)0(h), (I)1 (h),..., (I)N(h)], where (I)n is defined by

On(h) Ahf(x + n)Ahf(x)dx,

and show that for any A-eigenvector u of W+N, A = 0, 2, ((I)(h), u} h2Zp(h), where
-ln(A/2)/(21n2) and p is a nonzero bounded continuous multiplicative peri-

odic function (Lemma 5.1, Theorem 5.2). The most involved step is to show that
{(I)(h), u) - 0 (Lemma 4.3), which makes use of a classical result of L. Schwartz on
the mean periodic functions [Sch], [K], [RL]. Theorem 1.2 is contained in Theorem 5.7
and in 6, it is derived from Theorem 1.1 by using a new form of Tauberian theorem
proved in [L3].

We remark that equation (1.1) actually describes a certain self-similarity of f. The
self-similar measures in fractal theory are also defined by the same class of functional
equation [Hu]. The genuine ideas of calculating the asymptotic properties in Theorems
1.1 and 1.2 are already contained in ILl], [LW2], IS1], [$2], and in particular in [L2].

The Daubechies four-coefficient scaling function D4 f provides an interesting
example for the above theorems (see 6 and the appendix). It follows from a direct
calculation and Theorem 1.1 that Amax 3’ a 1, and the regularity is given by

12h: ln h Lcx)IAhf p(h) as h 0+ It is also differentiable a.e. [D], [DL2], but the
derivative is not in L2(]) in view of the asymptotic regularity behavior as h -- 0+.

We organize the paper as follows. In 2, we introduce the transition matrix WN
as well as the two associated matrices W and W+N In 3, we consider some basic
properties of the transition matrices in connection with the autocorrelation functions.
For completeness, we simplify the existence characterization of the L2-solutions proved
in [LW1]. We also give a short proof of a theorem in [CD] concerning the eigenvalues
of WN when the solution has the Riesz basis property (Theorem 3.7). In 4 we set up
the basic lemmas for the proof of Theorem 1.1, Lemma 4.3 being the most important
one. Section 5 contains the proof of Theorems 1.1 and 1.2. Section 6 is concerned with
the higher-order difference and the L2-Lipschitz exponent a > 1. At the end, we also
include an appendix which contains some graphic implementations of the theorems
where the functional equation (1.1) takes only four coefficients.

2. The transition matrices. For any sequence {c} e I(z), we let

02n E CkCk-n n E Z.
kEZ

Then wn is the convolution of the two sequences {cn} and {c-n}; {Wn} e I(Z) and
W-n --Wn. We define the infinite matrix W by

Wl co-i 0_3

J2 Jo 2-2
D3 Lo Lo_
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and WN is the restriction of W on the entries -N <_ i,j <_ N. We also define

W/

030 03-2 03-4

031 -[- 03--1 03--1 -1- 03--3 03--3 + 03--5

032 -}- 03-2 030 "- 03--4 03--2 "+- 03--6

that is, each entry of W+ is given by

w-2j if 0,w=
wi-2j + w-i_2j if > 0.

Geometrically, W+ is obtained by first deleting the left-half part of the columns of
W, then reflecting the upper half of this truncated matrix with respect to the zeroth
row and adding it to the lower half. Similarly, we can truncate the matrix WN to
obtain W+N

When there is no confusion, we use u to denote the column vectors [uo,..., u,] t,
In-n,..., no,..., un] t, and [..., u-i, no, Ul,...it ([.it denotes the transpose). We define
F :CN+I C2N+l by

F(u) InN Ul Ul UN] cNq_
--""’ 2’u’ 2""’ 2

u

and G C2N+l --+ CN+I by

((U) lit0, t t_ lt_l, 1N

_
It_N] t, U E C2N-bl.

It is clear that the adjoints of F and G are given by

F*(u) t0, (tl -[-t-1),..., (tN -t-N

and

U C2N+l,

(*(U) [tN,... tl, U0, tl,..., UN] t, U CN+I.

By a A-eigenvector of a matrix M, we mean a right eigenvector corresponding to
the eigenvalue A. The basic eigen properties of WN and W+N are related as follows.

PROPOSITION 2.1. If u CN+I is a A-eigenvector of W+N ((W)*, resp.), then
r(u) ((*(u), ?"Esp.)e C2N+l i8 a A-eigenvector ofWN ((WN)*, ?Esp.).

Conversely, if u e C2N+1 i8 a A-eigenvector of Wg ((WN)*, resp.), then G(u)
((F*)(u), resp.) is either 0 or a A-eigenvector oIW+N ((W+N)*, resp.).

Proof. Using elementary linear algebra and the fact that wn W-n for all n E Z,
we have

(2.1) WNoF=FoW+N and GoWN=W+NoG.
Suppose u CN+ is a %-eigenvector of W+N; then F(u) 0 and by (2.1),

W(F(u)) F(Wu) F(u) F(u).

On the other hand, suppose u C2N+1 is a nonzero %-eigenvector of WN; then

w+(a(u)) a(Wu) a(u) a(u).
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The statements for the adjoints follow from the dual relationship of (2.1)"

(2.2) F* o (WN)* (W)* o F* and (WN)* O (* (* O (WWN)*.

Remark. If u is a A-eigenvector of WN, then the proposition implies that v
F(G(u)) and w u-v are also eigenvectors of Wy provided that they are not zero.
Note that v is a symmetric and w is antisymmetric. If all the A-eigenvectors of WN
are antisymmetric, then A is not an eigenvalue of W+N

If cn 0 for all n e Z \ {0, 1,..., N}, then Wn 0 for all In[ > N, and

/02N 02N-2 02-NT2 02-N 0 0 0

0 02N-1 02-N+3 02-N+1 0 0 0

0 0 021 02--1 02-3 0 0

0 0 022 020 02--2 0 0

0 0 023 021 02--1 0 0

0 0 0 02N-1 02N-3 02-N-t-1 0

0 0 0 02N 02N-2 02-N+2 02-N

WN

PROPOSITION 2.2 Suppose ’, c2n n C2n+l 1 and Cn 0 for all n E
z\ {0,1,..., N}. 2 of a, d

vector [1,..., 1] E C2N+1 (orC2N-1) is a 2-eigenvector ofWN (WN-1, respectively),
and [1, 2,..., 2] Cg+ is a 2-eigenvector for W+N

Proof. Note that the sum of each row of WN is 2. Hence 2 is an eigenvalue; the
corresponding eigenvector is [1, 1,..., 1] and Proposition 2.1 implies that 2 is also an
eigenvalue of W+N with eigenvector [1, 2,..., 2] t.

3. The autocorrelation function. Let L2 denote the set of all L2-functions
with compact supports. We call the solution of (1.1) a scaling function. It is well
known that if f LI(I), then suppf C_ [0, N]. For convenience, we assume that the
Cn’S are real, where c 0 for all n Z\ {0, 1,..., N}, so that the solution is also real.
Note that ’ Cn 2m, where m _> 1 is a necessity condition for the existence of an L1-

solution f; if m > 1, then f is the (m- 1)th derivative of another Ll-scaling function
corresponding to the coefficients {2-(m-)Cn} [DL1]. We will assume, without loss of
generality, that Cn 2 throughout the paper.

For g" -- , we define

N

n--0

It is easy to show that if suppg C_ [0, N], then supp(Sg) c_ [0, N] also. For each such
g, we let

an(g) g(t + n)g(t)dt,

be the nth autocorrelation of g defined on Z. It is clear that an(g) a-n(g) and
an(g) 0 for all Inl _> g. By slightly abusing notations, we use a(g) to denote the
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autocorrelation vectors of g:

a(g)--[...,a_l(g),a0(g),al(g),...]t or [a_k(g), ao(g), ak(g)] t,

depending on the situation. Let en be the vector (finitely or infinitely many entries)
with 1 on the nth entry and 0 otherwise. The major property of the transition matrix
W defined in 2 is given in the following proposition.

PROPOSITION 3.1. Let g E L2(I) be supported in [0, N]. Then

(3.1) a(Sg) -W*a(g),
where W* is the adjoint of W. In particular,

1 1

o0

](Sg)(t)]2dt (a(g), We0) (a(g), Wg-1 e0).

Proof. The proof is based on the following observation: for n E Z,

an(Sg) (Sg)(t + n)(Sg)(t) dt

E cjci g(2t + 2n j)g(2t i)dt
i,jEZ oo

_1 E cjci g(t + 2n + j)g(t) dt
2
i,jz o

1 ( )
1- Ewk-2nak(g)
kZ

liT* a(g)]n
2

(the second equality holds since we assume that Cn 0 for all n Z \ {0, 1,..., N}).
The last identity in the proposition holds due to the fact that an(g) 0 for all

Remark. For y , if we let a(y) (g) f_ g(t + n- y)g(t)dt, then the same
calculation yields

1 ,a(2y) (g)a(Y) (Sg) -W
We will use this fact in Theorem 3.7.

Recall that a sequence {Un}n=_oo is called positive definite if for any finite se-
quence {n}, Um-nmn >_ O. It is well known that the autocorrelation sequence
{an(g)} (letting an(g) 0 for all Inl _> N) is positive definite.

2PROPOSITION 3.2. Suppose f is a nonzero Lc-solution of (1.1); then a(f) is
a 2-eigenvector of (WN_I)* E an(f) O, and {an(f)}n=_oo is a positive-definite
sequence.
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Proof. In view of Proposition 3.1 and the remark above, we need only show
that an(f) O. This follows from the well-known Poisson formula an(f)e

I](w + 2rn)l 2 and the sum is strictly positive for w 0.
The existence of a vector satisfying the above conditions also implies the existence

of an L2-solution of (1.1), which has been observed by Villemoes in IV] (where he uses

an (f)einx >_ 0 instead of using the fact that {an(f)}n=_o is positive definite).
In order to construct the Lc2-solution f of the dilation equation (1.1), we can

formally proceed as follows: take a function g with suppg c_ [0, N] and consider
{Sk(g)}=l If this sequence converges in L2 to a function f, then f will be a solution
to (1.1). Equivalently, we can write

k-1

(a.:) +
/--0

and consider the convergence of the series -tk_01 SZ(Sg g). Let

co 0 0 0

c2 cl co 0

To [c2i-j-1]l<_i,j<_N c4 c3 c2 0

0 0 0 CN-1

T1 [c2i-j <_i,j <_N

Cl co 0 0

C3 C2 Cl 0

C5 C4 C3 0

0 0 0 CN

These matrices were used in [DL1], [DL2], [CH], and [W] to study the continuous
scaling solutions. In [LWl, Thm. 4.3], the authors also use such matrices to give a
necessary and sufficient condition for the existence of the LP-solutions; for the L2-case,
the criterion is reduced to consider the eigenvalues of W. The proof is simplified later
in Theorem 3.4. First, we state a very useful lemma concerning To + T1 which is
proven in [LWl].

NLEMMA 3.3. Suppose -n=O cn 2. Then the following hold:
(i) 2 is an eigenvalue of To + T1.

N-1(ii) If v is a 2-eigenvector of To + T1, let g n=O vnx[n-l,n); then

Skg, Skg
-1

(iii) For 1 < p < oc, let f E LP() be the LPc-solution of (1.1) and let v

[f3 f,..., fNN_I fit; then v is a 2-eigenvector of To + Wl. For such v, if we let g be

defined as in (ii), then {Sk(g)} converges back to f in the LP-norm.
NTHEOREM 3.4. Suppose -n=o C 2. Let v be a 2-eigenvector of To+T1 and let

N-1g ’n=O VnX[n,n+l). Let Hv be the smallest invariant subspace ofWN-1 containing
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the autocorrelation vector a(Sg-g). Then (1.1) has a nonzero L2c-solution if and only
if all the eigenvalues of WN_I restriced to Hv have modulus less than 2.

Proof. Let Sg- g. Note that by Proposition 3.1, we have

0

N

1
2-(a(0), W/N_le0}
1

e0).

The assumption that 1/2(WN-1)* restricted on H,, has spectral radius less than 1
implies that {(WtN_l)*a()} converges to zero geometrically as -+ c; so does

{llStll2}. Consequently, Sk(g) g + -k_3 St[? converges in L2. Let f be the limit.
Then f E L2(I); f : 0 because by Lemma 3.3(ii),

so that

N N

f,..., f g,..., g -=v0.

To prove the converse, we observe that (3.2) and Proposition 3.1 imply that

12(Wt)*a(Sg g) a(St(Sg g)) ---+ 0 as --+ c.

It follows that all the eigenvalues of WN_I restricted to Hv have modulus less than 2.
For the special case where n C2n En C2n+l 1, Theorem 3.4 yields a simple

criterion for the existence of the L2-solution (see also [CD, Whm. 3.3]). We need to
make use of the following simple facts.

LEMMA 3.5. Suppose -n C2n En C2n+l 1.
N-1(i) Let v Iv0, vl,..., Vg-] and let g -n=O VnX[n,,+l). Then for any k N

and for almost all x [0, 1),

N-1 N-1

+ n)=
n--0 n--0

N-1 0}. Then (WN 1)* i8 invariant(ii) Let H {u e C2N-1 En---(N-1) tn
on g.

Proof. The proofs of (i) and (ii) are quite similar. For (i), we make use of the fact
that [1,..., 1] is a left 1-eigenvector of T0 and W (see, e.g., [HI). To prove (ii), note
that [1, 1,..., 1] is a 2-eigenvector of WN-1 (Proposition 2.2); hence for u H,

[1, 1,. ., 1] (WN-1 U 2 [1, 1,)* .... ,1]u=2
N-1

n---(N-1)
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This implies that the sum of the coordinates of (Wg-1)* u is zero so that (WN-1)*
is invariant on H.

COROLLARY 3.6. Suppose C2n C2n+l 1. If the eigenvalues of (Wg-1)*
restricted on H have moduli less than 2, then (1.1) has an L2c-solution.

Proof. Let v [v0, v,..., Vn_l] be a 2-eigenvector of To / T1 as in Theorem
N-13.4. Then Lemma 3.5 implies that n=o (x + n) 0 for almost all x 6 [0, 1). Since

suppg c_ [0, g], we actually have =_oo (x + n) 0 for almost all x e [0, 1) and
hence for almost all x I. Therefore,

Inl<_N-I n=-oo

9(t + n)9(t)dt

d

and a() H. This implies that the subspace Hv in Theorem 3.4 is contained in
H. By assumption, 1/2(WN-)* restricted on H has spectral radius less than 1, and
Theorem 3.4 applies.

In [LWl, Prop. 4.6], it is proven that the converse of the above corollary is also
true if we assume that 2 is a simple eigenvalue of WN_ and {Wv_lel} generates
c2N-; for the four-coefficient case (N=3), the above additional assumptions are
always true except for the case co c3 1. By using a long and rather complicated
argument Cohen and Daubechies [CD, Thm. 4.3] also showed that the converse is true
if f has the Riesz-basis property. In the following, we will give a short proof of their
theorem.

Recall that a function f 6 L2(I) is said to satisfy the Riesz-basis property if the
sequence of functions f f(. n), n Z forms a Riesz-basis for the closure of its
linear span in L2(]), i.e., there exist C1, C2 > 0 such that

Cohen [C], Lawton [La], and Villemoes IV] have given different criteria for such a
property in terms of the Fourier transformation. In particular, Villemoes showed that
if an L2-solution f has the Riesz-basis property, then C2n C2n+ 1. Also,
assuming such a summing condition, f has the Riesz-basis property if and only if

a(f)ein is strictly positive.
THEOREM 3.7. Suppose f is a solution of (1.1) and has the Riesz-basis property.

Then (WN-)* restricted on H has spectral radius less than 2.

Proof. Since f has the aiesz-basis property, then C2n c2n+1 1 IV] so
that (WN-l)* is invariant on H. All eigenvalues of (WN-l)* have moduli less than
or equal to 2 (see Propositon 5.3 in 5). The proof will be complete if we show that
(WN-)* does not have another 2-eigenvector other than a(f), which is not in H.

Note that an(f)einw I/(a + 27k)12 > 0 by the aiesz-basis property. Sup-
pose u is another 2-eigenvector of (Wy-)*. By letting u, 0 for all In] _> N, u is
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r 1a 2-eigenvector of W*. By Wiener’s theorem, there exists { n}n=- E such that

E rneinw E tneinw
Ean(f)enw"

It follows that u r, (a(f)) and

un= lim
1 )I

l--. -<(W* u, en>
lim

1
-, - E<rk(W*)Za(k)(f), en>

k

lim E<rka(2-’k)(f) en>
k

E rk (ll_m a(2-tk) (/), en>
k

C <a(f), en},

(use (3.1)’)

where C k rk. This implies that u is a scalar multiple of a(f) and the proof is
complete.

Remark. The above discussion gives a simple criterion for computer to check for
Nthe Riesz-basis property of the solution f given {Cn}n--O with c2n C2n+l 1:

first show that the 2-eigenvalue of (WN-1)* is simple and all other eigenvalues are
less than 2 in modulus (this implies the existence of the solution by Corollary 3.6 and

an (f)en >_ 0 by Proposition 3.2), and then show that the polynomial 1/2 an (f)zn
has no root on the unit circle.

4. Some lemmas. In the rest of the paper, we will use the difference quotient
c

h- f- IAhf(t)l2dr to study the regularity properties of the scaling function f. We
prefer to use the matrix W+N rather than WN because using the latter, we have to
discard those eigenvalues which only give antisymmetric eigenvectors (see the remark
for Proposition 2.1 and Lemma 4.3). As before, we assume that cn 2. For h E
and n Z, we also define

On(h) Ahf(t + n)Ahf(t)dt.

Since f is supported by [0, N],

(4.1) n(h) 0 V0<h<l,

We use (h) to denote

[0 (h), (I)1 (h),..., ON(h)] and [O0(h),(X)l(h),...]t.

If necessary, we will add the superscript N or c to O(h) to make the distinction. It
is clear that Ahf satisfies

N

(4.2) Ahf(x) E cnA2hf(2x n).
n--O
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PROPOSITION 4.1. Let W be the transition matrix corresponding to the scaling
function f satisfying (1.1). Then for u [uo, ul, UN] E CN+l,

1 1
(4.3) ((I)(h), u> <(I)(2h), W+N u>, 0 < h <

Proof. The proof is basically the same as that of Proposition 3.1, using (4.2)
instead of (1.1). For 0 _< n _< N,

,(h) ZXI(t + n)zXI(t)dt

cc ZXhI(2t + 2n j)Ahf(2t i)dt
i,jEZ x)

I[W* *(V( hl)ln
1 [(WWN)* ((I) (2h))] n.2

LEMMA 4.2. If u is a 2-eigenvector or a O-eigenvector ofW, then

(O(h), u) 0 V 0 < h < 1.

Proof. Let u be a 2-eigenvector of W+N We have, by (4.3), <O(), u} <O(h), u>.
for all 0 < h < 1. Hence, inductively,

for all 0 < h < 1, m > 0 But ((I)(h),u) - 0 as m oc, so it follows that
((I)(h), u) 0 for all 0 < h < 1. The same conclusion also holds if u is a 0-eigenvector
since in such a case W+Nu 0.

Our main lemma is the following.
LEMMA 4.3. If u is a A-eigenvector of W+N with 0 or 2, then

1
((h), u) 0 for some 0 < h < -.

The proof of this lemma is rather long. The basic idea is to prove by contradiction.
Suppose otherwise, i.e., (h) (O(h), u) 0 for all 0 < h < 1/2. We show that
when u is replaced by the corresponding A-eigenvector fi for W+ (Lemma 4.4) and
the inner product in (h) is acting on all positive coordinates, then the identity
holds for all h E . From this we deduce that the corresponding sequence {Us} is a
linear combination of certain exponential sequences of the form {eian}. However, the
eigenproperty of {us} implies that this is impossible.

For this purpose, we first observe that for h ,

(f(t + n + h) f(t + n))(f(t + h) f(t))dt.
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Multiplying out the integrand and changing the variables, we obtain

(4.4) On(h) 2an(f)- n(h),

where

n(h) [f(t + h n) + f(t + h + n)]f(t)dt

and an(f) is the nth autocorrelation. We let

N(h) [0(h), l(h),..., g(h)] and (h) [0(h), l(h),...]t.

Note that [a0(f), al (f),..., aN(f)] is a 2-eigenvector of (W+N) (use Proposition 3.2
and (2.2)). It is orthogonal to any A-eigenvector u of W+N with A : 2. For such u,
(4.4) implies that

(4.5) (oN(h), u} --(I’g (h), u}, h e ]1{.

Let S be the class of all one-sided infinite sequences.
LEMMA 4.4. If u is a i-eigenvector of W+N with O, then there exists fi E S,

a ;-eigenvector ofW+ such that tn Un for all 0 <_ n <_ N. Furthermore, for such
a fi,

1
((h),fi/=(I’y(h),u/, 0<h< .

Proof. Let u- [u0, Ul,..., UN]t be a/-eigenvector of W+N with , 0. Note that
for/

W/ (Mi_2j -- 2--i-2j.

Since O 0 for all Inl > N and N < < j, -i- 2j < i- 2j < -N, we hence
have w 0 for all N < <_ j. We now construct fi as follows: let tn Un for all
0 < n < N and define n+l inductively as

n

E + k, n> N.(4.6) ltn+l-- Wn+l,k
k=0

Then fi is the required vector. The last assertion follows from the fact that for
,(h)-0foralln>N.0<h<,

In [Sch] (see also [K], [RL]), L. Schwartz proved the following classical result on
mean periodic functions: Let # be a bounded regular Borel measure on ] with compact
support. Let C be the class of continuous functions on ]1{ equipped with the com-
pact open topology. Suppose there exists a nonzero g E C that satisfies the convolution
equation

g(x y)d#(y) 0 V x E ]1{.

Then g belongs to the closed linear subspace spanned by

e c, o}.
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Heuristically, the convolution equation implies that [(z)f(z) 0 (in the distribution
sense). Since # has compact support,/ is an entire function and has only countably
many discrete zeros. It follows that the support of must be contained in the zeros
of/, and g is of the form asserted. We need the discrete version, which is an easy
corollary of the above theorem" if {wn}=_o is a given sequence with only finitely
many nonzero terms and if {Xn}n=_oo is any sequence satisfying

Xn-kWk 0 n E ,
then {xn}___o belongs to the closed (with respect to the product topology) linear
subspace spanned by

{{eian} a C, e--ianwn 0}.

LEMMA 4.5. Let fl be a )-eigenvector ofW+ with 0 or 2. Then

1
((h), fi} # 0 for some 0 < h < -.

Proof. By Proposition 4.1, Lemma 4.4, and (4.5), we have for any v 8,

1
(4.7) (o (h), v} (o(2h), W+v} V h e I.

:For any fixed h, n(h) 0 for 11 large n; hence ((h), fi) is well defined and is
continuous on h. Suppose the lemma is false, i.e.,

1
(4.8) (@(h), ft) -0 V 0 < h < .
By (4.7), we have

0 (@(h), ft) (@c(2h), W+fi} (@(2h),
i.e., (4.8)The assumption that A # 0 implies that (@(2h), fi) 0 for all 0 < h < ,

holds for all 0 < h < 1. Repeating the same argument, we have that (4.8) holds for
all h > 0 and hence for all h e \ {0} since (-h) @(h). By continuity, we
also have (@(0), fi} 0. We hence conclude that

V h EI,

where j;(x) f(-x). By letting x0 2u0, Xn X--n tn for n > 0, and by replacing
h with h + n, 0 _< h < 1, we can rewrite the above as

Xn-kf * f(h + k) 0 V n Z, h [0, 1).
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Note that the autocorrelation function f f is continuous and has compact support.
For each fixed h e [0, 1), if we regard the sequence {f f(h + n)} as the {wn} in the
above digression, then {xn}=_ must be in the closed linear subspace spanned by

Ah {{ea} a E C, E f * ](h + n)e-jan 0}.
n----o

Since this is true for all h E [0, 1), {Xn}nC=_(x must be in the closed linear subspace
spanned by he[0,1)Ah. By using the Poisson summation formula ([Ch, p. 47]), we
have

for all h [0, 1). This implies that

](a + 2n)](-(a + 2n)) 0 Vn e Z.

Observe that the Fourier transformation of (1.1)is ](z) ]()rno(), where too(z)
1_ Cninz2 E is a trigonometric polynomial of degree N. Let F(z) ](z)](-z),
Q(ez) rno(z)mo(-z). Since F 0 in a neighborhood of 0, we conclude from
0 F(a) F()Q(e/2) that for some l, e/2t must be a root of Q. Hence the
sequence {Xn}n=_ is in the close linear span of all the sequences of the form

(4.9) {{ian}. ia/2 is a root of Q(z) for some 1}.

Now, by a direct calculation,

V eiak 22ian/2

This implies that for some l,

(4.10) wl(ia(’)) 22lia(’)/2l Q(eia/2’) O.

On the other hand, in view of Lemma 4.4, the vector x- [... ,X-l,Xo,Xl,...] satisfies
Wx Ax. This is a contradiction since {x}___ is a combination of the sequences
{ei}n=_ in (4.9), and (4.10) implies that x can not be an eigenvector.

Proof of Lernrna 4.3. Suppose that u is an A-eigenvector of W+N with A : 0 or
2. By Lemma 4.4, there exists fi S such that W+ fi Aft and n u for all

For such h,0 _< n _< N. By Lemma 4.5, we have ((h), fi} = 0 for some 0 < h < .
(ON(h), u} --(g(h), u} (by (4.5))

0.
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5. The L2-Lipschitz exponent and asymptotics. For any/ E C, we let

O(Z)(h) 2O(h).
LEMMA 5.1. Let ik 0,2 be an eigenvalue ofW+N, let/ ln(A/2)/(21n2) (i.e.,

ik/21-2 1 and takes the principal branch when ) is complex), and let fi be the
corresponding eigenvector. Then

1(()(2h), fi} (()(h), fi} V 0 < h < .
Proof. Let (h) {O()(h), fi}. By Proposition 4.1, we have for 0 < h < ,

1
(O(z) (h), fi) (O(h), fi}

1 1_. ()((),

2_2Z (O(Z)(2h),

By the choice of , we have (h) (2h) for all 0 < h < .
Recall that if M is a matrix on a vector space V with characteristic polynomial

p(x) (x- A)... (x- A) and minimal polynomial q(x) (x- A)m... (x-
Ak), then V V ... V, each has dimension l, M is invariant on , and
(M- AI)m 0 (m is called the order of A). Moreover, according to the Jordan
decomposition theorem,

where each sj := dimUj <_ m, with at least one of the sj m; each Uj is generated
by

(5.1) Ul u, u2 (M- AI)u,..., u, (M- AI)’-lu
and (M-iI),u 0 for some u. Note that the last vector in (5.1) is a A-eigenvector
of M.

Lemma 5.1 can be strengthened as follows.
THEOREM 5.2. Let # 0,2 be an eigenvalue ofW+N and let/ -In(A/2)/(2 ln2).

Suppose there exists an m such that (W+N AI)m-lu 0, (W+N --/kI)mu 0. Then

m 1
(5.2) (O(Z)(h),u} E(lnh)-lpk(h), 0 < h < -,

k=l

where pk(h) pk(2h) for all h > 0 and pm # O. In particular, if m 1, then
(() (h), u) Pl (h).

Proof. Let

u,..., Ul  I) -lu
and let (h) (O()(h), uk). Note that Ul is a A-eigenvector of W. Hence by
Lemma 4.3, 1 0, and Lemma 5.1,

1
l(h)=(2h) V0<h< .
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Let gl (h) 1(h). For W+NU2 An2 + ul, by the same argument as in Lemma
5.1, we have

1
2(h) 2(2h) + 1(2h).

In hLet g2(h) 2(h) + --in2gl (h). Then

lnh
2(h) g2(h) A ln..2gl (h),

and for0<h<,
1 lnh

g2(h) 2(2h) + (h) + A In 2
g (h)

ln(2h)2(2h) + A In 2 g (2h)

g2 (2h).
lnh (ln h)(ln(2h))Let g3(h) 3(h) + -Tn2g2(h) 2(’1n2)2 gl(h). Then by a similar argument as

above, we have

1
g3(h) g3(2h) V 0 < h < .

Inductively, we can find gj, 1 <_ j <_ m, such that gj(h) gj(2h) for 0 < h < 1/2 and

Cj(h) g(h) + E (j k)! ( ln2)j-k
ln(2-h) gk(h).

k--1

For j m, we group those terms with (ln h) k together and denote the corresponding
coefficient by pk(h). Then Pk satisfies the periodic condition, and pro(h) c1(h) : 0.
If we extend Pk by pk(h) pk(2h) to all h, the theorem follows.

Now, we define

Amax max{ll" is an eigenvalue of W+N and I1 = 2}.
PROPOSITION 5.3. Suppose f is an L2-solution of (1.1). Then 1/2 <_ hmax < 2.
Proof. We first claim that Amx < 2. Otherwise, let A be an eigenvalue with

IAI > 2 and let u be a corresponding eigenvector. By using Proposition 4.1, we have

,u {O(h),u} V0<h< .
By Lemma 4.3, there exists 0 < h < 1/2 such that I(O(h), u}l 0. Hence I(O(y-),u)]h
does not tend to zero as m - oc. This is a contradiction, and the claim follows.

If Amax < 1/2, then for any u in Theorem 5.2, the corresponding/ satisfies Re
-ln(IAI/2)/(21n2 > 1 and hence limsuPh_0+ l(O(h),u}l 0. Since all such u
form a Jordan basis, it follows that

limsup - IAhf(t) dt limsup -5(O(h), e0} 0.
h--,0+ c h--0+

x 2 f, L2 f, 2This implies that suPh>0 f_lAhf[ < so that e () and f[
limh-0 h f_ IAhfl 2 0. This implies that f 0 a.e., a contradiction.
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THEOREM 5.4. Suppose f is an L2-solution of the dilation equation (1.1). Let
a ln(Amax/2)/(21n2) and let m be the highest order of the eigenvalues ) of W+N
such that AI Amax. Then

( ?(5.3) lim
h2a

1 IAhf(x)]2dx p(h) 0
h--0+ I1n him-1

where p(h) is a nonzero bounded continuous multiplicative periodic function of period
2, i.e., p(h)= p(2h),h > O.

Proof. Write e0 i biui, where {ui} is a Jordan basis corresponding to the ma-
trix W+N Let/ be the eigenvalues (there may be more than one) such that I/kl Amax
and has highest order m. By Theorem 5.2 and the choice of a, the terms I(O(h), ui)l
of the form h2 lnhlm-lp(h) dominate (O(h), e0) as h --, 0+; the corresponding coef-
ficient bi’s are not all zero since I(O(h), e0}] > cl(O(h), ui)l for some c > 0. We hence
have

hlAhf(x)12dx (O(h), e0/= h2l In hl’-Ip(h) + 6(h),

where p(h) p(2h) and limh__,0+ 5(h)/(h2al lnhlm-) 0, and the theorem follows.
COROLLARY 5.5. Suppose A is an eigenvalue of W+N such that I,kl Amax

and A has order 1. Then A 1/2, f is differentiable a.e., and f 6 L2(]).
Proof. Let/3 -ln(A/2)/(21n2)= 1 + i0 and let u be the A-eigenvector. Then

1 /5 12 h2 o(h)h- IAhf(x) dx (I,Z(h), u +

hi2p(h)+ o(h),

where o(h) 0 as h --, 0 and p is bounded and p(h) p(2h). It is well known that
if suPh>oh f_ IAhf(x)l2dx is bounded, then f’ exists a.e., f’ e L2(), and

lim
1 iAhf(x)12dx=

h O+ "- o

This implies that limh_0+ hi2p(h) exists. In view of periodicity, we have 0 0 and
p(h) C, and the corollary follows.

COROLLARY 5.6. Let f, , and m be as in Theorem 5.4. Then

sup
nm_12_2nan>O lr<_ lwl <2nr

Proof. By using the Plancherel Theorem, we have

1
99(h) :=

h2al lnhlm_
IAhf(x)12dx

C f?h2l lnhl--1
I]()1 sin2(hw/2)dw

C2 f_>- hl lnhl-
Since p(h) is bounded by Theorem 5.4, the result follows by taking
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We remark that the above corollary implies that for any r < a, f is in the Bosov
space 2 in the sense used in [CD, Whm. 3.3]. It also.implies that f_ Iwr](w)[2dw <
oc for r < a, which is proven in IV]. By using the same technique as in [CD, Thm. 5.1],
we can improve a pointwise estimate of ](w) presented there.

COROLLARY 5.7. Let f, a, and m be as in Theorem 5.4 and assume that c2n

YC2n+l 1. Then

]/(w)l < C(ln(1 + Io31)) (m-l)/2
(1 + ]wl)a

Proof. For w 6 [2n-17r, 2nr], n _> 1, the assumption on the coefficients implies
that ](2kTr) 0 [Ch]. Hence

<_ C2n(m-1)/22-na

1/2

We define the L2-Lipschitz exponent of a function g 6 L2(IR) as

(5.4)
i F 12a := L2-Lip(g) inf{ > 0" 0 < limsup IAng(t) dr}.

h--,o+

cx) 2Note that 0 < limsuPh_,0+ f_ [Ahg(t)l dt (otherwise, we can derive a contra-
diction by using the argument in the last paragraph of Proposition 5.3 to show that
g 0 a.e.). Hence 0 _< a _< 1. Also,

lim sup IAhg(t)l dt
h-+O+ o (X)

The next corollary follows directly from Theorem 5.4.
COROLLARY 5.8. Suppose f is an L2-solution of the dilation equation (1.1). Let

a -ln(Amax/2)/(2 ln2). Then 0 < a <_ 1 is the L2(]R)-Lipschitz exponent of f.
Corollaries 5.6 and 5.7 give certain estimates of the Fourier transform of f. In

the following we consider yet another sharper estimate on the average of the Fourier
transformation of the L2-scaling function. We make use of a special formof Tauberian
theorem to convert the asymptotic result in Theorem 5.4 into the frequency domain.
For 3,-), N, let

{ld;, g" g loc. Riem integ, on ]R+ sup
2k<t<2k+k----oo

tZl IntlIg(t)l < }.
The following theorem is proven in [L3, Cor. 4.5].
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THEOREM 5.9. Suppose F >_ 0 is measurable on ]R+ and is bounded on [0, a) for
some a > O. Let g e YVZ,(IR+),/3 > 0, 7 _> 0 be such that G() f g(t)tZ-l+idt
0 for all . Then

lim( 1 f0 (t) )T-,oo T(lnT)
F(t)g dt P(T) =0

if and only if

T-o T(lnT) F(t)dt Q(T) O,

where P and Q are bounded multiplicative periodic functions of the same period and
P 0 if and only if Q O.

THEOREM 5.10. Suppose f is the L2-solution of (1.1) with L2-Lipschitz exponent
a 1. Let m be the highest order of the eigenvalues A such that IAI Amax. Then
for any s such that a < s, there exists a bounded continuous multiplicative periodic
function q such that q(T) q(2T) and

( T2(8-)(lnT) ST )lim 18]()12d- q(T) O.
T--oo -T

Proof. By using the Phancherel Theorem as in Corollary 5.6,

1 F99(h) h2allnhlm-1 o
I](w)12 sin2(hw/2)dw

h2(-) lnhlm-1 Iw](w)lsin(hw/2)lhwl dw.
By letting

the above reduces to

sin2(w/2)
0.)[ s

1

/o1 F(w)g(W)dw
T2(_)I n Tim-1 -Let/ 2(s- a). Then g E W,m-1. Indeed, for 0 < a < 1,

E sup wl lnwlm-lg(w)

E sup
k=-o 2k

in wIm-1 sin2 (w/2)

)_< C Ikl-12-2k(1-) + ]k]-12-2" < c.
k=0 k=0



854 KA-SING LAU, MANG-FAI MA, AND JIANRONG WANG

Also note that for a < s, g is integrable and

a() g(w)w2(S-)-l+idw sin2(w/2)wi-2a-ldw

+
0-4(+l-)F(a + 1/2 )

for all (where F() is the gamma function which has no zero and has simple poles at
0,-1,-2,... the calculation is by Mathematica). Hence the conditions of g in

Theorem 5.9 are fulfilled. Together with Theorem 5.4, there exists a nonzero q such
that q(2T) q(T) for all T, and

lim
T(_)(lnT)_ wf(w)ldw q(T) O.

T -T

6. Higher-order L-Lipschitz exponent. In this section, we consider the
higher-order difference so that the Lipschitz exponent is allowed to be greater than 1.
For any interger > 0, we define the/th-order difference of a function g E L2(I) by

A(h0f(x) E(--1)k (/k) f(x-kh)
k=0

and the L2-Lipschitz exponent of g by

(6.1) a := L2-Lip(g) inf > 0" 0 < limsup- IA)g(t)l 2 dt
h-.0+ oo

It is well known that 0 <_ c _< 1. For 0 < a < 1, the definition used in (5.4) coincides
with new definition here, but for a 1, the two definitions may or may not be the
same. We will clarify this situation in the following. Furthermore, we show that the as-
ymptotic properties in the last section are also preserved for higher-order cases.

For simplicity, we only consider the case 2. Let f be the L2-solution of (1.1),
let

n(h) A(h2)f(x + n)A(h2)f(x)dx

and let (h) [0(h), 1 (h),..., g(h)].
LEMMA 6.1. Suppose f is the L2-solution of (1.1). Then for any u CN+l,

I 1
(6.2) ((h),u C O(h) O(2h),u

Proof. Let u cN+I. Then

N

CE Un J_ I](w)12ein sin4(hw)dw
n-O
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CE Un I](w)12einw sin2(hw) sin2(2hw) dw
n--0 cx

10(2h), u}C(O(h)

LEMMA 6.2. Let A be an eigenvalue of W+N, A 0 or 2.
(i) Let u be a A-eigenvector. Then

((h) u
0 ifA#
_=0 ifA= g.

(ii) Suppose A 1/2 has order m > 1, and let u be such that (W+N _li)m-1u 0.
Then

(6.3) (,(h), u} =/5(h)(ln h)m-2h2 + 5(h),

where is a nonzero bounded continuous function with (h) i5(2h) and 5(h) has
order smaller than (ln h)m-2h2.

Proof. (i) Note that for/3 -ln(A/2)/(21n2), Lemma 5.1 implies that

(O(h), u) =p(h)h2

for some nonzero bounded continuous p such that p(h) p(2h). Hence by (6.2),

(6.4)
22/ )((h),u)=C 1--- p(h)h2,

and the result follows.
(ii) Theorem 5.2 implies that (O(h), u) has order (ln h)m-lp(h)h2 as h - 0,

l(ln2h)m-lp(2h)(2h)2 (ln2h)m-lp(h)h2 Note thatand 1/4(O(2h),u)has order
(ln h)m-1 (ln 2h)m-1 is of order (ln h)m-2. Consequently,

< 1
(O(h), u) O(h) O(2h), u -/5(h)(lnh)m-2h2 + 5(h),

where/5 and 5(h) is as asserted (the order of 5(h) follows from the same argument
and Theorem 5.2).

By using Lemma 6.2(i), we can extend Corollary 5.8 as follows.
PROPOSITION 6.3. Suppose f is an L2-solution of (1.1). Then the L2-Lipschitz

exponent of f is given by

(6.5) 0 < a -ln(Amax/2)/(2 In 2) < 2,

where

{ 1)/max :--max I;1" ; of and I;I <
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1if 1/2 is an eigenvalue of order 1 and is the only eigenvalue of modulus 2;

max :’-- Amax
otherwise.

In the first case, f is differentiable a.e. and f/ E L2(IR) (see the proof of Corol-
lary 5.5), and f has Lipschitz exponent > 1. In the other case, the new and old
definitions coincide.

The corresponding extension for Theorem 5.4 is the following.
THEOREM 6.4. For the above a, let m be the highest order among those such

that I1 =/max. Then

( /? )1 A(h2)(6.6) lim
h2 im_l

f(x)12dx-p(h) 0
h--,0+ ln h

except for the special case where 1/2 and the order m is strictly greater then the
other eigenvalues of moduli 1/2; in such a case, 1 and

( /: )1 (h2)(6.6)’ lim
h2 IA f(x)12dx p(h) O.

h-+0+ ln him-2

For the Fourier asymptotic result corresponding to Theorem 5.10, we note that

1 (h2)(h) h2llnh]m_ [A f(x)12dx

1 :: hw

h2l lnhlm-I
If(w)}2 sinn(--)dw.

By taking

sin4(w/2)()

and observing that for a < s, g is integrable and

G() g(w)w2(s-a)-l+idw sin4(w/2)wi-2a-ldw

x/(4("-l-)- 1)F(-a + )
4("+l-)F(a + )

for all (compare this with (5.5)), we have the following.
THEOREM 6.5. Under the same hypotheses as in Theorem 6.4, for a < s, except

for the special case,

( 1 ;(6.7) lim T(_ f()ld q(T) 0
T ln TIm- T

oo nonzero ou.dd o.ti.uou (dendi. on ) .h that (2T) (T). Fo
the special case, we have

(6.7)’ lim r2( 1) m-2 I()ld q(r) o,
T lnT T
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For the third-order difference A(h3) f, we can use

15 sln3"2
__

sin6x -sin2x- 2x / sin23x

to replace the relationship in (6.2). For eigenvalues A 1/2 or and the order m is
as in the special case in Theorem 6.4 (the corresponding a are 1 and 2, respectively),
the logarithmic terms in the asymptotic formulas are of order m- 2. For the other

cases, they are m- 1. The higher-order difference A)f behaves the same way.
As an example, we consider Daubechies’s well-known scaling function D4. Let f

be the solution of (1.1) with coefficients

l+x/ 1-V
CO , C3 , Cl 1- c3, C2 1- co.

4 4

It follows from a direct calculation that

2 0 0 0

0

0 2 0 0__
9 9 _1

4 8 8 8

and the eigenvalues are 2, 1/2, and -, where 1/2 has order 2.
special case. By Theorem 5.4, a 1 and

I/xt,f(x)l=dx p(h)

It fits into the above

as h - 0+. It is known that f is differentiable a.e. [D], [DL2], but the asymptotic
property implies that fl L2(]E). If we consider the second-order difference, then by
a direct calculation and making use of the expressions in Theorem 5.2 and (6.4), we
have

i F I/X(=) f(x)ldx 2p(h)

as h-. 0.
For the Fourier transformation, we cannot apply Theorem 5.10 since a 1, but

we can use (6.7) derived from the higher-order difference. It implies that for 1 < s,
there exists a bounded continuous q (depends on s) satisfying q(T) q(2T) and

1 IT_ Iw"](w)l2dw q(T)(6.8) (T) T2(s_l T

as T --+ . We include some graphic illustrations of this in the appendix.

Appendix. For the four-coefficient dilation equation

f(x) cof(2x) + clf(2x 1) + c2f(2x 2) + c3f(2x 3)

with co + C2 1, cl + c3 1, we use co and c3 as independent parameters to plot the
various regions and functions.
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1.5

1

0.5

0

-0.5

-i -0.5 0 0.5 1 1.5

FIG. 1.

In Figure 1, the region bounded by the thicker curve corresponding to those
(co, c3) where all eigenvalues of W3+ are less than or equal to 2 (2 is simple except at
(co, c3) (1, 1)). This is the exact region where the L2-solution exists [LWl].

The circular curve

2 2 1(c0-
is the circle of orthogonality [La]. The wavelet generated by the corresponding scaling
function is orthonormal.

The triangular region is an approximation where the joint spectral radius of To
and T1 restricted on H are less than 1 and the continuous solutions exist [DL1], [CH].

The ellipse is given by

c + c co c + coc O,

outside which no L1-solution exists [HI.
Figure 2(a) is the graph of the L2-Lipschitz exponent a -ln(Amax/2)/(2 ln2).
Figure 2(b) is the graph of a on the circle of orthogonality, plotted in terms of

the angles. Note that D4 is the smoothest one on the circle.
Figure 3(a)is the graph of the L2-Lipschitz exponent a -ln(/max/2)/(2 ln2),

using the second-order difference.
Figure 3(b) is the cross-section of co + c3 1; Figure 3(c) is the cross-section of

C0 C3.
Figure 4(a) is the Daubechies scaling function f D4.
Figure 4(b)is its Fourier transformation
Figures 4(c), 4(e), and 4(g) are ws](w) with s 1.5, 1.25, 1.00, respectively, and

Figures 4(d) and 4(f) are the corresponding averages (T)
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FIG. 2.

Note that the (T) are approximately multiplicative periodic as T - cx. They
follows from (6.5). We cannot draw such conclusions from the theorem for s a 1

(see Figure 4(h)). However, if we take (T) fT_T Iw](w)12dw, then it looks
multiplicative periodic as in Figure 4(i); we have no proof for that yet.

Acknowledgments. The graphs in the appendix are due to Mr. Wonkoo Kim,
to whom we express our deep gratitude.



860 KA-SING LAU, MANG-FAI MA, AND JIANRONG WANG

Lip.exp.

0 -0.5cO axis 0.5
1

1.5 1

(a)

2

1.5

0.5

0
-0.75 -0.5 -0.25 0 0.25 0.5 0.75 1.25

cO (c3=0.5-c0)

2.5

0
-0.75 -0.5 -0.25 0 0.25 0.5 0.75 1.25

cO (c3=c0)

FG. 3.

1
0.5

0 c3 axis

1.5



REGULARITY ESTIMATIONS OF L2-SCALING FUNCTIONS 861

1.5

0.5

-0.5

-1.5

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0.25

AA^

4 16 64 256 1024
Frequency in n-radians, log scale

12

10

0
0.25 4 16 64

Frequency in n-radians, log scale

()

order=-l.5

256 1024

FIG. 4.



862 KA-SING LAU, MANG-FAI MA, AND JIANRONG WANG

order=l.5
32

16

8
4 16 64 256

Frequency in n-radians, log scale

()

1024

3

2.5

2

1.5

0.5

0
0.25 4 16 64 256 1024

Frequency in n-radians, log scale

()

32

16

order=l.25

16 64 256
Frequency in g-radians, log scale

FIG. 4. (cont.)

1024



REGULARITY ESTIMATIONS OF Lg-SCALING FUNCTIONS 863

2.5

2

1.5

0.5

0
0.25

order=l

4 16 64 256 1024
Frequency in n-radians, log scale

128

64

32

order=l

4 16 64 256
Frequency in n-radians, log scale

(h)

1024

16 64 256
Frequency in n-radians, log scale

(i)

FIG. 4. (cont.)

1024



864 KA-SING LAU, MANG-FAI MA, AND JIANRONG WANG

REFERENCES

[c]

[CD]

[Ch]

[ca]

[D]

[DL1]

[DL2]

[E]

In]

[gu]

ILl]

[L3]

[La]

[P]

[RE]

[Sch]
[Sl]

[s2]

IV]

[w]

A. COHEN, Ondelettes, analysis multiresolutions et filtres mirroirs en quadrature, Ann. Inst.
H. Poincar Anal Non Linare, 7 (1990), pp. 439-459.

n. COHEN AND I. DAUBECHIES, A stability criterion for biorthogonal waveletbases and their
related subband coding scheme, Duke Math. J., 68 (1992), pp. 313-335.

C. CHUI, An introduction to wavelets, Academic Press, New York, 1992.
D. COLELLA AND C. HEIL, Characterizations of scaling functions I: Continuous solutions,

SIAM J. Matrix Anal. Appl., 15 (1994) pp. 496-518.
J. P. CONZE AND A. RAUGI, Fonctions harmonique pour un operateur de transition et

applications, Bull. Soc. Math. France, 273 (1990), pp. 273-301.
I. DAUBECHIES, Ten Lectures on Wavelets, CBMS-NSF Region Series Conference in Applied

Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, 1992.
I. DAUBECHIES AND J. LAGARIAS, Two-scale difference equation I: Global regularity of

solutions, SIAM J. Math. Anal., 22 (1991), pp. 1388-1410.
, Two-scale difference equation II: Local regularity, infinite products and fractals,

SIAM J. Math. Anal., 23 (1992), pp. 1031-1079.
T. EIROLA, Sobolev characterization of solutions of dilation equations, SIAM J. Math. Anal.,

23 (1992), pp. 1015-1030.
C. HEIL, Methods of solving dilation equations, in Probability and Stochastic Methods, Anal.

and Prob., ASI Ser. C: Math. Phys. Sci., 372 (1992), pp. 15-45.
J. HUTCHINSON, Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), pp. 713-747.
J. P. KAHANE, Lectures on mean perodic functions, in Letures on Mathematics and Physics,

Tata Institute, 1959.
K. S. LAW, Fractal measures and mean p-variations, J. Funct. Anal., 108 (1992), pp. 427-457.
, Dimension of a family of singular Bernoulli convolutions, J. Funct. Anal., 116

(1993), pp. 335-358.
, A weighted Tauberian theorem, J. Fourier Anal. Appl., to appear.
K. S. LAU AND J. WANG, Characterization of LP-solution for the two scale dilation equa-

tions, SIAM J. Math. Anal. 26 (1995), pp. 1018-1046.
, Mean quadratic variations and Fourier asymptotics of self-similar measures,

Monatsch. Math., 115 (1993), pp. 99-132.
W. LAWTON, Necessary and sujficient conditions for constructing orthonormal wavelet

bases, J. Math. Phys., 32 (1991), pp. 57-64.
J. PEETRE, New Thoughts on Besov Spaces, Duke University Mathematics Series I, Duke

University, Durham, NC, 1976.
B. RAMACHANDRAN AND K. S. LAU, Functional equations in probability theory, Academic

Press, New York, 1991.
L. SCHWARTZ, Fonctions moyenne periodiques, Ann. of Math., 48 (1947), pp. 857-927.
R. STRICHARTZ, Self-similar measures and their Fourier transforms, Indiana Univ. Math.

J., 39 (1990), pp. 797-817.
R. STRICHARTZ, Self-similar measures and their Fourier transforms II, Trans. Amer.

Math. Soc., 336 (1993), pp. 335-361.
L. VILLEMOES, Energy moments in time and frequency for two-scale difference equation

solutions and wavelets, SIAM J. Math. Anal., 23 (1992), pp. 1519-1543.
Y. WANG, On two-scale dilation equations, Random Comput. Dynamics, to appear.



SIAM J. MATH. ANAL.
Vol. 27, No. 3, pp. 865-890, May 1996

() 1996 Society for Industrial and Applied Mathematics
014

DYADIC AFFINE DECOMPOSITIONS AND FUNCTIONAL
WAVELET TRANSFORMS*
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Abstract. Decomposition of continuous functions can be accomplished by considering the
difference of consecutive interpolation operators. When such a difference is expressed as an infinite
series of some "wavelets" basis, the coefficient sequence becomes Donoho’s "interpolating wavelet
transform." Here, in contrast to the usual L2-setting, no analyzing wavelet is used to describe the
wavelet transform. The objective of this paper is to study the structure of such decomposition spaces,
including the formulation of bases and their duals, which leads to the notion of functional wavelet
transforms (FnWT) using the duals as analyzing wavelets. Such a transform retains some of the
most important properties of the integral wavelet transform of Grossmann and Morlet, such as the
property of vanishing moments, which has significant applications to engineering problems.

Key words, interpolating wavelets, wavelet decompositions, functional wavelet transform, van-
ishing moments, space of continuous functions, Dirac delta functions

AMS subject classifications. Primary 41A58; Secondary 42C30

1. Introduction. In the study of orthogonal wavelets, a multireso!ution anal-
ysis {Vj }jez of nested closed subspaces of L2 := L2(lt() along with their orthogonal
complementary subspaces {Wj }jez are considered, namely,

N
je ,

so that the orthogonal decomposition

L2 =Wj

is achieved, where + Wj means that + + W and Wy. The
spaces Wj can also be defined by

where P is the orthogonal projection from L2 to . In this paper, we will study
the decomposition of continuous functions induced by the cardinal interpolation pro-
jection.

To formulate a firm setting, the function space under consideration must be
subspace of C := C(), the space of continuous functions on . More precisely, we
will consider the subspace

(1.1) C C():= {f e C: f uniformly continuous and bounded on }
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and will use the sup norm I1" I1. Note that C is closed in the topology of this norm.
Suppose that E C has compact support and

(1.2) VJ "= {-Ck(2J’-k): (ck} E} j

Then each Vj is a subspace of C. We will call a scaling function that gener-
ates an interpolating multiresolution analysis (Vj } of Cu provided that the following
conditions are satisfied:

(i) Vj C V’+I, for all j e Z;

(ii) closc (Jjez Vj) Cu;

(iii) jez Vj C, the set of all complex numbers;

(iv) f e Vj v f(2.) e Vj+I,j e ;
(v) f e Vj = f(.- 2-- k) e Vj, j e Z, k e Z;

and
(vi) (I)(z) := Ek (k)z 0 for all ]z 1.
Condition (vi) is instrumental to solving the cardinal interpolation problem with

"fundamental function"

(1.3) eL E V0 satisfying eL(k) k,0, k Z,

where 5k,O denotes, as usual, the Kronecker delta symbol. Under assumption (vi), eL
is unique and is given by

(1.4) eL (X) rk(X k),
k

where {rk } is the coefficient sequence of the Laurent series expansion:

1
(1.5) (I)(z) rczk’ Izl 1.

kZ

We would like to point out that condition (vi) can be weakened to be
(vi/) Oc(Z) := (k + c)zk : 0 for all Iz[ 1

and for some c [0, 1), which may not be 0. In addition, the assumption that is
compactly supported is not necessary for some of our results to be valid. Of course,
still has to have sufficiently fast decay such as (x)= O ((1+11)1+) for some > 0.

In this paper, however, in order to significantly simplify our presentation, we will only
consider compactly supported scaling functions Cu which satisfy conditions (i)
and (vi). We will see later (in 3) that (ii)-(v) are only consequences of (i) and (vi).
Hence, in the study of a multireso|ution analysis of Cu, only conditions (i) and (vi)
are required.

From the interpolating property of )L in (1.3), it follows that the cardinal inter-
polation projection operators Pj from Cu to Vj are given by

k) CL(2YX_ k), f C(1.6) (Pjf)(x) := f -kZ
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Parallel to the study of orthogonal wavelets, we introduce the complementary sub-
spaces {Wj } of {Vj } defined by

(1.7) Wj := {f- Pjf" f E Vj+I}, j E Z.

It is clear that

(1.8) Yj+l=Yj--Wj and VjGWj={0}, jeZ,

and we will use the direct-sum notation

(1.9) Vj+I V4Wj, j e Z,

to describe (1.8).
One of the objectives of this paper is to study the structure of the spaces Wj

along with their duals. In particular, we will discuss the properties of the two bases
{(.- k)} and {eL("- k)} of W0, where and eL are defined as follows:

:=
k

and

(1.11) eL(X) := CL(2X- 1).

It should be mentioned that the function in (1.10) has already appeared in Micchelli
[8], while eL has been investigated by Donoho [5] for the special case when eL is
assumed to have compact support.

Since has compact support, the function in (1.10) is only a finite linear
combination of (2.-k) and consequently also has compact support. As to the
second function eL, we point out that it does not have compact support in general.
In fact, in view of (1.4) and (1.5), eL, and hence eL, has compact support only if
(b(z) is a monomial, which is the trivial case. In this paper, we will call both and
eL "interpolating wavelets." We also remark that

(1.12) eL = eL.
Prom (ii), (iii), and the decomposition relation (1.9), it follows that

Hence, by using the basis {(2j. -k)} of Wj, we have

(1.14) f(x)=f(O)+ E d(2yx-k)’ xeN, feC.
j,kEZ

Another objective of this paper is to study the importance of the coefficient sequence
{d} in the (unique) representation of any f e C. This sequence may be called
Donoho’s interpolating wavelet transform of f, studied in some detail in [5]. Our
investigation leads to the construction of the "dual" of , which naturally intro-
duces the notion of "functional wavelet transform" relative to the "analyzing wavelet
functional" .
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Let C be the dual space of C; that is, C* is the space that consists of all the
continuous linear functionals on C. By (f, f/we mean the value of f E C evaluated
at f E C,. Thus, C is called the dual of if

(.) ((.- k), /= ,0, e .
It will be clear in 3 that the coefficient sequence (d} in (1.14) is given by

(1.16) d (I(2-. +2-k),) 2Y(f, (2y. -k)), j,k e Z,

where the dilation and translation (shift) (a.-b) of the linear functional will
be defined in 2. Thus, as in the L2-setting, this formulation naturally leads to the
notion of the "functional wavelet transform," defined by

Let rm- denote the collection of all polynomials of degree m- 1 (or order m). It
will be shown that if (locally) reproduces all polynomials in m-1 for some positive
integer m, in the sense that there exist constants bj,k with polynomial growth as
k , such that

(.s) z ,( ), x e , 0, ,..., ,
k

then

k 1) =2J(p,(2j -k)) 0, erm- j, keZ.(.9) (w) ,
This property of vanishing moment has significant applications to engineering prob-
lems that require detection, data compression, etc.

2. Bases and their duals. As in 1, let the scaling function generate the
spaces Vj, j Z, in the sense of (1.2). Since V0 C V1, there exists a sequence
(p) such that

(2.1) (x) p(2x- k), x e H.
k

Moreover, since is assumed to be a compactly supported continuous function, the
sequence {Pk}keZ has exponential decay (see [7]), so that the two-scale symbol

1 zk(2.2) P(z) Pc(z)"= Pk
k

is an analytic function in a neighborhood of the unit circle Izl 1. Let (z) be the
symbol of {(k)} as defined before and assume that it does not vanish on the unit
circle as in hypothesis (vi) in 1. We have the following.

LEMMA 2.1. P(z) and (z) are governed by the identity

(2.3) O(z2) P(z)O(z) + P(-z),(-z), Izl 1.
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This result can be found in Rioul [9] and its proof is very similar to that of
some similar results in our earlier work [2, 3]. For completeness, we include a short
derivation here.

Proof.

P(z)O(z)+ P(-z),(-z).

lz(_z)_ 1
(2.4) Q(z) - - E(-1)k-l(k- 1)zk

k

and let the interpolating wavelet be defined as in (1.10). Then its Fourier transform
is given by

(,.) () (z)$ z(-z)$ z -,
where, as usual, the Fourier transform ] of a function f on is defined by

(2.6) ](w) f(x)e-Xdx, e ,
whenever it makes sense and/or distributionlly otherwise. Of course from the two-
scMe equation (2.1), we have also

(.) () P( -.
LEMMA 2.2. Let O(z) satisfy (vi) in 1; that is,

(2.8) (z) := ()z o, Izl- 1.
k

Then there are positive constants A B such that

for all e- {c}ez e and d {d}ez e.
Pro@ Since the functions 4 and are compactly supported and continuous, the

second inequality in (2.9) clearly holds for some constant B. To establish the first
inequality in (2.9), we recall from a result of Jia and Micchelli [6] that it is sucient

Next, consider
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to prove that {(w + 2kzr)} and {(w + 2kTr)} are linearly independent for all w E N.
We first observe, by applying the Poisson summation formula

(2.10)
k n

and condition (2.8), that

+ > 0, e
kEZ

Thus, combining this fact with the two-scale relations (2.5) and (2.7), we can easily
conclude that the above statement is equivalent to

(2.12) A(z) :=
P(z) Q(z)

P(-z) Q(-z)
for all [zl=l.

By (2.4), (2.3), Lemma 2.1, and condition (2.8), we have, for all Izl- 1,

P(z)

lzO(z)P(-z)
1 lzo(z2-z[P(z)(z)+ P(-z)(-z)] -- # O.

This completes the proof of Lemma 2.2.
In view of (2.9), the integer translates (.- k) and (.- k), k e Z, are said to be

t-stable (see [6]). For simplicity, we will also say that and are t?-stable. An
immediate consequence of (2.9) is that

(2.13) Allcl,e c(.- k)l Bllclle ,

II

(2.14) Zllclle ck(. k)l
for all c {ck} , so that and are e-stable themselves. It follows from
(2.13) that the spaces defined in (1.2) re closed subspces of C, and hence, we
cn write

where, somewhat differently from the usual definition, the span is not restricted
finite linear combinations. This leads to the following.

DEFINITION 2.a. et X X(R) be
and {S}ez a famil 4 closed sbspaces 4 X. g fectioe f X eists sch that

(2.16) S closx span{f(2. -k):
then f is called a generator that generates the subspaces Sj. Moreover, if there are
constants 0 < A <_ B < oc and 1 <_ p <_ oc such that

then we say that f is an t?P-stable generator of Sj, j Z.
Thus, in the sense of Definition 2.3, we see that, under condition (vi), or equiv-

alently (2.8), is an t?-stable generator of Vj. As to the fundamental function eL
given in (1.4), it is clear from the interpolating property (1.3) and the property of
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exponential decay (because of the exponential decay property of (rk} in (1.5)), that
qL is t-stable in the sense of (2.13) (with eL instead of there). Moreover, in view
of (1.4) and the fact that

(2.17) (x) . (k)L(X k),
k

we see that eL is also an t-stable generator that generates the closed subspaces .
THEOREM 2.4. Let {Vj} be defined as in (1.2) and satisfy the conditions (i) and

(vi) in 1. Also, let the subspaces Wj of C be defined as in (1.7). Then both and
)L, defined in (1.10) and (1.11), respectively, are g-stable generators of Wj, j E Z.

Proof. Since eL is f-stable, it follows that eL /_,(2.--1) is -stable also.
By (2.14), it is sufficient to prove that

holds for j 0. Let 9 e W0. Then there is an f e V1 such that 9(z) f(x)-(Pof)(z).
Since P1 is a projection from C to 1/’1, we can write

(2.19) f(x)=(Plf)(x)=f ()CL(2X- k).
k

Also, since the fundamental function eL has the two-scale relation

k

k

k

we see from (2.19) and (2.20) that

(./(/= ( /- (ele( e/

k

k

f k + - )L(X- k) f(g)L k t + - )L(X- k)
k k
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The sequence {ck}, defined by

(1) (1) ( 1)(2.22) ck "= (f Pof) k + - f k + - f(g)L k i + -is clearly in g. Hence, by (2.21), we have

(2.23) Woc {-CkCL(’--k):k {Ck} E g}
On the other hand, for any g(x) ’k CL(X- k) with {ck} e t, we have g e V1
and g(t) 0 (since eL(l) L(2/- 1) 0) for all I e Z, so that g g- Pog e Wo.
This proves that

(2.24) Wo {CkCL(’--k)’k {Ck} }
Combining (2.23) and (2.24), we have the first equality in (2.18) for j 0. To
establish the second equality in (2.18) for j 0, we only need to represent and
eL as (possibly infinite) linear combinations of integer translates of each other with
coefficient sequences in t1. For this purpose, we consider

(..) z .= (z)(-).
J

Then by (1.5) and (2.25), we have

_, vz rz (z)(-z)[(z)]-1

e(-/= (-1/(,
so that

(2.26) vjrn-2j-1 --(-1)n-l(n- 1),

Hence, it follows from (1.11), (1.4), (2.26), and (1.10) that

(2.27) vj)L(X j) vjd/)L(2X 2j 1)
J J

nEZ.

vj rk(2x- 2j 1 k)

(--lln-( e(-/ ().
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On the other hand, it also follows from (2.27) that

(2.28) eL(X) Ewj(x j),
J

with

( )_1 [(z)(-z)]
J J

This proves our assertion and therefore completes the proof of Theorem 2.4.
We turn to the discussion of duals. By using the classical Dirac delta function

(distribution) 5, namely,

(2.30) (f, 5)- f(0), f e Cu,

we can express the fundamental interpolating property of (L in (1.3) as

(2.31) (eL(" + k), 5} eL(k) 5k,0, k e Z.

In view of (2.31), we will say that eL and 5 are duals to each other. In the following,
we give a precise notion of dual functionals and describe what we mean by dilations,
translations, and convergence of functionals.

DEFINITION 2.5. Let X X(]) be a normed linear space of functions over
and X* X* (]) be its dual space, consisting of all the continuous linear functionals
on X.

(i) For an element f* e X*, its a-dilation and b-translation (shift) f*(a.-b),
where a, b E ], a O, is defined by

1 I (.+b)f,}(2.32) (f f*(a -b)) := f f e X.
a a

(ii) f X and f* X* are said to be dual to each other if

(2.33) (f(. + k), f*) (f f*(. k)} 6k,o for all k e .
Thus, f* will also be called a dual of f.

(iii) Let {]k} be a sequence in X*. We say that the series -k ]k is convergent in

X* if -k (f, ]) is convergent for all f X and its limit satisfies

-<f, k) < CIIfll, f e X,
k

for some positive constant C independent of f. Consequently, the series k f can
be considered as an element of X* in the sense that

(2.34) (f,E]k) :: E(f,]k}, f X.

Now, corresponding to the coefficient sequence {r} of the Laurent expansion of
-l(z) in (1.5), we consider the functional

(2.35) E rkh(" + k).
k
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Since {rk } E 1, we see that is a continuous linear functional on C in the sense of
Definition 2.5 (iii). It now follows from (1.4) that

(2.36) (, (’- j)} ((. + j), }

E rk((" + j), 5(. +
k

E rk(j k) eL(j) 5j,o,
k

so that is a dual of .
Note that although a function f E X may have more than one dual in different

subspaces of X*, the dual f* of f in the subspace generated by the integer translates
of f* is unique. Before we go into luther details, let us introduce the "dual subspaces"

We will simply use the notation ]]-]] for the functional norm for V. We have the
following result.

THEOREM 2.6. The functional in (2.35) is in Vo and is the dual of the scaling
function that generates {V }. Moreover, by setting

(:.s) (x) := .(x )1 o(x) I(x- ),,
k k

then

(2.39)
I1 I1llldllo

for all d {dj} 1. Furthermore,

(2.40) 5 E (J)(" + J)"

Consequently, both 5 and are gl-stable generators of the dual spaces , j Z.
Proof. The second inequalities in both sets of inequalities in (2.39) are obvious,

since I15("- J)ll- I111 and 115(.- J)ll- 11511 1. Now observe that

k j j,k j

{Ck} , {dj } .
Thus, for all c {ck} e with Ilcll 1, we have, from (2.13),

j djcj
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where B is the absolute constant given in (2.13). Of course, it is clear that the
constant B can be chosen as B IIII. This yields

B-1 sup .dc

This establishes the first inequality in the first of the two sets of inequalities in (2.39).
The proof of the first inequality in the second set in (2.39) is similar. From (2.39) and

(2.37), we see that 5 is indeed an gl-stable generator of Vj. Moreover, from (2.35) and

(1.5), we also have (2.40), so that generates j as well.
It is clear that 5 satisfies the two-scale relation

(2.41) 5 25(2.),
so that

(2.42) Vj C Vj+I, j e

In addition, it follows from (2.18) and (2.37) that

(2.43) Wj A_ Vj, j e

in the sense that

(2.44) (g,f}=0 for all geWj,

since

(2.45) (n(’+k),5)=n(k)=n(2k-1)=0, keZ.

The "orthogonality" property (2.43) is one of the main reasons that the dual spaces

V. are worth investigating. Next, following Cohen, Daubechies, and Feauveau [4], we
will look for a subspace Wj of Vj+I that satisfies

(2.46) Vj+I Vj-i-Wj, j e Z,

(2.47)

so that the generator of Wy is a dual of the generator of W. For this purpose, set

(2.48) "L := 2E(--I)k-IL (1.-.k)(2.-k)2
k

Then we have

(2.49)

E(_l)k_lL (.1- k)2(L(2" +2j--1)5(2"-k))
k

2

(1-2 CL(k+2j--1)
k

=E(--1)k-ld/)L (!-k)
k

eL(j) j,O, j Z,
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so that eL is indeed a dual of )L. Furthermore, observe that

(eL, eL("- j)) (eL(" + j),

E(--l)k-lCn ( l k ) 2(L(" + ,5(2.-k)}
k

=E(--I)-IcL( I-k)’2 eL (+j)
E(--1)/L -j eL ’2

--(eL, eL("- j)>, j e Z,

so that

(2.50) (eL, eL(" j)} 0, j e Z.

Hence, by setting

(2.51) J {E dkL(2J "--k)" dk E l } jEZ,

we see that (2.47) holds. Later, in 3, we will see that (2.46) is also valid. Since eL is

a dual of eL and eL is g-stable, it is clear from the proof of Theorem 2.6 that eL
is an tl-stable generator of Wj.

We now give another tl-stable generator of Wj, which is a dual of .
THEOREM 2.7. Let

(2.52) S(z) E skzk 2P(z)/(z2)’ Izl 1,
k

where P(z) and ((z) are given in (2.2) and (2.8), respectively. Also, let be defined
as in (1.10). Then the dual of is given by

(2.53) :-- 2 E(--1)k-181_k(2 -k),
k

where is defined in (2.35). Furthermore, both -L and are gl-stable generators of
Wj, jeZ.

Proof. Since and are dual to each other, we have from (1.10).and (2.53) that

(2.54) {(. + j), }
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On the other hand, by (2.52) and Lemma 2.1, we also have

[P(z)O(z)+ P(-z)O(-z)]/O(z2) 1,

Hence, it follows from (2.54) and (2.55) that

(2.56) ((" + j), } 6j,0, j e Z,

so that is a dual of .
We have already shown that generates Wj, j E (see the discussion following

(2.151)). To see that also generates W, it is suNcient to show that

(.) (. + e),

where {re} is given by (2.2g). Now, by (2.5a) and (2.a5), we have

(2.58) vt(" W ) vt (2 (-l)k-ls1-k(2 W2
k

2 (--I)-lSl_kV rje(2. +2e k + j)

Consequently, by (2.25) and (2.52), we obtain

(.59)

and moreover, we have, by (1.5),

E (E(_l)Jrjbm_j) zm=E(_l)JrjzJEbm_jzm_
j m

[O(-z)I-IB(z)= 2O(z)P(z)/O(z2).
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On the other hand, by (1.4) and (2.1), we also have
m

k k

k m

[(z)]-p(z)(z).
Combining (2.61), (2.60), and (2.59), we arrive at

m

J

(-1)rvsm--:.
Hence, substituting (2.62) into (2.58) (with m 1 n) and applying (2.48), we ob-
tain (2.57). As in the proof of Theorem 2.6, the gl-stability of follows from the
g-stability of its dual (see Theorem 2.4). This completes the proof of Theorem
2.7.

We end this section by pointing out that the functional

(2.63) := 2(--i)k-l (l-- k) 5(2"
k

is also an gl-stable generator of W. The advantage of over eL and is that it has
compact suppor whenever is a compactly supported scaling function. The relation
between and eL is given by

(e.4) ()5(. + ).

Similarly, the dual of in W0 is given by

(.) , (- ),
k

and its gl-stability follows from the g-stability of U. The proof of these facts is
similar to and even easier than the previous ones. Hence, it is safe to omit the details
here.

3. Decompositions, multiresolution analyses, and the functional wavelet
transform. We will now complete our proof of the dual (orthogonal) decomposition
(2.46)--(2.47) by establishing the decomposition relation (2.46). This and other related
results are summarized in the following theorem.

THEOREM 3.1. Let Vj, Wj be defined as in (1.2), (1.7) and Vj, Wj as in (2.37),
(2.51). Suppose that conditions (i) and (vi) stated in 1 hold. Then

(3.1) Vj+I Vy4Wj, j e Z

(3.2) Vj+I Vj-Wj, j e Z;

(3.3) Wj_LVj, V_LW, j eZ;

(3.4) Wj _I_ Wk, j k, j,k E Z.

and
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Proof. Assertion (3.1) is the result (1.9) in 1, and (3.3) is the summary of (2.43)
and (2.47)). Hence, it remains to establish (3.2) and (3.4). First, we see from (2.48)
and (2.51) that Wj c Vj+I. So, by applying (2.42), we have

(3.5) Vj+I V + Wj, j e Z.

On the other hand, it follows from (2.41) and (2.48) that

(3.6) (1)bL=2ECL(--k)6(2"--2k--1)--2ECL -k 6(2.-2k)
k k

k

This yields

(3.7) (2.-1)=kL -k 5(. k) + L.
From (2.41) and (3.7), we see that Vj+I c Vj + Wj. This, together with (3.5), gives

(3.8) V+ V + Wj, j e Z.

To establish

(3.9) Vj V Wj {0}, j e Z,

we let ] e % N j and write both

(3.10) ]- E ce(2J" -)’ {ce} E 1,

and

(3.11)

for some {de} e 1, where the second equality in (3.11) follows from (3.6). By (2.41),
(3.10), and (3.11), we obtain

(3.12) E be(2J+l -) O,

where b2e+ de and b2e -(ce + -k L(1/2 k)de-k), g Z. Clearly {be} e g, so
that the g-stability of 5 (cf. (2.39)) and (3.12) together imply that be 0, g Z.
This turns out to be de b2e+l 0 and ce -(b2e + -k L(1/2 k)de-k) O, g Z.
Hence f 0 and (3.9) is established. Combining (3.8) and (3.9) gives (3.2).
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Finally, to prove (3.4), we may assume, without loss of generality, that j < k.
Thus,

(3.13) Wj c Vj+I c c Vk _1_ Wk,

where the last orthogonality relation comes from (3.3), so that (3.4) holds. This
completes the proof of Theorem 3.1. D

In the notion of interpolating multiresolution analysis {V } of C as described in
1, six conditions are imposed on {Vj}. In the following theorem, we will see that
these conditions are not independent.

THEOREM 3.2. Let the spaces Vj be defined as in (1.2). Suppose that conditions
(i) and (vi) described in 1 hold. Then conditions (ii)-(v) there also hold.

Proof. It is clear that (iv) and (v) are consequences of the definition (1.2). It only
remains to prove (ii) and (iii).

Since we have assumed that the generator of Vj is a compactly supported
continuous function, it is obvious that each element of Vj is a uniformly continuous
bounded function, so that

(3.14) Vj C C, j E Z.

For each f e C, let Pyf be given as in (1.6). Then Pyf e V, and as proven in [5],
we have

(3.15) IIf PyIII <- w(f; 2-j) + w(Pjf; 2-j)_
(1 + C)w(f; 2-Y),

where C "= I111 is a constant with already introduced in (2.38). Here, the
standard notation

(3.16)

of the uniform modulus of continuity is used.
follows from (3.15) that

(3.17) IIf Pjf[[ - 0 as

This together with (3.14) yields condition (ii).
Then we can write

w(f;t) := sup

Since f is uniformly continuous, it

To establish (iii), let f e jez Vj.

f=4(2y.-k), {4} g, J z"
k

Since is g-stable, we have IIf[[ >- dcJ [e, where d > 0 is the absolute constant
in (2.13). Thus, for any x, y N, we obtain

If(x) f(Y)l ]lcYlle ](2ix k) (2Jy
k

d-f (2x k) (2Jy k) 0
k

as j -. That is, f(z) f() for all z, e N. This yields ez C C. On the
other hand, since satisfies the two-scale relation (2.1) with -stability, we have

(x 0, x
k
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(cf. [6]), so that jez Vj indeed consists only of the constant functions. This estab-
lishes (iii) and completes the proof of Theorem 3.2.

It now follows from Theorems 3.1 and 3.2 that

(.) c 4 w c + w,
e>j ez

where the denotes direct summation. Of course, we must be careful in making sure
that the statements in (3.19) actually make sense, since direct summation is usually
an algebraic concept. We will return to this after Theorem 3.5 is established.

For the cardinal interpolation projection operators Pj in (1.6), we can write, on
one hand,

(3.20) (Pjf)(x) E 2J<f, 5(2J-k))L(2Jx k),
k

and by applying (1.4), (1.6), and (2.35), we can also write, on the other hand,

(3.21) (Pjf)(x) E f(2-Jk) E re(2Jx- k- )
k

E (Eref(2-J(k-g)))
E<f(2-J( + k)),)(2Jx- k)
k

E 2j (/’ (2J"-k))(2Jx k).
k

We define another family of projection operators A from C to W as follows:

where the dual of is given in (2.5a). om (2.27) and (2.7), similar to the
deduction of (a.21), we also have

(a.a) () (f,c( -))( ).
k

Hence, for each of the projection operators P and , we have two different repre-
sentations. These two operators are related as follows.

LEMMA .a. The projection operators P ad satsif the relatioe

(a.4) P+I P +, j z.

Proof. It is sufficient to prove (3.24) for j 0 and we will apply (3.23) and (3.20)
(i.e., (1.6)) to establish this assertion. To this end, we need to use the two-scale
equation (2.20) for the fundamental function eL, which has the equivalent form

(3.25) CL(2X)=L(X)-- E eL (g+ )CL(2X-- 2t?-- 1).
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Thus, for all f E C(), we have

(3.26) (Plf)(x) E f () CL(2X-
k

E/(k)c(2x

}2
k

(1)
k

k

-(Pof)(x)

On the other hand, from (3.23), (2.48), and (1.11), we also have
(3.27)

(of)(x) <f,(. )>(x- )
k

E2E(_I)_lc (1-2 g)(f, 5(2"--2k--i)}L(2X--2k-1)
k g

k
2 f k + c(2x- 2- 1),

so that combining this fact with (3.26) yields

(Plf)(x) (Pof)(x) + (A0f)(x), x EI.

This proves (3.24) for j 0.
LEMMA 3.4. The dual pair , in (1.10) and (2.53) satisfies

(3.28) ((2j. -k), (2j’. -k’)} 2-Jsy,j,Sk,k,, j,j’,k,k’ e Z,

and

(3.29) <1, (2j-, -k)> O, j, k Z,

where 1 is viewed as a constant function. Similar results also hold for the dual pair
eL, eL in (1.11) and (2.48).

Proof. By Theorem 2.7, we see that for j’ j,

<(e -k), 5(2.-k’)> 2- ((. k), 5(. ’)>
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For different j and j’, since (2J.-k) e Wj, (2J’.-k) e j,, we see that (3.4)
implies

0.

This proves (3.28). To establish (3.29), we have, from (3.18),

1 [(0)]- E (2Yx k) V,
k

so that (3.29) is a consequence of (3.3) and the fact that (2j. -k) e j. This
establishes Lemma 3.4.

One of the main results in this section is the following.
THEOREM 3.5. Every f Cu has a unique and pointwise convergent decomposi-

tion

(.0) f(x) f(O) + 9(x), x

where gj Ajf Wj with the projection operators Aj given as in (3.22) or (3.23).
Furthermore, for each m Z and f C, the series

(3.31) f Pmf + Ajf
jm

is unformly convergent in C (under the sup norm).
Proo Given e > 0, by (3.15) there exists an N Z such that

]f-Pnf] < for all n>N.

Now, for any m Z and integer n max{re, N}, since we have, by Lemma 3.3,
n=Ay P+ Pm, it follows that

f Pmf

This proves that the convergence in (3.31) is uniform. Also, according to (3.31),
pointwise convergence in (3.30) is equivalent to pointwise convergence of

(3.32) li(Pf x)

Hence, since we have, by (1.6),

(Pmf)(x) f(O)L(2X) + f(2-k)L(2mx- k)
kO

and therefore

](Pf)(x) f(O) f(0)]]l Cn(2mx)] + ]f(2-mk)]L(2mx k)[
ko

+
k0

it follows that

im (Pf)(x) f(o)] ]]/(1 (0)] + [(k)[) 0,
m--
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which yields (3.32) and hence (3.30). To establish the uniqueness of the decomposi-
tion, we see that if c + jez gJ is another (pointwise convergent) representation for
f with c e It(, gj E Wj, then since every gj Wj, j Z, satisfies gj(0) 0 (see
(2.45)), we immediately have c f(0). Moreover, according to Lemma 3.4 and (3.22)
or (3.23), one can easily verify that Ajf gj, j Z. This completes the proof of
Theorem 3.5.

Remark. We need to point out that the convergence in (3.30) is not uniform in
general. As a simple example, consider f eL. Then it is clear that (Pjf)(x)
CL(2Jx) for j < 0, and hence,

IlPjf- f(O)[l --IICL(2j’) --CL(0)llo --IICL- 1[[o >_ 1.

This shows that the convergence in (3.32), and hence (3.30), is not uniform.
As a corollary of Theorem 3.5, we have from (3.3) that

(3.33) f(x) f(O) 4- (Aef)(x), x e ,
e<j

for every f V. The reason is that for _> j, we have f E Vj C Y _1_ We, so that

(f, (2e. -k)) 0, k e Z, and (Aef)(x) k 2e(f, (2e" -k)}/2(2ex k) O. As a
consequence of (3.30) and (3.33), we see that the infinite direct sums in (3.19) as well
as the direct sum

(3.34) Vj C4 Wj

do make sense (with pointwise convergence).
From (3.22) and (3.30), we can write, for each f e C,

(3.35) f(x) f(O) 4- dk(2Jx k), x I,
jz

where

(3.36) 4 2j (f, (2" -k)), j, k Z.

We are now ready to introduce the notion of "functional wavelet transforms"
(FnWT)

a
a0, bE,

as mentioned in (1.17). Recall that the usual integral wavelet transform (IWT) is
an inner product in L2, which is the dual space of itself. Hence, we may consider
the FnWT as a generalization of the IWT. Recall also that the values of the IWT
at the dyadic points (, ) can be computed via certain pyramid decomposition-
reconstruction algorithms under the structure of a multiresolution analysis of L2.
The same is true for the situation of the FnWT, though the FnWT can be computed
directly without integration (e.g., by the point-value functional and its linear combi-
nations). This will be done in the next section. We end this section by deriving the
property of vanishing moments of as mentioned in 1.
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THEOREM 3.6. Let be defined as in (2.53). If the scaling function (locally)
reproduces all polynomials of degree up to m- 1, where m is a positive integer, in the
sense that

(3.38) xJ=E(x-k)’ xE, j-0,1,...,m-1,
k

for some constants b with polynomial growth as k oc, then

(3.39) (p, ) 0, for all p m-1.

Similar results also hold for eL in (2.48).
Remark. Since a nontrivial polynomial p(x) does not belong to the space C, the

meaning of (p, ) must be clarified. However, this will be clear from the following
proof of the theorem. In addition, since dilation and translation are invariant for
polynomials, (1.19)follows from (3.39).

Proof. By (3.29), we have seen that (3.39) is valid for p(x) =_ 1. For the general
case, the proof of (3.39) is different from that of (3.29), and we first need to make
sure that (p, } is well defined for any polynomial p.

From (2.53) and (2.35), we can write

(3.40) - 2 E(--1)k-181_k E r((2.-k - )k l

=2E(--1)n-1 (E(--1)rSl-n-)
2E tnh(2"-n),

n

where

(3.41) tn (-1)n-1E(-1)rSl-n-, n Z.

Since {rk} and {sk} in (1.5) and (2.52), respectively, have exponential decay, so does
{tn} in (3.41). Thus, the series

n
(3.42) 2E tn(p, 5(2 -n)) E tnp (-)

n n

is absolutely convergent for any polynomial p, and according to (3.40) and (3.42), we
may define

(3.43) (P’ ) E tnp - p e 7rm-1.
n

This is similar to but not completely the same as Definition 2.5 (iii).
Now, for p(x) xj, 0 _< j <_ m- 1, from (3.38) and (3.43) we obtain

n
(3.44) (p,

n k
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Since b is of polynomial growth, tn is of exponential decay, and is compactly
supported, the double series in (3.44) is absolutely convergent, and consequently, we
can interchange the order of s6mmations in (3.44) to yield

n
(3.45) (p, } E Etn (- k) E

k n k

where the last equality in (3.45) follows from (3.40). From (3.45), it is clear that

(, ) 0 or e _, sic ((.- ),) 0, o e (s (e.4) nd
Theorem 2.7). This proves (3.39). From (2.57), we also have (P,L} 0 for all
p E 7m-1. This completes the proof of Theorem 3.6.

4. Algorithms and examples. To derive the decomposition-reconstruction al-
gorithms for the interpolating wavelets eL and , we need an explicit decomposition
formula for CL(2X t) and (2x t), E Z.

Taking f(x) CL(2X- t) as in the proof of Theorem 2.4 and applying (2.21),
(1.6), and (1.3), we immediately obtain

(4.1) CL(2X ) f(x) (Pof)(x) + (f Pof)(x)

:,(x )
k

However, in practical applications, we may wish to use instead of eL. For this, we
need the following result.

THEOREM 4.1. Let the sequences {g,} gl and {hn} g be determined by the
following equations:

(4.2) O(z)/O(z2) E zn

(4.3) 2z-lP(-z)/O(z2) E hnzn’
n

where P(z) and ((z) are given in (2.2) and (2.8), respectively. Then

(4.4) (2x t) E[g2k_(X k) + h2k-t(x k)],
k

Proof. Since (2x- t) V Vo-Wo (cf. (3.1)), we can write

O(x ) i( ) + I( )
k k

for some {gk} E ioo and {h} goo, g E Z. By applying the duals $ and on (4.5)
and observing that (3.3) holds, we have

(4.6) f <(.-), 5(.- )) <(. +_ ),

i ((.-), 5(.- )> ((.+ ),
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so that by setting

(4.7)
hn’=((2"+n),), neZ,

we see that (4.4) is a consequence of (4.5)-(4.7). It remains to prove that the sequences
{gn} and {hn} defined in (4.7) satisfy equations (4.2) and (4.3).

By (2.35)and (4.7), we. have

k

,(n ),
k

and consequently,

E gnzn EErk)(n 2k)zn

=Erkz2kE(n--2k)zn--2k
k n

k n

(z)/(),
where the last equality follows from (2.) and (1.). This establishes (4.2). By (2.5g),
(4.7), and the duality between and , we have

(--1)k-lsl_k{(. + ), (’-

(--1)k-lsl_kk,_ (--1)n+lsn+l,
k

so that

E hnzn E(-1)n+lSn+lzn
n n

z(-z) z-p(-)/(z),
n

where the last equality follows from (2.52). This proves (2.43). From (4.2) and (4.3)
it is clear that {gn} E 1 and {hn} . This completes the proof of Theorem
4.1. [:]

With the decomposition formula (4.4) in hand, the algorithms for our interpo-
lating wavelet are almost the same as that in the L2 setting. For any f C,, let
fN PNf be the projection of f to VN for a fixed N Z. More generally, we don’t
have to use the cardinal interpolant PNf. We may consider VN as the "sample space"
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and fN the "data" (or measurement) of f on VN. Since

(4.8) VN WN-1 "-VN-1
WN-14 4WN-M4VN-M

for any positive integer M, fg has the unique decomposition

(4.9) fN(X) gN-1 (X) + fN-1 (X)

_(x) +_() +... + v-M(x) + I-M(),
where

(4.10) fj-t-l gj "Zt- fj, fj e Yj, gj e Wj, j N- M,...,N-1.

Let us write

(4.11) fd(x) E
k

(4.12) gj(x) Edk2(j 2ix- k), dj {d}.
k

Then the decomposition in (4.9) is uniquely determined by the sequences cJ and dj

in (4.11) and (4.12), respectively. As shown in the last section, we have

(4.13)

where Wf is the FnWT of f defined in (3.36). By using the dual property between

and and noticing that (2J.-k) e j C _l_ W, j <_ _< N, we have

(4.14) 4 (f, (. -))

/(y,(. -k)) (Wf) -, -4.1. Decomposition algorithm. Let the sequences {gn} a.nd {hn} be as in
Theorem 4.1. We have the following formula to produce cY {k} and d {d},
j N- M,...,N- 1, from cN {ckN}"

(4.15)
4--1 E h2k-t4, kZ and j=N,N-1,...,N-M+I.

dN-1 dN-2 dN-M
/

CN CN-1
/

cN-2 _.__+ ...__> CN-M"
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4.2. Reconstruction algorithm. Let {Pn} be the two-scale sequence in (2.1).
Then we have the following formula to produce cJ, N- M + 1 _< j _< N, from CN-M

and dj, N- M _< j _< N- 1"

--(--1)k-l(k- 2- 1)d{-l],

kEZ, j=N-M+I,...,N.

dN-M dN-M+I dN-1

CN-M cN-M+ ___+ ____+ cN-1 CN.

The proof of the above decomposition-reconstruction algorithms is the same as
the L2 setting (see [1, pp. 158-159]).

Examples. (i) Let 1 E L2 be a compactly supported scaling function which
generates a (dyadic) multiresolution analysis of L2. Then it is easy to see that the
autocorrelation function

(4.17) ((X) :-- ((1 (--’) * I)(X) (1 (X -- Y)(I (y)dyof 1 generates the multiresolution analysis of C as introduced in this paper.
(ii) Consider the rnth-order cardinal B-spline function Nm, defined by

(4.18) 01Nm(x) :-- (Nm-1 , gl)(X): Nm-l(X- t)dt, m>2.

Then Nm satisfies the two-scale relation

(4.19) Nm(x) E 2--m+l gm(2X k)
k=0

and has compact support [0, m]. It is well known that

1 + (_1)m_1) zkO, for alllzl=l(4.20) E Nm k + 4
k

(see [10]). In particular, we have

(4.21) EN2m(k)zk # 0, Izl 1, rn >_ 1.
k

Thus, for the scaling function N2m our interpolating wavelet is given by

2m

(4.22) 2m(X) E(-1)k-lN2m(k- 1)N2m(2X- k).
k=2

Note that the support of is [1, 2m], which is even smaller than the support of N2m.
The graphs of 4 and 6 are shown in Figures 1 and 2.
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STABILITY OF REFINABLE FUNCTIONS, MULTIRESOLUTION
ANALYSIS AND HAAR BASES*

DING-XUAN ZHOU

Abstract. The stability of the integer translates of a univariate refinable function is character-
ized in terms of the mask sequence in the corresponding k-scale (k _> 2) refinement equation. We
show that the stability and refinement of some kinds of basis functions lead to a multiresolution
analysis in Lp(s)(1

_
p

_
cx),s E N) based on general lattices. As an application we determine

explicitly all those multiresolution analyses in L2(it() associated with (Z, k) whose scaling functions
are characteristic functions.

Key words, stability, wavelets, refinement equations, multiresolution analysis, Haar bases

AMS subject classifications. 41A30, 41A58, 42C05

1. Introduction. Wavelet decompositions are based on basis functions that sat-
isfy refinement equations. The stability of the integer translates of the basis function
plays an essential role in the study of wavelets. Since the basis function can be
determined by the mask of the corresponding refinement equation, it is natural to
characterize the stability in terms of the mask sequence.

Let s E N, 1 _< p _< c, E Lp "= Lp(s); we say that the integer translates of
are/P-stable if there exist positive constants Ap and Bp such that for any a /P(Z8)

(1.1) Aplla[[p_llEaa(.-o)l _Bplla[[p.

(EZs p

A locally integrable function is said to be refinable if it satisfies the refinement
equation

(1.2) -- E ba(M.-a),
cEZ

where b /(Z8) is a complex-valued sequence called the mask of (1.2) and M is
an s s matrix called a scaling matrix such that MZ := {Ma a Z} C Zs and
k := det M N with all the eigenvalues satisfying I/11

_
I/21 _... _

I,sl > 1.
Recently, Jia and Wang [7] gave a criterion for/2-stability of the integer translates

of a univariate compactly supported refinable distribution in terms of the compactly
supported mask of the corresponding refinement equation. In this paper, in the cases
of s 1 and power of k with k _> 2, we consider the stability of the integer translates of
noncompactly supported refinable functions. For a function that decays exponentially
fast in L2() we give a criterion for this/2-stability in terms of the mask sequence of
the refinement equation that it satisfies.

Once we have obtained the stability of the integer translates of a refinable func-
tion, we can construct a multiresolution analysis and then wavelet decompositions for
different kinds of function spaces as well as applications. This procedure has been
discussed by many authors; see [1, 3, 5-12]. Here we only mention a recent work of
Jia and Micchelli [5].
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For a measurable function on ]s, set

(x) I(x

Then 0 is a l-periodic function. Define

[(lp--

For 1 _< p _< , let P(S) be the Banach space of all measurable functions for
which II]]cp Ilp < Go. These spaces have many interesting properties that can be
found in [5]. By means of these properties, Jia and Micchelli proved that the stability
and refinement of an P basis function are sufficient to generate a multiresolution
analysis of power of two in LP() for 1 _< p < Go.

In the second part of this paper we give similar results for 1 _< p _< Go and general
lattices.

Finally, we use the above results to determine explicitly all the multiresolution
analyses in L2() associated with (Z, k) whose scaling functions are characteristic
functions, which is the main purpose of this paper. Such a scaling function can be
expressed as the characteristic function XQ of some set Q defined by

(1.3) }Q k-j {no,..., n_}
j’-i

where {no,...,nk-1} is a collection of representatives of distinct cosets of Z/(kZ),
say, nj j (modk) for 0 _< j _< k- 1. GrSchenig and Madych [4] gave some
conditions on Q that are sufficient and necessary for XQ to generate a multiresolution
analysis in L2(]). However, these conditions cannot be verified easily. Using our
above results and Euler’s theorem from number theory, we show in the last section
that XQ can generate a multiresolution analysis in L2(]) if and only if the numbers
{nl -no, n2- no,... ,nk-1 -no} are relatively prime. Moreover, for any collection
of representatives {n0, nl,... ,nk-} the set Q defined by (1.3) has measure (n-
no, n2 no,..., n_ no) E N. Here for a set {ml,..., rag} of integer numbers we

use(m,..., mj) to denote the greatest common divisor (g.c.d.).
For further convenience, we need some notation.
For x (x,... ,xs) e , we let Ixl- j=l IxJl be its norm in . We denote

IEI as the measure of the set E c I.
For a sequence b G Zs, we denote as its symbol

(1.4) (z) E bz’ z C.
oEZ

Given a function e P(]*) and a sequence a e/(Z*), the semidiscrete convo-
lution product .’ a is, by definition, the sum E, ("- a)a(a).

The Fourier transform of a function E L (ks) is given by

$(w) jf (x)e-x dx,

where for x (Xl, ,xs) and w (1, ,ds) e ]s E,X j--1 Xjdj.

operation can be uniquely extended to L2(). For L2(IS), set for
This

(1.5) H (w) /
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With all the above notation we can now state our main results.

2. A criterion for stability. In the univariate case the refinement equation
(1.2) becomes

(e.) n("

with 2 _< k e N, (bn) e l().
We want to characterize the stability of the integer translates of an exponentially

decaying solution to (2.1) in terms of the zero distribution of the symbol of the mask
sequence.

For generality we denote E2 as the space of all the functions f in 2() that
satisfy

(2.2) lif("-- n)iiL2[0,1) CqInl

for some constants C > 0 and 0 < q < 1 that depend only on f.
Then we can state our first main result as follows.
THEOREM 1. Let E E2 be a solution to (2.1) with (0) O. Then the integer

translates of are 12-stable if and only if the following conditions are satisfied.
,() e ().
() E-J3 I(-/z)l > o oa z o tt cc T := {z e C’lzl 1}.
(3) For any m N and z T satisfying zk’ z 1, there exists an integer

d > 0 such that

Proof of Theorem 1. Necessity. Suppose that the integer translates of E2 C
2() are/2-stable. Then by [5, Whm. 3.3] there exists g ,’ a, a 11, such that
for a, Z

((.- ), (.- )) ,.
Note that b and , g E/:2(). Using the dominated convergence theorem,

we obtain from (2.1) that

1

Hence, condition (1) is necessary:

(1)
Therefore, (z) is continuous for z T.

To see the necessity of condition (2), we take the Fourier transforms of both sides
of (2.1) and obtain
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Note that for E 2(), He(w) is continuous for w E I. We have

l-I_
/=0

It was proved in [5, Thm. 3.3] that for 2(I), the integer translates of are
/2-stable if and only if He(w) > 0 for any w I. Therefore, we must have

k-1

/=0

Hence condition (2) is also necessary.
Finally, we prove the necessity of condition (3). Suppose to the contrary that

kthere exist m N and z0 T such that z0 z0 1 and for all integers d >_ 0,

k-1

/--1

Let z0 e-2’/(k’-1) 1. Then n/(k" 1) Z. We claim that for all a E Z,

(2.6) (2n/(km 1) + 2a) 0,

which implies that the integer translates of are/2-unstable.
To prove (2.6), we set n + (km 1)a kPq, where p k 0 and q are integers and

k Zq or q 0. Since n/(kTM 1) Z, we must have q 0.
By (2.4) we have

(2n/(km 1)+ 2at) (2kPqr/(km 1))

j=l

Under assumption (2.5) we now prove that

o,

which implies (2.6).
To this end, we choose r (k’(p+I) 1)/(km 1) N and set -qr uk + v

with u, v Z and 0 _< v < k. Then we must have v : 0, since (k, r) 1 and k
Therefore, we have

(e-i2q/(k(k’-l))) (e-i2qr[k’(’+l)-r(k’-l)]/[k(k’-l)])
(e2qr/ke-2rk’qk(’-)(+)/(k’-)
(e=2wr/k(e-2n/(k’-l))k(’-)(+)

--0.

Thus, the proof of the necessity is complete.
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Sufficiency. We note that E 2() satisfies

+ 2n)l <(" / n), )e-in’’.
nEZ nEZ

For this, see [5, Thm. 3.2].
Let

(2.8) K()= {z=e-ET’wI’nZ
I(w + 2n)12 0}

Since e E2, the sequence { ((. + n), /}nez decays exponentially fast. Hence the
function

(( + ), )z
nZ

is analytic in a domain {z C C :rl < Izl < r2} with 0 < rl < 1 < r2 and, therefore,
has only finitely many zero points on T. That is, K() is a finite set.

Suppose that the.three conditions of Theorem 1 are satisfied. We show that K()
is empty, which implies that has/2-stable integer translates.

We first prove the following statement.
If z K(b), then there exists a positive integer m such that

(2.9) z’ z :/: 1.

Let z0 e-ie K(). Then z0 = 1 since (0) = 0. From condition (1), we know
that b(z) is continuous on T. Thus, we can use (2.4) and obtain

k-1

/=0

From condition (2) we know that there exists E {0, 1,..., k- 1} such that
(e-21/ke-/k) 0. Hence,

and e-(+21)/ K(). This shows that there exists z K() such that z z0.
Repeating this process, we can find a sequence {Z}r=0,1 in K() such that z
z,_ for n N. But K() is a finite set. We must have integers 0 _< p < q such that
zp Zq. Then we obtain

kq-p
Zp Zq Zq

and

kq _.k2q--P kq--P
Z0 Zq Zq Z0

Here q-p e N. Therefore, (2.9) holds and the statement is true.
We use this statement to prove the sufficiency. Suppose to the contrary that the

2integer translates of are -unstable. Equivalently, K() is not empty, say, z e K().
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Then, by (2.9) there exists m E N such that za’ z : 1. Set z e-i2rkvq/(k’-l),
where q, p

_
0 and k/q.

We show that for zo e-i2rq/(k’-l) i and any integers d >_ 0,1 1, 2,..., k- 1,

kd(2.10) (e-i2l/kZo )=0,

which is a contradiction to condition (3). Hence the integer translates must be 12-
stable.

To prove (2.10) for d and l, we let w0 2rkp+m(d+’)q/(km- 1). Then e-i"

z E K(), i.e., H(wo)= 0.
By (2.4), we have for l-0, 1,...,k- 1,

E I(w + 2r(kn +/))l 2

nEZ
1 (c_i(wo+21r)/k

k
0.

Thus, either (e-i(+:l’)/a must be zero.
On the other hand, we claim that for 1, 2,..., k- 1,

He(w+2/r) #0.

Since otherwise, e-(o+2t)/ K(), by (2.9), there exists a positive integer a such
that (e-i(w+2t)/k)k"-I 1. Hence,

1
w2-- (wo + 2/r)(k" 1)/k (kP+m(d+l)q/(k 1) + 1)(k" 1)/k Z.

We observe that for any n N, (kn 1, k) 1. Therefore,

kP+’(d+)-q(k 1) + l(k 1)(km 1)/k e Z

and

which is a contradiction.
We have proved our claim and obtain for 1, 2,..., k- 1,

(2.11) (e-(+t’)/) 0.

By condition (2) we also have from (2.11)

8(e # 0.

Hence, II(wo/k) O.
Let wj k-Jwo 2kp+m(d+l)-jq/(km- 1). Our process for wo can be repeated

forwj withj=l,2,...,p+rn(d+l)-l. In fact, for l<_j<_p+rn(d+l)-l, we
have

(e-(+’)/) 0, 1,2,...,k- 1,
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and

In particular, for 1, 2,..., k- 1,

Thus, we have proved (2.10) for any integer d _> 0 and 1, 2,..., k 1.
The proof of Theorem 1 is complete. [:]

Remark. If we replace the condition E E2 by the assumption that E E2(I)
and He(.) has only finitely many zeros on [0, 2r), then Theorem 1 still holds. In fact,
this observation is also true for multivariate cases, which we shall discuss elsewhere.

Remark. Even if a refinable function that has/2-stable integer translates is of com-
pact support, it may happen that the mask of the corresponding refinement equation
does not have compact support. Let k 2 and 2() be a compactly supported
refinable function whose integer translates are/2-stable. Suppose that satisfies the
refinement equation

(1). =*b

with the mask b of compact support. Then for a finitely supported sequence a, the
function ,’ a has/2-stable integer translates if and .only if E(z) has no zeros
on T. In this case, is also refinable. The mask of the corresponding refinement
equation is of compact support if and only if ?z(z2)(z)/E(z) is a Laurent polynomial.
For example, we choose C(I) to be of compact support, to be refinable, and to
have orthogonal integer translates. Then (.) + c(. + 2n) with n N and 0 c T
is a refinable compactly supported function and has/2-stable integer translates. But
the mask of the corresponding refinement equation is of no compact support.

By the method in the first part of the proof of Theorem 1 and some estimates in
[5] we can easily obtain the following result.

THEOREM 2. Suppose that s N, {1,..., Cn} C f.p(s) have lP-stable integer
translates with 2 <_ p <_ oc (for a definition, see [5]). Denote Sp(,...,n)

n{y= Cj ,’ aj a,..., an e/P(ZS)}. Then the mapping

L1 (IP)’ ____+ Lp(])

given by
n

nl Cn (al,..., an) Cj *’ aj
j=l

defines an isomorphism from (l)n onto the space P(])N Sp(1,..., Ca) with the

Combining Theorem 1 with [2], we can give a similar criterion for the orthogo-
nality.

THEOREM 3. Let e E2 be a solution to (2.1) with (0) 1. Then the integer
translates of are orthogonal if and only if the mask b satisfies the conditions (1) and
(3) in Theorem 1 and the following condition:

k-1 2

[(e-i21r/kz)[ k2 for all z T.
l--O
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By our method here and some ideas from [7] we can also give some criteria for the
stability and linear independence of the integer translates of a refinable (associated
with (Z, k)) compactly supported distribution (for the definitions, see [7]).

Let {bn}ez be a finitely supported sequence with ne7 b k, k >_ 2; and let
be the compactly supported distribution solution to the refinement equation (2.1)

with ((0) 1. Then we have the following result.
THEOREM 4. The integer translates of are stable if and only if conditions (2)

and (3) in Theorem 1 are satisfied.
THEOREM 5. The integer translates of are linearly independent if and only if

the symbol of the mask {(z) satisfies condition (3) in Theorem 1 and the following
condition:

k-1

/--0

for all z E C \ {0}.

3. Multiresolution analysis in LP(Ii(s). Most constructions of wavelet decom-
positions are based on multiresolution analyses.

We say that a sequence
forms a multiresolution analysis in Lp() with respect to a scaling matrix M as
defined in 1 if it satisfies the following conditions.

(R1) Vj C Yj+l for all j e Z.
(R2) f V0 if and only if f(.- a) Vo for all a Z.
(a3) f e Vj if and only if f(M.) e V+I for all j e Z.
(R4) There exists an isomorphism from lP(Zs) onto V0 that commutes with shift

operators.
(Rh) CljezV {0} for 1 <: p

(R6) t2jezV is dense in (LP(Is), II’llp)for 1 _< p < c and in (L(Is), o(L,L1))
for p .

The concept of multiresolution analysis was first introduced by Mallat [10] and
Meyer [11] for the case p 2, which is of most interest. In this case, there is a function

in V0 whose integer translates form an unconditional basis of V0. Such a function
is called scaling function.

Jia and Micchelli [5] discussed the cases of 1 _< p < c and power two in more
detail. They proved that the refinement and stability of integer translates of certain
basis function are sufficient to lead to a multiresolution analysis of LP(s) for 1 _< p <
oc. For general scaling matrices and p 2, see also [6, 9]. In this section we develop
this theory to the case p c. Our definition for this case is somewhat different from
that of Jia and Micchelli.

In the next section we shall use the results for a general scaling matrix in the
univariate case. Hence, we present our statements for the general lattices and for
1 _< p _< . We shall only give the detailed proof for the case p and omit the
proof for 1 _< p < oc because it can be obtained by the same methods as in [5, 6].

We first state our main result in this section and prove it later.
THEOREM 6. Let .,P(Is) for 1 _< p < oc; , 0 C() for p oc; s 51;

and M is a scaling matrix. Define V0 Sp() and Vj {f(Mi.) f e Vo}. If is
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refinable with an ll-mask and has lP-stable integer translates, then {Vj}jez forms a
multiresolution analysis in Lp(Ns).

The proof of Theorem 6 is divided into a few parts. We first prove the property
(Rh).

THEOREM 7. Let E .P(Ns) for 1 _< p < oe; ,0 E C(Ns) for p c;
V0 Sp(); and Vj {f(MJ.) f e Vo}. If has lP-stable integer translates, then
NyezV {0} for 1 <_ p < o while CjezVj is the set of constant functions in N8 for
19--oo.

Proof of Theorem 7 for p oc. Let f NjezV.. Then I(M.) Vo for any
j Z. Hence there exists a sequence a(j) such that

f(MYx) *’ a(Y) (x) E a)(x a)
aZ

and

For any fixed x y IR8, we have

We observe that , o C(Rs); hence the series

is uniformly convergent for w [- 1, 1)8.
j - x. Therefore,

We also note that M-Jx, M-Jy -- 0 as

If(x) f(y)l - o as j --+ oc.

Thus, we know that f is a constant function. The proof of Theorem 7 for p c
is complete.

Remark. In the case p , the assumption , 0 C(Ns) in Theorem 7 cannot
be replaced by E (N8), which can be seen from the Haar basis.

Let be the characteristic function of the set [0, 1)8. Then (Ns) and has
/-stable integer translates while

THEOREM 8. /f LI(Ns) satisfies the refinement equation (1.2) with the mask
b /1(Z8), then $(2) 0 for Zs\{0} and

(3.1) (.- a) $(0).
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Now if for some 1 _< p _< x, E p(8) C LI(/s) satisfies the refinement
equation (1.2) with the mask b E 11 and has /P-stable integer translates, we know
from [5, Whm. 3.5] and Theorem 8 that (0) # 0. Therefore, after normalization we
can assume that (0) 1. In this case we can state property (R6) as follows.

THEOREM 9. If ,p(s), 1 <_ p <_ c, ’aez8 ("- a) 1, then UjezVj is
dense in (Lp(s), I1" lip) for 1 < p < and in (L(I), a(L,L1)) for p

Proof of Theorem 9 for p c. Assume first that f C0(). We state that for
any g e L(),

(3.2) ej := (MJx a)f(M-Ja)] g(x)dx
aZ

Note that Co(s) is dense in L1 (s) and

f(x) (MJx a)f(M-Ja)

it is sufficient to prove (3.2) under the assumption that g C0(), which can, in
turn, be derived from Theorem 8 by some similar arguments and methods from [6].
We omit the details here.

Once we have the statement (3.2), the proof is easier.
To see that t2jzVj is dense in (L(2),a(L,LI)), we let 0 # f e L(]),

{g,...,gn} C L(), and > 0. We need to find some h E t3jezVj such that for
j 1,2,...,n,

f
(3.3) Jr(f(x h(x))gj(x) dx <

By Lusin’s Theorem, for any 5 > 0 there exist f C() and a measurable set
E C ]R8 such that

levi < ,
f(x) f(x) if x \E,

and

Furthermore, for any r > 0 we choose fh,r C0(/t) such that supp fh,r C Br+
{x E ]RS lx] < r + 1}, fs,rlB. fslB, and

Since {gj}j__ C L(Is), for sufficiently large r and sufficiently small 5 we have
for j 1,2,...,n,

and

E
Ig(x)l dx <

811fll

Igy (x) dx <
-B Sllfll
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Therefore,

8(f(x)

f,,r(x))gj(x) dx <_ ]_ If(x) fh(x)llgj(x)] dx

/ If,r(x) fh(x)llgj(x)l dx < -.
Now applying (3.2) to fh, and {gj}jn= we can find m E N such that for j

1,2,...,n,

Hence, for h(x) (Mmx- a)fh,(M-ma) e UezVj, (3.3) is valid.
The proof of Theorem 9 is complete.
With all the above results, the proof of Theorem 6 is now easy.
Proof of Theorem 6. By the definition of {Vj}ye, (R1), (R2), and (R3) follow

immediately since the mask b of the refinement equation for is in/l(zs). Note that
the integer translates of are/P-stable. We know that the mapping L :/P(Z8) - V0
defined by

L(a) .’ a

is an isomorphism from lP(Zs) onto V0 that commutes with shift operators. Prop-
erty (Rh) follows from Theorem 7 while (R6) is obtained from Theorem 9 since the
assumption Eez ("- a) $(0) : 0 is satisfied by Theorem 8 and the stability.

The... proof of Theorem 6 is complete.

4. Determination of scaling functions of Haar type. Combining the results
in 2 and 3, we can give some criteria for a refinable function to generate a multires-
olution analysis in L2(]) associated with (Z, k). This has an interesting application
in determining all the scaling functions of Haar type.

Let k >_ 2 be a positive integer. We want to determine all those multiresolution
analyses of L2(I) associated with (Z,k) whose scaling functions are characteristic
functions. It was shown by Grhchenig and Madych [4] that such a scaling function
must be the characteristic function XQ of some set Q defined by

{ }(4.1) Q= x x-- k-Jej,ej {no, nl,...,nk-}
j=l

where {n0, nl,..., nk-1} is a collection of representatives of distinct cosets of Z/(kZ),
say, nj j (mod k) forj 0,1,...,k-1. However, XQ may failto be ascaling
function. In fact, for k 2, it is well known that X[0,) is the unique scaling function
up to an integer translate. For this, see Daubechies [3] and Grhchenig and Madych
[4].

The main purpose of this section is to characterize for general k N such scaling
functions in terms of the number theory property of the representatives of the cosets.
To this end, we need Euler’s theorem from number theory. Euler’s theorem says that
if p and q are relatively prime integers q > 1, then

(4.2) p() 1 (mod q),
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where (q) E N is the Euler number of q; i.e., (q) is the number of positive integers
_< q that are relatively prime to q.

Now we can state our main result in this section.
THEOREM 10. Suppose that {no, nl,...,nk-1} is a collection of representatives

of distinct cosets of Z/(kZ) and the set Q is defined by (4.1). If k > 2 and for j
0, 1,..., k- 1, nj =_ j (mod k). Then XQ is a scaling function of a multiresolution
analysis in L2() associated with (Z,k) if and only if

(4.3) no, n2 no,..., nk-1 no) 1.

Proof of Theorem 10. Since E 2() and satisfies the refinement equation

(4.4)
k-1

,(z)
j=0

by Theorem 1 in 2 and Theorem 6 in 3 it is sufficient to prove that (4.3) holds if
and only if the symbol of the mask

k-1

(4.5) (z) E Znj

j=0

satisfies conditions (2) and (3)in Theorem 1.
We first claim that condition (2) is always valid for any collection of representa-

rives. To show this, we denote wo e-i2/k. Then Wok 1 and e-i2t/ w.
For any z T, we must have

1 1 1 znO
1 w0 Wo

k-1 znl
#0

1 030
k-1 (d0k-1) k-1 Znk-’

since the determinant of the coefficient matrix is a Vandermonde determinant and
is therefore not equal to zero, while the vector (zn,..., znk-1) - 0. Thus we have
proved our claim.

Now we need only to prove that (z) does not satisfy condition (3) in Theorem
1 if and only if (4.3) is not true. We observe that the first statement is equivalent
to the fact that there exist rn G N and n G Z such that n/(km- 1) Z and for
z e-i2nr/(k’-l) and any d _> 0, 1, 2,..., k- 1,

k-1

Jle-i2rnnjkd/(k’-l) 0,
j=0
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which is equivalent to

1
e-i2rn(nl-no)kd / (km- 1)

(4.6) A =0.

e--i2n(n:- -no)k / (k"- 1)

Here A is the (k- 1) k matrix defined by

(A),j o2(j-l), l=l,...,k-1, j=l,...,k.

The rows of A are the rows of a k k matrix whose determinant is a Vandermonde
determinant; hence, A has rank of k- 1. Therefore, (4.6) has the unique solution
(1, 1,..., 1)z

Thus, b(z) does not satisfy condition (3) in Theorem 1 if and only if there exist
m E N and n E Z such that n/(km 1) Z and

(4.7) n(nj -no)kd/(km -1) Z forj=l,2,...,k-landd_>0.

We can now prove the necessity and sufficiency as follows.
Suppose that (4.3) holds. Then (4.7) is not true, which implies that b(z) satisfies

condition (3) in Theorem 1. Since otherwise there exist m N and n Z such that
n/(km 1) Z and for j 1, 2,..., k 1, d >_ 0, it follows that

n(nj no)kd/(km 1) e Z.

But (nl -no,n2- no,... ,nk-1- no) 1 and (k(,km- 1) 1, so we must have
n/(km 1) E Z, which is a contradiction. Thus we have proved the sufficiency.

Conversely, suppose that (4.3) does not hold. We need to show that (4.7) is true.
To this end, we use Euler’s theorem.

Let q (nl no, n2 no,..., nk-1 no) N. By the assumption, q _> 2.
On the other hand, nl -no =- 1 (mod k). Hence (nl -no, k) 1 and (q, k) 1.

By Euler’s theorem we have

k’(q) 1 (mod q).

Let m (q) e N and n (k’(q) 1)/q e Z. Then,

n 1
km- 1 q

while for j 1, 2,...,k- 1,

n(nj -no)kd/(km 1)= kd(nj --no)/q e Z.

Hence, (4.7) is true, which implies that b(z) does not satisfy condition (3) in Theorem
1. Therefore, the necessity holds.

The proof of Theorem 10 is complete.
More generally, if (nl -no, n2-no,..., nk-1 --no) 1, then we know that

fails to be a scaling function. Equivalently, IQI > 1.
Using Theorem 10, we can give a more exact statement for these cases.
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COROLLARY. Let 2 < k E N and for j 0, 1,..., k 1, nj Z satisfies nj

_
j

(mod k). Then we have

x R’x k-3ej, ej {no, nl,...,nk-1}

(n n0, n2 n0,..., nk- no).

Thus we have determined all the Haar-type scMing functions of multiresolution
analyses in n2() associated with (Z,k) for general k.

The cases of multidimensions and of smooth scaling functions will be discussed
elsewhere.

Note added in proof. After my paper was submitted and reviewed, I learned
from I. Daubechies that results similar to those in 4 had been obtained independently
by K. Grhchenig and A. Haas in [Self-similar lattice tilings, J. Fourier Anal. Appl.].
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GLOBAL SOLVABILITY OF THE ANHARMONIC OSCILLATOR
MODEL FROM NONLINEAR OPTICS*

J. L. JOLY, G. METIVIER$, AND J. RAUCH

Abstract. The field equations describing the propagation of electromagnetic waves in a non-

linear dielectric medium whose polarization responds locally to the electric field as an anharmonic
oscillator with potential V(P) have smooth solutions global in space and time for arbitrary smooth
initial data as soon as V has bounded derivatives of order less than or equal to three. This is true in

spite of the fact that solutions of the nonlinear ShrSdinger equation which approximate the fields in
the slowly varying envelope approximation may blow up in finite time.

Key words, nonlinear optics, nonlinear Maxwell equations, nonlinear SchrSdinger equation,
saturated susceptibility equation
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1. Introduction. A standard model, due to Lorentz ILl (see also IF, Chaps.
1-31 and II-33]), of the linear dispersive behavior of electromagnetic waves is given by
the system of partial differential equations

(1.1) OrB + curlE 0,

(1.2) Ot E curl B -OtP,

cgt P + (OtP/T1 - aP bE

with positive constants a, b, and T1. The physical origin of equation (1.3) is a model
of the electron as bound to the nucleus by a Hooke’s law spring force. Here E and B
,are the electric and magnetic fields and the vector field P is the polarization of the
medium. A simple and natural model (see [B1], [O]) to explain nonlinear dispersive
phenomena is to replace the linear restoring force with a nonlinear law:

(1.4) + O P/T1 + VV(P)

If the Taylor expansion of V at the origin is

a
V(P) - IPI 2 lPIa + higher-order terms,

then asymptotic analysis of small-amplitude solutions reveals a focusing cubic term;
that is, the nonlinear susceptibility, n2, is strictly positive (see [B], [DR1], [NM]). In
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addition, the slowly varying envelope approximation (see [NM], [DR2]) leads to ampli-
tudes which are solutions to nonlinear Schrhdinger equations. In the monochromatic
case, the equation has a focusing cubic nonlinearity when is positive. In this case,
there are solutions of the Schrhdinger equation which explode in finite time. Our main
theorem shows that the solutions of the underlying field equations (1.1), (1.2), and
(1.4) do not break down. These equations have global smooth solution for arbitrary
smooth data under appropriate hypotheses on the potential energy function V. An
analogous result for the Maxwell-Bloch equations which come from modelling the
matter as a gas of finite-state quantum systems is proved in [DR1]. In both cases,
the fundamental nonlinear field equations are globally solvable even when the reduced
Schrhdinger equation is not. These contradictory predictions are resolved by the ob-
servation that near the focal point, amplitudes grow and the assumptions underlying
the slowly varying envelope approximation are no longer satisfied. Once it is known
that the underlying equations have smooth solutions, it is natural to ask what the
behavior is near a focal point. This appears to us to be a very difficult problem. A
first step in considering large-amplitude solutions is to go beyond the regime of Taylor
expansions about P 0. It might seem reasonable to simply take the potential

a
V(P) - IPI IPIa.

However, for large displacements this is strongly repulsive. In fact, it is so repulsive
that solutions of the classical spring equation

(1.5) 02t p + OtP/T1 + VV(P) 0

with large initial energy diverge to infinity in finite time.
MAIN HYPOTHESIS. The potential-energy function V R3 --+ R satisfies V(O) 0

and is infinitely differentiable with aecond- and third-order partial derivatives uniformly
bounded.

This implies that IVV(P)I [resp. V(P)] grows at most linearly [resp. quadrati-
cally] as P +cx). That is, there is a C such that for all E N3 with I/1 _< 3 and
P E R3,

(1.6)

An example is the potential

V(P) "=
IPI2 ’IPI4
1 + 9/IPI 2 > O.

On one hand, this hypothesis is very strong since the nonlinear term VV(P) is then
a globally Lipshitzean function of P. In particular, the ordinary differential equation
(1.5) is globally solvable. On the other hand, the hypothesis is reasonable since, as
observed above, what is needed to produce a Kerr nonlinearity is that 02V/OPiOPj
be smaller than Hooke’s law when P 0. The hypothesis roughly asserts that this
comparison is valid for all P. A second plausibility argument is that models of non-
linear susceptibility often include saturation effects. For such models, one would have
]OV(P)I- 0 as P c for I/[ _> 2 and so the hypothesis would be satisfied.

Assuming the Main Hypothesis, it is routine to prove the global solvability of
a semilinear equation of the form (Oft -/k)P + VV(P) 0. However, there is no
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Laplacian in the anharmonic spring equation (1.4), and the existence proof is delicate
relying on the detailed structure of the system.

Taking the divergence of (1.1) and (1.2) implies that

(1.7) Ot div E + P) Ot div (B) 0.

The physically relevant solutions are those which satisfy

div(E + P) div(B) 0.

Thanks to 1.7 this holds as soon as it holds at t 0, so (1.8) is only a constraint on
the initial data.

MAIN THEOREM. /f s _> 2 and the initial data B(O),E(O),P(O), and OtP(O)
belong to Hs(R3) and satiety div (E(0)+ P(0)) div (B(0)) 0, then there is one
and only one solution of equations (1.1), (1.2), (1.4), and (1.8) which achieves these
initial data and is such that B, E, P, and OtP are continuous functions of t
with values in HE(R3). The values of the solution at t, x depend only on the values of
the initial data on the ball of radius t_ with center x.

It follows that if the initial data belong to C(R3), then the solution has com-
pact support whose diameter grows linearly with t. Using the equation to express
time derivatives in terms of spatial derivatives shows that the solution is an infinitely
differentiable function of t, x IRa]. Let

U(t, x) (E(t, x), B(t, x), P(t, x), OtP(t, x)).

Equation (1.4) is written as a system for the pair (P, Q) with Q := OtP:

Q
Ot P Q, Ot Q bE- VV(P).

T1

The equations for U then take the form of a semilinear symmetric hyperbolic system:

(1.10)

LU :=OtU- AjOjU= F(U),
l_j_3

F(U) := -Q, O,Q,bE----

The symmetry means that the matrices Aj are symmetric and real. In this case, the

A are 12 12 real symmetric matrices whose last six rows vanish. The next result is
classical, dating back to Schauder IS]. A short modern proof uses the first theorem in
[Re] in the Hilbert space of U E Us(R3) such that div (E + P) div (B) 0. The
operatorl<y<3 AOj is anti-self-adjoint and for s > 3/2, the nonlinear term F(U) is
locally Lipshitzean.

LOCAL EXISTENCE THEOREM. If 8 > 3/2 and U(0,.) H(R3), then there
are a T, ]0, c] and a unique U C([O,T/,,[: HE(R3)) which satisfy (1.1), (1.2),
and (1.4) and attain these initial values. The solution depends continuously on the
initial data in the sense that if H(R3) and T < T,(), then there is an Hs(R3)
neighborhood (9 of such that T,() > T for all 0 and the map from initial
data to solution is continuous from (9 to C([0, T]: Hs(R3)). There is a lower bound
T, >_ c(s,,llU(O)llHs(Ra)) > O, where c(s,A) is a nonincreasing function of . The
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values of U at (t, x) depend only on the values of the initial data on the ball of radius
t with center x.

Our main result asserts that the solutions do not blow up in finite time. The
Main Theorem then takes the following form.

MAIN THEOREM 1. If s >_ 2 and the initial data U(O,.) E Hs(R3) satisfy
div (E(0) + P(0)) div (B(0)) 0, then T,

This result is a special case of a general result which isolates the essential features
of (1.10) which guarantee global existence. Write the nonlinear term as a sum of linear
and nonlinear parts by Taylor expansion at U 0"

(1.11)

:: -.r: +

( Q (V2V(O))P)BU’= -Q, O, Q, bE-ll-
f(U) "= (0, O, O, -VV(P)+ (V2V(O))P).

The basic system then has the form

(1.12) OtU-

_
AOU-BU= f(U).

l_j_3

We next introduce a class of N x N systems of the form of (1.12), including (1.10)
as a special case.

ASSUMPTION 1. The N x N system (.1.12) has hermitian symmetric constant
matrix coefficients Aj and constant B. For O, the kernel of A() := jAj has
dimension independent of

For the anharmonic oscillator model, this dimension is equal to 8, the kernel
consisting of vectors such that E and B are parallel to

ASSUMPTION 2. The nonlinear function f" CN --, Cg has range contained in
["1 {KerA() :/: 0}. In addition, f(0) 0, Vf(0) 0, and the first derivatives
Of/OUj are uniformly bounded in CN.

For the anharmonic oscillator model, the Main Hypothesis yields the derivative
bound in Assumption 2. Moreover, the nonlinear term takes values in the vectors
whose first nine components vanish, and the kernel of the Aj includes the vectors
whose first six components vanish, so Assumption 2 is satisfied. Thus Main Theorem
1 is a special case of the following result.

MAIN THEOREM 2. For semilinear symmetric hyperbolic systems satisfying As-
sumptions 1 and 2, s >_ 2, and U(O) H2(R3), the Cauchy problem is globally solvable,
that is, T,

To prove Main Theorem 2, it is sufficient to prove the following a priori estimate.
For any T ]0, c[ and any M > 0, there is a constant C(T, M) such that if t ]0, T]
and U is a smooth compactly supported solution of (1.12) on [0, t] R3 such that

(1.13) IIU(0)IIH=<) _< M,

then

(1.14) IIU(t,.)llH2(la) _< C(T,M) for 0 <_ t _< t.

To prove that (1.14) is sufficient, one must show that if U(0) Hs(R3), s _> 2, and
T > 0, then T, _> T. Gagliardo-Nirenberg estimates imply that for a smooth solution
U and s >_ 2, one has

(1.15) IlU(t,.)llH() <- C IIU(O)llH() for 0 < t _< t,
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where C only depends on the L norm of U on [0, t] R3. These estimates and
the Local Existence Theorem imply the following corollary (see, e.g., [M], [GR]). If
T. < /cx, then

(1.16) limsup [[U(t, .)[ILo(l) +cx.

Moreover, by continuity, the a priori estimates (1.14) extend to solutions U 6 C([0, t]
H8(R3)). The Sobolev imbedding H2(R3) c L(R3) and (1.14) show that the L
norm of an H8 solution U cannot blow up before time T and therefore T. _> T.

The proof of Main Theorem 2 proceeds by a sequence of estimates leading to
(1.14). These estimates are presented in 2-6.

Remark 1. The divergence conditions div (E(0) + P(0)) div (B(0)) 0 are not
necessary for global existence. We included them in the statement of Main Theorem
1 since they are required for the physically relevant solutions.

Remark 2. Main Theorem 2 applies to the sytem (1.1)-(1.2) with (1.4) replaced
by the more general law

(1.17) 02t P F(E, B, P, OtP),

where F 6 C3(R12 R3), F(0) 0, and F has bounded first and second derivatives.
Another generalization is the case of a finite number of anharmonic oscillators. This
corresponds more closely to what one would find from nonlinear terms in quantum
perturabtion theory. The dynamics of the polarization is then given by

n

P=EPj

j=l

c92t PJ + OtPJ/TJl + VVJ(PJ) bYE.

Here each of the potentials VJ satisfies the Main Hypothesis.

2. L2(R3) estimates for U. Let

(2.1) K := II(B + B*)/21[ + sup {IIVf(U)I },
u6CN

which is finite thanks to Assumption 2. Then since f(0) 0, one has the Lipshitz
bound

(2.2)

For a smooth compactly supported solution U satisfying (1.13), we perform the stan-
dard energy estimate. Namely, take the CN scalar product of the the partial differ-
ential equation (1.12) with U and integrate over R3. Then take the real part to find
that

Ot llU(t)[ 2 2IL2(rt3) < 2K IlU(t)llL2(rt3 ).

It follows that

(2.3)

3. An HI(R3) estimate for U. Let 0 denote one of O/Oxj for 1 <_ j _< 3. Then

(3.1) (L B)(OU) -O(f(U)) -(Vf(U))OU.
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The main hypothesis implies that X7f is bounded and thus

(3.2) O(f(U)) (t, x) < K IOU(t,

The standard energy method, namely, taking the scalar product of (3.1) with OU and
integration dx over R3, yields

(3.3) Ot IIOU(t)IIL.() <_ 2K

Summing the resulting expressions over the three values of 0 and applying Gronwall’s
inequality shows that for 0 _< t < t < T,

(3.4) IlOU(t)llL(r) <_ C(T, M).

In particular, we control the HI(R3) norm of U(t).
4. An H2(R3) estimate for the propagating part of U. Denote by H0()

the orthogonal projector on KerA(), defining a smooth matrix-valued function homo-
geneous of degree zero on # 0. Let Hi () := I- H0(). The next estimates depend
on the decomposition

(4.1) U u0 + u,, .= II,(D)U := -x n()2-u.

The key intuition is that u0 corresponds to zero speeds and u to nonzero speeds. This
will show that u0 can only weakly influence u since the corresponding waves cross
transversely. Furthermore, the nonlinear term does not influence the ul part thanks
to Assumption 2. These two facts suffice to pass from an H estimate for U to an H2

estimate for Ul. Let

(4.2) Bt,(D := H,(D) B Hv(D).

Multiply (1.12) by HI (D) using the facts that HI f 0 and II1 ()A() A()H1()
A() to find

(4.3) (Or E AjOj )ul Bll(D)ul Blo(D)uo O.

Similarly, multiplying by H0(D) yields

O,uo Boost- B01 (D)Ul II0(D)f(U).

Differentiate with respect to x to find

(4.4) OtDuo Boouo B01(D)Dul H0(D)(f’(U)DU).

Since f’ is bounded and the H(D) are bounded in L2, this yields the estimate

Let ()"= (1 / 112) 1/2 and notice that Ul then satisfies the modified equation

(Or E AyO i<D)Ho(D) )tl BllUl-- Blouo 0
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involving the anti-self-adjoint elliptic operator

G(D) E AjOj + i(DIHo(D), G() -i(/H0() +E Ajy.

Then U z + w, where z and w are the solutions of the initial-value problems

(4.8) (i)t-G(D))z-B11z-O, z(0, .)- Ul(0, .),

(4.9) (Or G(D) )w B11w Bouo O, w(O, O.

For z, we have the elementary estimate

(4.10) IIz(t)[IH.(R3) <_ eKt IIZ(0)IiH2(R3 _< eKt M.

Duhamel’s formula yields the following formula for the Fourier transform of w:

(4.11) (t,)) e(G()+Bll())(t-s) Blo()o(s,)ds.

Introduce

so that

O(t, s, ) "= e(G()+BI ()) (t-) da

0 O(t, s, ) e(G()+B()) (t-s)

Integration by parts in (4.11) yields

and (I)(t, t, ) 0.

(4.12) (t, )) (I)(t, 0, )Bo() o(0, ) (I)(t, s, )Bo() Otto(s, ) ds.

The symmetric hyperbolicity implies that

(4.13) llO(t, s, )11 <- eK da.

The ellipticity of G implies that for large I1, G+B is invertible and has norm 0(1[ -1).
For such ,

((t, 8,) --(G() - B11())-1(e(G()+BI())(t-s) --I).

Together with (4.13), this implies

(4.14) IO(t, s,) <_ C(T)<>- for s,t e [0, T] and e R3.

Then (4.12) yields

(4.15) ( /0 )IIw(t)IIH2(Ra)
_
C(T) Ilu0(0)llH(l:t3)-- I[(tUo(8)llH(l:t3) ds

<_ C(T, M),
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where (3.4) and (4.5) are used in the last step. Estimates (4.10) and (4.15) show that

(4.16) Ilul (t)llg2(R3)
_
C(T, M).

5. An L6(R3) estimate for Duo. Consider the right-hand side of (4.4). Since

ff is bounded, it follows that

(5.1)

Since the singular integral operator H0(D) is bounded from L6(R3) to itself, (4.4) and
(5.1) yield

(5.e)

The Sobolev imbedding H (R3) c L6(R3) implies that

IIDUllIL(R) <_ C’I]Du(t)IIHI(R3 <_ C(T,M)

thanks to (4.16). Thus integrating inequality (5.2) yields

(5.4) IIDuollL(t) <_ C(T, M).

6. Endgame. The second derivatives v :-- DiDjU satisfy

(6.1) Lv if(U)v + 02f(U) (DU)(DjUz).
l<,<a

Thanks to the boundedness of ff and f", the standard energy method applied to (6.1)
yields

cOtl[D2U(t){lL.() clln2u(t)lli.(R) + C IIDU(s) nyU(s)l 2 d8

Interpolating between the L2 estimate (3.4) and the L6 estimates (5.3)-(5.4) shows
that the integrand is bounded by C(T, M). Then Gronwall’s method shows that

(6.3) IID2U(t)IJL.(Ra) <_ C(T,M) for 0 _< t <_ T.

This together with (2.3) and (3.4) proves the desired estimate (1.14), and the proof
of the Main Theorems is complete.
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INITIAL-VALUE PROBLEMS WITH INFLOW BOUNDARIES
FOR MAXWELL FLUIDS*

MICHAEL RENARDY

Abstract. We consider the two-dimensional flow of an upper convected Maxwell fluid transverse
to a domain bounded by parallel planes. We characterize a set of inflow boundary conditions, which
leads to a well-posed initial-boundary value problem.

Key words, polymer rheology, inflow boundaries, local existence
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1. Introduction. Many problems in computational fluid dynamics involve
"open" boundaries (i.e., boundaries through which the fluid enters or leaves the do-
main). Such open boundaries typically arise from the need to truncate the domain.
Boundary conditions at open boundaries are therefore not dictated by physics but are
a mathematical artifact. For Newtonian fluids, boundary conditions at open bound-
aries can be chosen of the same type as those at physical boundaries. For example,
the prescription of either velocities or tractions leads to a well-posed problem. (Of
course, it is a considerable problem to decide which boundary conditions are suitable
for a specific application.) Non-Newtonian fluids, on the other hand, present a more
fundamental problem. Such fluids have memory, and hence their equations of motion
require information which depends on the flow of the fluid before it enters the do-
main. This manifests itself in the need for additional boundary conditions at inflow
boundaries.

A simple model problem for studying this issue is the perturbation of uniform flow
in a domain bounded by two parallel planes. In [2], I studied this problem for a fluid
with a differential constitutive equation of Maxwell type. Velocities were prescribed on
both planes and, in addition, partial information about the extra stresses was needed
at the inflow boundary. An alternative way to prescribe such partial information was
given in [4]. The solution was constructed by an iteration which alternately solves an
elliptic problem of the same kind as the Stokes equation and then determines stresses
by integration along stream lines. However, the procedure in [2] is limited to steady
flows and does not extend in any straightforward way to time-dependent problems.
An existence result for time-dependent problems without open boundaries was given
in [3].

It appears natural to approach time-dependent problems with open boundaries
by combining the approaches of [2] and [3]. In essence, this is what we shall do in
this paper. However, there is a difficulty. Problems which are elliptic in the steady
case [2] are replaced by hyperbolic problems in the time-dependent case. Associated
with this is a loss of regularity of the solution, which becomes extremely difficult to
control in an iteration. In order to overcome this difficulty, we shall have to rely on
a special feature which is particular to one constitutive model (the upper convected

*Received by the editors April 11, 1994; accepted for publication (in revised form) November 14,
1994. This research was supported by National Science Foundation grant DMS-9306635 and Office
of Naval Research grant N00014-92-J-1664.

Department of Mathematics and Interdisciplinary Center for Applied Mathematics, Virginia
Polytechnic Institute and State University, Blacksburg, VA 24061-0123 (renardym@math.vt.edu).
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Maxwell fluid), and we shall have to modify the boundary conditions. This is not
very satisfactory state of affairs, and further research on this problem is needed.

2. Governing equations. The equations of motion for an incompressible fluid
are

(1) - + (v. V)v) div T- Vp + f,

(2) div v 0.

Here v is the velocity, T the extra stress, p the pressure, p the density, and f a given
body force. We assume the constitutive law of an upper convected Maxwell fluid:

(3)
0T
Ot + (v-V)T- (Vv)T- T(Vv)T + AT #(Vv + (Vv)T),

where A and # are positive constants, and the gradient of a vector is defined with the
convention that the column index refers to the direction of differentiation and the row
index to the component of the vector.

Our task will be to solve the equations for t _> 0 and x (x, y) E t := (0, L) x IR,
subject to initial conditions

(4) v(x, 0)= v0(x), T(x, 0)= T0(x), x

and boundary conditions. Throughout, we shall assume periodicity in y with a given
period M. We shall make assumptions on the velocity which imply that the boundary
x 0 is an inflow boundary and the boundary x L is an outflow boundary. The
boundary conditions for the velocity will be as follows:

V
(5) 0"- "el (L, y, 0) Uout (y).

Here el is a unit vector in the x-direction. Equation (5) means that we prescribe the
velocity at the inflow boundary, while the quantity prescribed at the outflow boundary
is the time derivative of the acceleration modified by a correction term which makes it
into a divergence-free vector field. The condition on the normal component of Ov/Ot
will be needed to determine an initial value of Ov/Ot; note that (1) determines Ov/Ot
up to a gradient, and the boundary values of the normal component are precisely
the additional information that is required. The choice of boundary conditions might
appear peculiar at this point; we shall see later in the proof why this particular choice
makes the energy estimates "work." In addition, we need inflow boundary conditions
for the stress. They are as follows:

(6) t) t),
1
(Tll (0, y, t) T22 (0, y, t)) T(y, t)

The inflow boundary conditions chosen here are slightly different from those in [2].
Moreover, the proof given in this paper works only for the upper convective Maxwell
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model and not for similar models of differential type.
given below.

The reasons for this will be

3. Construction of solutions. The equations (1)-(3) form a system of com-
bined type, and there appear to be no methods available to deal with such systems
directly. Hence all schemes to construct solutions have been based on some pre-
processing of the equations, which leads to a decoupling into simpler problems at
leading order. We shall also use this idea here. We begin by applying the operation
O/Ot + (v. 7) -/ -- (Tv)T to equation (1). After using (3), this yields
()

(O v Ov Ov

0f
=pAv + (W" 02)v + (Vv + (Vv)T)div W Vq + + (v. V)f + (Vv)Tf +
Here the notation T :02 stands for TijO2/OxiOxj and

Op
(s) q + (v. v) + p.

In [3], an iteration scheme was used to solve the equations. The scheme alternately
uses (7) to update the velocity field and then (3) to update the stress. In order to
do this, one has to prescribe T at the inflow boundary. However, the outcome would
then be a solution to (3) and (7), and in order to get back to (1), one has to restrict
the inflow boundary data so that (1) is satisfied at the inflow boundary. In [2], this
led to a system of ordinary differential equations (ODEs) for the inflow boundary
data, which was used to determine some stress components in terms of others. This
system has to be solved at each step of the iteration to generate the inflow conditions
for (3). Roughly speaking, one solves (3) and (8) for x-derivatives of T and p and
inserts the result in (1). The resulting system is then solved for the values of T2 and
p on the inflow boundary. In the time-dependent case, following the same procedure
leads to a hyperbolic partial differential equation (PDE) system in place of the ODEs.
Associated with this is a loss of regularity, which I do not know how to cope with in
general. For the upper convected Maxwell model, however, the special features of the
equation allow some "slack" so that the loss of regularity does not matter. To take
advantage of this, we need to modi the inflow boundary conditions that were used
in [2]. Instead of prescribing T and T22 as we did there, we now prescribe p and
(T T:)/2.

We need to reformulate (7) a little further. We solve (1) for div T and substitute
the result on the right-hand side of (7). As a result, we find

(0 v 0v 0v

() 0f,v + (w 0)v + (Vv + (W)r)V- Vq + + (v. V)f- (Vv)f + f.

In contrast to (7), the right-hand side of (9) does not comain any derivatives of T but
only of p. This trick works only for the upper convected Mwell model, and it is this
feature which allows us to cope with a loss of regularity as long as it occurs only in T
and not in p.

The iteration will now proceed as follows. For given v, qn, pn, and T, we
determine p+ by solving the equation

OpnT
(0) 0 + (v. V)p+ + p+ q
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with initial condition pn+l(x, y, O) po(x, y) and inflow condition pn+l(0, y, t)
r(y,t). Here po is the initial pressure, which can be determined from (1) and the
prescribed initial and boundary data. To avoid the usual ambiguity of undetermined
constants in the pressure, we shall fix the spatial average of q and of the initial value
of p to be zero.

Next, we need to provide complete inflow conditions for the stresses. Let us use
the notations T+ (Tll + T22)/2 and T_ (T -T22)/2. We rewrite (1) as follows:

OT+ OT12 Op OT- ( OvIOx + Oy Ox Ox + p + (v" V)v -f,
(11)

0T12 OT+ Op OT_ ( Ov2 ) f2.Ox + 0 0++ W +(v’v)
We now solve (3) and (8) for the x-derivatives of T and p and insert the result in (11).
The resulting system is of the form

( Ov OT_ OT_ Op Op )10T+ v20T+ OT2
1 v, Ot Oy Ot Oyv Ot v Oy Oy ,Vv, q,T, ,--,p, ,f

(12)

( 0v OT_ OT_ Op Op )10T2 v20T2 OT+ 2 v, Ot Oy Ot Oyv Ot v Oy Oy ,Vv, q,T, ,,p, ,f

Since (12) contains to x-derivatives of the stresses, we can impose it as a condition
to be satisfied at the inflow boundary x 0. We incorporate it in the iteration
follows:

OTn+ OT+11 + v OT+
v Ot v Oy Oy

( 0v 00 )= v Vv q T+I
OT OT

f’o’o’ ’ ot’o’(lZ)
OT+ vOT+ OT:+

v Ot v Oy Oy

= v, Vv q +1
Or Or O O

f0’o’ ’ 0’o’
Here

(14 +1 +1 r+l
Having solved (la), we now have complete inflow data for the stresses, which we

use to solve (a):
0T+I

(15) Ot + (vn" V)Tn+I (Vvn)Tn + Tn(Vvn)T ATn + "(Vvn + (Vvn)T)"

Finally, we obtain new values for v and q by solving the equation

/02v+1 Ov+l V)Vn + (Vn" V)2vn+Pk +(v) ot +ot
V)Vn] ,nVn+l (Tn+ O2)vn+() + (- (w)) o + (v. ) +

0f
n T+(VvnW(vv )Vp vqn+l + W (vn’v)f-(vvn)fWAf
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with the incompressibility condition (2) and initial and boundary conditions for vn+l
Here the outflow condition is implemented in the form

02Vn-t-1 0Vn-[- ( 0vn+l+ v) ot ot V)rn) (L, y, t) Tout (y, ).

4. Statement of result. In the following, we use the notation Hpk for spaces
of functions which have k locally square integrable derivatives and are periodic with
period M in the unbounded direction. Moreover, we shall, in abuse of proper notation,
say that a vector or tensor valued quantity is in a function space X if all components
are in X. We shall make the following assumptions:

(Sl) vo e Hbp((O,L) IR), To e Hbp((O,L) IR).
(82) Via e Hlpl/2((O,T) IR), Tout e HTp/2((O,T) JR), t.out e Hp7/2(]R). In addition,

the first component of ,Via is in H6((0, T); H-I/2(IR)) and the first component of
Wont is in Hg/2((O,T);HI(IR)).

(S3) r, T e gp4((0, T) JR)).
5 Wk,1 ,T) gbp-k((o L) IR)).(S4) f e N :0 ((0

(E) To + #- v0v0
T is uniformly positive definite.

(C1) The initial values of v and its derivatives up to fourth order, p and its derivatives
up to third order, and T and its derivatives up to second order are compatible
with the prescribed boundary conditions.

(C2) div v0 0.
(C3)

dt2 Vin (y, t) el dy Tout el dy,

j0M (Vin M(y, 0). el dy Uout (y) dy.

(I) Vin .el > 0, v0. el > 0.

In assumption (C1), the initial values of derivatives are to be computed from the
equations. For example, (1), together with initial values of v and T, yields an initial
value of pOv/Ot + Vp. Using the divergence condition and the boundary data for the
normal component of Ov/Ot, we can calculate initial data of Ov/Ot and Vp from this.
At the inflow boundary, the tangential component of Vp has to be compatible with, and from the knowledge of r and Vp, we can evaluate p. This procedure can be
repeated for higher time derivatives.

Our result will be as follows.
THEOREM. Under the assumptions above, there exists T > 0 such that the initial-

boundary value problem (1)-(6) has a solution with the regularity

(18)

v e Hpb((0, T’) x (0, L) x JR),
3

p e N Ci([O’T’];H4p-i((O’L) x lit)),
i--0

3

T e N Ci([0’T’]; H3-i((0’ L) X ]R)).
i----0



INFLOW BOUNDARIES 919

The assumption that To E H5p((O,L) lit may appear excessive in view of the
regularity obtained for the solution. However, as in [3], this assumption is needed to
ensure regularity of. initial values for time derivatives of v.

The proof is based on a contraction argument. We define Z(M, T) to be the set
of all functions (v, q, p, T), defined on (0, T) x (0, L) x IR with the following properties:

v e Hp5((0, T’) x (0, L) x IR),
3

q e Hi((O,T’);Hap-i((O,L) x IR)),
i--o

q(0,., .) e W3,(0, T’); n2p(lR)),
3

p e N Wi’((0’ T’); Hpa-i((0, L) IR)) N Ha((0, T’); Lp2((0, L) JR)),
i-o

3

T e N Wi’((O’T’);H3p-i((O’L) IR)),
(19) i:o

5 3 3 3

i--0 i--0 i----0 i--0

div v 0, v(0, y, t) Via(Y, t),

l oMq(x, y, t) dy dx O,

The initial values of time derivatives up to the indicated orders

agree with those determined from the equations:

v: 4, q: 2, p: 3, T: 2.

Here I1" Ili,k,q denotes the norm in Wi,q((O,T’); Hp((0, L) IR)). We shall show that
the mapping defined by the iteration in 3 maps Z(M, T) into itself ifM is sufficiently
large and T is sufficiently small relative to M. Moreover, it is a contraction if Z(M, T)
is equipped with the norm

4 2

d((v,q,p, T), (’, ,i5, )) E IIv rlli’4-i’2 -- ]q i,3-i,2

(20) i=o i=o

2 2

+ [q(0,., .) (0,., .)112,0, + P i,3-i, + T i,2-i,.
i=0 i=0

It is easy to see that Z(M, T) is complete; we need to check that it is nonempty
if M is large enough. The existence of functions which, along with their derivatives,
satis the given initial conditions, follows from the inverse trace theorem ([1, p. 21]),
and as a esult, we can find functions q, p, and T which satisfy all the requirements
above.

It remains to construct a velocity field which satisfies the inflow conditions, the di-
vergence condition, and the initial conditions. It is ey to find a divergence-free vector
field which has the required regularity and satisfies the inflow conditions. Therefore,
without loss of generality, we can henceforth require that v 0 on the boundary.
This is the case studied in [3], and the only difference is that we require an additional
order of regularity.
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Our task is now to find a divergence-free v such that v 0 on the boundary and

civ
(21) Ot (x, y, O) v(x, y), i O, 1, 2, 3, 4,

where v e Hhp-((O,L) IR) is divergence-free and vanishes on the boundary. Fol-
lowing the ideas of [3], we take a and a2 to be functions such that

Oai 02ai 03ai Oaal(22) a Ox Ox9 O, Ox3 (Sv).e2, OX4
0

on the boundary, where S is the Stokes operator. The trace theorem shows that such
functions a exist and a e H6p-((O,L) JR). Next, we decompose v in the form
v v0 + + , where v0 is the initial value from (21) and 9 is required to satisfy the
initial conditions

e(x, u, 0)-o,
0
-(X, y, O) Vl(X, y) curl -0- (x, y, 0) v2(x, y) curl a2,

(23)
o

(x u 0) (x, u),cot3 b-( o) ,( ).

Here the curl operator is defined by

Oa Oa
(24) curl a --el xe.
It is easily verified that V4 e D((-8)1/2), v3 e D(,), v2- curla2 e D((-,3)3/2),
and Vl e 0(82). The inverse trace theorem ([1, p. 21]) shows that a divergence-free
vector field " with the required initial conditions and the regularity

5

(25) e N Ci([0’ T’]; D((-S)(-i)/2)
i-0

exists. The final contribution 9 is constructed as curl 5, were 5 has to satisfy

a(x, u, 0) =0,
0a

(x, u, 0) a (x )
02

(x, y, 0) a2(x, y)

(26)
0

(x, , 0) 0, 0.
Ot3 Ot4

From the conditions (22), it follows that a e D(B(6-)/4), where /3 is the bihar-
monic operator with Dirichlet boundary conditions. Invoking the inverse trace theo-
rem again, we find that there exists 5 satisfying (26) with the regularity

5

(27) 5 E N Ci([0’T’]; D(B(6-i)/a))"
i--0

This completes the argument.
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5. Stress integration. We now need to provide the estimates which will estab-
lish that the iteration defined in 3 gives a contraction on Z(M, Tr). We note that
if T is chosen small enough relative to M, then (I) implies that v-el > 0 for any
element of Z(M, T). We shall assume throughout that this is the case.

Let us assume that vn, qn, pn, and Tn are given. In this section, we shall obtain
estimates for pn+l and T+1. The equations involved in determining these are easily
solved, e.g., by the method of characteristics, and we shall obtain energy estimates for
the solutions. For convencience, we make the following definition.

DEFINITION. A function (M, T) is called controllable if there exists a positively
valued function T’(M) and a constant C such that (M, T’(M)) <_ C for sufficiently
large M.

In general, of course, T(M) will tend to zero as M cx.
We start with (10). We multiply both side by p+ and integrate over (0, t)

This yields

(28)

1
(p+l(x,t))2dxdy+A (pn+(X,T))2dxdydT

2

pn+l(x,r)q(x,T)dxdydT + - po(x)2dxdy

+ Vin(Y, T)’elr(y, 7)2 dy dT

v(L ,r) "el
2

This yields the estimate

(29) Ilpn+lll0,0, --( C(x/-llqnllo,o,2 / IlPolIo / 117rllo)

Here II" Ilk with a single index k shall denote the norm in Hk() or Hp((O,T’) x IR),
respectively.

We can now differentiate (10) and obtain estimates for derivatives of p+l in the
same fashion; note that the value of the x-derivative of pn+l at the inflow boundary
is determined by the equation itself in terms of given data and the value of qn at the
inflow boundary. By proceeding in this fashion, we find an estimate of the form

3

(30) Z ]lPn+lli’a-i’ -< (M, T’),
i--0

where the function (M, T’) is controllable. (Note that the right-hand side of (29),
for instance, has a bound of the form CIMxf7 / C2, which is obviously controllable
by setting T’ l/M2.)

In a similar fashion, the solution of (13) yields controllable bounds for IlWl[3 on
the inflow boundary, and this can be used in (15) to get a controllable bound for

3-]i:0 IlWl]{,3-i,"
We have derived all the estimates for stress integration which are needed to show

that the iteration maps Z(M, T’) into itself. The contraction estimates are derived in
the same fashion, and we outline only one step. Consider two iteration sequences for
equation (10) and take the difference. We get

(31) - / (vn" V) (pn+l--n+l)/A(pn+l--n+l) qn--(n--((vn--Cvn)’V)n+l,
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with initial and inflow values of p+l n/l equal to zero. Proceeding as above, we
obtain from (31) the estimate
(31

2 2

E Ilpn+l n+llli’3-i’(x) + liP [[3,0,2

_
C( E(llqn Onlli,3-i,1

i--0 i=O

4

+ Ilqn(O, ", ") 0n(0, ", ")[[2,0,2)
i=0

3

C((llqn On]]i,3-i,2
i=0

4

+ M llvn nlli,4-i,)
i=0

Similar considerations apply to the integration of T.

6. The velocity equation. We now consider the solution of the equation (16).
To simplify notation, we shall write v and q for vn+l and q+, w for v, and T for
T+1. The problem now assumes the form

(33)
02v 0v )p --+2(w-V)-+(w.V)2v =#Av+T’V2v-Vq+f,

where f is a known forcing function. In addition, we have to satisfy the divergence
condition

(34) div v 0,

the boundary conditions

(35) v(O, y, t) Vin(Y, t),
02v 0v 0v

/ (w. w)  )-Won,

and the initial conditions

0v
(x, 0) v(, )(6) v(x, , 0) v0(x, ), 0-

Our goal for this section is the following result.
LEMMA. The problem (33)-(36) has a unique solution, which satisfies an estimate

of the form
()

i=0 i=0 i=0

+ tlv0ll5 + IIvll4 + live=it + IlWoutll).
Here the noms of vi and Wout are in the function spaces specified in assumption
($2), and the constant C depends only the initial data and on

5 3

(38) IIw11,5-,1 + (llT[[i,3-i, +
i=O i=O

OT- + (w. V)T



INFLOW BOUNDARIES 923

Moreover, in any subdomain away from the outflow boundary, we obtain a bound with
the same right-hand side as (37) for

5 3

i--0 i--0

Since the right-hand side in (37) is easily shown to be controllable, the lemma
allows us to complete the proof that the iteration maps Z(M, T) into itself as long
as T is small relative to M. Moreover, to show the contraction estimate, we can,
similarly as in the previous section, take the difference between two problems of the
form (33)-(36) and use the analogue of the preceding lemma at one less order of
differentiability to estimate the difference between the solutions. We omit the details
of this rather routine argument and devote the rest of the paper to proving the lemma.

We first construct a divergence-free v which satisfies the boundary conditions.
To satisfy the divergence condition, we express v in terms of a streamfunction: v
(-y, Cx). Moreover, let denote the corresponding streamfunction for w. The
function is the sum of a part which is linear in y and independent of x and a
part which is periodic in y. The coefficient of the linear part is simply given by the
average the first component of Vin and is hence of class H6(0, T). We can therefore
focus on the periodic part. At the inflow boundary, we have prescribed values for
Cy and Cx, and we can integrate with respect to y to obtain prescribed values of

13/2e H6((O,T);H/2())L2((O,T);..p ()) and e H/2((O,T) ). Using
the inverse trace theorem, we can construct a satising these boundary conditions
which lies in H6((O,T);H((O,L) ))L2((O,T);H((O,L) ()). On the outflow

0 (yt t) and u u+boundary the prescribed data are -vu +
y+Cyt xu. To find a function satisfying these boundary conditions
we arbitrarily set 0 on the boundary and then integrate the first boundary
condition with respect to y. This leaves us with having to satisfy a given condition

9/efor e ..p ((0, T) ), and from the second boundary condition, we can find
7/2e ..p ((0, T)). Using the inverse trace theorem, we can find e H((0, T)

(0, L)) so that the given boundary conditions are satisfied. We can thus construct a
velocity field v*, satisfying the given boundary conditions, which has a time derivative
of class H5. We can now replace v in (33) by + v* and absorb the terms resulting
from v* into the forcing function . For the rest of the section, we shall therefore
assume homogeneous boundary conditions.

In order to construct solutions of (33), we shall take derivatives of the equation
and reformulate it as a problem for higher derivatives of v. In the process, we shall
successively express lower-order time derivatives of v in terms of higher-order time
derivatives. As a first step, let us take a time derivative of (33). We get
(9)

p(vtu + 2(w. V)vtt + 2(wt. V)vt + (w. V)2vt) #Avt + T: 02vt- Vqt + t
+ 0 v- V)v- V)(w. V)v.

Moreover, vt must be divergence free, vanish on the inflow boundary, satisfy the
outflow condition (35), and satisfy the appropriate initial conditions. We would like
to convert (39) to a problem whic.h involves only vt but not v itself. Of course, we
could think of v as the time-integral of vt, but if we do so, then the spatial regularity
of v implied by that of vt is not sufficient to deal with the terms in (39). The remedy
is to replace v in (39) by a new quantity ,, which would equal v for a solution of (33).
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Note that we can think of (33)-(35) as an elliptic boundary value problem for v if vt
is given. To make the outflow condition into a boundary condition for v, we integrate
it with respect to time:

(40) vt + (w. V)v (vt + (w. V)v)(y, 0)+ [(wt. V)v + (vt. V)w](y, T) dT.

The idea now is to set * equal to the solution of this elliptic boundary value problem.
A minor problem is that the elliptic boundary value problem might not be uniquely
solvable; however, it can be made uniquely solvable by a finite-rank perturbation. Let
P be a finite-rank operator achieving this. Then we define , as the solution of the
problem

(41) p(v + 2(w. V)vt + (w. V)2),) ttA + T" V2 + P(, v) V + ,
with the additional conditions that is divergence free, vanishes at the inflow bound-
ary, and satisfies

(42) v + (w. V)* (vt + (w. V)v)(y, 0) + [(wt. V)* + (vt. V)w](y, T) dT

at the outflow boundary. Equation (39) is now modified to
(43)

p(vttt + 2(w. V)vtt + 2(wt. V)vt + (w. V)2vt) #Avt + T" 02vt- Vqt + t
+ Tt" 02*- p(w. V)(wt. V)*- p(wt. V)(w.

We can choose P such that Pv is of class Hpb((0, L) IR), regardless of whether
v itself has this regularity. For the solution of (41), we then have the estimate

(44) E I111i’5-i’2 + [[11i,4-i,2 C IlVtlli,4-i,2 / / K
i=0 i=0 i--0

where K is a term depending only on the initial data. We must make sure that the
new problem (43) is equivalent to the original one. To this end, we take the time
derivative of (41) and subtract (43). This yields

(45) #A(t- vt)+ T" a2(t- vt) + P(gt- vt) p(w v)2(-t- vt)- v(t-qt) o.

Moreover, the difference "t- vt has zero divergence and vanishes at the inflow bound-
ary, and at the outflow boundary we have

(46) (w. V)(, vt) o.

It now follows from the unique solvability of the elliptic boundary value problem that
*t vt 0, and since the initial data for v and * agree, we have v ".

We shall solve (43) iteratively as follows:
(47)

n--1 np(vt + 2(w. V)v + 2(wt. V)v + (w. V)v) ttAv + T Ov Vqt

+ ft + Tt" 02"n- p(w. V)(wt. V)n-1 fl(Wt" V)(W" V)n-1.
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At each step, this problem is of a similar form as (33), namely, if we write v* instead
of v, then (47) has the form

(48) p(vt + 2(w. V)v + (w. V)2v*) ttAv* + T" V2v Vq* + f*,

with a new forcing function f*. The boundary conditions are v* 0 at the inflow
boundary .and v 4-(w. V)v* (v*. V)w 0 at the outflow boundary. We shall now
consider (48) with these boundary conditions and prove the following estimate, which
is analogous to (37):

(49)
Of*

+ (w.
i,2--i,1

In conjuction with (44), this estimate can be used to show convergence of the iteration

(47), and the solution then satisfies (33). Moreover, we shall show that the bound (49)
also holds for

4 2

E IIv* ]]i,4--i,cx) 4- E IIq* [[i,3--i,o
i=0 i--0

in any subregion away from the outflow boundary. We can then use local elliptic
estimates for (41) to get bounds on L-type (in time) norms of and . Henceforth,
we shall therefore consider (48) and aim to prove (49).

For the following, we need to introduce two functions a(x) and fl(x), which will
be assumed to have the following properties for some positive value of e:

a, /3 e Co([0, L]; [0,1]), a(x)=l, fl(x)=0 for xe[L-.4, L],
(0)

fl(x)-l, a(x)-O for xe[0, e], (1-a)(1-fl)=0.

We now apply the operation 4- (aw. V)4- (V(aw))T to (48), and we introduce
the new variable u v + a(w. V)v* -(v*-V)(aw)+ v*div (aw). The resulting
equations are complicated, and we shall not write them out in full. However, we shall
indicate their structure and emphasize the essential points. First, the left-hand side
of (48) can be written in the form

(51) p(ut 4- (2 a)(w. V)u 4- (1 a(2 a))(w. V)2v 4- hi(v*, Vv*, u)),

where we do not write out the form of the term hi; the essential point is that it does
not involve second derivatives of v* or any derivatives of u. We use (51) and apply the
operation +a(w. V)+ (V(aw))T to (48). Wherever we encounter a time derivative
of v*, we reexpress it in terms of u and spatial derivatives of v*. Doing so, we find
an equation of the form

(52)
,(u + e(w. V)u + (w. V):u) ,au + T. 0:u- V,

+ h2(u, ut, Vu, v*, Vv*, V2v*, f*, ft* + a(w. V)f*).

Here s q + a(w-V)q*. Note that u has been defined in such a way that it is

divergence free and vanishes on the boundary. Following similar ideas as above, we
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shall reduce our problem to showing that (52) has a unique solution satisfying an
estimate of the form
(53)

3

i’-O i’-O

i--O i=-O i,l--i,1

Here, as usual, u0 and Ul are the initial conditions for u and ut. In order to use
(53) to solve (52) in an iterative fashion, we must, in an analogous fashion as above,
replace v* by a different quantity *. However, this step is now more complicated
because we cannot simply use (48) to solve for v* in terms of u. This is because we
lack a condition for v* at the outflow boundary.

To construct *, we shall, of course, start with (48), which we can rewrite in the
form

p(ut + (2 a)(w. V)u + (1 a(2 a))(w V)2v + hi(v*, Vv*, u))
Av* + T" 02v* Vq* + f*.

We have the inflow boundary condition v* 0 but no outflow condition. To create
an outflow condition, we consider (54) for t T’. In addition, we consider (54) for
y L, and make the substitution

1
--(u- + V)w).
Wl

That is, the x-derivative of v* has been expressed in terms of u and derivatives of v*
which are tangential to the (y, t)-plane. By differentiating (55), we can also reexpress
the second derivative with respect to x.

For the pressure, we need to proceed in a slightly more complicated fashion. The
reason is that (53) only provides estimates for spatial derivatives of s and not for
the second time derivative of s. To circumvent this problem, let A be a positive
definite self-adjoint operator in L((0, L) x ) which generates the interpolation scale
of Sobolev spaces, i.e., the domain of A is H((0, L) x ). Let now r be the solution
of

(56) rt + Ar s, r(O) O

and set q* r + . Then satisfies the equation

(57) t + a(w. V) -a(w. V)r + Ar.

Moreover, we have the estimate

We now consider r as given in terms of s and introduce as a new variable. On the
outflow boundary, we use the relationship

(59) Cx l(Ar (w. V)r Ct wy)
Wl
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to eliminate the derivative normal to the boundary. On the outflow boundary, we can
therefore rewrite (54) into an equation in the (y, t)-plane which has the following form

(6o)

The divergence condition can be rewritten as

(61)
1 (Ov Ov) Ov 1

(tl -- (V*" V)Wl), \ o +=-b7 + 0-7 =-7
We now consider an elliptic boundary value problem which consists of (54) and the
condition div v* 0 on the set {T’} (0, L) JR, (60) and (61) on the set (0,T’)
{L} JR, the boundary condition v* 0 on the set {T’} {0} lit, the boundary
condition v* v*(L, y, 0) (given in terms of the initial data) on the set {0} {L} IR,
and interface conditions on the set {T’} {L} IR. These interface conditions are
the continuity of v* and and the equation

(62) u , + (w. v),, (,,,. V)w.

It can be checked that the equations are elliptic and the boundary and interface
conditions satisfy the complementing condition. We change v* to *, add a finite-rank
perturbation to ensure unique solvability, and solve for -*. This yields an estimate of
the form

(63) I1*11/ + IIlls/ < C(llulls/ + IlVull/ + Ilull/
+ IIA,’IIz + IIV’IIz + IIf*llz + IIv*(L,., 0)11).

Here the Sobolev norms refer to the sets {T’} (0, L) IR and (0, T’) {L} IR.
We now choose * at the outflow boundary to be the value just obtained and

then obtain ,* elsewhere by solving (54) with inflow and outflow conditions. Again
we modify by a finite-rank operator if necessary. The ,* thus obtained now replaces
v* in (52). Over the whole domain (0, T’) (0, L) JR, we now have an estimate of
the form
(64)

11’*11,4-,: 4 c Ilull,a-,= + Ilsll,-,= + IIf*ll,-, + IIv*(’, ", o)llr/
i=0 i=0 i=0 i=0

and this suffices to solve (52) iteratively. (In any region away from the outflow bound-
ary, we can use local elliptic estimates to get bounds on norms of v* and q* which are
L with respect to time.) The proof that the new problem is equivalent to the old
one proceeds similarly as above; one integrates (52) (in which v* has been replaced by
*) along lines dx/dt cw, and from the result one can derive an elliptic equation for
v*. By comparing this equation with that for *, one can derive an elliptic problem
satisfied by the difference v* -,*, which is of an analogous form as the one from
which we obtained * above. Then one uses a uniqueness argument.
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We can now concentrate on solving (52) and establishing the estimate (53). We
first take two more time derivatives, and we continue with the practice of express-
ing lower-order time derivatives by higher-order time derivatives in terms of elliptic
boundary value problems. Denoting u g, su r, we end up having to solve a
problem of the form

(65) P(gtt + 2(w. V)gt + (w. V)2g) #Ag + T.02g- VTr + t + 1,

subject to the conditions that g is divergence free, vanishes on the boundary, and
satisfies given initial conditions g go e Hp((O,L) lR), gt gl e L2p(IR). Com-
patibility between initial and boundary conditions still holds. We need to prove an
estimate of the form
(66)
{{g{]o,l,oo + ]]g{{l,O,oo C(]{gol{l -{-{{gl {{o + {{{{o,o,oo + {{t +/3(w. V)[}o,o,. +

We shall first derive a formal energy estimate for (65) and then show how this en-

ergy estimate can be used to show existence when used in conjunction with a Galerkin
argument. To obtain an energy estimate, we multiply (65) by z :-- gt +/3(w. V)g-
(g. V)(/3w) + g div (/3w) and integrate over (0, t) (0, L) (0, M). We shall use the
notation

(67) a(x, y, T). b(x, y, T) dy dx dT.

For the various terms in (63), we find the following, after a number of integrations by
parts:

(68)

ldfoLylM[gtt, Z] - {gt(x,y,t)12dydx

+ - (/3(w V)g). gt(x, y, t) dy dx

+1 [div (/3w)g, g]- [/3(w. V)g, gt]

dt
[(g. V)(/3w)l g(x, y, t) dy dx

+ [(gt. V)(/3w), gt] + [(g. V)(/3w), g]

+ - div (/3w)g gt(x, y, t) dy dx

[div (/3w)g,, gt] [div (/3wt)g, gt].
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(69)

ldfoLfoM[(W. V)gt, .] - fll(w. V)gl2(x, y, t) dy dx

-[/3(wt. V)g, (w. V)g]

dt
((g. V))(/3w). ((w. V)g)dydx

+ [(gt" V)(/3w), (w. V)g] + [(g. V)(/3wt), (w. V)g]
+ [(g. V)g]

+ - div (w)(g (w. V)g)(x, y, t) dy dx

-[div (/3wt)g, (w. V)g]- [div (13w)gt, (w. V)g]
-[div (/3w)g, (wt. V)g].

[w,,.] o.

(71)
[(at, .] [(at +/3(w. V)(a, gt] [fi,/3(wt V)g + gdiv

+ - . (/(w V)g (g. V)(w) + gdiv (w))(x, y, t) dy dx

+ [fi, (gt" V)(/3w) + (g.

To deal with the remaining terms, we use the notation

(72) A # + T- pwwT.

Since the expression for [A 02g, z] is somewhat lengthy, we list it in several parts.
We find
(73)

[A:02g, gt] ldjoLfoM2 dt
tr ((Vg)A(Vg)T) dy dx

+ tr ((Vg)At (Vg)T) dy dx dT [((div A). V)g, gt],

(74)

[A: 02g,- (g. V)(/3w) + gdiv (/3w)]
[((div A). V)g,-(g. V)(/3w) + gdiv (/3w)]

tr [(Vg)NV(-(g V)(w) + gdiv (w))T] dy dz dT,

Finally, we consider the term

(75) [A: 02g,/3(w. V)g] -[/3(w. V)(A: 02g), g]- [A: 02g, div (/3w)g].

In the second term, we integrate by parts again to find

[ 0g 0
(div (/3w)g)][A" 02g, div (/3w)g] y. Aj Oxj’ Oxi

(76)

[ OA’j’ Og div O3w)g]Z. Ox Ox
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For the first term, integration by parts yields

_[(w. V)(A :O2g),g] i,j [(w. V)(Aij _x),_x

In the last two terms, we can do further integrations by parts to obtain expressions
which are quadratic in he first derivatives of g. Por the first term on the right of (77),
we note that

om imegrating (78), we therefore obtain an imegral of

1 0g 0g

i,j

over the boundary. Since 0 on the outflow boundary, only the inflow boundary
makes a contribution, and this contribution is negative.
om the formal energy estimate, we can easily derive a bound of the form (66).

However, in deriving the energy estimate, we have of course done manipulations which
are not justified by the regularity we expect of the solution. To make the argument
rigorous, we use a Galerkin approximation. For technical reasons, we split (65) into
two problems, one where the forcing term in the equation is as given and the initial
data are zero and another where the forcing term is zero and the initial data are given.
Obviously, the solution of (65) is then obtained by adding the solutions of the two
subproblems. Let us first deal with the problem for zero initial data. We define a
space

(80) X

Let Cn, n e , be a basis for X, i.e., a linearly independent set with a dense linear
span. We can take the Cn such that they vanish in neighborhood of the boundary
and are of class C. We now seek Galerkin approximations such that

N

(81) g + Z(w" V)gN (gY. V)w + gY div (Zw) c(t)(x, y),

and gY is determined from integrating (81) subject to zero initial and inflow condi-
tions. We require the equation

(Se) (( + e(. V)g + (. V)) ,g T" 0 ,) 0

to hold for every i= 1,... ,Y. Here (., .) is the inner product in n((0, L) ). The
initiM conditions are zero. For any fixed N, equation (82) is a system of Volterra
integrodifferentiM equations which can be solved. By choosing the test function

N
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one can repeat the energy estimates above (now there is sufficient regularity to justify
the manipulations) and obtain uniform bounds for the approximate solutions gg. As
usual, one can then extract a weakly-, convergent subsequence, the limit of which
yields the solution we seek.

For zero forcing terms and nonzero initial data, we need to do much less fancy
footwork. We can obtain a much simpler energy estimate than above by simply mul-
tiplying (65) by g. A standard Galerkin argument (along the lines of 8.2 in Chapter
3 of [1]) can then be used for a rigorous justification.
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A GEOMETRIC INTERPRETATION OF THE HEAT
EQUATION WITH MULTIVALUED INITIAL DATA*

LAWRENCE C. EVANSt

Abstract. We utilize the level-set method to interpret geometrically what it means to solve
the heat equation with multivalued initial data. We prove that in one space dimension, the limits
of "geometrically natural" approximations instantly unfold multivalued initial data, according to an
equal-area rule. In higher dimensions, the limits of certain "analytically natural" approximations
display similar effects.
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1. Introduction. A formal analysis of Burgers’ equation,

(1.1)
obtained by tracking classical characteristics, suggests that a solution will in general
become multivalued after a time. If, for instance, the initial data represent a mass
of fluid centered at the origin, the solution u corresponds to a wave whose velocity
at each point equals its height. As the higher parts of the wave consequently move
faster than the lower, the wave will later "break" and "fold over." It is customary to
reject such multivaluedness on physical grounds (cf. Whitham [25]) by accepting as
true solutions u of (1.1) only those arising as limits when --. 0+ of solutions u to
the "viscous" approximations

(1.2) u + uu u in

The term eu forces the approximate solutions u to remain smooth, and so any limit
u is single valued, although in general discontinuous in regions of shock formation. If
we imagine > 0 as fixed and think of the nonlinear term in (1.2) as a lower-order
perturbation, the function u is well behaved since the linear heat equation (a) smooths
irregular initial data and, in particular, (b) keeps solutions from becoming multivalued.

This paper provides a further analysis and geometric interpretation of the effect
(b) for the linear heat equation. We will show that a solution of the heat equation
is single valued at times t > 0, even if the initial function is multivalued, with a
graph that admits folds, complicated topology, etc. Otherwise stated, we assert that
property (b) is so pronounced that not only will single-valued initial data remain so,
but also multivalued data will instantly become single valued under the heat evolution.

Making sense of this claim requires that we first of all devise a way to solve
the heat equation with multivalued starting data. This problem we will approach
using the so-called "level-set method." The idea is to think of n (0, oc) as being
completely filled up with hypersurfaces, each of which represents a solution to the heat
equation on ]1(n-1 (0, oc). We then regard these surfaces as being the level sets of a
function v :n [0, oc) -* and write down a nonlinear partial differential equation
(PDE) that v verifies. We next attempt to analyze this nonlinear PDE rigorously and,
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in particular, to prove that various approximate solutions v converge to a limit v.
We can then regard the various level sets of v as determining solutions of the heat
equation, even starting from possibly multivalued initial data.

The formal calculations are as follows..Think of v lt(n [0, oc) --. R as a
smooth function each of whose level sets, thought of as graphs in the x-direction,
solve the heat equation. Suppose a portion of some such level set ismlocally, at
leastmrepresented by the smooth graph

(1.3) x, u(x’,t) (t >_ O,

Then
v(x’,u(x’,t),t)

is constant in the variables x Elt(n-1 and t _> 0. Differentiating, we deduce

(1.4) vxn ut + vt O,

(1.5) vx + vxnux 0 (1 _< i _< n- 1),

n-1

(1.6) A’v + 2 v,=u, + v= [D’ul u + v= A’u 0,
i--1

whereD’ o o and A’ n- 0

’" ox_l -i=1 denote, respectively, the gradient
and the Laplacian in the x-variables, x’ (xi,... ,Xn-1). Assuming that vz= 0
and that u solves the heat equation

ut--Atu in ]n-I X (0,
we can simplify (1.6), using (1.4) and (1.5) to conclude

(1 7) vt A’v 2vx [Dev[2.... + W v

along the given level set of v, the implicit summation being for 1 to n- 1. We now
suppose that each level set of v represents the graph of a solution of the heat equation.
The nonlinear PDE (1.7) then holds--formally, at leastmeverywhere in ]Rn (0, c).

Let us refer to (1.7) as the level-surface heat equation. Observe that (1.7) is
degenerate parabolic and is undefined wherever vx 0.

Our plan hereafter is to study the initial value problem for the PDE (1.7) and
to try to understand the behavior in time of the level sets of solutions; we informally
regard these as defining the generalized heat flow. We will therefore be particularly
interested in a "geometric" interpretation of the level surface heat equation, as this
viewpoint will suggest natural approximation schemes.

This paper is structured so that 2 and 3 recall the general theory of weak (that
is, viscosity) solutions of "geometric" parabolic PDEs, following Chen, Giga, and Goto
[8]. In 4-6, we focus our attention on the case n 2 and study the motion of the
approximating level curves in the limit as 0. We prove in 5 that these curves
rapidly unfold to become graphs. This assertion allows us to interpret the level-surface
heat equation as "instantly unfolding" multivalued initial data, although the precise
nature of this transformation remains unclear in general. We do, however, manage in

6 to show rigorously that in certain circumstances this process follows an equal-area
construction.
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The behavior of the level sets in the general case (n _> 3) appears much more
complicated. We are, in particular, unable to analyze carefully the asymptotic behav-
ior of the level sets of the geometrically natural approximations (4.3e), and we propose
instead in 7 to analyze certain analytically natural approximations (cf. (7.4e)). We
prove that in the limit as s 0, the level sets again become graphs. Further work is
indicated here, as the limiting behavior of the level solution presumably entails some
kind of interesting higher-dimensional analogue of the equal-area construction.

The key point of 4-7 is the identification in the PDE (1.7) and in the approx-
imations (2.5) and (7.4) of geometric and/or analytic mechanisms that force the
instantaneous unfolding of level sets.

The general technique of studying nonlinear PDEs whose level sets evolve accord-
ing to various geometric laws has in recent years proved extremely fruitful; see Osher
and Sethian [23] for numerics and Chen, Giga, and Goto [8], Evans and Spruck [9]-[12],
Soner [24], etc., for theory. The guiding insight for this paper, that the level-set method
is also useful for other, nongeometric PDEs, is, in fact, very old: Caratheodory in his
book [7, 49] describes a related method of Jacobi for investigating Hamilton-Jacobi
PDEs. Recently, S. Osher has revived the technique in [22] within the context of image
processing. His work is inspired by the paper by Bruckstein and Kimmel [5], and this
paper is inspired by his. We hope also that the following study will be relevant in an
investigation of a PDE/viscosity-solution approach to crystalline curvature motion, a
la J. Taylor (cf. Cahn, Handwerker, and Taylor [6] and the references therein). The
formal PDEs describing crystalline curvature motion .involve various strong singulari-
ties, and the hope is that the level sets of solutions to smoother, approximating PDEs
will in the limit instantly develop faces, evolving thereafter according to certain ordi-
nary differential equations (ODE). This conjectured effect is presumably some kind of
more complicated variant of the instant unfolding established here.

2. The level-surface heat equation: Geometrically natural approxima-
tions. We commence our study of the initial value problem for the level-surface heat
equation

(2.1)
v g in n (t- 0}

by first noting that the PDE is of the general form

(2.2) v F(n2v, nv)
for F defined by

(2.3) F(R,p) p2 p2n Z rii 2 PiPnrin -- IPtl2rnn
i--1 i--1

where R ((rij)) e Mnn, the space of n n real matrices, and p (p’, Pn) e n,
p (p,...,pnh) --1, p 0. The nonlinear term satisfies the structural
identity

(2.4) F(AR + #(p (R) p), Ap) AF(R, p)

for all , # , R Mn, p with pn 0. The level surface heat equation is
consequently "geometric" in the terminology of Chen, Giga, and Goto [8]. This means
that the evolution in time of each level set of v depends only upon the geometry of
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that set and is unaffected by the behavior of neighboring level sets of v. (In studying
parametric--that is, "geometric"--integrals in the calculus of variations, it is often
useful to study associated nonparametric integrals, as, for instance, in Federer [13,
5.1.9]. Here we are in some sense reversing the customary procedure by transforming
the (nongeometric) heat equation into the (geometric) level-surface heat equation.)

Although our PDE (2.1) verifies (2.4), it nevertheless does not fall within the
scope of Chen, Giga, and Goto [8] since the nonlinear term is singular along the plane
(p, 0}. Ishii [17] has recently extended the general theory to allow for singularities
on such a set, but the level-set heat equation again fails to be covered because the
coefficients ppl and Ip’12p2 are unbounded near {pn 0}. See also Ohnuma and
Sato [20]. We are, in fact, not able to devise a satisfactory notion of weak solution
for (2.1). We will see, however, that this is not really the key issue: the point is that
limits of solutions to approximating PDE evolve so that the level sets become graphs
in the xn-direction. The strong singularity, which precludes any invocation of [8], [17],
or [20], forces this simplified behavior of the level sets.

It is therefore appropriate now to turn our attention to a well-behaved approxi-
mation scheme which is "geometrically natural."

Let us fix s > 0 and consider instead of (2.1) the problem

(2.5) v (v")2a’v ,2

Ve --g

The PDE (2.5) has the structure

v F D2v Dv

for
n--1 n--1

Fe(R,p) (p2 + 21p,[2)-1 p2 Z rii 2 Zpipnrin + ]p’l 2run
i--1 i--1

where R ((rij)) e Mn, p (p’, p) e ]1(n, p = 0. A computation verifies the
identity

Fe(AR + #(p (R) p), Ap) AF (R, p) (#, A e R, p 0),

and so (2.5e) is geometric. And although the nonlinearity Fe is not defined at {p 0},
it, unlike F, is bounded on compact subsets of Mnx x (R -{0}). In particular,
(2.5e) is included in the existence and uniqueness theory of Chen, Giga, and Goto [8].
We recall the relevant definitions.

DEFINITION 2.1. A bounded, uniformly continuous function v is a weak subso-
lution (supersolution) of (2.5) provided that for each smooth
such that

v- attains a local maximum (minimum)
(2.6)

at a point (xo, to) e n x (0,

(2.7) De(x0, to) # 0,

then

(2.8) (2 / e2[D,I2)-1(2A,_2,,+ ID’1) _< 0 (_> 0)
at the point (x0, to); and
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(b)

(2.9) D(Xo, to) 0, D2(xo, to) 0,

then

(2.10) Ct _< 0 (>_ 0)

at the point (Xo, to).
DEFINITION 2.2. We call v a weak solution if v is both a weak subsolution and

supersolution.
.Observe that there is no requirement if

(2.11) D(xo, to) 0, D(Xo, to) O.

Let us now suppose g --, I is smooth, sup Igl, IDgl < (x), and for some

R0

D’a=o i l ’l _>
(2.12) gx > 0 if Ixnl <: R, Ix’l _> R,

gx. =0 iflxn _> R.

In particular, the level sets of g are flat graphs in {Ixnl k R} and {Ix’l k R}.
THEOREM 2.3 (existence of approximate solutions).
(i) For each > O, there exists a unique weak solution of (2.5).
(ii) In addition, v is Lipschitz continuous, with the bounds

(2.13) sup IDv] <_ suplDgl,, x(0,oo) ’

(2.14) sup Ivl <
c

sup
(o,) ’

(iii) Furthermore, the mapping g -. ve( t) is a contraction in L(R").
Proof. For 5 > 0, we further approximate by the PDE

((v) vxn Vxi Vxn Vxixn

(2.15,e) + D’ve’512v’ )+ 5Ave’5 in x (0, )

This equation has the form

(2.16) v aj v )vx in x

the implicit summation in (2.16) being for 1 <_ i,j <_ n. The coefficients aij are
smooth, bounded, and uniformly elliptic, and consequently the quasi-linear PDE
(2.15) has a unique, smooth, bounded solution (cf. Ladyzhenskaya, Solonnikov, and
Vral’ceva [18]).

Differentiating (2.15,) in the unit direction , we find

e,5 e,5 e,5 aS,5 .e,5
V aij vxix t_ ij,p Vxix Vxt"
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The maximum principle therefore implies that v attains its maximum at t 0;
whence

(2.18) sup Iv {= sup sup ]DUg].
0<6<1 0<6<1

R- (0,)

Owing to the bounds (2.17) and (2.18), there exists a sequence 6j 0 and a Lipschitz
function v such that

(2.19) v’6j v locally uniformly in n [0, ).

Routine viscosity-solution arguments (cf. [8], [9]) prove v to be a weak solution of
(2.5). Estimates (2.13) and (2.14) follow om (2.17) and (2.18). The uniqueness
of the weak solution follows from Chen, Giga, and Goto [8], as does the contraction
assertion (iii).

We next derive a bound on v which does not depend on e > 0. This will later
be useful in investigating the instantaneous unfolding of level sets.

LEMMA 2.4. For each compact set K C n, there exists a constant C C(K)
such that

(2.20) ess sup Iv(, t)l
0<e<l

for.e, t>0.
Pro@ 1. We will employ a scaling argument. or each > 1, set

(.1 (,tl ,(,tl (a,tl ( , t > o.
2. We assert the following:

(.) ( + ID’I)-1

in R x (0, ) in the weak sense. To veri this claim, let us suppose that
C(N x (0,)) is given and w- has
N x (0, ) with D(o, to) 0. Define

(.a) e(, t) (a-, a-t).
hen ve - has a local maximum at the point (, tx) (o, to). Now

(,t) -(o, to),
(.4 (,t) a-e(o, to),

De(,t) -D(o, to),

and consequently D(,t) 0. Because v is a weak solution of (2.), we have

at (x, tx). Employing (2.24), we therefore deduce

2

(2.17) sup IDv,l sup IDv,l It=o sup IDgl,
0<e,6_<1 0<e,6_<l

" x(o,o)
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at (xo, to). We similarly deduce Ct _< 0 at (Xo, to) if D(xo,to) D2(xo,to) O.
The opposite inequalities obtain should w have a local minimum at (x0, to). The
claim (2.22) is proved.

3. In view of the contraction property for solutions of (2.5) (Theorem 2.3(iii)),
we have for each Xo E ln, to > 0 that

<_

where gX(x) g(Ax), x In. Consequently, taking x0 0 above and recalling
(2.21), we find

(2.25) Iv (0, ;to) (0, to)l < Ilg gll
Loo(Rn).

-1 -1

Now for a.e. to O, t -, v(O, t) is differentiable at t to. For such a time to, we let
A --- 1+:

2tolv(O, to)l < IIDg.

Since supa IDgl < c and since g satisfies (2.12), the last term is finite. Conse-
quently,

C
Ivy(O, to)l <

tO
assuming v is differentiable at (0, to). Shifting in space, we can replace 0 in the above
calculation by any point x0 K, K a given compact subset of Rn. Thus

[v(xo, to)] < C(K)
tO

provided v is differentiable in t at (xo, to). But for a.e. xo, t v(xo, t) is differen-
tiable in t for a.e. to, according to Rademacher’s theorem.

3. Level sets solve the heat equation. It remains to interpret the level sets
of any limit v of the approximate solutions v as solving the heat equation. We modify
a technique from [11].

THEOREM 3.1. Assume ej -- 0 and

(3.1) vet v locally uniformly in It( x (0, oo).

Suppose that some level set of v can be represented in some region N c
as a graph in the xn-direction. That is, assume

(3.2) N g {(x, t)lv(x, t) C} N 3 {(x, t)lxn u(x’, t)}

for some constant C and some continuous function u In-1 x (0, o0) ]1{. Then the
height function u is smooth, and u solves the heat equation

(3.3) ut Au within N.

Proof. 1. We will show the heat equation (3.3) is satisfied in the weak (i.e.,
viscosity) sense. Let e Co(Rn-1 (0, oc)) and suppose

(3.4)
u- has a maximum (minimum) at a point

(x, to) such that (X’o, u(xo, to), to) (Xo, to) e N.
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We must show

(3.5)
Let us first assume

u has a strict maximum at (x, to)
with u(xo, to) (x, to).

2. Without loss of generality, we may take C 0. We may as well also suppose
that

ve,v_<0 in Rn(0,

otherwise, we note that e -(ve)2 is also a weak solution of (2.5e) and e -, -v2 _< 0.
Also, we can assume limlx, l_.o +oc. Next, set

(3.7) (x, t) (x’, t) x.
Since (x’, t) >_ u(x’, t) for x’ near x and t near to,

(, t) >_ (’, t) o
for all points on the level surface {v 0}. Furthermore, (xo, to) v(xo, to) when
(Xo, to) (x, u(xo, to), to). Define

z (z _> o),
(z)

inf{(x,t)lv(x,t _> z} (z < 0);
then

(0) 0,

(z) < 0

> ().

(I) is lower semicontinuous,

if z_<0,

Select a continuous function IR --, IR so that <_ (I), (z) O(z) for z _> 0.
Consequently,

with equality only at (xo, to). Now

is a weak solution of

> V(v)

)- e: ):A’ ---(( . + [D[2) ((vx.- 2vz,v.v,. + [D’[v.")2-
Since locally uniformly,- h a mimum at a point (x, t)
with (x, t) (xo, to). As . 0, we conclude

at (x, t). Recalling the definition (3.7) of , we obtain

g ( +
at (x, t). Let ej 0 to discover

A at (x,t0).
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The opposite inequality similarly holds if u-b has a strict minimum at (x, to). Thus

ut=Au in N

in the weak sense.
3. Finally, choose any cylinder C’ B’(xo, r) [to, to + r2] c N and consider the

PDE
=A’ in C’,

on x {t to },
u on OB’(x, r) x [to, to + r2].

There exists a unique solution 2, 2 continuous on C and C in the interior of C.
By uniqueness of viscosity solutions,

U U

and so u is C within N.

4. Motion of level curves in the plane: Geometric interpretation. As
noted in 2, the limit v of the solutions v of (2.5e) is not in general a solution to the
initial Value problem (2.1), as v does not always continuously take on the initial value
g. An informal interpretation of what happens is as follows. Assuming that the limit
v continuously takes on the initial value , we expect the approximations v to develop
an "initial layer," during which the level sets of v move very rapidly, from those of
g to approximately the level sets of . Thereafter, the level sets of v approximate
the level sets of v and move slowly. Our intention is to substantiate this picture as
rigorously as possible.

To simplify matters, for this and the next two sections, let us suppose n 2, so
that, as we shall see, a typical level set of v is a curve evolving in the plane IR2. We
write (x,x2) (x,y) to denote a typical point. We return now to our PDEs (2.1)
and (2.5) and explicitly display the geometric meaning. Let us temporarily suppose
that v is a smooth solution of (2.1), with Vy 0 in some region, to which we turn our
attention. Then

Dv (Vx, Vy) ( 2)y=
iDvl iDvl

is a unit normal vector field to any given level curve. The normal velocity of this curve
is vt/IDvl and its curvature is

div() ]Dvl ]Dv]2(4.1)
21 (v2vvxx 2vxvvVxu + vxvuv)invl3

Since v solves (2.1) and thus

2vx V2

Vt Vxx --y Vxy -- x

2 Vyy
vy

we can utilize (4.1) to compute that

vt IDvl 2

IOvl (vu)2
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Thus the geometric law for the motion of the level curves of v is

(4.2) normal velocity
(2)2"

In particular, (4.2) provides a geometric interpretation of the one-dimensional heat
equation. Analogously, the PDE (2.5e) implies that the level curves of ve evolve
according to the geometric law that

(4.3) normal velocity

Thus the approximation 1 corresponds to classical curvature motion and 0
to the heat equation. It is clear that (4.3) is in some sense a natural approximation
to (4.2). The law of motion (4.2) ordains--at least formally--an infinite propagation
velocity whenever the normal is horizontal and a - 0. The approximate law of
motion (4.3e), on the other hand, is a smooth nonisotropic modification of classical
flow by curvature in the plane (cf. Oaks [19], Grayson [16], Gage and Hamilton [15],
etc.).

We illustrate the effects of such a motion upon a given curve F0 in Figure 1.

FIG. 1.

If we regard F0 as an initial level set of ve, the law of motion (4.3e) forces a large
horizontal velocity, as illustrated, along the folds and a small velocity in the regions
where the curve is approximately fiat and approximately horizontal.

F

FIG. 2. FI (0 < tl <.< 1).

We consequently expect the level set to evolve quickly into a shape approximately
like that in Figure 2: there is no longer a large horizontal velocity since the curva-
ture is small where the curve is close to vertical. Thereafter, the motion should be
approximated by the usual heat flow (see Figure 3).

FIG. 3.
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This example suggests that the level sets of v, if not initially graphs, will rapidly
unfold and become graphs.

The following formal calculation reinforces this belief. Suppose v is a smooth
solution of (2.1) for n 2,

2vx v2
(4.4) vt vxx v--vx + 2v in 2 (0, c)

vy

with IDvl O. Let Ft denote some level curve of v at a fixed time t >.0. Consider
the ODE

() (x(), (), t),
(4.5)

9() -(x(), (), t) ( ).
Then

d
v(x(s), y(s), t) O,(4.6) d

and so if (x(0), y(0)) e Ft, we have (x(s), y(s)) e Ft as well for all s e ]1(. Differenti-
ating (4.6) with respect to s, we compute

vx + vyl + vxx(c)2 + 2vxyc + Vyy()2 O.

Thus (4.5) implies
2

1121vl by (4.4).

According to (2.20), we have the estimate

C
Ivl < t

and thus

Cl:el=.(4.7) I/ 1 <

But
d ( ) :(:-,) :a.d-- ((5)2 - @)2)1/2 ((5)2 + ()2)

Consequently, (4.7) implies

(() - ()

Applying Gronwall’s inequality, we see that vy either never vanishes along Ft
or else is identically zero. The later possibility is excluded, as the level sets of v are
horizontal lines for large Ixl. Hence Ft is a graph, y u(x, t), for some function
u(. t) : --, I, which necessarily solves the heat equation.

The point of the foregoing calculation is that the curvature (51 ))((5)2 +
()2)- of the local curve Ft can be computed in terms of the right-hand side of the
PDE (4.4), which in turn is bounded at each time t > 0. However, the proof is not
geometrically intrinsic inasmuch as the bound on vt implies an estimate only in i212
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and not (-. Note in particular that the parameter s is not arclength. It is con-
sequently difficult to modify the foregoing computation to make a rigorous assertion:
we lack in particular any good lower bounds on {IDvl}0<<l. Some different tools
are called for, entailing a closer look at the level curves of the approximations.

5. Unfolding of the level curves of vs in the plane. We focus our attention
on the approximations (2.5s), which for n 2 read

v in x
(.) v %-+((,+(: e (0, ),

v g .on x {t 0}.

As observed in 4, this PDE says that the level curves of v move with normal velocity
((:) + :():)-..

Let us first note that each level set of v is in fact a smooth, embedded curve
for all times t 0 provided it is so at t 0. This fact is a variant of M. Grayson’s
important theorem that an embedded curve moving under curvature motion in the
plane remains smooth and embedded until (and if) it collapses to a point. See Oaks
[9] for proofs.

Let us hereaer look at a given level set F {(x,y) v(x, y, t) C} for
some given constant C. We assume

F is a smooth, embedded curve with
(5.2)

v(rs) s,

p(. denoting the projection on 2 onto the x-is. In view of hypothesis (2.12), F
is a horizontal line within the region {Ix[ R} (see Figure 4).

FO

FIG. 4

First, we study the level sets {F}t>0 in the region {Ix _> R}.
LEMMA 5.1.
(i) For each time t > O, F is a single-valued graph in the region

that is,

(5.3)

for some smooth function u R x [0, ) --, R.
(ii) The height function us solves the PDE

(5.4) ut 1 + ee(u)2 in {Ixl > R} x (0, ).
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(iii) There exists a constant C depending only on R such that

(5.5) sup sup
0<<1

t>0

Proof. 1. At time t 0, the curve F and the vertical line {x R} meet trans-
versely (in fact, perpendicularly) at a single point. According to results of Angenent
[1], [2], the curves F and {x R} intersect at most once for each time t > 0. (Indeed,
near any point po where the normal to F is bounded away from e2 (0, 1), we can
locally represent F[ as a graph in the y-direction.) Thus for some neighborhood N of
Po,

F N N {(x, y, t) E NIw (y, t) x},

where we (0, c) - is smooth and solves the PDE

Wyy
+

near Po

(cf. (6.2e) below). According to Angenent [1, Thm. C], the number of crossings of
the line {x ]I(} is nonincreasing in time. (See also Angenent [2, 5] for a related
assertion for isotropic curvature flow.)

As F A {x > R} q} and F g {x < -R} 0, in fact, F intersects the line

(x R} precisely once. Let y(t) denote the point of intersection; then t -+ y(t) is
smooth. Furthermore, (y(t)}t>0 is bounded since (F}t>0 cannot intersect the lines
y= =t=R.

2. Now consider the PDE

e ?Jtxx
1 +

in (x>R}(0,

with the initial condition

o)-- u(o)

and boundary conditions

(5.7) ue (0, t) y(t), lim u (x, t) y(O).

This initial/boundary-value problem has a unique, smooth solution ue (cf. [18]) whose
graph moves according to the geometric motion (4.3e). By uniqueness, F A {x > R}
is the graph of ue.

3. We next employ routine Bernstein-type methods to derive uniform interior
estimates for u in {x > R + 1} [0, c). For simplicity of notation, we suppress the
superscript s.

Let E C() be a cutoff function such that

(5.8) 0

and set
2 2z u + Au,
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the constant A > 0 to be selected later. Then

zt

Zx

Zxx

Differentiate the PDE (5.5) with respect to x:

Uxxx .22UxU2xx(5.10) uxt 1 + 2u2 (1 + 2u2)2"
Fix T > 0. If z attains its maximum over {x _> R} [0, T] at some point Xo > R,
0 < to <_ T, where u(xo, to) = 0, then

0 _< zt- 1 + e2u2
at (Xo, to).

Utilizing (5.9), we compute

/

0 _< 22u u
22 2txx
1 + 2u2 1 + 2u2 1 + 2u2

We simplify, making use of (5.5) and (5.10)"

022u (1+2u)2 i-
c11 c
1 + eu 1 + eu

< c
1 + 2u 1 + 2u

<0

l+e2u2x
+2As u- l+e2u2x

1 + e2u2

1 + ’2U2x

if A > 0 is fixed large enough. Thus z cannot in fact attain its maximum at a point
(xo, to) E {x > R} (0,T], with ux(xo, to)7 O.

Now restore the superscript s. Since ze 2(ue)2 + A(ue)2 Cannot attain an
interior maximum unless u 0, and since ue is bounded, we deduce that

sup sup [ze[_ C
e>O x>R

the constant C depending only on R and sup 14xl, Ixl. Given any point (x,t) with
x > R + 1, we select 4 so that (x) 1 and conclude

sup luex(x, t)l <_ C < c.
e>O

The constant C depends only on R.
Similar arguments apply for the region {x < -R}. [:]
Next we study the evolution of {F}t>_o within the set {Ixl _< R}.
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LEMMA 5.2. There exists a constant C such that for each 0 < e <_ 1 and T > O,

(5.11)

su H(r: n {ll < R+ }) +// ()
O<t<T __[N(IxI_R+I) (/]2,e)2 +2(vl,e)2

dH dt

Here H denotes the one-dimensional Hausdorff measure and v (v’l, v’2) is
the unit normal to F (taken to be pointing upwards in (Ixl _> R}).

Proof. Select a cutoff function E C(R2) such that

0_<C_<1, CI
(5.12) < 0

lOCI _< C.

if {xI<_R+I, lY{-<R+I,
if Ix{>_R+2 or{yl>_R+2,

Then

v denoting the normal velocity vector. Now, according to (4.3),

(/]2,e)2 + 2(/]1,e)2

Thus

d 2dH1 <-
(u2, 2 e2 ,)2dt + (u

dH

dH1

dH

Since r{ly{ > R} 0 and [D[ #-0 only ifR+l _< Ix[ _< R+2 or R+I _< [Yl-< R+2,
we can compute

ID{2
(’) + 2(,*)

dH < C fr 1

[gl{R+I<_IxI<_R+2) (b’2’e) 2 -[- 8"2(vl,e) 2

_/. (1 +
"’tR+l<-lxl<R+2} 1 + e2(Uex)2

dx

<_ C by Lemma 5.1 (iii).

dH

Integrating (5.13), we obtain inequality (5.11). El
Finally, we estimate a time T, by which the level sets F have become graphs.

The method is to devise a kind of Harnack inequality for v2,.
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THEOREM 5.3 (unfolding of level curves). There exists a time T > 0 such that
F[ is a smooth graph in the y-direction .for all times t >_ Te. Furthermore, we have the
estimate

0 < T <_ C(HI(F N {Ixl _< R + 1}) + 1)
(log )2

Proof. In the following calculations, s denotes arclength and d-’d Then for
each fixed time t _> 0,

and so

d og((,,) + (,,))ds

2U2,e/2,e + 22U1,e/l,e

log((v2’)2 2+ .(,

Let P0 denote the point where F[ intersects the line x R + 1 and take Pl to be any
point on F[ M {Ixl _< R}. Choose arclength parametrization so that P0 corresponds to
So and pi to s > so. Then

log((u2’e) 2 + 2(ul’)2)[pt _> log((u2’e)2 +

C
((//2,e)2

_
62(//1,e)2)1/2

z og((’) + (-’)),o

-C e[
dH

[(x[gR+l} ((V2’e)2 + 2(V1’e)2)

Now u2’]po is bounded away from 0--say (u2,)2 0 > 0--uniformly in e and t
according to Lemma 3.1(iii). Consequently,
(5.16)

inflog((v2’)2 + e2(/ll’e)2)
_

log(0)- C
(/12,e 2 e2 ,e)2r n{ll<+i} + vi

x H(r n {Ixl _< R + 1})1/2.
Now return to estimate (5.11) with T Te _< 1 as selected below. There exists a time
0 < t _< T such that

()2 C
dH <_ (HI(rD n {]zl < R + i}) + i).+Ln{ll<r+l}

Set t t in (5.16):

if log((,") + e(*,")) > bge --%(H*(r5 n {11 -< R + }) + ).
F T

Consequently,

H

(.) if(,/ o- +’+’- > o
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provided

(5.18)

But if

(HI(F A {Ixl

_
R --1})+ 1)> log (-).

T

H((r5 {Ixl < R + 1}) + 1)2T>C (log e)2

for some constant C, estimates (5.18) and thus (5.17) obtain. Consequently, there
exists a time 0 < t < T for which estimate (5 17) holds. The curve is herefore
a graph in the ez-direeion. The evolution maintains the property of being a graph,
and thus F is a graph for all times t

6. Equal-area construction. The calculations in 5 demonstrate that the level
curves of ve become graphs in the y-direction aer a time of order (log )-2; thus, given
a curve F0 in the plane which is a horizontal line in the region {Ix] > R} for some
R > 0, we can envision defining the operator

(6.1) G(F0) lim lim F.
t0+

The effect of G would be to replace the curve F0 with a graph (F0), presumably
in some natural, canonical way. This is mostly speculation since it is not known in
general that the limits in (6.1) exist.

It is possible in one simple case to give a rigorous analysis. Let us assume F0 is
the backward-S-shaped curve in Figure 5.

k

FIG. 5.

We will prove that in this case G(Fo) exists and is the graph (with a jump) obtained
by the Maxwell equal-area construction (see Figure 6).

FIG. 6.

Consequently, the heat equation "instantly converts Fo into G(Fo)."
To make this assertion rigorous, let us suppose that F0 is flat outside {Ixl _< R}

for some R > 0, say Fo {y -L} on {x > R} and Fo {y L} on {x < -R},



GEOMETRIC INTERPRETATION OF THE HEAT EQUATION 949

where L > 0. We propose to interpret F0 and its subsequent evolution {F}t>_0 under
the geometric motion (4.3e) as the graph in the x-direction of a function we(y, t). We
easily deduce that the PDE we verifies by noting the graph of we is a level curve of ve,
ve solving (5.1e). For the following computation, suppose ve is smooth, with v 0.
Then

v((, t), , t) c ( e t, t _> 0)

for some constant C. Consequently,

vwt + v O, vw v
e e e + =0.v(w) + 2vw +vw v

Substituting into (5.1e), we deduce aer some easy computations that

w in (-L,L) (0,)(.) () +
Remark. Note in particular the case s 0. If a function y u(x, t) solves the

heat equation and its graph can be written as function x w(y, t), then w solves

Wyy(.) ().
This PDE and the corresponding divergence-structure PDE

satisfied by .z wu have been identified in several papers as being exactly solvable;
see Bluman and Kumai [3], [4], Fo and Yortos [14], and Olver [21]. The point is
that (6.3) is tranformed into the linear heat equation by a simple rotation through
r/2.

We propose to study the limits of the function w as 0 provided the initial
data is

(6.5) we h on (-L,L) {t 0},
where h (-L, L) --, I has the graph obtained by rotating F0 clockwise through r/2.

We transform (6.2) and (6.5) to read

for

(())
We

we=h

in (-L,L) (0,
on {-L} (0,
on {L} (0,
onx{t--O}

(6.7) (I)e(r) 1(arctans () )
Consider next the initial-value boundary problem

(r e i).

w[ (w)
We A
We B
We H

in (-L,L) (0,
on {-L} x [0,
on {L} [0, oc),
on lRx{t=0},
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where

H’=h inlyl<L, minH=0,
(6.9) H(-L) A, H(L) B.

Thus H has two wells and H(y)= + for lY[ > L (see Figure 7).

FIG. 7.

LEMMA 6.1. There exists for each > 0 a unique smooth solution We of (6.8e).
Proo 1. The curve F0 intersects each horizontal line {y C} precisely once

for each -L < C < L. Furthermore, this intersection is transverse. Consequently,
Angenent’s theorem [1] implies F intersects each line {y C} precisely once for each
time t > 0, and so F is a graph in the x-direction--say x we (y, t), where lYl < L,
t >_ 0. The function we is a smooth solution of w (Oe(w))y. Define

We (y, t) A +/_JL we(z,t)dz for

e =Hatt=0.Then We is a smooth solution of the PDE Wt Oe(Wvv), with We

Now, near the lines y +L, the graph of we is approximately the graph of a solution
to the heat equation rotated through r/2. Consequently,

lim e lim Wueu +,
y =l=L

Wy
y L

and so

e= lim (W)=0(6.10) lim w
y--.+L y--, :l:L

uniformly in [0, T] for each T > 0. Thus we(-L, t) A, we (L, t) B for t >_ 0.
2. If We and 1/; are two solutions, the graphs of we W and e 17 both

evolve according to the geometric motion (4.3e) starting from F0. By uniqueness,
we =_ e. Since W(L,t) We(L,t) for all t _> 0, We 1e. VI

Next we study the asymptotic behavior of We as --. 0. Let us write H** to
denote the convex regularization of H; that is, H** is the largest convex function less
than or equal to H.

THEOREM 6.2 (equal-area construction). We have

(6.11) lim lim We (. t) H**
t---0+ e---0

locally uniformly in (,L,L), and

(6.12) lim lim we( t) (H**)’
t-,0+ e--0

in Loc(-L,L (1 _< p < ). In particular, the limits in (6.11) and (6.12) exist.

Proo 1. Fix t > 0. Inasmuch as e _< 0, we deduce from (6.8e) that

(6.13) We(y, t) <_ H(y) ([Yl < L, t >_ 0).
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Recall also that the graph F7 of we W moves following (4.3). According to
Theorem 5.3, F is a graph in the y-direction for times t > T O((log )-2). The
mapping y -+ we(y, t) is therefore strictly increasing for times t > T. Consequently,
y -+ We(y, t) is uniformly convex.

Fix a small time T > 0. Then, replacing T by r in (5.17), we deduce for some
time 0 _< t T that

inf(2’)2 _> e-C’1/2

for 7(T) > 0 and all sufficiently small. In particular, therefore,

sup lu (x, t) < M
t>-
xlR

for sufficiently small, M M(7"). Consequently,

> , > 0

for some constant # > 0 and all t _> T, lYl < L. Since

1
(6.15) lim (I)(r) if r > 0

e-*O r

uniformly on compact subsets of [#, cx)), we deduce from the PDE (6.8) that

<
e>O t>->O

II<L
But also

sup sup IW(y,t)l <
>0 t>O

for each a > O. Hence we can extract a subsequence c/ --+ 0 and find a function
W : (0, cx) - I such that

(6.16) Wj --+ W locally uniformly in (-L,L) x (0, x3).
In view of (6.13) and (6.14), for each t > 0,

(6.17) y -+ W(y,t) is convex and W(y,t) <_ U**(y) (lYl < i).

2. Next, assume

(6.18) /2/is uniformly convex, /2/< H.

Let l denote the solution of (6.8) with/7/replacing H. Then

(6.19) l _< We on [-L,i] x (0, cx)

by the maximum principle. Passing to a further subsequence if necessary, we may
assume

(6.20) I]Vj -- l locally uniformly in (-L,L) x (0,
Since/7/" > 0 > 0 for some 0 > 0, we see from (6.15) that I2d is a smooth solution of

lfdt =-(I2Vyy)- in (-L,L)x (0,
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Therefore,

and so

(6.21)

sup
t>0

su, IS(u, )- (u)l o() s - 0.

From (6.17)-(6.21), we deduce

(6.22) H**(y) >_ W(y,t) >_ I(y) / O(t) (lYl <- i).

Since the mappings y -, W(y, t) are convex and bounded for 0 < t <_ 1, the derivatives
(Wy(., t))}0<t<l are uniformly locally bounded. Hence there exists a sequence tk -- 0
and a convex function G such that

w(.,)--
locally uniformly. Owing to (6.21),

H**(y) >_ G(y) >_ [-I(y) (lYl <- L)

for each uniformly convex /2/ <_ H, as above. We conclude that G H**. This
deduction holds for any such sequence tk O, and so

(6.23) lim W(. t)--- g**
t--0+

locally uniformly.
As y W(y, t) is convex for each t > 0, the limit

(6.24) lim Wy(., t) (g**)’
t-.0+

exists in Loc, 1 _< p < . Furthermore, for each fixed t > 0,

w(.,t) W(.,t) Wy(.,t) in no.
Consequently, we may rewrite (6.23) and (6.24) to read

] im_o/ im_0W (., ) H**,
(.)

i0+im0 (., ) (H**)’.
3. It remains to replace the subsequence j 0 in (6.25) with the full limit
0+. Suppose therefore that we have another sequence i 0, and

W, W
locally uniformly in (-L, L) (0, ). Then, as above,

H** $ + O()

for any uniformly convex H. Thus given any 5 > 0, there exists a time t > 0
such that t 0 5 0 and

]]$(.,) w(., )l(_,) .
Now W and W are uniformly convex and smooth in Its, ), and

W =-(Wyy)-, =-(uy)- in (-L,L) Its, ).
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Furthermore,

W on (-L} (O, oc) and

Thus the maximum principle implies

su Iw(, ) w(, )1 <

This estimate obtains for each 5 > 0, and consequently W W on [-L,L]
[0,).

7. Analytically natural approximations: Moion of level ses
seems dicul o exend o mos of he analysis in4 concerning he unfolding
of he level curves in he plane. Indeed, even he laws of evolution (4.2) and (4.8)
become considerably more complicated in higher dimensions.

To deduce he geometric law of moion in general, le us for he purposes of he
following calculation suppose v is a smooh solution of he level-surface hea equation

(7.1) vt ’v 2v, ID’vl 2

v= + v== in = x (0,),
v2Vxn

where, recall, the implicit summation is for 1 to n- 1. We also sume v 0 in
some region, in which we analyze follows the motion of the level surfaces of v. Let
(F}0 denote some such level surface. Recall that

Dv
u

[Dv[ ("’" ’)

is a unit normal vector field to Ft and vt/]Dv] is the normal velocity. We also write
u (#, un) and denote by F the surfaces obtained by intersecting Ft with the planes
{xn constant}. Then (n 1) times the mean curvature of Ft is

H div() div

and (n- 2) times the mean curvature of r is

H’ div ( D’v )D’vl
the latter divergence computed in the variables x’ (xl,... x=_) with x held fixed.

Now
DvlH v v

iDvl2

the summation for 1 k, n. Consequently,

ID’vl2’v + ID’v2v + v2 ’v 2v,xnxn xn Vxn Vxixn

summing 1 i,j n- 1. Thus (7.1) implies

IDvI3H v2 2’v

v2=vt + IO’vl3H’.
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Hence
vt [Dvl " H-

IDvl v
Consequently the level sets of v evolve so that

1 [’l(7.2) normal velocity
(un)2

H- (un)2 H’.

For the approximations ve, which solve (3.2e), the law of motion of the level sets is

1
normal velocity

The evolution given by the PDE (2.5e), or equivalently (7.3e), is "geometrically nat-
ural" but nonetheless hard to visualize and difficult to study rigorously. We therefore
propose to study instead the solutions we of the "analytically natural" approximations
(.)

w ((w) / 2)-((()2 / 2)A,w 2w,w, + [D’wl2
in (0, ),

w g on { 0},
the summation for 1,..., n- 1. This PDE does not verify the geometric scaling
identity (3.3), (3.5) but on the other hand is defined pointwise even if IDwe[ O. In
the rest of the paper, we provide some preliminary analysis of the behavior of we as
e --. 0. Many questions remain open, however.

LEMMA 7.1. There exists a unique weak solution to (7.4e). In addition, we have
the estimates

sup ess suplw
o<e< [o,)

(7.6) ess sup
0<e<l

Proof. Since (7.4e) is not uniformly parabolic, we approximate further by consid-
ering the PDE

=(.+ ((. +
(7.7,) - .,- ,- , +_., .., +

w,= g on {t 0}.
This PDE is uniformly parabolic for any solution with bounded gradient and so pos-
sesses a unique, bounded, smooth solution we,. We have the estimates

>0 [0,)

and thus there exists a subsequence 5j 0 and a Lipschitz function w such that

we’ w locally uniformly on x [0, ).

Then w is the unique weak (i.e., viscosity) solution of (7.4).
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Estimate (7.5) is clear from the contraction property of the mapping t -, we (., t).
To prove estimate (7.6), we modify the method of Lemma 2.4 by noting that

is also a weak solution of

zt z2x. + e2)-l((z2. + e2)A’z 2zx, za.z,. + ID’zJ2z.x.) in In (0, oc).
In view of the bounds (7.5), (7.6), there exists a sequence ej --* 0 and a locally

Lipschitz function v on Rn (0, cx)) such that

locally uniformly on

It is straightforward to verify that v is a weak solution of the level-surface heat equa-
tion, although in general v will not continuously attain the initial values presented
by g. We expect instead that the level sets of v will be graphs in the xn-direction,
the point being that the PDE (7.4e) contains some kind of mechanism forcing the
derivatives we to become nonnegative as e -, 0, even though this is not necessarily
true at time t- 0.

THEOREM 7.2. We have

vx. >_0 a.e. in Rnx(0,

Proo]!. 1. We consider the PDE (7.7e,) and for notational simplicity suppress the
superscripts , 5. Thus w we’ satisfies
(7..S)
w,-(w +u)-X((w +z)ZX’w-Zw,w,w,,+(IO’wlU+,)w..) in Rnx(0,)

Differentiate (7.8) with respect to x and (selectively) set z z’6

+ + + (ID’ l +
2zID’z[ ((7.) z + e +

_
www+e +4 w

+
w. + e (w. +) /

z..

This PDE has the form

2zD’z]2

(7.10) z aktz, z2 + e2 + bz. in n x (0, ),

where the coefficients ((am))k,t are uniformly positive definite.
2. We propose to compare z z(x, t) with 5 U 5(x’, t), a solution of

D’l "- (0,)(7.11)
A5 e in

5 0 on n-1 x { 0}.
Here

(7.12) .(x’) _= inf gx. (x’, xn) (x’ e Rn-1).

In view of hypothesis (2.12),

(7.13) - 0 if Ix’l _> R.
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Set

We may assume m < 0, as otherwise we at once deduce that 5 _> 0 in ]1n-1 [0, (X)).
Let us transform the PDE (7.11) into the heat equation by writing

(7.15)

where

X1 [arctan () -arctan (-)](7.16) (x) Ce(x)

A calculation verifies

(x e ).

(7.17) fit A’fi in

Now in view of (7.14), we have the normalization

(7.18) rain (. 0) 0,

and furthermore

(7.19) fi(.,0)l._l_B(o,R) _--1 arctan - _
Cg-1

since m < 0. Now,

(x’,t)
1 jf I=-VI

(4rt)"--- .-1

e- (y’, O)dy’_
(4rt).

e- .t dy’
.-1-B(O,n)

>-’ ,;"--’1 e- t d
et n--B(O,R)

e-lz’lU/4 dz.
--B(O,)

Fix any time to > 0. Then if x e R-, t to, there exists (to) > 0 such that

(x’, t) -.
Owing then to (7.15) and (7.16),

(7.20) arctan arctan _> 9’ > 0,

and we have now restored the superscript s on 2e, the solution of (7.11e). Since m < 0,

t 7 -7 + o( s --, 0.

Consequently, (7.20) implies

(7.21) S(x,t) >_ stan 9’- + o(1) >_ -Cs (x’ e 11’-1, t _> to).
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3. Now return to the PDE (7.10) and note that 5 5e, regarded now as a function
of x E R t > 0, solves the PDE

2
(7.22)

E2+
with

(7.23) _< z on ]I(n (t -0}.

We claim that, in fact,

(7.24) 5 _< z in ]R [0, oc).

To see this, write fi (5) (as in (7.15)) and u (z). We invoke (7.10) and (7.16)
to calculate

" anne" u2 in Rn (0, oc)ut akluxx bux + 2ain (,)2 ux,ux (,)2 x

Cxn

for

c c(x, t) b(x t) + 2ain
(z)

Now since fi solves the heat equation (7.17) and does not depend on the variable Xn,
we have

t aklxx in ]n X (0,

as well. Because is strictly monotone,

_<u on ]Rnx{t=0}.

Consequently, the maximum principle implies

fi_<u in It([0,c);

whence (7.24) follows.
4. We finally restore the superscripts to the notation and rewrite (7.24) as

ze < ze’= we’ in IIn x [0,

Letting 5 0, we deduce

(7.25) ze
_
we n [0, cx)a.e. in ),

we the weak solution of the approximation (7.4e). Observe also that we have

(7.26) we
Cn Vxn

weakly star in L(]n (0, cx))). Finally, fix to > 0. Then from (7.21) and (7.25), we
deduce that

vx _> 0 a.e. in n [tO,

This conclusion is valid for each time to > 0.
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INVERTIBILITY AND A TOPOLOGICAL
PROPERTY OF SOBOLEV MAPS*
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Abstract. Let gt be a bounded domain in ]Rn, let d t be a homeomorphism, and
consider a function u gt ]R that agrees with d on 0gt. If u is continuous and injective then
u(gt) d(gt). Motivated by problems in nonlinear elasticity the relationship between u() and d(t)
is analyzed when the continuity and invertibility assumptions are weakened. Specifically maps that
are continuous on almost every line and maps that lie in the Sobolev space W1,p with n- 1 < p < n
are considered.

Key words. Sobolev spaces, elasticity, cavitation, singular minimizers, injectivity almost ev-
erywhere
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1. Introduction. In this paper, we investigate a topological property of maps
u t c n

_
n that lie in certain Sobolev classes. In view of applications to nonlin-

ear elasticity, we are specifically interested in the extent to which the boundary data
ulon determines the image of gt under u, provided that u satisfies certain hypotheses
of invertibility.

In the context of continuous maps, one has the following classical result. Let
gt C lln be a bounded domain (a nonempty, connected, open set). Suppose that u
and d are continuous maps from gt into n and that the restriction of each map to
gt is injective. If u and d agree on the boundary, OFt, then u(Ft) d(t). For a
continuously differentiable map u, the global invertibility condition can be replaced
by the pointwise condition detDu 0. Ball has generalized this result to Sobolev
maps.

THEOREM (see [BA 81]). Let d and be as above. Assume that Ft has Lipschitz
boundary and that d() satisfies the cone condition. Suppose that, for some p > n
and q > n, u E WI’p(; n) N C(; ]l(n), det Du > 0 a.e. and

(1.1) Inu(x)lP + (det Du(x))q-1
dx <

If u d on OFt then u[n is a homeomorphism and u() d(Ft).
Here adj F denotes the transpose of the matrix of cofactors of the matrix F and

(1.1) is chosen so that the inverse of u (if it exists) lies in the space W1,q. nall’s proof
relies on subtle arguments that involve the Brouwer degree and approximation of a
tentative inverse.
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We note that the motivation for studying such properties of Sobolev maps arises
in nonlinear elasticity. In order that such a map correspond to a reasonable physical
notion of a deformation, it must satisfy some invertibility hypotheses. (For example,
one might require that det Du > 0 a.e. and that UlFt\N be one-to-one, where N has
measure zero.) Questions then arise as to the proper formulation of, the relationships
among, and the topological implications of such hypotheses. For many materials, the
expression on the left-hand side of (1.1) gives a lower bound (up to a constant) for the
energy of an elastic body undergoing a deformation u. However, for some materials,
one only has the lower bound f IDu(x)lPdx for some p < n. Such materials allow
discontinuous deformations that correspond to the formation of a hole or cavity in
the material (see, e.g., [Ba 82]). Moreover, the formation of such cavities has been
observed in experiments on such materials (see, e.g., [GL 58]). In this case, the above
theorem of Ball does not apply and we propose to study the situation in more detail.

Our first result concerns maps that are continuous on almost every line segment.
This is the case, for example, for (the precise representative of) maps in WI,I(t;IRn)
(see [Mo 66]). In the following, we denote the k-dimensional Hausdorff measure by
k.

THEOREM TL (topological location theorem). Let. C IRn be a bounded domain
and let d -- n be a homeomorphism. Suppose that u IRn satisfies the
following:

(i) u(x)- d(x) for every x e Ot;
(ii) there is a set N c gt with. 7-l-(N) --0 such that ul\N is injective; and

(iii) each of the n functions t u(t, x2,..., Xn),..., t -* u(xl,..., Xn--, t) is
continuous on each line segment in f for n- almost every value of the other inde-
pendent variables. Then either

u(x)
or

for a.e. x E f

u(x) e n\d() for a.e. x e .
Remarks. 1. If u is the precise representative (see (2.12) and Proposition 2.7) of

a map in WI, (gt; If(),then the conclusion of this theorem actually holds for 7-/n- a.e.
x f (see the proof of Theorem AL in 4).

2. We have not been able to determine if the conclusion of the theorem is also
valid if one replaces hypothesis (i) with the more natural hypothesis that u d ?_/n-
a.e. on 0t.

3. In 5, we give an example that shows that the conclusion of the theorem may
not be valid if the set N satisfies T/n- (N) > 0.

4. The proof of this theorem, which is given in 3, exploits the fact that the image
of "most" line segments cannot intersect d(0gt) and hence must remain in d(gt) or
n\d(). The use of line segments in different directions yields the same conclusion for
little cubes (minus a null set) and the fact that 12 is connected finishes the argument.

In contrast to the case of continuous u, one cannot, in general, conclude that
u(gt) d(12) or even that u(12) c d(Ft). For example, take gt to be the unit ball and
consider the maps

(1.2) f(x)=
21xl

x

and

(1.3) g(x)=
ix

x,
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each of which is equal to the identity on the boundary of the unit ball, B(0, 1).
However,

f(B(0, 1)) C B(0, 1),
g(B(0, 1)) C ]Rn\B(O, 1).

We next aim for conditions that distinguish between the two alternatives given in
Theorem TL. To this end, we note that the map f given by (1.2) satisfies det Df > 0
a.e. and f(t) C d(Ft), while the map g given by (1.3) satisfies det Dg < 0 a.e. and
g(t) c ]n\d(). The following result shows that the sign of the Jacobian does indeed
distinguish between the two alternatives. For simplicity, we focus on the case when d
is the identity and t is the unit ball. We refer to 2 for the definition of the precise
representative.

THEOREM AL (analytic location theorem). Let be the unit ball in R’. Suppose
that u E Wl’p(gt;In), with p > n- 1. Let u* denote the precise representative.
Suppose that

(i) u*(x) x for _[1 a.e. x
(ii) there is a set N c gt with ?-ll(N) 0 such that U[-\N is injective; and
(iii) det Du 0 a.e. and det Du > 0 on a set of positive measure.

Then
u(x)

and
det Du > 0 a.e.

Remarks. 1. Various generalizations are possible. The unit ball can be replaced
by a more general smooth (or even Lipschitz) domain. It suffices that the restric-
tion to the boundary of the precise representative agree 7-/1 a.e. with the restriction
of a continuously differentiable diffeomorphism d. (Weaker smoothness assumptions
on d will also suffice.) These and other generalizations are left to the (technically)
courageous reader.

2. In regard to hypothesis (ii), Theorem TL suggests that the condition 7-/n-1 (N)
0 might be sufficient. However, we have been unable to prove or disprove such a state-
ment. The heart of the matter seems to be whether a map w WI’p(sn-1;n) that
is injective T/n-2 a.e. has a degree that is nonzero on exactly one component. This
seems plausible since T/n-2 null sets do not disconnect Sn-1.

3. In view of applications to nonlinear elasticity, it would be useful to determine
conditions that imply hypothesis (ii) (as well as hypothesis (ii) of Theorem TL). In
this regard, Ciarlet and Neas [CN 87] give a criterion based upon the change of
variables formula that ensures injectivity :n a.e. (see verk [v 88] and Tang [Wa 88]
for further extensions). No such criterion seems to be known for invertibility 7-/1 a.e.
or n-1 a.e.

The proof of Theorem AL is simple in spirit but requires some technical prepa-
ration, which we have summarized in 2. The main idea is as follows. The first step
is to show that

(1.4) det Du > 0 a.e. or det Du < 0 a.e.

To this end, let B(a,r) c t be the ball of radius r centered at a. For 1 a.e.
r, U*10S(a,r) is injective and in wl,p(OB(a,r);R") (and hence continuous). By the
Jordan separation theorem, ll(n\u (0B(a, r)) consists of two components, one of which
is bounded. Let U be the bounded component. Moreover, the Brouwer degree of
U*10S(a,r) in U is either +1 or -1. Assume the former for definiteness. In this case,
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the outward unit normal n to U can be expressed in terms of the cofactors of the
tangential derivatives as

(1.5) n
(An_lDU)v

(see Lemma 2.4), where v is the outward unit normal to B(a, r).
Next, by Theorem TL, either u(x) e U for a.e. x e S(a,r) or u(x) e Rn\V

for a.e. x E B(a,r). Suppose the latter. Now if u* was C at z E OB(a,r), it
would follow from (1.5) that det Du*(z) < 0. This result can also be obtained in the
current situation from an approximation argument (see Proposition 2.6 and [MS 95,
Lem. 2.5]). In particular, det Du is of constant sign on a.e. sphere and one easily
deduces (1.4) (see Lemma 4.1).

For the second step, we argue by contradiction and assume that the second alter-
native in Theorem TL is satisfied. Extend u to an 7-/1 a.e. injective map of B(0, 2) by
letting u(x) x/Ixl 2 on S(0, 2)\S(0, 1). The first step applied to the extended map
implies that det Du < 0 a.e. in B(0, 2), which is the desired contradiction.

Finally, we mention some related work. The idea of using degree-theoretic ar-
guments on almost every sphere is due to verk [v 88] (see [MTY 94] for some
extensions). This approach necessitates the assumption p > n- 1 in order that the
maps be continuous on such spheres. Mal [Ma 93] recently used rather delicate esti-
mates to show that in certain situations some information can be obtained about the
borderline case p n- 1. It is well known that for p _< n maps in W,p may have
very pathological behavior. Besicovitch [Be 50] constructed continuous maps from
]R2 into I3 that are in W,2 but that map a Lebesgue null set onto a set of positive
L:3-measure. Ponomarev [Po 87] obtained homeomorphisms in WI,p(p < n) that map
null sets onto sets of positive measure and Mal3 and Martio [MM 92] solved a long-
standing conjecture by exhibiting a continuous map in W, that satisfies det Du 0
a.e. and maps a null set onto a set of positive measure. For p > n, such behavior is,
of course, ruled out by the area formula of Marcus and Mizel [MM 73]. If p n and
det Du > 0 a.e., then u has a continuous representative that maps null sets onto null
sets (see [GV 76], [v 88], and [MZ 92]).

2. Preliminaries. In this section, we review the main analytical tools used
in the paper. We first introduce some notation from multilinear algebra which will
be useful in describing the behavior of surfaces under differentiable maps. One of
our basic tools is the Brouwer degree, and we will make use of its representation
as a boundary integral (Proposition 2.1) as well as the Jordan separation theorem
(Proposition 2.2). We then review some facts about sets of finite perimeter. Together
with the boundary representation for the Brouwer degree, these lead to a description of
the generalized normal of the connected components of n/u(O2) (see Lemma 2.4).
A second characterization of that normal is obtained in Proposition 2.6. Here the
notion of approximate differentiability turns out to be very useful. The comparison
of the characterizations in Lemma 2.4 and Proposition 2.6 is at the basis of our proof
of Theorem AL. Finally, we recall the notion of the precise representative u* of a
Sobolev function u W,p, which allows one to assign to u pointwise values off a set
of Hausdorff dimension n p.

We now introduce some notation from multilinear algebra (see, e.g., [Fe 69,
Chap. 1] or [Sp 65, Chap. 4]). We denote by. the scalar product of vectors in ]R and
by A their exterior product. For n _> 2, we identify the space A_IR of alternating
n- 1 tensors on ]Rn with ]R by means of the map

(ala2... an-1) al/k a2 A A an-l
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which is characterized by the following conditions:
(i) it is multilinear and alternating; and
(ii) if el, e2,..., en is the canonical basis for n, then el A... A e-i A e+l A

A en (--1)n-ei.
If a, b E 3, then a A b is the usual vector (cross) product.

We write Linm for the set of all linear maps from ]’ into and adj
Lin -+ Linn for the unique continuous function that satisfies

(2.1) F(adj F) (det F)Id

for all F E Linn, where det F is the determinant of F and Id Linnxn is the identity
mapping. Thus, with respect to any orthonormal basis, the matrix corresponding to
adj F is the transpose of the cofactor matrix corresponding to F. We note that adj F
satisfies

(2.2) (adj F)T(al A a2 A... A an-l) Fal A Fa2 A... A Fan-1
for all vectors al, a2,..., an-1 @ n.

If V is an (n 1)-dimensional subspace of and L V ][n is linear, then we
define An-IL :An-iV -- ][n by

(2.3) (h_iL)(al A a2 A..-A an-l) Lal A La2 A... A Lan-1.

Let v be a unit vector normal to V. Then the one-dimensional subspace An-IV can
be identified with {Av A I}. If l Linnn is a linear extention of L, then, by
(2.2) and (2.3),

(2.4) (An_lL)v (adj I)Tv.
In the following, f will denote a nonempty, bounded, open subset of n, n > 2,

whose boundary 0f is smooth. We denote by LP() and WI’p(-) the spaces of
p-summable and Sobolev functions, respectively. A vector-valued or matrix-valued
function is in LP(W’p) if all its components are, and we write, e.g., LP(; ’). The
spaces WI’p(oFt) are defined by local charts (see, e.g., [Mo 66]).

We denote the n-dimensional Lebesgue measure by and write 7/k for the
k-dimensional Hausdorff measure. We use the notation

B(a, r) {x e ][n .IX al < r}, S(a, r) 0B(a, r).

We briefly recall some facts about the Brouwer degree (see, e.g., Schwartz [Sc 69]
for more details). Let u" f - be a C map. If Y0 Rn\u(O) is such that
det Du(x) # 0 for all x e u-x (Y0), one defines

deg(u, D, Y0) sgn det Du(x).
xEu-l(y)

If is a C function supported in the connected componev.t of R\u(0f) that con-
tains Y0, one can show that

(2.5) f(o u) det Dudx deg(u, a, y0)j/n pdy.

Using this formula and approximating by C functions, one can define deg(u, D, y)
for any continuous function u f -+ Rn and any y R=\u(0f). Moreover, the degree
only depends on

Indeed, if u C(f; R), then since f has smooth boundary, the degree can be
expressed as a boundary integral as follows. First, recall the identity (see, e.g., [Mo
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66, Lem. 4.4.6])

or, in components,

div(adj Du)T 0

0
(adj Du) 0

OxJ
for/- 1,...,n.

Let o be as above and let g:IIn -+ n be C with div g o. Then the above
identity in connection with (2.1) implies that

div[(adj Du)(g o u)] ( o u) det Du.

Thus by the divergence theorem and (2.4),

(o u)detDudx fo(go U)" (in_lVu)d-n-l,

and hence by (2.5),

(2.6) deg(u,O,y0) f (pdy f (go u). (An_lDu)udTln-1.
JO2

Here denotes the outward normal to 0 and Du is viewed as a map from the tangent
space of 0 to ]n.

PROPOSITION 2.1. Let p > n-1. Suppose that is the continuous representative
of a function in WI’P(O;]n). Then satisfies equation (2.6). Moreover, if h E
C (]ln; I[n) then

(2.7) f deg(, O, y)(div h)(y) dy f (h o ). (An_1D)dUn-1
J

Remark. Note that is differentiable n-1 a.e. on 0 (see, e.g., lEG 92]) and
D(x) is viewed as a linear map from the tangent space Tx(0) into n.

Proof. For (2.6), see [v 88, Lem. 1]. In order to prove (2.7), we will use a
slightly sharpened version of (2.6). Let Ui be a connected component of In\(O)
and suppose that bi E .q(]ln), q > n, with support in Ui. Write k(z) CnZ/Izln and
let bi k i so that div bi i. We claim that

deg(, Off, y)i dy deg(, Off, Ui) J: i dy

f0n(b o ). (An-1D)v d’Hn-1

deg(,Oft, y)divhdy Jfo (bo). (A_xD)d?-/-1

Indeed, this follows easily from (2.6) if we approximate i in L:q by C(U) functions
azl’q (IRn; IRn) (and hence locally uniformly)Ti

b(j) and use the fact that bj) converges in o
and that (0f) is compact.

We next observe that deg(,0fl, .) is integrable. To see this, it suffices to let

Xu sgn(deg(, 0, Ui)) (with the convention sgn(0) 0) and to observe that
b -i bi converges in Wlo’q (and hence locally uniformly) since the degree vanishes
on the unbounded component of IR\(0).

Finally, let Xu div h and note that n((O)) 0 by the area formula.
Thus it follows from (2.8) and the dominated convergence theorem that
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Moreover, div b div h and hence (2.6) applied to b- h implies that

f (bo ). (An-ID) dT"ln-1 f (ho ). (An-ID) d’Hn-l,
dof JO

which finishes the proof. F1
We will use the following generalization of the Jordan curve theorem (see, e.g.,

[Sc 69, Thm. 3.21]).
PROPOSITION 2.2. Assume that In\of consists of exactly two connected com-

ponents. Suppose that " Of --. In is continuous and injective. Then
consists of exactly .two connected components U and V and OU OV (Of). If we
denote by U the bounded component, we have

m ifyEU,
deg(, 0t,y)

0 ify

where m E {- 1, 1 }.
Next, we briefly recall some properties of functions of bounded variation and sets

of finite perimeter. More details can be found in [EG 92], [Gi 84], or [Zi 89]. A function
LI(In) is said to be of bounded variation ( BV(Rn)) if its distributional

derivatives are signed measures, i.e., if

[[DI[ :-sup{jf divwdy" w C(];I), [wl _< 1} <o.
A measurable set A is said to have finite perimeter if its characteristic function XA
is in BV(]’). Sets of finite perimeter enjoy a surprising degree of regularity. Specif-
ically, there exists a set O*A (the reduced boundary) and a function g O*A --> n
(the generalized outward unit normal, denoted ,(a, A)) such that the distributional
derivative DXA satisfies

DXA --V’n-1 O*A

(where denotes the restriction) and

-/-I(O*A) [[DXAII., I’[ 1 7"ln- a.e. on O*A.

Moreover, agrees with the measure-theoretic normal ?_/n- a.e. on O’A, i.e., for
7-/n- a.e. a O’A, one has

n{x e B(a, r) N A" (x a). ,(a, A) > 0}(2.9) lim 0,
rO+ rn

n{x e B(a,r)\A’(x-a). ,(a,A) < 0}
0.(2.10) .lim

r-+0+ rn

In order to compare the outward unit normals of gt and u(t), we will use the
following version of the area formula.

PROPOSITION 2.3 (see [MM 73], [Fe 69, Cor. 3.2.20]). Let F be an oriented,
smooth, (n- 1)-dimensional manifold with continuous unit normal field ,. Suppose
that u WI,p(F;In) f3 C(F;n) wi.th p > n- 1. Then for any 7-ln--measurable
AcF,

t-X(u(A)) < --f I(i-nu)l dTt’- < f Inuln- d-[,n-1.
JA JA
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Moreover, if Nn - N is 7-In-l-measurable and u is injective then

o u)I(An_IDu) dT-/n-1 ] dT-I-1
(A)

whenever either integrand is in L
Remark. One consequence of the above result that we will need is that the image

under u of the set {x E F: (An-iDu(x))’(x) 0} is an T/n-1 null set.
LEMMA 2.4. Let Ft have smooth boundary with outward unit normal . Sup-

pose that n\oFt has exactly two connected components. Let u WI,p(oFt;Rn) V
C(0t; l), with p > n- 1, and assume that u is injective. Denote by U the bounded
component ofIn\u(OFt) (cf. Proposition 2.2). Then U has finite perimeter, the reduced
boundary O*U agrees with OU u(0gt) up to an -1 null set, and the generalized
normal satisfies

(An-lDU) (u_)(y, U) m
](An-IDU)] (y)) for _n-

where m deg(u, Ot, U). If, moreover, I(hn_lDU)l > 0

u) (A_Du(x))u(x)

a.e. y u(0t),

_n-- a.e., then

where m {- 1, 1 }.

if An_lDU(u-l(y))(u-l(y)) O,

a.e.y. Let g Cl(]ln; ]n).

[ g. g, d,/_/,-
(oa)

jf,. deg(u, Oft, y) (div g)(y) dy

m jf Xv(div g) dy,

Finally, it is clear from (2.11) that U has finite perimeter and

DXu -mu .n-1 U(O). [-]

We next give a characterization of the (measure-theoretic) normal of the image
u(D) of subsets D C t. To this end, it is useful to consider the approximate derivative
of u.

DEFINITION 2.5. Let E C Nn be a measurable set. For x N, we define the
upper and lower density of E at x by

D+ (x, E) lim sup
r--0+

D- (x, E) lim inf
r--O+ OdErn

/n(B(x, r) fl E)

Proof. Define

/0(y)
(An_lDu)
I(i-lDu)l (u-I(y)) otherwise,

and note that, by Proposition 2.3, I(y)l 1 for Un-1

Then, by the area formula with g. 9,

0
(g o u). (An-lnU)dnn-1

and hence, by Propositions 2.1 and 2.2,

dT"n-g.
(oa)

(2.11)

for 7"n- a.e. x OFt.
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where Wn denotes the volume of the unit ball in n. If the two values agree, their
common value is the density, D(x, E), of E at x. We will sometimes say that x is a
point of density D(x, E) of E.

Let u E -+ ]Rm be measurable. We say that u is approximately differentiable at
x if there is an F E Lin"n such that for every e > 0,

L:n{z e B(x, r) N E lu(z u(x) F(x z)l < er}
1,lim

r--+O+ COnrn
and we write

(ap Du)(x) F.

Remark. By the Lebesgue point theorem, D(x, E) 1 for L:* a.e. x E. If E is
open. and u is (a representative of an equivalence class) in WI’I(E) then ap Du exists
/:n a.e. and agrees with the distributional derivative (see, e.g., [Fe 69, Thms. 3.1.4 and
4.5.9] or [EG 92]).

If u 2 --+ u() is a diffeomorphism then for any x 0 the outward unit normal
n to u() at u(x)is given by

(An_1Du(x))’(x)n(u(x)) sgn(det Du(x))i(hn_Du(x)),(x)l.
The following proposition shows that a suitable version of this formula is also valid
for Sobolev functions. See, e.g., [MS 95, Lem. 2.5] for a proof.

PROPOSITION 2.6. Let u" f IRn be (a representative of an equivalence class)
in WI’I(;IR’) and assume that det Du 0 L: a.e. Then there is an c of full
measure such that

(i) u is. approximately differentiable on
(ii) det(ap Du) 0 on ;
(iii) irE CC has smooth boundary, x0 OEgfl, , is the outward unit normal

to E at x0, and

(A_I (ap Du) (x0)),
n sgn det((ap Du)(x0))i(h_ (ap Du) (x0)),]"

Then for any r > 0 and any E.n null set N, the set

u((E\N) Yl B(xo, r)) {y" (y U(Xo)) n < O}

has density 1/2 at u(x0).
Remarks. 1. Note that det((ap Du)(x0)) 0 implies (hn-l(ap Du)(x0))’ 0.

Also, E need not be smooth. It suffices that E have a measure-theoretic normal at
xo.

2. If u(E\N) has a measure-theoretic normal , at u(x0) (cf. (2.9) and (2.10)),
then the above proposition yields n.

Since we are interested in the behavior of Sobolev functions on lower-dimensional
sets, it is useful to consider a specific representative. The precise representative u*
f --+ ]Rn of an equivalence class {u} e WI’p(-; ][n) is defined by

lim u(z)dz if the limit exists,
(2.12) u*(x) -++B(x,)

0 otherwise,

where A denotes the average value of the integrand over A, i.e., the integral of the
function over A divided by the n-dimensional Lebesgue measure of A.
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The definition of u* at points where the above limit does not exist is somewhat
arbitrary. For a thorough discussion of precise representatives, we refer to lEG 92] or

[Zi 89]. The main properties of u*. are summarized below.
PROPOSITION 2.7. Let u E WI’P(;n) with 1 <_ p < n. Let p* := np/(n- p)

be the Sobolev conjugate exponent. Then there are sets P and P with Capp(P)
Capp(P) 0 such that the following properties are satisfied:

(i) (existence of the limit). The limit in the definition of u* exists for all x
\P and, if p.(.) r-np(-) is the standard family of molifiers,

u)(x) u*(x)

for each x \P.
(ii) (nebesgue points). For any x e \P,

lim " In(z) u* (x)Ip* dz 0.
r--.0+

B(x,r)

(iii) (invariance upon change of variables). If g is a bi-Lipschitz map, then

(u o g)* u* o g on g-l(t)\P’.

(iv) (continuity on lines), u* is absolutely continuous on n--1 a.e. line segment
parallel to the coordinate axes.

(v) (restriction to hyperplanes). For 1 a.e. coordinate hyperplane H the re-
striction v U*lgna is in WI’P(HN;]n) and apDv (apDu)lHn T/n-1 a.e. on
H. If, moreover, p > n- 1, then v is continuous.

Remarks. 1. The property Capp(P) 0 implies that 7-/5(P) 0 for every 5 >
n- p. For p > n- 1 one has in particular 7-/1 (P) 0.

2. Consider p > n- 1. If we use polar coordinates, it follows from (iii) and (v)
that u* is continuous on the spheres S(a, r) for 1 a.e.r.

3. The equality of the approximate derivatives in (v) is a consequence of the same
equality for the corresponding distributional derivatives and the fact that each of the
approximate derivatives is a representative of (the equivalence class that contains) the
corresponding distributional derivative.

In the following, we will be concerned with maps u WI’p(t; n) and we wish
to define u* on OFt. Let E" WI,p(;n) -- WI’p(n;]n) be an extension operator
(which exists if 0t is Lipschitz, see, e.g., [GT 83, Thm. 7.25]) and define

(2.13) u* (x)’= (Eu)* (x) for x e 0t.

A slightly different approach is to first consider the trace v ulon (which is well
defined as an equivalence class in LP(O)). If c U c -1 __, F is a chart of F, one
could then define

(2.14) u** (c(x)) := (v o c)* (x).
It turns out that the two definitions agree up to a set of Hausdorff dimension n p.

LEMMA 2.8. Let A {x: u* (x) : u** (x)}. Then H (A) 0 for every 5 > n-p.
Remark. This result shows that (2.13) and (2.14) are essentially independent of

the choice of E and c. The result is probably well known to experts, but we have
included a proof for the convenience of the reader.

Proof. As is usual in such situations, we locally flatten 0 to reduce the problem
to the following case. Let u E wl’p(n;n), H Ii(- {0}, and let v be the
trace of u on H. Define A {x e H: u*(x) - v* (x)}. Then we must show that
7-/5 (A) =0.
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We note that the definition of trace gives us

/. /./olu(x’...) v(x’)l ’ _< (x’. ) x’

for any (measurable) V c n-1. Thus, if we write a- (a’, 0) and let Q(a, r) be the
)n and Q’ +r(-, )n-cube a + r(-, (a’ r) a we find that

v(x’) e’ u*()

_< ] iv(x,)- u(x’,xo)l’x’’xn / ] lu(x)- u*(a)l’x
Q(a,r) Q(a,r)

r Ixl dx + lu(x) u*(a)] dx.

Q(a,r) Q(a,r)

Therefore, A c A1 U A2, where

AI-{alt(n’limsupr-o+ r / IDuldx>0}
Q(a,r)

C{a E In limsup
r--O+ rP-n/

Q(a,r)

DulPdx > 0} 21,

A2: {aE’n’limsupr_o+ / ]u(x)-u*(a)Idx>0}.
Q(a,r)

Thus, by lEG 92, 2.4.3, Thm. 3], ’n--P(Jl) 0, while Proposition 2.7(ii) implies
that T/5(A2) 0 for all 5 > n- p.

3. Proof of Theorem TL. To simplify the notation, we let n 3. First,
note that since d is continuous and one-to-one, it is an open mapping (see, e.g., [Sc
69, Cor. 3.2]). In particular, d(gt) is open and hence (see, e.g., [Ci 88, Whm. 1.2-7])
0d(t) c d(0). Thus, if u is continuous on any line segment L C t, then either

(I) u(/)C
(E) u(L)C ]n\d(Q); or

(B) u(L) contains a point y d(x) with x e 0gt.

Moreover, in the last case, the point m L for which y u(m) must be contained
in the set N of hypothesis (ii) with 2(N) 0.

Next, let a t, 5 > 0 be such that the open cube

C "-(al, al 4-5) (a2, a2 + 5) (a3, a3, +5)C gt

and define
Cij (ai, ai + 5) (aj, aj + 5)

for i,j 1, 2, 3, < j, the projection of C onto the/,j-plane. Then, in particular, by
hypothesis (iii), there is an 2-measurable set $23 c C23 with 2($23) 2(C23) 52
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such that the function

; - U(/;, Z2, Z3), $ e (al, hi, --()

is continuous for each z (z2, z3) E $23.
Let $I (SE) be the subset of $23 such that the image under u of (al, al / ti)

SI ((a, a /) SE) is contained in d(g/) (n\d()). Note that by the first paragraph
of this proof, SI3SE and the set S23\(SIUSE) must be contained in the projection
of the 7-/2 null set N onto the 2, 3-plane. Thus the/:2-measure of $23\($I USE) is
zero and hence

2(SI (-J SE) 2.

We will now show that SI and SE are each 22-measurable and one of these sets has
:2-measure zero while the other has/:2-measure ti2. It will then follow that

(3.1) u(x) e d() for a.e. x e C,

or

(3.2) u(x) e ]n\d() for a.e. x e C.

Let LI (LE) be the projection of S (SE) on the x2-axis and define (see Figure 1)

A12 := (al, al / ) (L N LE) C C2.

Let z (z,z2) e A2. Then by construction there are z,z3E e (a3, a3-t-ti) such
that (z2, zI3) e SI and (z2, z3E) e SE. Thus the image under u of the line segment
((t, z2, z)’a < t < a + } is contained in d() while the image under u of the line
segment ((t, z2, z3E)’al < t < al +} is contained in n\d(). We note that the line
segment ((Zl, z2, t) a3 < t < a3 A-ti} intersects both of these line segments and hence
that u cannot be continuous on this line. Therefore, by hypothesis (iii), :2(A12) 0
and hence/: (LI LE) O.

FIG. 1. The cube C.

Let L; (L) be the projection of SI (SE) on the x3-axis. Then by the argument
used in the previous paragraph, (L; N L’E) O. Now,

SI C LI L C C23, SE C LE L*E C 623,

and hence
S, t2 SE C (ni L) t2 (LE L’E) C C23.
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Since 2(SI k3 SE) 2(C23) 52, we conclude that the set (LI x L}) k3 (LE x L’E)
is :2-measurable with measure 2 and hence, in particular, that

.2(LI x L’E) O.

A standard result from real analysis (e.g., Fubini’s theorem) then implies that at least
one of the sets LI or L is 1-measurable with measure zero. Consequently, either
SI or SE has 2-measure zero which gives us (3.1) or (3.2).

Next, let ti (FtE) be the union of all open cubes C c R, whose edges are parallel
to the coordinate axes, such that (3.1) ((3.2)) is satisfied. Then RI and YtE are open
subsets of R and, by the above argument, gt gt k3 RE. We note that ti g RE is
open. If it were nonempty, then it would contain an open cube C that would satisfy
(3.1) and (3.2), which is not possible. Thus fti N RE . However, t is connected
and hence either RI or RE must be empty.

Finally, let C, 1, 2, 3,... be an ordering of those open cubes in RI or RE
that have edges of rational length and whose centers have rational coordinates. Then
by the density of the rationals f (Jl C. Now, by the conclusion of the previous
paragraph, there are Mi C C such that ff_.3(Mi) 0 and either u(Ci\Mi) C d(f) for
every or u(Ci\Mi) C ]Rn\d(t) for every i. Thus if we define M [-Ji=l Mi, we
conclude that/3(M) 0 and either u(t\M) C d(R) or u(R\M) c ]n\d(), which
is the desired result.

We note that Proposition 2.2 (the Jordan separation theorem) together with the
proof of Theorem TL yield the following result, which we will use in the next section.

COROLLARY 3.1. Let t be a domain in ]Rn. Suppose that u R - In satisfies
hypotheses (ii) and (iii) of Theorem TL. Assume further that the restriction ulon is
continuous and injective, that n\R consists of exactly two connected components,
and hence (see Proposition 2.2) that n\u(0t) consists of exactly two connected com-
ponents U and V. Then

u(x) U or a.e. x f or u(x) V or a.e. x .
4. Proof of Theorem AL. We show first that for a function that satisfies the

regularity and invertibility properties of Theorem AL, the Jacobian is of one sign.
LEMMA 4.1. Let R be a domain in ]Rn and let v E WI’p(;IRn) with p > n- 1.

Suppose that det Dv 0 n a.e. and that there is an 1 null set M C R such that
the precise representative v* is injective on f\M. Then

detDv>0 a.e. or detDv<0 : a.e.

Proof. We first show that sgndet(ap Dv) is constant (T/-1 a.e.) on "most"
spheres. Let a E f and ra dist(a, 0t). In view of Proposition 2.7, there exists an
1 null set Na such that for r (0, ra)\Na one has

V* IS WI’p (S; In) CI C0 (S; ][n),
(ap D)(v*ls)(x (ap Dv*)lTxs(x for ’7-/n-1 a.e. x e S,

[(A_(apDv*))v[ > 0 for -1 a.e. on S,
.n--1 (S\R1) O,
S(M =0,

x-awhere Ftl is the set that occurs in Proposition 2.6 and v Ix-hi is the outward unit

to S :- S(a,r). (To verify the third assertion, note that if (An_l(apDv*)(x))e 0
for some e # 0, then det((ap Dv*)(x)) 0.)
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Let U be the bounded component of lRn\v*(S(a, r)) (see Proposition 2.2). Then
by Corollary 3.1, there is an L:n null set NTL such that

(4.1) v*(B(a,r)\NTL) C U

or

(4.2) v*(B(a, r)\NTL) C ]Rn\u.

Also, by Lemma 2.4, U has finite perimeter and the generalized outer normal satisfies

(A_1Dv* (x)),(x) 7_/_ S(a,,(v*(x),U)--m for a.e. xe r),

where m is a constant, which is either q-1 or -1.
We now apply Proposition 2.6 and recall the definition (2.9) and (2.10) of the

measure-theoretic normal. If (4.1) holds, one deduces

sgn det((ap Dv)(x)) m for -1n-1 a.e. x e S(a, r),
while (4.2) gives

sgn det((ap Dv)(x)) -m for 7-/n-1 a.e. x e S(a, r).
It follows that sgn det((ap Dv)(x)) is constant on S(a, r) (7-/-1 a.e.) for r e (0, ra)\Na.

Define

b := sgndet(apDv), f+/- {x e f (x) +l}.
We will show that the precise representative, *, of is locally constant and the
desired result will follow from the fact that f is connected.

Let x E f and assume for definiteness that *(x) +1. Suppose for the sake
of contradiction that y e B(x, rx) satisfies *(y) -1. Define a (x + y)/2,
p Ix- yl/2, and note that B(a, p) cc f. Also, define

A+/- {r e (0, ra)\Na" .n--l(-+/- f"l S(a, r)) > 0}
and note that the sets A+/- are/:-measurable since the functions t
f+/-) are measurable (by Fubini’s theorem or the coarea formula).

Now, since *(x) +1 and Ix- a] p, it follows that A+ has density 1 at
p. Similarly, since qo*(y) -1, A- must have density 1 at p. However, this is not
possible since A+ n A- 0. Therefore, o*(y) +1 for a.e. y B(x, rx) which im-
plies that o*(y) +1 for every y B(x, rx). Since f is connected this gives the
desired result.

Proof of Theorem AL. We note that hypothesis (iii) and Lemma 4.1 yield det Du >
0 a.e: In order to prove that u(x) e B B(0, 1), we will first show that there is an
7-/1 null set N such that either

(4.3) u*(B\N) C B,

or

(4.4) u*(B\N) C IR\B.
Indeed, define a function

u*(x), xeB,
:=

x, x OB.

Then fi satisfies the hypotheses of Theorem TL since u*(x) x for 7-/1 a.e. x OB.
(see Proposition 2.7 and Lemma 2.8). Thus we obtain (4.3). or (4.4) with/2(g) 0.
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Next, let P be the Capp null set of Proposition 2.7. Then, since B is open, (4.3)
and Proposition 2.7(ii) yield u*(B\P) c B, while (4.4) and Proposition 2.7(ii) give
us u*(B\P) C In\B.

If (4.3) is satisfied, then we are done. If instead (4.4) is satisfied, define an
extension of u to B(0, 2) by

u*(x),
w(x) .=

x/ixl 
xEB,
x e B(0, 2)\B.

Then w e WI’P(B(O, 2),In) and by Lemma 2.8 w*(_x) w(x) for .1 a.e. x e
B(0,2). Thus, by hypothesis (ii) and (4.4), w is injective off an ?_/1 null set and
hence w satisfies the hypotheses of Lemma 4.1. However, det Dw > 0 a.e. on B
and det Dw < 0 a.e. on B(0,2)\B, which contradicts the conclusion of Lemma 4.1.
Therefore, (4.3) must instead be satisfied. [:]

5. Counterexamples. We present two examples which show that hypothesis
(ii) of Theorem TL cannot be relaxed to allow ?-/n-l(N) > 0. For the first example,
take t B B(0, 1) C I2, the unit disk. We construct a map u WI’P(B;I2)
(for all p < 2) that satisfies U[OB id and whose image is (B\B(b, 1/2)) tJ B(a, 1/2),
where a (3/2, 0) and b (1/2, 0) (see Figure 2). This will be achieved as follows.
Each circle S(0, r) is mapped to a union of two (reversely oriented) circles that touch
only at the point (1, 0). These circles are nested (for different values or r) in such a
way that as r 1 the circles on the left increase to the unit circle while those on the
right shrink to the point (1, 0). As r - 0, the circles approach the circles S(a, 1/2)
and S(b, 1/2), respectively (see Figure 2). At the same time as the circles on the left
increase, their preimage also occupies a larger position of S(0, r). In such a way, it is
possible to make u (Lipschitz) continuous away from the origin with u id on OB.

FIG. 2. The image of a circle S(O,R) for different values of R" R-- 1 (solid line), R-- 1/2
(dashed line), and asymptotically as r 0 (dotted line). The filled region is the image under u of
the unit disk.

We now proceed with a detailed description of u and a verification of its properties.
The circles on the left and the right are parametrized, respectively, by

(5.1) "l(s, t) (1 s,0)+ s(cost, sint)

and

(5.2) ’2(8, t) (1 + s, 0)+ s(cos t, sin t).
Let (R, ) be polar coordinates in 2, and let

I+R
r--

2
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and

u(R, 0) / 1 (r, r-l(o (1 r)71")) if r(1 r) _< 0 <_ 2r r(1 r),

( "y2(1 r, (1 r)-lo r) if I[ < r(1 r).

One easily checks that U[OB id and that u is Lipschitz away from the origin where
] u[ has a 1/R singularity. Hence u E WI’P(B;2) for all p < 2 and, in particular,
u is continuous on every straight line segment that does not pass through the origin.
Now circles defined bye(5.1) and (5.2) only have the point (1, 0) in common and this
point corresponds to t 0. Hence U]B\N is injective where

N={(RcosO, RsinO)’O=+:r(1 R+2)}2
and 7-/l(N) > 0. Note that one also has det Du > 0 a.e.

The function u is Lipschitz on B\{0}, but not C1, since - is discontinuous at
0 +/-r(1 -r). This could be fixed by reversing the orientation of the circles on
the right, i.e., replacing "I2(s, t) by "I2(s,-t). Then, however, one loses the property
det Du > 0 a.e.

For our second example, we take [2 (-1, 1) x (-1, 1) c 2 and consider the
composition of a number of maps, each of which has a simple physical interpretation.
First, let

R+3h0(x,y)
4R

(x,y), R max{Ixl, [Yl},

which opens a square hole at the center of the body (see Figure 3). We then compose
with the map

(x, 1- (1- y)(7- 81xl)) if Ix[ < , < y < 1,
3hl(x,y) (x,-1 + [xl(y + 1)) if Ixl < , -1 < y < -,

(x, y) at all other points in the range of h0,

which "pinches" part of the hole to the boundary and stretches another portion of the
hole.

Next, we compose with the map

s y) if Ix[ < 0 < y <34y+3’ 8 ,
h2(x,y) (-s y) if ix < 4+3

4y+3, 8 - < Y -< 0,

(x, y) at all other points in the range of h o ho,

which "pinches" the previously stretched portion of the hole. Finally, we compose
with the map

(x, 1 (1-y)(6-Tx)
3(-x) if Ix[<-, 0_<y<l,

3 __1h3(x, y) (x, y- 1) if Ix[ < , 4 < Y <- 0,
(x, y) at all other points in the range of h2 o h o h0,

which stretches the portion of the hole that was just. pinched and moves a portion of
it "outside" the body.

We note that each of the maps h, 52, and h3 is Lipschitz on the range of the
previous map and hence has a Lipschitz extention (see, e.g., [Fe 69, Thm. 2.10.43]
or lEG 92]) to all of 2. In addition, Ball and Murat [BM 84] have shown that
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::::::! ::::::.:.:.:. .:.:.:
::::::I :::::::.:.:.: :.:.:.::::::: ::::::

hi

FIG. 3. After cavitation, successive stretches and pinches cause a portion of the material to
penetrate the boundary.

h0 e WI’p(;2) for all 1 _< p < 2. Thus, by the chain rule (see, e.g., [Zi 89]),
u h3 o h2 o hi o h0 E WI’p(; I2).

It is clear that one could also construct such an example that is C away from
the cavitation andpinching points.
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QUASI-LINEAR RELAXED DIRICHLET PROBLEMS*

STEFANO FINZI VITAt, FRAN(OIS MURAT$, AND NICOLETTA A. TCHOU

Abstract. We study the existence and the asymptotic behavior of solutions of quasi-linear
elliptic problems with homogeneous Dirichlet boundary conditions for the so-called relaxed Dirichlet
problems. These problems, introduced in the linear case by Dal Maso and Mosco [Arch. Rational
Mech. Anal., 95 (1986), pp. 345-387; Appl. Math. Optim., 15 (1987), pp. 15-63], involve zero-order
terms with Borel measures, which can take infinite values but vanish on sets with zero capacity.

We prove two existence results when the nonlinear term has quadratic growth with respect to
the gradient by extending the techniques of Boccardo, Murat, and Puel IRes. Notes in Math. 84,
Pitman, London, 1983, pp. 19-73] to the relaxed case. We also prove in the subquadratic case a
stability property for bounded solutions with respect to the -convergence of measures when the
limit measure is sufficiently regular, making essential use of the correctors result of Finzi Vita and
Tchou [Asymptotic Anal., 5 (1992), pp. 269-281].

Key words, nonlinear elliptic problems, homogenization
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1. Introduction. We are interested in the study of quasi-linear relaxed Dirichlet
problems that can formally be written as

(1.1)
-Au + A0u + #u f(x, U, Du) in t,
u 0 on 0,

where is a bounded domain in ]N, )0 is a nonnegative constant, f is a given
function that satisfies a quadratic growth hypothesis with respect to Du, and # is
a measure in the class M0() of all nonnegative Borel measures on t that vanish
on subsets of t with zero harmonic capacity. We remark that this definition allows
#(B) +a on some Borel subset B of t with positive capacity, as shown by the
example of the measure as that is defined, for a given subset S of t with cap(S) > 0,
by

as(A) "= [ 0 if cap(S N A) 0,
+a if cap(SN A) > 0,

for any Borel subset A of t.
To give a precise and correct meaning to solutions of problems such as (1.1), we

first recall the meaning of the solution in the linear case, i.e., for problems that can
be formally written as

(1.2) -Au+#u=f in,t,
u 0 on 0gt,
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for a given f E H-1 (ft). Problems of type (1.2) have been introduced by G. Dal Maso
and U. Mosco in [DM2] to study limits of Dirichlet problems in highly perturbed
domains (see also [CM]).

2For every # E M0(2), we denote by Lt,(f the space of square integrable functions
with respect to the measure # and by V(ft) the Hilbert space H01 (gt)f3L2 (f), equipped
with the scalar product

((v, w))t, := / DvDw dx + f vw d#.

The solution u of problem (1.2) is then defined as the unique function of
which solves

(1.3) ((u, v)) (f, V)H-,H] for all v e Vv(f),

or, equivalently, as the unique minimizing point in Vu(ft) of the functional ((v, v)),
2(f, v)H-,H]"

We refer to [DM1] and [DM2] for detailed studies of the properties of these so-
lutions. Let us only mention that (1.2) is only a formal writing of (1.3) and that in
general one does not have -An +/zu f in the distributional sense in 2, since in
general the C(f) functions do not belong to L(ft) (consider, for example, the case

# cs described above).
We now recall the notion of 7-convergence of measures, which is defined by means

of the F-convergence of the corresponding functionals defined in L2(gt): for every
# M0(f), let J be the functional defined by

J,(v) { +((v’ v))" L IDvl dx + jf v2 d# if v e V.(f),
if v e L2(ft) \ V(ft).

DEFINITION 1.1. The sequence # in Mo(f) is said to 7-converge to a mea-

sure #0 e Mo(f) (# #0) if the corresponding functionals J,, F-converge to the
functional Jo in the space L2(f); that is, if

(i) for every v e L2(t) and for every sequence v, converging to v in L2(f) one
has

Jo (v) <_ lim inf J, (v,),

that
(ii) for every v e L2(f) there exists a sequence ve converging to v in L2(Ft) such

Juo (v) lim J, (v).

The previous convergence can be proved to be equivalent to the strong convergence
in L2(f) of the resolvent operators of problem (1.3) (see [DM2]): in other words, #,

3’-converges to #0 if and only if for every f L2(f) the solutions u, of (1.3) for #
converge strongly in L2(t) (and weakly in H(f)) to the solution u0 of (1.3) for #0. In
[DM2] it is shown that the set M0(gt) is closed and sequentially compact with respect
to the 3,-convergence and that the measures ocs defined above as well as the regular
measures with bounded density with respect to the Lebesgue measure are dense in
M0(Ft). These results give motivation to the use of the class M0(t). Relaxed Dirichlet
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problems such as (1.2) form in fact the smallest family of equations, stable under the
L2 (gt) convergence of the solutions, which contains Dirichlet problems for the Laplace
operator on any subdomain A of gt (which are formally equivalent, by definition, to
relaxed problems of type (1.2) with measures # ocs, S Ft- A). Moreover, as
already remarked, this class of measures gives the structure of a Hilbert space to the
space Vt().

Let us consider the space

2V() {v E Ul(gt) N L() v 1 E H(Ft)}.
We are now in position to state the definition of correctors (see IT], [CM]).

DEFINITION 1.2. If the sequence #e in Mo() "-converges to #o, a sequence we in
V. () is said to be a sequence of correctors for problem (1.2) if, for any f L2(),
defining ue and uo as the solutions of (1.3) for #e and #o, one has, as e tends to zero,

(1.4) u weuo ---* 0 strongly in W
In other words,

+  ith 0

We recall the following definition (see [DM2]).
DEFINITION 1.3. Assume that vl (t) is not empty. The #-capacitary potential

z associated with a measure # Mo() is defined as the unique minimum point in

V() of the functional J(.).
Note that Definition 1.3 has a meaning only if the space vl(t) is not empty--a

hypothesis that we will always suppose to be satisfied. This is, for example, the case
if # is assumed to be zero in a neighborhood of OFt.

By definition, then z solves the variational problem

(1.5) z e V(gt), ((z, v))z 0 for all v e V(t);

i.e., z is a solution of the relaxed problem that can formally be written as

-Az+#z=0 ingt,

z= 1 on 0.

Moreover, z E L() since it can be easily proved that 0 _< z _< 1 (in the sense of

Making use of Definition 1.3, [FT] suggests a method for constructing a sequence
of correctors. Let us denote by ze e V() and z0 e Vlo () the capacitary potentials
associated with #e and #0, respectively. Under the assumption (1.8) on the limit
measure #0, the functions

Ze

z0

define a sequence of correctors for problem (1.3), in accordance with Definition 1.2.
More precisely one has (see [FT, Thm. 3.6]) the following theorem.

THEOREM 1.4. Let be sufficiently smooth, and assume that a sequence #e is
given in Mo(gt) such that for every the spaces V. () are not empty and

(1.7) #e #o.
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Assume also that

(1.8) #o m(x)dx,

and that

m E L(), m > O,

(1.9) f

Then the functions w defined by (1.6) are in V. () M n (f), and for the solutions
u and uo of (1.3) corresponding to # and #o one has the corrector result

(1.10) 0.

Remark 1..1. It is easily shown that 0 <_ z <_ 1, while hypothesis (1.8) implies
that a _< z0 <_ 1 for some a > 0 (see [FT, Prop. 3.2]). Thus w is bounded in L().
The sequence w is also bounded in H01 (t) because 1/zo can be proved to belong to
wl’(t) under the hypothesis (1.8). Thus

w 1 weakly in Hl(gt).

This property actually holds (see [DM2] or [FT, Rem. 3.1]) under the assumption
that gt belongs, with respect to #0, to a rich class of sets. This is the case here, since
for a Radon measure it has been proved in [DM2] that this class contains all bounded
Borel sets E with tto(OE) O.

Theorem 1.1 extends, with a different definition of correctors, the results obtained
by D. Cioranescu and F. Murat [CM] in an "abstract" setting that applies to the case
of periodically perforated domains with holes of critical size.

Hypotheses (1.8) and (1.9) of Theorem 1.1 can be weakened (see [FT]). Moreover,
we mention that another sequence of correctors has been recently proposed by A.
Garroni and G. Dal Maso [GDM] (see also [Ca2], [CG], [DMM1], and [DMM2] for the
nonlinear case) whose main advantage is that no hypothesis (on, for example, VI (gt),
0t) is required for it to work.

Let us come back to the quasi-linear problem (1.1). We shall consider in 2
nonlinear terms f with quadratic growth with respect to the gradient under two
different sets of hypotheses.

(a) Bounded case. We assume A0 > 0 and that [f(x, s,p) <_ co + b([s[)lp[ 2 for
some constant co and function b; we are interested in bounded weak solutions and
offer the following more precise definition.

DEFINITION 1.5. A bounded weak solution of (1.1) is a function u such that

u E V(t)
(1.11)

((u,v)).+Aouvdx--f(x,u, Du)vdx forallveV.(a)L(a).

(b) Unbounded case. We discuss the interesting case where f(x,s,p) h(x)-
g(x,s,p), h is in H-l(t), and g satisfies Ig(x,s,p)l <_ b(Isl)(1 + Ipl 2) as well as the
sign condition g(x, s, p)s >_ O. The term A0u can be included in g in this case, so we
will only consider A0 -0. Then (1.1) becomes

S -An + #u + g(x, u, Du) h in 12,
(1.12)

u 0 on 0t,
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and we cannot expect a possible solution to be in L() (consider the case where
# 0 and g 0; the solution is only in H(f) since h belongs to U-l(f)).

DEFINITION 1.6. A weak solution of (1.12) is a function u such that

u e V(), g(x, u, Du) e L(fl), g(x, u, Du)u e

((u,v)) +/ag(x,u, Du)vdx= (h,V)H-1,H for ally

In the bounded case (a), by extending the techniques of [BMP1] to the relaxed
case, we will prove in Theorem 2.1 the existence of a bounded weak solution of problem
(1.11).

The proof will also imply that the bounded weak solutions of (1.11), in the sense
of Definition 1.4, are uniformly bounded in L()N H(2), independently of the
measure #. This property of solutions will be essential for us to prove, in 3, the
homogenization result of Theorem 3.1. In this theorem we prove a stability property
of,solutions of (1.11) with respect to the -y-convergence of measures when the growth
of f with respect to Du is assumed to be strictly subquadratic. An important role
is played in the proof of this result by the use of the correctors (1.6) of the linear
equation.

Note that this homogenization result is no more true in the case of an "exactly
quadratic" (not strictly subquadratic) growth for f. Indeed, it has recently been
shown by J. Casado-Diaz [Call that in the exactly quadratic case the linear corrector
result is no more valid. A new corrector has been constructed, and an extra nonlinear
term appears in front of the measure #0 (see Remark 3.2 at the end of 3).

In the unbounded case (b), we shall prove in Theorem 2.2 of 2 the existence of
weak solutions (without any L0 bound) for the relaxed quasi-linear problem (1.13).
This result extends the results of [BMP2] and [BBM] to relaxed problems.

2. Existence results. In this section we prove two existence results for the
solutions of the relaxed quasi-linear elliptic problems (1.11) and (1.13).

2.1. The bounded case. Let us assume that

(Eal) A0 > 0, # E M0(a),

(Eo2) f" X ; X ]N ._ ]N is a Carathodory function satisfying

If( ,  ,p)l < + b(l l)lpl :,
where b(.) is an increasing function from IR+ to IR+ and Co E ]R+.

THEOREM 2.1. Under assumptions (Eal) and (Ea2), there exists at least a
bounded weak solution u of problem (1.11).

Remark 2.1. Theorem 2.1 extends the result of [BMP1, Thin. 2.1] to the case
of relaxed Dirichlet problems. The proof is henceforth very similar; nevertheless, for
the sake of completeness we prefer to repeat its main steps, underlying the changes
we have to make in the present case (particularly in Step 3).

Proof. We divide the proof into four steps:
Step 1: Existence of approximate solutions. We construct a sequence of problems

that approximate (1.11) by introducing for e > 0 the bounded Carathodory function

f(x,s,p)
fe(x, s, p)

1 + elf(x, s, P)I;
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andnote that If(x, s, P)I <- -We shall first prove, for e > 0 fixed, the existence of a solution u of the quasi-
linear problem
(1.11)

I ua DuDvdx+AOv(gl) C L (t),uvdx+ ];uvdp= f(x,u,Du)vdx for all ve V(),

which can be formally written as

-Au + A0u +
u 0 on 0.

Since for e fixed the application w f(x, w, Dw) is bounded from H() into
n (), the mapping S: V() V() that associates with each function w e V()
the unique solution Sw of the linear problem

which formally reads as-+o+
0 on 0,

satisfies the hypotheses of the Schauder fixed-poim theorem. Thus (1.11) has at least
a solution that belongs to V(). Moreover, this solution is in L(), with

1 1
(2.1)

A0e
u Aoe

To prove this, we use the function z (u- 1/(A0e))+ as the test function in
problem (1.11). This is possible since z H(); moreover, 0 z u, so z

2belongs to L() and thus to V(). Then, since

’Dz12 dx (-Aou + f(x,u,Du))zdx

-A0u + z dx -A0u + u- dx O,

so that z 0. This proves one of the inequalities of (2.1). The other inequality is
proved in the same way by considering the test function z -(u + 1/(A0e))-. Thus

e
By this method we have also proved that u L(). Indeed, from z 0 in the

sense of H(), we deduce that z 0 except on a set E of zero capacity; thanks to
the definition of the space M0(), we have p(E) 0 and we deduce ze 0 in n()
too. In fact, this proof asserts that H() L() E H() a L().

Step 2: The solutions u of problem (1.11) are unifoly bounded in V()
L(). It is enough here to repeat the proofs of Steps 2 and 3 of Theorem 2.1 of
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[BMP1], which is concerned with the case where # 0. To prove the uniform bound
in L(f), we remark that the functions T(z+), where

T (v) co b(llull)a
Ze --te teAO 2

can be used as test functions in (1.11) since z+ e V(t)N L(t)3 L(f). Then
the same computations as in [BMP1] yield, using the hypothesis (Eal),

co

and the same estimate holds in L(t). Let

To show the uniform estimate in HI (gt), we use as test function in (1.11) the function
T(u) E V(), where T(v) v exp(tv2) and t c12/2. This leads us to the inequality

(2.2) Jfa /a 2 d# < K,IDueI 2 dx + ue

which means that u is uniformly bounded in Vg (2).
Extracting a subsequence (still denoted by u), we have proved the existence of a

function u e Vg()N L(t)such that

u u weakly in HI (Ft);

2u u weakly in Lg (t);

u --+ u strongly in Lp (gt) for any p < +x and weakly * in L (Ft);

u --* u a.e. in t.

Hence, we conclude in particular that

co

Note that this L(t) bound as well as the H01(t) bound

which is easily derived from (2.2), do not depend on the measure # but only on
co, A0, Cl, and .

Step 3: The sequence u converges strongly in H() and L2(t) to the function
u. This step is the more original one with respect to the proof of [BMP1] and uses
an argument that was used in [Mo] in the context of nonlinear parabolic equations.
Let e and /be two positive parameters and u and un be the corresponding solutions
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of (1.11) and (1.11). Let T(v)= v exp(tv2) and t= 16Cl2. Subtracting (1.11) from
(1.11) and using the test function T(u u,), which belongs to Vu([t), we obtain

+ j(u uv)T(u uv)d#

[[(x, u, Du) fv(x, uv, Duv)]T(u uu) dx
(2.3)

[2c0 + clDl= + clDl=]lT( )1 d

[2co + 3cllDI=]IT( )1 dx

where we have used the hypothesis (Ea2) on f and f Ill. Since the second and
third integrals of the left-hand side are nonnegative, we get

lDu Du12[T’(u( un) 2Cl]T(u u)l] dx

/[2c0 + 3clDu([2]]T(u u) dx.

The choice of t implies T’(v) 8clOT(v)[ . Now let U go to zero; by the results
of Step 2 on the sequence un, the continuity of the functions T and T’, and the weak
lower semicontinuity of the left-hand side, we easily pass to the limit (as U tends to
zero and is fixed) in the previous inequality, so that

e
]Du Du2[T’(u( u)- 2c[T(u u)] dx

[2c0 + 3clDu(]2]T(u( u)] dx

/[2c0 + 6c [Du2 + 6cDu Du[ 2] T(u u)] dx.

Then for t fixed as before,

ID D d .O Dl[r’( ) Nl[r( )11 d

[0 +all]lr( e.

Since the last integral tends to ero as e tends to ero, we have proved that u
2tends to strongly in H (a). This convergence is strong in .(a) too, since, coming

back to the first inequality in (2.a), we get

[[co + cllDl + Cl[D[]lr( )dz,
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which is easily shown to converge to zero.

Step 4: Passing to the limit in (1.11) and proving that u is a solution of problem
(1.11). By Step 3 we know that (up to the extraction of a subsequence) Du - Du
a.e. in gt. Then f(u,Du) -. f(u, Du) a.e. in t. Since If(u,Du)l <_ co+cllDul2,
which converges strongly in Ll(gt), Vitali’s theorem ensures that f(u,Du)
f(u, Du) strongly in LI(Ft). This shows that u solves problem (1.11), as we wanted
to prove.

Remark 2.2. As already observed in [BMP1, Rem. 3.3], the strict positivity of
(first part of assumption (Eal)) is essential in the proof of Theorem 1.1 because it
allows us to obtain the L() bound on u. Since the term containing the measure
could degenerate somewhere in gt (either with # 0 or with # +), the existence
of a solution is no more guaranteed in the absence of the zero-order term in the
operator. As a counterexample, one could consider the counterexample introduced
by J. L. Kazdan and R. J. Kramer in [KK] (see also [BMP1, Contre-ex. 3.1].) with an
extra term #u, with either # _= 0 or # XE, E being a closed subset of t.

Of course, hypothesis (Ea 1) can be replaced by

A0>_0, #EM0(gt), #+A0dx>_a0dx

for a strictly positive constant a0.

2.2. The unbounded case. Let us now consider the problem (1.13) and assume
that

(Ebl) it e M0(t), h -div r e H-I(), r e (L2(t))N,

(Eb2)

g" ’ X ] X N . ]IN is a Carath6odory function satisfying

19(x, < +
and

g(x, s,p)s >_ 0,

where b(.) is a continuous and increasing function from ]+ to +.
As already remarked, the main feature of this case is that, due to the lack of

regularity of h, a solution of (1.13) is no more in L (t). This property, which was
crucial in the proof of Theorem 2.1, now must be replaced by the use of truncations
(see also [BBM], [BGM], [LM], and [M], where the same idea is used).

THEOREM 2.2. Under assumptions (Ebl) and (Eb2), there exists at least a weak
solution u of problem (1.13).

Proof. We divided the proof into four steps.
Step 1: Existence of approximate solutions. We construct a sequence of problems

that approximates (1.13) by introducing for e > 0 the Carathdodory function:

g(x,s,p)
g(x, s, p)

1 + elg(x, s, p)]"

By this definition g has the same properties as g (growth and .sign condition) but is
We can then repeat the argument of Step 1 of the proof of Theorembounded by .

2.1, which shows the existence of a weak solution u (which here does not belong to
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since h only belongs to H-l(a)) of the quasi-linear problem

/aDuDvdx + ]uvd# + /agc(x,u,Duc)vdx= (h, vlg-l,H,
(1.13c) for all v

Step 2: The solutions u of problem (1.13) are uniformly bounded in V(f). It is
enough to use u as the test function in problem (1.13) and to use the sign condition
on g to get uniform bound in V():

2d#<K"2dx + u

Extracting a subsequence (still denoted by uc), we have

u u weakly in H0l(Ft),
u u weakly in L2 (Ft),
u --+ u a.e. in Ft.

The above estimate also proves that

(2.4) /a g(x, uc, Du)u dx < K.

Step 3: Strong convergence of Tk(uc). For a positive constant k, let Tk(w) denote
the truncation of the function w at level k, that is,

k ifw > k,
Ta(w) w iflwI<k,

-k if w < -k,

and let

We remark that if w e Vt,(), then both Tk(w) and Ga(w) are in V(f). We will
prove the following convergence results:

lim limsup 0,
k--*+cx --0

2(2.6) T(u) -- T(u) strongly in H(a) and in

where w+ (w-) denotes the positive (negative) part of a function w.
Take v Gk(u) as a test function in (1,13); then

DuDGk(u) dx + fa g(x, uc, Duc)Gk(ue) dx

+ fa uGk(u)d# (h, Gk(u)}H-I,H].
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Since Gk(ue) hs the sign of u, the second and third terms of the left-hand side are
nonnegative, so we obtain

/ -J(l rDGk(uc)dxIDGt(uc)l 2 dx <_ (h, Gk(U)iH-,H]

ill< I1dx+ IDG(u)Iedx.

Thus

]imsup IIDG()II() _< [ I1dx,
---,0 J lu

and (2.5) follows when k --+ +oo.
The proof of (2.6) is more delicate. We will write it only for the positive parts

(the other part of the proof is analogous). We adopt the approach already used in
Step 3 of the proof of Theorem 2.1. For two positive parameters e and , let u and

u be the corresponding solutions of (1.13) and (1.13). By subtracting these two
equations we get, for any v V(),

/, D(u u,)Dv dx +/n(u- uv)v d + ]L(g(x, u, Du) g,(x, u,, Duv))v dx O.

Let us take in this weak formulation the test function T(T(u)- T(u,))
V(n), where as usual T(v) v exp(tvU), with a positive constant t to be chosen
later. Since

nv DT(v) + DG(v) nv-,
we obtain

In(()- (,)):’(()(,))

+./( ,)(T2() (,))d

(.7) .fo [(/’’n) ,(, ,, n,)](() (,))

.[ D(G2() G(,))n(() (,))’(() (,))x

+ D(u2 u)D(T(u) T(u,))T’(T2(u) T(u,))dx.

Let us consider separately each term of (2.7). First, it is easy to check that the
second term of the left-hand side of (2.7) is nonnegative; more precisely, an analysis
of all possible cases (namely u 0, u > 0, uv 0, uv > 0) shows that

dp.

Let us now define

L, { e : 0 < (x) <

U, { e a: (x)
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Concerning the first term in the right-hand side of (2.7), using a detailed analysis of
all possible cases (namely uc _< 0, 0 < uc _< k, u _> k, u _< 0, 0 < u _< k, u _> k),
then the sign condition on g and g, and finally the growth condition, one shows that

-/n [g (x, u, Duc) gv(x, uv, Duv)]T(Tk+(u) T+ (uv)) dx

<_ b(k) /hi4 + 61DT+ (u)Ie]IT(T+ (u) T+ (u,))l dx

+ b(k)/ 41D(T+ (u) T+(u))I IT(T+ (u) Tk+ (u))[ dx.

Finally, the last two terms of (2.7) can be written as

f

L D(G-(u) G+(uv))D(T+(uc) T+(uu))T’(Tk+(u) Tk+(Uu))dx
(2.10)

:/[DG+(u)DT+(u,) + DG+ (uv)DTk+ (u)]T’(T+ (u) T+ (u,)) dx,

D(u- u- )D(Tk+ (U) Tk+ (Uv) )T’ (Tk+ (uc) T+ (uv) dx

(2.11)

]u[Du-gDT+(uv) + Du-DTk+(uv)]T’(T+(u) T+(uv))dx.

Substituting the results (2.8)-(2.11)into (2.7), we have

]D(T+(u) T+(u,))]e[T’(T+(u) T+(uv)) 4b(k)lT(T+(u) T+(uv))]] dx

<_ b(k) /[4 + 61DT+(u)]]]T(T+(u) T+(uv))l dx

+/[DG+k(u)DTk+(uv) + DG+ (uv)PTk+ (u()] T’(Tk+ (u) T+ (uv)) dx

-/u[Du-gDT+(uv) + Du-DT+(uc)]T’ (Tk+ (u) Tk+ (uv) dx.

Now fix t 64(b(k)) which implies T’(v) 16b(k)lT(v)l A -. For a fixed (, the
fact that the sequence uv weakly converges in H(f) to u allows us to pass to the
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limit in the previous inequMity as r goes to zero (we use in particular the weak lower
semicontinuity in H() of the left-hand side), so

J ID(T+(u) Tk+(u))l[T’(T+(u) Tk+(u)) 16b(k)lT(T+(u) T+(u))l] dx

+/[T+ (u) T:(u)]d,

()/[4 + leTf()]T(T:() T:()) dx

+ fe[DG:(u)DT(u) + DG:(u)DT(u)]T’(T(u) T(u))dx

ff[Du:DT(u) + Du-DT(u)]T’(T(u) T(u))dx.

Now let tend to zero. The strong convergence of T(u) to T(u) in H()
2L,() (i.e., (2.6)) then follows since the three integrals in the right-hand side converge

to zero.
2Step 4: The sequence u converges strongly in H() and in L,() and the end

of the proof. Since, by definition, u u+ (T(u) T(u)) + (G(u) G(u)),
2we have for the H()or L,()norm

+ T() T() +() + ().
Using (2.5) and (2.6), this proves the strong convergence of u to u+. The

nalogous result for u[ proves that

2(2.12) u u strongly in H() and in

Extracting a subsequence such that Du Du a.e. in , we deduce from (2.4)
and Ftou’s lemma that

g(x, u, Du)u e LI().

Writing

[ .g(x, u, Du).dx f b(1)(1 + IDu,) dx + [ g(x, u, Du)u dx
1 Jlull

implies that g(x,u, Du) L().
Finally, in view of (2.4) we have

(2 13) ig(x,u,Du)ldx < 1 K
g(x, u, Du)u dx

On the other hand, for m fixed, Vitali’s theorem, the estimate

and (2.12) imply that

(2.14) Xllg(x,u,Du) Xllg(x,u, Du) strongly in n().
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Combining (2.13), (2.14), and

Ig(x’ u’Du)l dx < l /n g(x’ u

we obtain

g(x, u,Du) g(x, u, Du) strongly in LI(),
which allows us to pass to the limit in (1.13) and to obtain (1.13).

The proof of the Theorem 2.2 is complete.

3. Homogenization. In this section we study the convergence of the solution
of (1.1) when the measure # varies. We shall consider only nonlinear terms with
subquadratic growth with respect to the gradient and prove the stability (Theorem
3.1). The general quadratic case is, however, very different, as it has recently been
shown in Casado-Diaz [Call (see Remark 3.2).

Let us consider the sequence of problems

(3.1) for all v

where is a bounded domain in N with smooth boundary, pc M0(), and for the
sake of simplicity, we consider only nonlinear terms that do not depend explicitly on

u. The general case is evoked in Remark 3.3. We assume the following hypotheses:
(1)

l/(X,l)- f(x,)[ ( + [- + I-)[
for any p,p2 g, with 0 < y 1, s < 2;

IX(x, 0)[ co,

(He)
,o --m(x)dx, where m e L(), m 0.

Note that (H1) implies in particular that f has a strictly subquadratic growth in
the gradient since

(3.2) [f(x,p)[ <_ Cl(1 -t-[p[8), for any p e ]N (8 < 2),

so hypothesis (Ea2) is satisfied. Therefore, the existence result of Theorem 2.1 holds
in this case.

On the other hand, hypothesis (H2) allows us to use the corrector result of The-
orem 1.1.

We also make an additional hypothesis on the correctors we defined by (1.6). We
assume that

(H3) Dw 0 a.e. in

Hypothesis (H3) was recently proved to hold true by Casado-Diaz [Call and Dal
Maso and Murat [DMM] for the correctors considered by these authors. We will prove
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in Remark 3.1 that (H3) holds in this case of periodically perforated domains with
holes of critical size. This property was also observed by Boccardo and Donato [BD]
and Labani and Picard [LP].

We shall prove the following theorem.
THEOREM 3.1. Assume (HI), (H2), and (H3), and let u E Vz(t) N L() be

any sequence of solutions of (3.1). Up to the extraction of a subsequence we have

u uo weakly in H1 (-),

where uo is a solution of

(3.10)

uo e V,o (t) L(),

which reads formally as

-Auo + ouo + pouo f(x, Duo)
uo 0

f
d#o ] f(x, Duo)v dxnOV

e Y,o(a)

In other words, Theorem 3.1 asserts that by passing to the limit on # both the
operator and the right-hand side remain unchanged. This is a stability result.

Proof. We distinguish four steps in the proof.
Step 1: Bounds for the solutions u and f(x, Du) g. In view of (3.2), we know

from Theorem 2.1 the existence of at least one solution of (3.1). It also follows from
the proof of Theorem 2.1 (see the end of Step 2 of that proof) that any solution of
this problem is bounded in H() and L(gt) by a constant that depends only on
co, A0, and t, i.e.,

We can thus extract a subsequence (still denoted by u) such that

u u weakly in H
u - u strongly in LP(), for any p( c, weakly * in L() and a.e. in

Let g f(x, Du). Take q- 7 > 1. Using HSlder’s inequality, we get

’g,’q dx ’f(x, Du,)’q dx <- c: (l + ’Du,’)q dx <- Cst.

Extracting a new subsequence, there exists a function go such that

f(x, nu) g go weakly in

Step 2: A first passage to the limit in (3.1). In this step and in Step 3, we use
the corrector result. Note that hypothesis (H2) is used only here and in Step 3. Note
also that we could have A0 0 now and in what follows. The hypothesis A0 > 0 is
indeed essential only in the proofs of the existence of u and of the uniform estimates
on u (Step 1).
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Now consider the sequence of functions w defined by (1.6) in 1.
observed in Remark 1.1, w is bounded in L, we have

Since, as

w -- 1 strongly in LP(f) for any p < +c, and weakly * in L(f).

We claim

(3.4)
v e V (a), vo E V,o (a), v vo weakly in H

Indeed, recalling the definitions of w z/zo and z, which solves (1.5) for the
measure #c, and the fact that zo and 1/zo belong to WI,(Ft) (this is a consequence
of hypothesis (H2), see [FT, Prop. 3.2]), and finally the fact that zo solves (1.5) for
the measure #o, we have

DwDv dx +/awv d#

]DzD (TM dx vo d#o.

For e V,o (ft)N L (ft), take ewe, which belongs to V,o (ft), as a test function
in (3.1). This yields

fa Du D(w ) dx + dx + jfa
/a f(x’ dx /a gw 

Now w tends to 1 strongly in LP(f) for any p < , while g tends to go weakly
2in Lq(ft) with q- > 1; the right-hand side of (3.5) then converges to fa goCdx.

We rewrite the left-hand side of (3.5) and pass to the limit using in particular
(3.4) with v Cu. This yields
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From Definition 1.1 of the -convergence and the bound (3.3), we finally deduce
that uo belongs to Vo. Hence u0 satisfies.

0 V,o() L(),

/o  0/o
for all Vo (fl) L ().

Step 3: Corrector result for the nonlinear problem. Let us first prove the conver-
gence of the energies. Taking v u as a test function in (3.1), we pass easily to the
limit since u converges strongly to u in LP() for any p < . We obtain

]DI dz +

We now claim that for any

(3.)

To prove this claim, we write the left-hand side of (a.7) as

2 [ DwD(u) dx + /(u)w d.
+ w]D dx- 2 wDuDCdx + 2 uDwDCdx,

where it is easy to pass to the limit by using (3.4) with v = 2w and (3.6) with
v Cu. This proves (3.7).

Tking now u0 in (3.7) we obtain

(.s) o 0 stron in H (a).

The previous proof is similar to the proof of Theorem 3.4 of [CM] and Theorem 3.6
of [FT]. Note, however, that we assumed here (and u0) belongs to Vo(fl L(),
which allows us to obtMn (3.8), result that is stronger than the result of [CM].

Step 4: Mentifying go as f(x, Duo). In the proof of this step, we use hypothesis
(H1), which implies, with Pl P(u), P2 P(wuo), that

f(x, Pu) f(x,D(wuo))] 5 K(1 + ]Du- + ]D(wuo)]-)]P(u wuo).
It can easily be proved that any term in the right-hand side converges to zero

strongly in L(fl). Let us consider, for example, the last term in the case s > . It is
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enough to apply Hhlder’s inequality with p and p’ 2-8+2 to get

ID(w uo)l - lD(u w uo)l dx

27,The condition s < 2 implies that 2-s+e
corrector result (3.8). We have proved that

< 2, and the result follows from the

(3.9) f(x, Du) f(x,D(wuo)) --+ 0 strongly in LI(/).

Let us now prove that

f(x, D(wuo)) f(x, Duo) strongly in L ().

By hypothesis (H3), Dw --. 0 a.e. Because of the continuity of f with respect to p
(see hypothesis (H1)), we have

f(x,D(wuo)) f(x, uoDw + wDuo) -- f(x, Duo) a.e.

On the other hand, (3.2) implies

f(x,D(wuo))l < C1(1 + IDwuo + wDuol) < 2C1(1 -+-IDwllol + IDol).

The proof of (3.10) is then achieved using Vitali’s convergence theorem since Dw 0
a.e. and Dw is bounded in (L2(t))N.

From (3.9) and (3.10)we obtain that

g f(x, Du) - f(x, Duo) strongly in LI(),

which proves that go f(x, Duo). Using this result in the limit problem for u0 at the
end of Step 2, we complete the proof of the theorem.

Remark 3.1. Hypothesis (H3) is satisfied, for instance, in the case of domains
periodically perforated by holes that are balls of critical size. More precisely, we
consider in this remark the case where the measure # is given by # XT (see
the definition in the introduction), where T is the union of the balls of radius a
CoeN/(N-2) (when N _> 3) or a Co exp(-co/e2) (when N 2), whose centers are
distributed at the vertices of a lattice in IRN, with cell size 2e (see [CM, Ex. 2.1]).

An explicit computation, based on the proof of Theorem 2.2 of [CM] (see in
particular formula (2.2)), in the case N > 3 (the case N 2 is similar) gives

ID ol dx

meas a(2e)N SN I(N- 2)(ae)N-2r-(N-1)[rN-ldr

1 (N -(N-1)(0-1)+ICst 7(a) -2)(a)

Cst (a,)N-O cg-ONN Cst N-2



QUASI-LINEAR RELAXED DIRICHLET PROBLEMS 995

which gives, if 0 < 2,

[Dwl e dx O.

This result proves that, at least for a subsequence, hypothesis (H3) is satisfied for this
example.

Remark 3.2. The restriction s < 2 is crucial in the above proof but also in the
statement of Theorem 3.1, as proved by Casado-Diaz [Call.

Indeed the result is drastically different in the "exactly quadratic" case (s 2)
since when, for example,

(3.11) f(x, Du) h(x) + lDul, with h

the result of the passage to the limit reads as

(3.12)
1

-Auo + Aouo + -(1 -e-’)#o f(x, Duo)

to=O

in

on 0.

If one compares this result with (3.10), one sees that the nonlinearity with respect to
the gradient is the same (namely f(x, Duo)), in both (3.10) and (3.12), but that the
term uo#o in (3.1o) has been replaced by (1- e-)#o in (3.12).

Also, an important fact is that the corrector result (3.8) does not hold true when
s 2. In the previous example (3.11) we have in place of (3.8) the result

1
(eUue- -log(1 + 1)we)

while the expression of the corrector in the general case is more complicated.
For more details on the quadratic case, we then refer the reader to the work of

Casado-Diaz [Call.
Remark 3.3. It is possible to obtain a result analogous to Theorem 3.1 if the

nonlinear term also depends on the function u. We only need to replace hypothesis
(H2) by

(H2)’

If(x,t,p)l <_ Cx(1 + Ipl),

If(x, tl,pl) f(x, t2,p2)l

< n(tl,t2){(1 + [plS-e + ip2l-)lpl p2l-r -t-It1- t2l(lpl / [p2lS)},

for any tl,t2 N, for any Pl,P2 NN,

where 0 < 3’ -< 1, 7 -< s < 2, r > 0, and n :R2 R is a function that is bounded
on the bounded subsets of R2. Indeed the first part of (H2)’ allows us to obtain the
existence of a solution u and its boundedness in H(ft)ClL(a) (as in Step 1 above)
while the second part of (H2)’ allows to perform the proof we made in Step 4.

Acknowledgments. We thank L. Boccardo and P. Donato for interesting dis-
cussions concerning this paper.
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STRUCTURE OF RADIAL SOLUTIONS TO Au + K(ll)lulp-u o
IN Rn*

EIJI YANAGIDAt

Abstract. The elliptic equation equation Au + K(r)lulp-lu 0 in R is studied, where
r Ixl, p > 1, n > 2, and K(r) > 0 for r E (0, c). If rKr(r)/K(r) is nonincreasing in r, then the
structure of radial solutions is determined completely by analyzing linearized equations around the
solutions.

Key words, semilinear elliptic equation, radial solutions, structure
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1. Introduction. The purpose of this paper is to investigate the structure of
radial solutions to the semilinear elliptic equation

x E Rn,
n 2 1/2where > 1, > 2, a E,=,/, "d Il- {E,=I,} Ti e.io.

appears in various fields such as astrophysics, combustion, and differential geometry.
Since radial solutions (i.e., solutions with u u(]xl) for all x E Rn) are of

particular interest, we will study the initial value problem

(1.1)
{rn-lur(r)}r + rn-lK(r)lu(r)lp-lu(r) O,

u(0) > 0,

r>0,

where r Ixl. Throughout this paper, we assume that

(K.0)
K(r) e Cl((0, (:x:))),
K(r) >0 on(0,),
rK(r) e LI(0, 1).

Then, for any a > 0, problem (1.1) has the unique global solution u(r)
C2((0, c)) (see Ni and Yotsutani [12] for the local existence and regularity and Coff-
man and Ullrich [3] for the global existence). We denote the solution by u(r; ).

We classify the solutions as follows.
Type R(i). u(r; ) has exactly zeros on (0, oc), and rn-2[u(r;

for some constant/3 > 0.
Type S(i). u(r; ) has exactly zeros on (0, c), and r-21u(r;
Type O. u(r; ) has infinitely many zeros on (0, ).
By virtue of (d) of Lemma 2.1, any solution of (1.1) is classified into one of the

above types.
Let A be a number given by

A:= (n-2)p-(n+2)

Received by the editors January 10, 1994; accepted for publication (in revised form) October
21, 1994., Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Meguro-
ku, Tokyo 152, Japan (yanagida@is.titech.ac.jp).
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which is related to the Pohozaev identity (see Lemma 2.2) and plays an important
role for the existence of solutions of each type. The existence of a solution of Type
R(i) was studied by Yanagida and Yotsutani [17] and later generalized by Naito [11]
and Kabeya, Yanagida, and Yotsutani [5]. According to their results, the following
theorem holds.

THEOREM A. Suppose that limr-0 inf rKr(r)/K(r) > and lim--,oo suprK(r)/
K(r) < ik. Then there exist 0 < o < o2 < < (X) such that u(r; Oi+1) i8 of

Once this theorem is established, it is natural to ask whether the solution of
Type R(i) is unique or not, or, more generally, what the entire structure of solutions
is. Under various assumptions on K(r) and p, uniqueness of a solution of Type R(0)
was proved by Kwong and Li [10] and Yanagida [14], and the entire structure of
positive solutions was studied by Kawano, Yanagida, and Yotsutani independently
and in conjunction with one another [6, 13, 18]. However, little is known concerning
the uniqueness or structure of radial solutions that may change sign. In this paper,
we study the structure of radial solutions of (1.1) under the following quite simple
condition on K(r)"

(S.1) rK(r)/K(r) is nonincreasing in r (0,

We note that, under this condition, we can define a and t by

a lim rK(r)/K(r) E (-oc,
r--+0

lim rK(r)/K(r) [-oc,

The-following theorem is a main result of this paper.
THEOREM 1. Suppose that (K.1) and the inequalities

are satisfied. Then the following hold.
(a) There exist 0 ao < 01 02 (X) with limi_ ai c such that

u(r; ) is of Type R(i) if and only if c ci+, and u(r; () is of Type S(i) fo.r every
e

(b) The ith zero of u(r; a) is a strictly decreasing function of a (ai, oc) for
every i.

(c) Let i := lim__, rn-21u(r; ai)l. Then {/i} is a monotone increasing positive
sequence with limi_o/i-

(d) The zeros of u(r; ai) separate and are separated by those of u(r; ai+l).
When the inequalities t < < a are not satisfied, we have the next theorem.
THEOREM 2. (a) If rK(r)/K(r) on (0, oc), then u(r; a) is of Type R(O) for

every a (0, cx
(b) If rK(r)/K(r)

_
and rKr(r)/K(r) on (0, c), then u(r; a) is of Type

e (o,
(c) /f rK(r)/K(r) >_ and rK(r)/K(r) on (0, c), then u(r; (.) is of Type

0 for every a e (0, c). In addition, if (K.1) holds, then the ith zero of u(r; a) is a
strictly decreasing function of (0, c) for every i.

This theorem, except the latter part of (c), was proved in [1, 4, 8]. We will give
a simplified proof for self-containedness. We note that, by virtue of Theorems 1 and
2, the structure of solutions to (1.1) under the condition (K.1) can be completely
determined.

The outline of this paper is as follows. In 2, we give several fundamental prop-
erties of solutions to (1.1). In 3, we give two important propositions concerning the
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properties of zeros of u(r; ). Then we give a proof of Theorem 1 by using these
propositions. A proof of Theorem 2 is given in 4. Sections 5 and 6 are devoted to
proofs of the propositions.

2. Fundamental properties of solutions. In this section, we collect funda-
mental facts that will be used in subsequent sections.

LEMMA 2.1. Any solution of (1.1) has the following properties:
(a) ur(r; (x) f(s/r)n-lK(s)]u(s; O)lP-llt(8; O)ds.
(b) it(r; o) o f{1 (8/)n-2}sK(8)[(8; )]P-l(8; )d8.
(c) limr0 ru(r; ) O.
(d) Ifu(r; ) >0 (resp., u(r; ) <0) on (R, ) for some RO, then {r-2u(r; a)}

> 0 (., {n-(;)} < 0) on (R, ).
(e) fn-(;) a foo otant O, th, n-l(; )

-(n- 2)7 as r .
(f) Ifu(r; ) is not of Type 0 and satiCes u(r; ) 0 as r , then ru(r; )

Oasr.
Proo For (a) and (b), see Propositions 4.1 and 4.2 of [12]. For (c), see (4.5) of

[12]. Assertions (d) and (e) were proved in Lemmas 7.1 and 7.2 of [12] for positive
solutions. The proof applies to solutions of (1.1) with an obvious change. By (a) and
(d), if u(r; a) > 0 (resp., u(r; a) < 0) in a neighborhood of r and u(r; ) 0 as
r , then there exists R 0 such that

O < -rur < (n- 2)u (resp.,O<rur < -(n- 2)u)

on (R, oc). Since u -+ 0 as r -+ , (f) holds. [:]

The following identity is a variant of the well-known Pohozaev identity.
LEMMA 2.2. Any solution u u(r; c) of (1.1) satisfies the identity

where

d
P(r; u)

1

dr p+ 1
rn-lK(r){rKr(r)/K(r)- ,}litlp+I

lrn-1P(; ) {+ (- 2)} +
1

p+l

Proof. The equation in (1.1) can be written as

(2.2) {ru + (n- 2)u}, -rK(r)lulp-lu.

Carrying out the differentiation and using (1.1) and (2.2), we obtain

1 (rn-1 1
P(r; u) - ur){ru + (n- 2)u} + -r -lu{ru + (n- 2)u}r

1
+ {rnK(r)litlP+l}
p+l

1 lr- u2{rn-lK(r)lulp-lu}{rur + (n- 2)u} u{rK(r)lu]p- }

1 ]+1+ {nK()l }
p+l

1 r_XK(r){rK(r)/K(r A}]u]p+l"
p+l
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Thus we get the desired identity. [:]

The following characterizations of solutions to (1.1) in terms of P(r; u) are useful.
LEMMA 2.3. (a) For any solution u u(r; ) of (1.1), there ezists a sequence

{ej} such that ej 0,eyK(ej) --, 0, and P(ej;u) -- 0 as j c.

(b) If u u(r; ) is of Type R(i), then there exists a sequence {fj} such that
j -+ c and P(j; u) -+ 0 as j -+ c.

(c) Ifu u(r; a) is of Type S(i) and satisfies uu < 0 in a neighborhood oft c,
then there exists a sequence {j} such that -+ c as j -- x and P(j; u) < 0 for
every j.

(d) Ifu u(r; ) is of Type O, then there exists a sequence {} such that --+ c
as j --, xz and P(j; u) > 0 for every j.

Proof. Since rK(r) e LI(0, 1), there exists a sequence {sj} such that j 0 and
sK(y) -- 0 as j --+ cx. On the other hand, by Lemma 2.1(c), we have

lim rn-lur{rur + (n- 2)u} 0.
r---0

Hence it follows that K(j) 0 and P(j;u) - 0 as j c in view of n > 2.
Thus (a) holds.

If u u(r; c) is of Type R(i) and r-2u(r; ) /as r c, it follows from
Lemma 2.1(a),(e) that

r-lu(r; c) sr-lK(s)lu(s; c)IP-lu(s; c)ds -(n 2)

as r o. Since the above integral is convergent as r - ec, there exists a sequence
{f} such that --, oe and 0 j On the other hand,
we have

lim r’-lu{ru + (n- 2)u} 0

in view of Lemma 2.1(e),(f). These imply that P(j; u) 0 as j c. Thus (b)
holds.

Next, we prove (c) by assuming that u > 0 and ur < 0 in a neighborhood of
r c. If r is sufficiently large, we have

1lr2u{r"-2u + (n- 2)rn-3t} -k- rt{rn-lK(r)ltIp-lu}P(r; u)- p 1

r2u(r,_2u) 1 ru(rn_lu)
2 p+l

{ 1 (r-u) 1 (rn-lur)r}--ruu
2 rn-2u p+ 1 r-u

d{ 1 1 }+
p+l

d 1 1 log(r-) + log-rnu
p + 1 2 p + 1

Here r- as r if (r; ) is of Type S(i). Moreover, it follows from
(2.1) that -r(r)/(r) < - 2 if r is sumciently large. Hence we have

( ) 1 ( -rn-lr )1 1 log(r-) + log -p+l 2 p+l r-
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as r - . This implies (c). The proof in the case u < 0 and ur > 0 in a neighborhood
of r can be obtained in the same manner.

Finally let u u(r; a) be of Type O and let zj(a) denote the jth zero of u
u(r; a). If ur(zj(a); a)- O, then u(r; a)--0 for all r, contradicting u(0; a)= a > 0.
Hence we obtain u(zj (a); a) : 0 for every j. Then

1
(2.3) P(zj(a); u) zj(a)nu(zj(a); a)2 > 0.

Thus (d) holds by taking j zj(a).
LEMMA 2.4. Suppose that rK(r) LI(1, c). If u u(r; ) is not of Type O,

then uu < 0 in a neighborhood of r

Proof. We consider the case where u(r; a) > 0 in a neighborhood of r c. The
proof in the case where u(r; a) < 0 in a neighborhood of r oc is obtained in the
same manner.

Since (rn-lu)r -r-lK(r)lulp-lu < 0 if u > 0, r-lu is a strictly decreasing
function of r in a neighborhood of r c. This means that u(r;
or Ur(r; o) < 0 near r c. Suppose that the former holds. Then there exist 5 > 0
and R > 0 such that u(r; a) > 5 on [R, ). Integrating (2.2) over JR, r], we get

ru(r; ) + (n- 2)u(r;
Ru(R; a)+ (n- 2)u(R;

sg(s)lu(s; OI.)[P--lu(8; a) ds
R

<_ Rur(R; a)+ (n- 2)u(R;

5p sK(s) ds.

Here, by assumption, the right-hand side diverges to -c as r - c, while the left-
hand side is positive in view of Lemma 2.1(d). This is a contradiction. Thus it is
shown that u(r; a) < 0 in a neighborhood of r c.

LEMMA 2.5. If lim_suprK(r)/K(r) < A, then u(r;a) is not of Type 0 for
any a > O.

Proof. Set

w(t; 0) l’n--2t(r; 0), t rn-2.

Then the equation in (1.1) is rewritten as

(2.4) wtt + M(t)lwlp-lw 0,

where

M(t) := (n- 2)-2t-p-(n-4)/(n-2)K(tl/(n-2)).

It was shown in Theorem 2 of Kiguradze [7] that if M(t) satisfies

d{t(p+3)/2+M(t)}<O on (T, c)(2.5) d-
for some s > 0 and T > 0, then any solution of (2.4) has at most a finite number of
zeros on (T, ).
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Changing the variable from t to r, we get

d {t(p+3)/2+M(t)} (n- 2) 2
d {t(3_p)/2+e_(n_n)/(n_2)K(tl/(n_2))}

(n 2) 2
dr d

(n- 2)rn_3d {r_+(n_2)K(r)}

(n- 2)rn-aK(r){rKr/K(r)- A + (n- 2)}.

By assumption on K(r), if we take s > 0 sufficiently small and T > 0 sufficiently
large, then the condition (2.5) is satisfied. This completes the proof.

LEMMA 2.6. If (K.1) holds, then a limr-0 rKr(r)/K(r) E (-2, +].
Proof. Suppose that a _< -2. Then, by (Z.1), we have rK(r)/K(r) < -2 on

(0, ), which is equivalent to {r2K(r)} < 0 on (0, oc). Hence there exists a constant
C > 0 such that r2K(r) > C on (0, 1). However this contradicts the assumption
rK(r) e LI(0, 1).

LEMMA 2.7. If lim_rK(r)/K(r) (-,), then rn-l-(n-2)pK(r)
LI(1, ).

Proof. We have

+ n-(n- 2)p-- (n- 2)(p- 1)

Hence, if we take > 0 small enough, then

{rn-(n-2)p+eK(r)}r

rn-l-("-2)P+K(r){rKr/K(r) + n- (n- 2)p + }
< rn-l-(n-2)pg(r){rgr/g(r) )} < 0

for every sufficiently large r > 0. Therefore there exists a constant C > 0 such that

rn-l-(n-2)PK(r) < Cr-1- for r > 1.

This implies that r"-l-(-2)pK(r) L1(1, ). [1

3. Proof of Theorem 1. In this section, we give a proof of Theorem 1.
Let V U(r) be the unique solution of the following linearized equation of (1.1)

at u(r; a)"

(rn-lur)r 2_ prn-lK(r)lu(r; c)lp-1v O, r > O,
(3.1)

u(0)

Differentiating (1.1) with respect to a, we see that the unique solution of this equation
is given by

0
u(r

Let zj(a) denote the jth zero of u(r; a), and let -j denote the jth zero of U(r).
The following two propositions are the most technical part in this paper. We will

give their proofs in 5 and 6, respectively.
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PROPOSITION 3.1. Suppose that (K.1) holds. If u(r; c) has at least (> 0) zeros
on (0, oc), then U(r) has exactly zeros on (O, zi(a)) satisfying 1 E (0, zl(a)) and
j e (zy_l(t),zy(c)),j- 2,3,...,i.

PROPOSITION 3.2. Suppose that (K.1) holds and rKr(r)/K(r) . If u(r; () is

of Type R(i), then there exists > 0 such that u(r; c’) has at least + 1 zeros for
every c’ (c, c + ).

Now let us complete the proof of Theorem 1 by using these propositions.
Proof of Theorem l(b). Differentiating u(zj(c);c) 0 with respect to c, we

obtain

d
+ o.

Here, by Proposition 3.1, U satisfies

< o
> o

if ur(zj(a); a) < 0,

if ur(zj(); ) > O.

dHence we obtain -d-zj(a) < O.
Proof of Theorem 1 (a). Since any zero of u(r; ) is a strictly decreasing continuous

function of a, the zero does not disappear as c increases.
Let {ci} be a nondecreasing sequence defined by c0 0 and

(3.3) ai "-sup{alu(r; a) has at most i- 1 zeros }, i= 1, 2, 3,

Since the number of zeros of u(r; a) never decreases as a increases, we see from
Lemma 2.5 that ai < oc for every and that ai -- c as - c. Moreover, in view of
Proposition 3.2, u(r; ) must be of Type S(i) for every a (a, a+l). This implies
that the sequence {ai} given in Theorem A coincides with the sequence {a} given
by (3.3). Thus the proof is complete.

Proof of Theorem l(c). We introduce the Kelvin transformation

(3.4) v(s) := rn-2u(r), s "= r-.
By this transformation, the equation in (1.1) is rewritten as

(8n-lVs)s + 8n-IL(8)Iv[P-lv- O,

where

L(s) s2XK(s-1).

It is clear that L(s) e C((0, c)) and L(r) > 0 on (0, c). Also, if g < A, then it
follows from Lemma 2.7 that

sL(s) rn-l-(n-2)PK_r_( dr <lim
e--0

Thus L(s) satisfies the condition (K.0). Moreover, we have

sLs(s)/L(s) s{2)s2-lK(s-1) s2-2Kr(s-i)}/s2K(s-)
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Hence sLs(s)/L(s) is a nonincreasing function of s and satisfies

lim sLs(s)/L(s) 2 > ,
8--+0

lim sLs(s)/L(s) 2- a < .
s--+0

Thus L(s) satisfies the same condition as K(r).
Now let us consider the initial value problem

(sn-lvs)s q- 8n-lL(8)Ivlp-lv--O,
v(O) > O.

We denote by v(s; ) the unique solution of this problem. By applying Theorem l(a)
to (3.5), there exist 0 0 < 1 < /2 < < oc with limi_ i oc such that
v(s; ) is of Type R(i) if and only if =/i. In view of (3.4); we see that u(r; ci) and
v(s;/i) are related by

(3.6) t(r; oi) (-x)i+lr-(n-2)v(r-1; i) on (0,

and that u(r; ai) satisfies

lim rn-21u(r; c)l =/3.

This proves (c). [3

Proof of Theorem l(d). Let zj(a) and yj() be the jth zero of u(r; ) and v(s; ),
respectively. By (b) and a < oei+l, we have

(3.7) z.(a) > zj(a+).

Similarly, by applying (a) and (b) to (3.5), we have

Yi-j (i) > Yi-j (/i+1).

Here, in view of (3.4) and (3.6), we see that y_j(/) 1/zj(a) and Yi-j(i+l)
1/zj+l(a+l). Hence we get

(3.8) <

Thus, by (3.7)and (3.8), we obtain

Zj(Oi+l) < Zj(Oi) < Zj+l(Oi+l)

for every and j. This completes the proof of (d). [3

4. Proof of Theorem 2. In this section we give a proof of Theorem 2.

Proof of Theorem 2(a). Assume that rKr(r)/K(r) on (0, oo). Then, by
Lemma 2.2 and Lemma 2.3(a), we have P(r; u) =_ P(gj; u) on [ej, cx). Letting j -+

we obtain P(r; u) =_ 0 on (0, c). Hence, in view of (2.3), u(r; c) has no zero on

(0, oo). Then it follows from Lemma 2.1 that u > 0 and ur < 0 on (0, oo). Thus, by
Lemma 2.3, u(r; ) must be of Type R(0) for every c E (0, oo).

Proof of Theorem 2(b). Assume that rK(r)/K(r) <_ and rK(r)/K(r)
on (0, c). Then, by Lemma 2.2 and Lemma 2.3(a), we have P(r; u)

_
0 on (0,

and there exist R > 0 and 5 > 0 such that P(r; u) < -5 on (R, cx). Hence, in view
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of (2.3), u(r; ) has no zero on (0, cx). Then it follows from Lemma 2.1 that u > 0
and Ur < 0 on (0, c). Thus, by Lernma 2.3, u(r; ) must be of Type S(0) for every
a E (0, c). Thus (b) is proved.

Proof of Theorem 2(c). Assume that rKr(r)/K(r) >_
on (0, c). The inequality rK(r)/K(r) >_ is equivalent to {r-XK(r)} >_ O. Hence
there exists a constant C > 0 such that K(r) >_ Cr on (1, c). Here

(n- (n + 2) (n- 2)(p- 1)
2 2

-2>-2.

This implies that rK(r) LI(1, c). On the other hand, by Lemma 2.2, there exist
R > 0 and 5 > 0 such that P(r; u) > 5 on (R, c). Hence, by Lemmas 2.3 and 2.4,
u(r; ) must be of Type O for every a E (0, ). Moreover, by Proposition 3.1 and

d(3.2), we obtain -hzj(a) < 0 for every j. Thus the proof is complete. [:]

5. Proof of Proposition 3.1. In this section, we give a proof of Proposition 3.1.
Throughout this section, we assume that u(r; ) has at least i(> 0) zeros on (0, c).
By developing the ideas in [9, 15, 16], we will construct a comparison function that
oscillates faster than U(r).

We prepare a few lemmas. For convenience, we set z0(a) 0 in the following.
LEMMA 5.1. Suppose that (K.1) holds. Then the inequality (ru/u) < 0 holds

for r e (Zj_l(O),zj(c)),j 1,2,3,...,i.
Proof. By (2.2), we have

u{ru + (n 2)u} + rK(r)lu[+
u2

Since p > 1 and K(r) > O, we obtain

2P(r;u)
rn_ lt2

Thus it is sufficient to show that P(r; u) >_ 0 on (0, zi(a)).
By (K.1) and Lemma 2.2, there exists R [0, cx] such that

d
rP(r; u) >_ 0 for r e (0, R),

d
-rP(r; u) < 0 for r e (R, c).

Hence we have P(r; u) >_ P(ej; u) for r e [ej, R), where {ej} is the sequence as in
Lemma 2.3(a). Letting j - , we obtain P(r;u) >_ 0 for r (0, R), Thus, if
z(c) _< R, then P(r;u) > 0 for r (0, z(a)). Conversely, if zi(c) > R, then it
follows from (2.3) that P(r; u) >_ P(z(a); u) > 0 for r (R, z(a)]. Thus the proof is
complete. [:]

Let L be a linear operator defined by

L[U] (’n-lUr) + pl’n-lX(r)lt(r; o)[p-Iu.

Then (3.1) is equivalent to L[U(r)]- 0 and U(0)= 1.
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LEMMA 5.2. Suppose that (K.1) holds.
{pj }, j 1, 2,..., i, such that

(a) 0 < 1 <
(b) -oo < p _< t*- <_"" <_/* <
() e (z_(), z());
(d) if j is odd, then

Then there exist sequences {j} and

jU -t- fur > 0 and L[ltju -+- rur] <_ 0

ltju na rut < 0 and L[ttju q- rur] >_ 0

for r E (zj-1 (oz), flj),

fo e (, z()),

and if j is even, then

ltju q- rut < 0 and L[ju q- rUr] >_ 0

ltju qt_ rut > 0 and L[lzju q- rUr] <_ 0

for ? (Zj_l(OZ),pj),

fo e (, z ()).

Proof. We have

L[u] (rn--lltr)r nt- prn-*K(r)lulP-lu,
n[rur] {rn-l(ritr)r}r nt- prn-lK(r)lulp-l(rur).

Using

(5.1) (rn-lur)r _rn-1

we get

(5.2) L[u] (p- 1)rn-lK(r)lulP-lu.

Using (5.1) and

(rn--ltr)rr --{rn-lK(r) lulp- lu}r
--(n 1)r-K(r)lulP-lu rn-lIr(r)ltlp-lu prn-lI(r)lltlP-ltr,

we get

(a.a) L[rur] -rn-lK(r){rKr(r)/K(r) + 2}[ltlP--lu.

Thus, by (5.2) and (5.3), we obtain

(5.4) L[#u + ru] r"-lK(r)]ulp-lu{(p 1)# rK(r)/K(r) 2},

where # is a parameter.
Let F be a curve on the two-dimensional plane defined by

r := {(r, rK(r)/K(r) + 2); r

According to Lemma 5.1, for any p e (0, Zl(OZ)), there exists a unique # I(P) e
(0, +oe) such that

for r (0, p),
for r E (p, Z1 (Oz)),
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and P (P) is a strictly increasing continuous function of p satisfying

I(P) J. 0 aS p J. 0,

1 (P) T -(:x:) as p T Zl (o).

By Lemma 2.6, this implies that the point (p, (p- 1)#1(p)) is below r if p +0 and
above F if p zl (c) 0. Hence, by the continuity of F, there exist pl

and #1 := #1(Pl) > 0 such that (pl, (p- 1)#1) is just on the curve F, i.e.,

(p- 1)#1 plIr(Pl)/14(pl) 2 O.

Then, since rKr(r)/K(r) is nonincreasing, we have

(p- 1)#1- rKr(r)/K(r)- 2

_
0

(p- 1)#1 rKr(r)/K(r) 2

_
0

for r E (0, Pl),
for r (Pl, Z1 (O)).

By (5.4), this implies

L[#lU - rur]

_
0

L[#lU -- rur]

_
0

for r e (0, pl),

for r (pl, ZI(O)).

Similarly, for any p e (zl(a),z2(c)), there exists # #2(p) e (-cx, +cx) such
that

#(p)u+ru < 0

#(p)u + ru > 0

for r (zl (c), p),
for r (p, z2(c)),

and #2(p) is a strictly increasing continuous function of p satisfying

2(P) , --(;X aS p J, Zl(O),
P(P) T + s p T z().

This implies that the point (p, (p 1)#2(p)) is below F if p zl (a) + 0 and above F
if p z2(c) 0. Hence, by the continuity of F, there exists P2 e (Zl((), z2(a)) and
#2 := #2(p2) such that (p2, (p- 1)#2) is just on the curve F, i.e.,

(p- 1)#2 p2K(p2)/K(p2) 2 O.

Then, by (K.1), we have

(p- 1)#2- rK(r)/K(r)- 2 <_ 0

(p- 1)#2 rK(r)/K(r) 2 >_ 0

for r e (Zl (oz), p2),
for r E (P2, z2 (c)).

By (5.4), this implies

L[#2u + ru] >_ 0

L[#2u + rur] <_ 0

Repeating this process, we obtain (a), (c), and (d).
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Finally, since {pj } is a strictly increasing sequence and

(p- 1)#j pjKr (py /K(pj 2 O,

it follows from (K.1) that {#j} is a nonincreasing sequence. Thus (b) holds.
Let V(r) be a function on (0, zi(a)] defined by

(5.5) V(r) #j%t(r; ol) -- rr(r; oz)) for r E (Zj_l (oz), zj(oz)], j 1, 2, 3,..., i,

where {#j} is the sequence given in Lemma 5.2. Since u(r; a) 0 at r zj(a), U(r)
is a continuous function. However V(r) is not smooth at r zj(a) if #j #j+l. Note
that, by Lemma 5.2(d), V(r) 0 if and only if r

Let us introduce the Priifer transformation

u(r; a) Q(r; u)cos(0(r; u)),
-r-lur(r; a) Q(r; u)sin(0(r; u)),

where Q(r; u) := {u(r; a)9+(rn-lur(r; a))2} 1/2 > 0 and O(r; u) is a smooth function of
r satisfying 0(0; u) 0. Since u rl-(r-lu) and -(r-u) r-lK(r)[u[P-u,
we have

(5.6) Q cos(0) Q sin(0)0 -rl-Q sin(0),
(5.7) Qrsin(O) + Q cos(O)o rn-lK(r)lu[p-lQcos(O),

where Q Q(r; u) and 0 O(r; u). Multiplying (5.6) and (5.7) by sin(0) and cos(0),
respectively, and adding them, we obtain

(5.8) 0r(r; u) r- sin2(0(r; u)) + r-K(r)lulp-1 cos(0(r; u)).

Similarly, put

u)cos(0( ; u)),
-r-iU(r) Q(r; U)sin(0(r; U)).

Then we may assume that 0(0; U) 0 and

(5.9) 0(r; U) r- sin2(0(r; U)) + prn-lK(r)lulp-1 cos2(0(r; U)).

As for the function V(r), the situation is a little delicate. Put

V() Q(; V)co((; U)),

-r-V(r) Q(r; V)sin(0(r; V)).

Since 0 < 1 ( -{-OO, we have V(0) > 0. Hence we may assume that O(r; V)
(-r/2, r/2) if r > 0 is sufficiently small. We may assume that O(r; V) is continuous
on (Zj_l(C),z/(c)). However, since V(r) may not be smooth at r zj(c),O(r; V)
may be discontinuous at r z(c). In fact, we have

Ur(zj(o) -[- O) Vr(zj(o) O) (j+l #j)tr(Zj(O); 0).

Since j

_
Pj+I and

ur(zy(c); c) < 0 if j > 0 is odd,

ur(zj(c); a) > 0 if j > 0 is even,
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we obtain

Since

V(z() 0) _< V(z() + o)

V(z() o) > v(() + o)

if j is odd,

if j is even.

V(zj(a)) < 0 ifj is odd,

V(zj (a)) > 0 if j is even,

we may assume that 0(r; V) satisfies

(5.10) O(zj(a) + 0; V) O(zj(a) 0; V) e [0, )

for j 1,2,...,i- 1.
Now, by Lemma 5.2(d), Y(r) satisfies -V(r)L[Y(r)] >_ O. This is equivalent to

-Q cos(0){-Qr sin(0) Q cos(0)0r / prn-lK(r)ltlp-lQ cos(0)}

_
0,

where Q Q(r; V) and 0 O(r; V). On the other hand, rn-lvr{Vr-rl-n(rn-lVr)}
0 is equivalent to

-Q sin(0){Qr cos(0) Q sin(0)0r + rl-nQ sin(0)} 0.

Adding these two equalities, we obtain the differential inequality

(5.11) Or(r; V)

_
r1- sin2(0(r; V)) + prn-lK(r)[ulp-1 cos2(0(r; V))

for r # zj(a).
Now we have the next lemma.
LEMMA 5.3. Suppose that (K.1) holds. Then O(r;u) < O(r; U) < O(r; V) for

e (0, z()].
Proof. We want to apply the comparison theorem (see [2, Chap. 8, Thm. 1.2]).

However, since the right-hand sides of (5.8), (5.9), and (5.11) have singularities at
r 0, we need careful consideration in a neighborhood of r 0.

First we prove the inequality 0(r; u) < 0(r; U). Integrating uL[U] 0 by parts
on [j, r], we get

(5.12) [r-l(Uru Uur)]ej -(p 1) 8n-IK(s)lu]P-luU ds,

where {j} is the sequence as in Lemma 2.3(a). Here, as j - , we have

u(e; a) --, a,
n-1 (j; Oz) O,j tr --U(j) 1,

u()= o -l()ll-ud - 0.

Thus we obtain

lim sn-lK()lulP-g ds.-l(u-) -(p- /
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If 0 < r < min{zl (a), 7"1}, then the right-hand side of this equality is negative. Hence
we obtain -r’-lu/u < -rn-lU/U, i.e., O(r;u) < O(r; U) if r > 0 is small. For
r > 0, the right-hand sides of (5.8) and (5.9) have no singularity. Hence we can apply
the comparison theorem to show that O(r; u) < O(r; U) for all r > 0.

Next we prove O(r; U) 0(r; V). Let r > 0 be sufficiently small. Integrating
VL[U] 0 by parts on [, r], we get

[r-(UV UV)] L[V]U ds.

Here, as j , we have

u() ,
jn-lUr(j) O,

V(a) 1,

,-1 (s;a) +eyu1v()= {(,1 + 1) ( )}

.-1 {(,1 + e)-(; ) K()I.(; )-1.(; )} 0.

Thus we obtain

r-(UV Ugh) im L[V]U ds.

Here the right-hand side of this equality is nonnegative in view of Lemma 5.2(d).
Thus we obtain -rn-U/U -rn-lg/V, i.e., O(r; U) O(r; V) if r > 0 is small.
or r > 0, the right-hand sides of (g.9) and (5.11) have no singularity. Hence we
can apply the comparison theorem to show that O(r; U) O(r; V) for r (0, Zl()).
Then, by (g.10), we obtain O(zl () -0; U) O(zl ()+ 0; V). Again we can apply the
comparison theorem to show that O(r; U) O(r; V) for r (z(), z()), aepeating
this process, we obtain O(r; U) O(r; V) for r (O, zi()), a

Let us complete the proof of Proposition .1.
Pro4 4 Proposition a.1. By Lemma 5.a, the inequalities O(r; ) < O(r; U)

O(r; V) hold. These imply that U(r) oscillates faster than (r; ) and more slowly
than V(r). Since p is the unique zero of V(r) in [z_ (), z()], we obtain z-i () <
p < z() for j 1, 2,..., i. This completes the proof.

6. Proof of Proposition .. In this section we give a proof of Proposition g.2.

or convenience, we put z0() 0 and zi+ () if (r; ) is of Type R(i).
The following lemma can be proved in the same way as Lemma g.2 by noting

Lemma 2.1(d) and Lemma .a(b). We omit the proof.
LMMa 6.1. Sppose hat (K.1) holds. If (r; ) is 4 Tpe R(i), the there

eist sequences {} and {p}, j 1, 2,..., + 1, sch that
(a) 0 < 1 < + and - < i+l < n- 2,
(b) - < p+ pl < +,
(c) p e (Z_l(), z()),
d ff j is odd, then

,ju + ru > 0 and L[pju + rur] 0 for r e (zj_ (a), pj),

#ju + ru < 0 and L[pju + rur] 0 for r e (pj, zj(a)),
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and if j is even, then

#ju + rut < 0 and L[#ju +rur] >_ 0

#ju + ru > 0 and L[#ju + rur] <_ 0

e

for e

Let u(r; a) be of Type R(i), and let V(r) be defined by

Y(r) #ju(r;c) +rur(r;c) forre [Zj_l(C),zj(c)),j --1,2,...,i + l.

Further let 0(r; u), 0(r; U), and 0(r; Y) be as in the previous section. Then, similar to
Lemma 5.3, we have

(6.1) (r; u) < O(r; U) _< O(r; V) on (0,

Moreover, if rK(r)/K(r) Constant, then L[V] 0 in view of the proof of Lemma 5.2.
By [2, Chap. 8, Thm. 1.2], this implies that there exists R > 0 such that

(6.2) 0(r; u) < 0(r; U) < 0(r; V) on JR, oc).

LEMMA 6.2. Suppose that (K.1) holds. Ifu(r;a) is of Type R(i), then U(r) has
exactly + 1 zeros on (0, ) satisfying ’j e (Zj-l(a), zj (c)), j 1, 2,..., + 1.

Proof. By Proposition 3.1, U(r) has one and only one zero in (Zj_l(a),zj(a)) for
j 1, 2,..., i. By (6.1), U(r) has at most one zero in (zi(a), oc). Thus it is sufficient
to show that U(r) has a zero in (zi(c), ).

First we consider the case where i(> 0) is even. Then u(r; c) > 0 in a neigh-
borhood of r . We will derive a contradiction by assuming that U(r) > 0 on
[zi(a), oc). Similar to (5.12), we have

(6.3) [rn-l(Urlt- Ultr)]zj(a) -(p- 1) sn-lK(s)uPU ds < O.
()

Since u(zi(c);c) 0, Ur(Zi(C);C) > 0, and U(zi(c)) > 0, we obtain rn-l(Urt-
Uu) < 0 or (U/u) < 0 on [zi(a), x). Hence there exists a constant C > 0 such that
0 < U < Cu on [zi(c), oc). Then we have

irn-lurUI < C[rn-lurul __4 0 as r ---+

Moreover, integrating (3.1) over [zi(a), r], we obtain

r

()

< / Cp 8n-lg(8)tpds.
()

Since u(r; c) is of Type R(i), the integral in the right-hand side is convergent as
r -- cx. Hence r’-lUu -- 0 as r -- x. Thus it is shown that the left-hand side
of (6.3) is positive if r is sufficiently large. This contradicts (6.3). Hence U(r) must
have a zero in (z (c), oc).

The proof in the case is odd is obtained in the same manner. Finally the proof
in the case 0 can be obtained by replacing z(c) by ej and letting j oc, where
{ej} is the sequence as in Lemma 2.3(a). D
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Now let us complete the proof of Proposition 3.2.
Proof of Proposition 3.2. We consider the case where i is even. The proof in the

case i is odd can be obtained similarly. Note that if is even, then u(r; a) > O, U(r) <
0, and V(r) < 0 in a neighborhood of r c.

Assume that u(r; a) is of Type R(i). Then, by the continuity of solutions with
respect to initial data, there exists 5 > 0 such that u(r; at) has at least zeros for
a’ E (a, a + ). Put

u(;.’)- (;)W(r) := a,_ a

Then W(r) satisfies

(rn-lwr)r + rn-lK(r)h(r)W 0,

W(O) ,
where h(r) is a continuous function given by

h(r) :=
(; ’)- (r;)

if u(r; a’) u(r; a),
plu(r; a)lp-1 if u(r; a’) u(r; a).

We fix R so large that (6.2) and R > T+I hold, where T+I is the (i + 1)th zero of
U(r). By definition, W(r) U(r) and Wr(r) Ur(r) as a a uniformly in [0, R].
Hence, if at- a > 0 is sufficiently small, W(r) has exactly i + 1 zeros on [0, R] and
satisfies W(R) < 0. Moreover, since the inequality 0(R; U) < 0(R; V) is equivalent to

Ur(R)V(R) U(R)V,(R) > O,

we have

(6.4) W(R)V(R)- W(R)V(R) > 0

if a- a > 0 is sufficiently small.
For the behavior of u(r; a) in (R, c), one of the following three cases occurs.
Case 1. There exists R0 E (R, c) such that 0 < u(r; at) < u(r; a) for r (R, R0)

and u(R0; a’) u(R0; a) 0.
Case 2. 0 < u(r; at) < u(r; a) for all r e (R, c).
Case 3. There exists z+l (at) such that 0 < u(r; at) < u(r; a) for r

and u(zi+l(at); at) 0.
First suppose that Case 1 holds. Then W(r)L[Y(r)] <_ 0 on JR, Ro], Integrating

this inequality by parts on JR, R0], we get

[rn-l(WrV-WYr)]RR
__

rn-lK(r){pltt(r; o)lP-l-h(r)}V(r)W(r) dr.

Here, by W(Ro) 0, wr(n0) > 0, V(Ro) < 0, and (6.4), the left-hand side of (6.5)
is negative. On the other hand, since plu(r; )1p- > h(r) in view of 0 < u(r; ’) <
u(r; ) for r (R, R0), the right-hand side of (6.5) is positive. This is a contradiction.
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Next suppose that Case 2 holds. Then u(r; a’) also must be of Type R(i). Similar
to (6.5), integrating W(r)L[V(r)] <_ 0 by parts on JR, r] and using (6.4), we obtain

rn-l(wrg Wgr) > 8n-lI(8){plu(8; o)1p-1 h(s)}r(s)W(s) ds.

Here the integrand is positive. Hence we can take a constant C1 > 0 such that

rn-l(WrV- WVr) > C1 for r

which is equivalent to

(6.6) (W/V)r > Clrl-nv-2 for r e (R,c).

On the other hand, by the definition of V, we have

V(?)/t(r; oz) ti+l - rtr(r; oz)/t(r; oz) for r (z,(), o).

Hence we see from Lemma 2.1(e) and Lemma 6.1(a) that

lim V(r)/u(r; a) i+1 -(n- 2) < O.
r-o

Therefore there exist constants C2 > C3 > 0 such that

(6.7) --62r2-n < V(r) < -63r2-n for r e (R, c).

Hence, by (6.6), we obtain

(W/V)r > Clrl-nv-2

(C1/C)rn-3 for r (R, ).

This implies that W/V - oc as r oc. Then it follows from (6.7) that rn-2W
as r oc. However, this contradicts the fact that both u(r; a’) and u(r; a) are of
Type R(i).

Consequently, we conclude that Case 3 must hold.
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INITIAL AND INITIAL-BOUNDARY VALUE PROBLEMS FOR A
VORTEX FILAMENT WITH OR WITHOUT AXIAL FLOW*

TAKAHIRO NISHIYAMA AND ATUSI TANI

Abstract. The equations which describe the motion of a vortex filament with or without an
axial flow inside its core are considered. The initial and the initial-boundary value problems are
proved to have unique and smooth solutions globally in time. These results are obtained by adding
vanishing parabolic terms which conserve the length of the filament.

Key words, vortex filament, perfect fluid, localized induction equation, initial and initial-
boundary value problems, unique and smooth solvability
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1. Introduction. The system of equations

(1.1) xt xs x xss + a xs + -x x (x8 x x)

approximately describes the deformation of a vortex filament with or without axial
velocity in its thin core, in a perfect fluid. Here x x(s, t) denotes the position of a
point on the filament in R3 as a vector-valued function of arclength s (E R) and time
t (> 0), and a real constant a represents the magnitude of the effect of the axial flow.
In particular, (1.1) with a 0, from which the axial-flow effect is absent, is called the
localized induction equation (LIE).

Since Da Rios [1] formulated the LIE in 1906, many authors have studied it from
various points of view (see [9], [10], and the references therein). In [8], we proved
the weak solvability of some initial and initial-boundary value problems for the LIE,
although the expected uniqueness and smoothness of the solution were not found. On
the other hand, (1.1) with a 0 was originally derived by Fukumoto and Miyazaki
[2] as a generalization of the LIE from the Moore-Saffman equation in [7].

Differentiating (1.1) with respect to s and setting v Xs, we have

(1.2) vt v vss + a vsss + vss x (v x vs) + vs x (v x vss)

Impose the initial condition

(1.a) 0) 1,

on (1.2) for s R. One of our aims in this paper is to establish the unique and smooth
solvability of the initial value problem (1.2) with (1.3) in the space where the curvature
of the vortex filament ]v] tends to .zero as s , on the time interval [0, T] with
any T > 0. In order to achieve it, we first investigate the parabolic regularization

for > 0. After that, we let e - 0.
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The other aim is to obtain the unique and smooth solvability of an initial-
boundary value problem for (1.2) by the above method. At this time, we treat the
case a 0 only.

By the way, (1.1) or (1.2) can. be transformed into the Hirota equation (or the
nonlinear SchrSdinger equation if a 0),

(1.5) it + s8 + -l] ia + -]] 0

for P n(s, t)exp (i f0 -(s, t)ds + iT(t)), where n(s, t) and -(s, t) are the curvature
and the torsion of the filament, respectively, and (t) is a real function of t (see [2],
[3], [5]). But, as in [8], we should remark that (1.5) is always equivalent to neither
(1.1) nor (1.2). In fact, if the filament has a segment where IXsl vanishes and w is

indefinite, then ArgP is not well defined even outside there.
We introduce the notation and a result for a linear parabolic system in 2. Then

a solution of (1.4) with (1.3) is obtained uniquely on [0, T] with small enough in.

3. In 4, we establish the theorem for (1.2) and (1.3) and obtain a corollary on the
vanishing axial flow. In 5, an initial-boundary value problem is discussed.

2. Preliminaries. Let us introduce our notation, rn denotes an arbitrary non-

negative integer unless we particularly note otherwise. The norms of vector-valued
functions in L2(t) and in the Sobolev space W(Ft) are denoted by ]]. ]]a and I]" I]("),
respectively. Then I1" ]1( ]1" I]a. When 9t R, we write the norms as simply

I1" and I1" (’). The set of all continuous (resp. once continuously differentiable)
functions in a Hilbert space X on a finite time interval [0, T] is denoted by C(0, T; X)
(resp. C1(0, T; X)). The class of HSlder-continuous X-valued functions on [0, T] is

writtenas C(O,T;X), 0 < /3 < 1. The norm (’)T (resp. (.))) represents the
supremum (resp. the HSlder norm) over [0, T]. Positive constants, denoted by c, c.,
and ca, change from line to line, but the second is independent of both e and a and
the third is monotonically increasing in ]a and independent of e. The operator D is
equal to O/Os.

Next, consider a linear equation

(2.1) ut -eUss8 + f(s, t)

with

(2.2) u(s, O) uo(s)

for s E R. Then we get the following result.
LEMMA 2.1. If e > 0, UO W+’(R), and f C(O,T;W(R)) for T >

0, 0 </3 < 1, then there exists a unique solution of (2.1), (2.2) in C(0, T; W+’(R))
CI(0, T; W(R)). Moreover, the following estimate is valid:

(2.3)

where c is independent of uo and f.
This lemma was proved in more general form by the theory of analytic semigroups

in [6, Thm. 5.8], [11, Thm. 1V.6.E].
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3. Solvability of (1.4) with (1.3). Noting that v is a tangential vector and is
not square integrable over R, we obtain the following.

PROPOSITION 3.1. Let > O, a E l:l, and Vo8 W3+m(l:l). Then on some time
interval [0, To], To > 0, there exists a unique solution v of (1.4) with (1.3) such that
(v Vo) e C(0, To; W42+m(R)) N C1(0, To; wn(/)).

Proof. Let u() -0 and u(n) (n 1, 2,...) be a solution in Lemma 2.1 on a time
interval [0, t] with 0 </ < 1/4, uo 0, and

where V(n-l) 2t(n-l) -V0 and u(n-l) C(0, t; W24+m(R))NC1(O,t; Wn(R)). Since
the multiplicative inequality yields

for tI, t" [0, t], and 0 <_ 0 _< 1/4, u() is well defined for each n. Indeed, it follows
from (2.3) and the imbedding theorem that

Here c depends on vo. Choose t T1 so small that there exists a constant M
independent of n and satisfying cT/4-Z(1 + M)2M / c < M. Then we obtain
A _< M if A-I _< M. Hence An <_ M with n arbitrary.

Setting w() u(’) -u(n-), we have

Wn/l) (n/l)
_
f() f(-l){1J8888

w(n/l)(8,0) --0.

Again by (2.3) and the fact that An- and A are bounded by M, we estimate w(+)

on [0, t], 0<t<_T1, as

ctl/4-(1 + M)2 ((llw(n)ll(4/m)}t +
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If we choose To E (0, T1] so small that cTo/4-(1 +M)2 < 1, then the sequence {u(n) }
converges to the function v v0 in the space C(0, To; W24+’(R))NCI(O, To; W(R)),
where v is a solution of (1.3) and (1.4).

The uniqueness of v can be easily proved.
Next, we prove the following lemma, which implies that the length of the vortex

filament is conserved.
LEMMA 3.1. Let v be a solution of (1.3) and (1.4) such that (v- vo) C(0, T;

W2a+’(R)) N C1(0, T; W(Tl)), T > O. Then

(3.1)

holds for any (s, t) / [0, T].
Proof. Define the function h(s, t) by

h(s, t)= Ivl 1

for s R, 0 _< t _< T. Then we obtain

hs 2V Vs

hs8 2(v .vs8 + lullS),

hs 2(v.v8 + 3v. vs),

2h8 2(v. vs + 4v .vs8 + 3lv ).

Using these relations, (1.4) multiplied by v, and (1.3), we have

12ht a {h 3(v. v)h + 6(vs v)h} e {hss + 8(Vs. vss)h + 6lv h},

h(s,O) =0.

For this linear system, we conclude that h 0 is the only solution because of Ilhll 0
yielded by the estimate (d/dt)llhll 2 <_ cllhll 2, where c depends on {llv v011(4)}T and

IlVoll (3). Hence (3.1) follows. D
Utilizing Lemma 3.1, we derive an a priori estimate for (1.4).
LEMMA 3.2. Let v be as in Lemma 3.1. Then there exists a positive constant eo

depending only on T and Ilvosll such that v for any e e (0, e0] satisfies the estimate

where Ca depends only on T, and lal.
Proof. By the density theorem it is sufficient to prove (3.2) for an infinitely

s-differentiable v with a compact support.
From (3.1), we have

n-1
1

Dk D-kv (n>_2).(3.3) v v O, v Dv -- ECi v
k--1
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It also follows from (3.1) that on the point where Ivsl is nonzero, the vectors v, vs/Ivl,
v v,/]v, are the orthonormal ones in R3. Then

v D’v vs [(v. D’v)v + {(v vs)’Dnv}v

holds for n > 2 and leads to

(3.4) v D’v -(v. D=v)v v + { (v x v) Dv}v.
Clearly, (3.4) is also valid where vs -O.

Multiplying (1.4) by Vss, integrating over R, and using (3.3), we obtain

d
t)II -2 (IIv...II +4j l .l v. + 31iv.[iv..ii])dllv(.

-11 + olv1,

where co is a positive constant yielded by use of the multiplicative inequality and
Young’s. Let r(t) be a solution of the scalar equation dr/dt cor5 with r(0)
Ilvoll 2. Then we solve it as r(t) (llvos[1-8- 4ecot) -1/4 when 4cot < tlvo]1-8.
Choosing eo so small that

(3.5) 0 < o < (4coTIIvollS) -,
we have

(3.6) IIv(.,t)ll r(t) /2 c,

on [0, T] for all e e (0, 0].
Next, by (3.3), (3.4), (3.6), and the multiplicative and Young’s inequalities, we

obtain

dt
IIv(.,t)ll2- 2lllv(.,t)l II

+ 51v12v. v t)ds

-< ft 3 {Il=. (v )}ds

+ af { lvllvl + 8(v. v) lvlv v} ds

211112 + c, (tlvll 5/3 + IIvlla/3)
C,.

It yields

from which

(3.7)
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follows.
In the same way, by boring calculation we can verify

which yields

Here we made use of the formula

which is proved as (3.4).
Let j 4, 5,..., 4 + m. Then, using (3.3), (3.4), and integration by parts, we can

derive (d/dt)llDJvll 2 <_ CallDJvll 2 +ca if (IlVslI(J-2)}T <_ Ca is given. This fact, together
with (3.6), (3.7), (3.8), and Gronwall’s inequality, yields (llvsll(3+’)}T _< Ca. Hence we
have (ll(v VO)sll(3+m)}T
are easily obtained.

From Proposition 3.1 and Lemmas 3.1 and 3.2, by the standard continuation
argument, we have the following theorem.

THEOREM 3.1. Let T > O, vo
(0, e0] with o satisfying (3.5), there exists a unique solution v of (1.3), (1.4) such that
(v vo) e C(0, T; W+m(R)) C(0, T; W(R)), (3.1), and (3.2) hold.

4. Solvability of (1.2) with (1.3). Considering the limit -+ 0, we establish
the following theorem. Its proof is based mainly on the method in [4, 3].

THEOREM 4.1. Let Vos E w+m(R) and a R. Then there exists a unique
solution v of (1.2), (1.3)such that (3.1)is satisfied, (v- vo) C(O,T;W+m(R)) N
C(0, T; w+m(R)) ira O, and (v-vo) e C(0, T; Wa2+m(R))CI(O,T; w+m(R))
if a O with any T > O.

Proof. Let v(s,t) be the solution of (1.3), (1.4) in Theorem 3.1. Subtracting
(1.4) for e " from that for e e’ (0 < " < e’ <_ co) and setting z v’- v’’, we
estimate z as

(4.1)
d

’ v’’ ’ (s, 0) -0, it follows thatHere we used (3.2) and v".z v v z. Since z

(llzll(1))T _< Ca(’) 1/2. Thus v- v0 converges strongly to some function (w- Vo)
C(O, T; W(R)) for W2(R)-norm and uniformly in t + [0, T] as e -+ 0. From this, we
know wl 1.

On the other hand, (3.2) implies that (w-vo) L+(0, T; W42+’(R)) and that the
weak convergence (v vo) -+ (w v0) holds in W2a+’(R), uniformly for t. Clearly,
w(s, O) vo and liT(., t) v011 (4+’) _< Ca.

Since G(v) v v8 + (3/2)a{v x (v X v) + v (v v)} is bounded by Ca

in W22+m(l:t) for every t, its subsequence (if necessary) weakly converges in w+m(R)
and uniformly for t. Let 4 qs(s) be an infinitely differentiable vector function with
a compact support. Then
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vv-wws+-a{v(vv)

} E(-1)J+ID2j+I ds
j=0

where (.,.)(’) means the scalar product in W(R), tends to zero uniformly in t E
[0, T] as e --. 0. Hence the weak limit of G(v) is equal to G(w) L(0, T; W+’(IZt)).

Next, integrate (1.4) over It’, t"] c [0, T]. Then we get

’’)

ft, [av;8 + G(v) -e{v + 4(v. v;8)v + 3]v;12v}] dt.

Taking its scalar product in W21+’(R) (resp. W22+’(R)) with the above 4 if a : 0
(resp. a 0) and letting e - 0, we have

t") t’) +

Hence w is a solution of (1.2) and (1.3).
Let us verify the uniqueness of the solution w. Assume that. there exist two

solutions w and w" for (1.2) with the same data. Then for z w w", we obtain
the same estimate with (4.1) but et 0. Hence z 0 follows.

Utilizing (3.2), we derive (d/dt)(]lvll(2+’)) 2 _< Ca from (1.4) for e (0,0].
V (2+rn) (2--m)Therefore, 8(’,t)ll <_ IlVol[ +cat1/2 follows. By the limit 0 we have

IlWss(.,t)l] (2+m) <_ IlVossll (2+m) + Cat1/, which leads to limsupt_0 IIw(.,t)l] (+’) _<
Ilvo811 (2+’) IIw(.,0)ll (2+’). Since w is weakly continuous in W+’(R), it is
strongly continuous in W22+’(R) at t 0. As in [4], making use of the uniqueness
of w and the reversibility of (1.2) in t, we can show ws C(0, T; W+’(R)). Then
it yields (w vo) C(0, T; W+’(l:t)) N CI(0, T; W2+’(R)) if a : 0, (w vo)
C(O,T;Wa2+’(I:t))NCI(O,T;W+’(I:t)) if a- 0. D

Since we have Ca <_ c. if lal _< 1 is assumed, the limit a 0 can be discussed in
the same way as e - 0.

COROLLARY. In Theorem 4.1, the difference between the solution v for a 0
and that for a 0 converges to zero strongly in W(R) and weakly in W2+’(R),
uniformly in t as a -- O.

It should be noted that our method is also applicable when a E R and the spatially
periodic condition v(s, t) v(s + 1, t) is imposed.

5. Initial-boundary value problem. In this section, the domain of s is re-
stricted to J (-1, 1) and a is assumed to be equal to zero. As a boundary condition
imposed on (1.2), we take

-o.

Let V be the completion with respect to I1" II(j") of the space where every element
g belongs to C([-1, 1]) and satisfies D2J-lg(+/-l) 0 for j 1, 2, Then by the
Fourier expansion and Parseval’s equality, we obtain the following result.
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LEMMA 5.1. If > 0, UO E V4+m, and f C(0, T; Vm) for T > O, 0 < < 1,
then there exists a unique solution of (2.1), (2.2), and u8(+1, t) u8(+1, t) 0 in
C(0, T; V4+m) C C1(0, T; V’). Moreover, the following estimate is valid:

(4+m) (4+m) (jm) (T)

where c is independent of uo and f.
Let g- (gl,g2,g3) 6 Vn, n >_ 2. Then for k- 1,2,...,n- 1, we verify

IIDgll fj Dk-lg Dk+l

3

IDkg(s)l 2 2
i=1

Dkg Dk+lg ds <_ 2IIDkgllj IIDk+lg]lj.

Here si (i 1, 2, 3) is a point on [-1, 1] satisfying Dkgi(si) O, whose existence
is trivial for an odd k and is obtained from fj Dkg ds 0 for an even k. From this,
we know the validity of the multiplicative inequality for an element in Vn.

Therefore, using Lemma 5.1, we prove the following theorem for (1.4) with (1.3),
(5.1), and

(5.2) v,8(+/-l, t) --0.

THEOREM 5.1. Let T > O, vo V4+m, and a O. Then for each e (0, 0] with
0 < o < (4coTIIvollsj) -1, there exists a unique solution of (1.3), (1.4), (5.1), (5.2)

(4+)such that v e C(0, T; v4+m)NcI(O,T; Vm) and (3.1) holds. Moreover, {llv-IIg }T+
{IlVtl](j’)}T <_ C, is valid, where c, depends only on vo, T, and o.

Proof. The proof is divided into two parts. One is to establish the existence of
a temporally local solution. It is done as in the proof of Proposition 3.1 because the
s-derivatives of any odd order for v v, (vs. v)v, Iv8lv are equal to zero at
s +1 if D2j-lv(+/-l,t) 0 for j 1,2, The other is to derive (3.1) and the a
priori estimate in the theorem, and we do so by the method in the proofs of Lemmas
3.1 and 3.2. [:1

In the same manner as in the proof of Theorem 4.1, we establish the following
theorem.

THEOREM 5.2. Let vo V4+’ and a O. Then there exists a unique solution of
(1.2), (1.3), (5.1) such that v C(0, T; V4+’) N CI(0, T; V2+m) with any T > 0 and
(3.1) is satisfied.

Here we noted that (5.2)is formally derived from (1.2) with a 0, (1.3), and
(5.1), irrespective of the class of v. In fact, (3.1) is formally obtained because of
v .vt 0, and v, (vt v8 v) v 3(v. v,8)v follows.

Remark. Our method is also useful to another initial-boundary value problem
given by (1.2) with a 0 for s > 0, (1.3), and the condition v,(0, t) 0.
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Abstract. We study a two-dimensional hyperbolic-elliptic coupled system arising from the study
of a gas fluidized bed model. The well-posedness of an initial-boundary value problem is discussed
and the short-time existence of classical solutions is obtained.
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1. Introduction. The mathematical model describing a gas fluidized bed can
be derived from the conservation of mass of each phase and the conservation of mo-
mentum. Let a denote the concentration by volume of particles and Vp, vg denote
the velocities in the particle and gas phases. If the relatively small density of gas is
neglected and the intrinsic density p of particles is assumed to be constant, then the
governing equations are the following system [2, 3]:

Ota + V. (ave) 0,

Or(1 a) + V (1 a)vg 0,
(1.1)

a(.,,) + v.() -v VF(.) .u + B()(,, ),

(1 -.a)Vpg + B(a)(Vg Vp) 0.

Here > 0 is the terminal velocity of an isolated falling particle, g is the constant
gravity vector with g Igl, is the drag coefficient, and p=F(a) models the
pressure difference in the two phases. For simplicity, we will assume in this paper
that (see [2, 3])

B(a)=
gp

(1.2) z (1 a)2’

F’(a) > O, F"(a) > O, fora>0.

There have been many discussions of system (1.1) for the case of one space variable
[2, 3]. In particular, a traveling-wave solution containing admissible shocks was given
in [4]. The general case of more space variables has potentially more interesting
features, e.g., spherical regions devoid of particles called bubbles [3]. Only numerical
studies of (1.1) have been done in the higher-dimensional case. Analytical work such
as linear studies [3] has been restricted to approximations of (1.1) or similar systems.

In this paper, for the two-dimensional flow, we introduce the stream function
(x, y) such that

f Ol,Vpi -[-" (1 o)Vgl (y,
(1.3)

aVp2 + (1 -a)%2
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therefore, we can express vg in terms of Vp and :
COy Vpl

The term Vpg can be eliminated by the last two equations in (1.1). From the last
equation in (1.1) and Oxupg Ou:pg, we obtain

a)2 (l-a)2 x"
Therefore, system (1.1) can be rewritten as the following system for the variables of
particle concentration a, particle velocity Vp (u, v), and the stream function :

(1.4)

+ + 0.

(au)t + (au2) / (auv)u -u20F(a) /

(av)t -t-(auv) / (av2) -20uF() + (1 __)4

/ Uy Vx + +

go,

where G(a) B(a)(1- a)-2. The equations in (1.4) form a quasi-linear hyperbolic-
elliptic coupled system of the variables (a, u, v, ) in the two-dimensional space.

In this paper, we discuss an initial-boundary value problem of (1.4), derive the
well-posedness of the linearized equations, and establish the existence of the solution
for the nonlinear problem.

Consider the infinite vertical fluidized bed bounded in -a _< x <_ a (a > 0).
Assume that at the initial time t 0, the distribution of (a, u, v) is known. Define
f- (-a, a) x R. We have the initial conditions

(1.5) (a,u,v)(O,x,y) (ao,uo, vo)(x,y), (x,y) e a.

At the boundaries x +a, we have the physical condition

(1.6) u 0, 9 0.

At y :t:oc, we assume that the fluidized bed is in a homogeneous state; the velocities
of gas entering and leaving the fluidized bed are the same constant J:

(1.7) Cx -J.

From (1.7), we may assume

(t, x, y) (t, x, y) Jx;

hence (1.7) becomes the condition for the new variable

(1.8) (t, x, =t:c) O.
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Obviously, (and ) can be uniquely determined up to a constant; hence without
loss of generality, we may assume (0, x, +/-oc) 0. The condition for on x +/-a

now translates into (t, +/-a, y) 0.
To sum up, the initial-boundary problem for (a, u, v, ) that we discuss in this

paper is as follows:

(1.)

+ () + () 0,

cut + auux + avuy -v20xF(a) +

art + auv + av% -u=OF(a) + ga(J- Cx v)
u(1 -o04

//) Uy Vx
’()
G(a) [a(x J + v) + ay(y u)].

(1.10) (, u, )(0, , u) (-0, u0, 0)(, u), (x, y) E

(1.11) u(t, +/-a, y) O, (t, +/-a, y) O.

(1.12) (t, x, +/-c)= 0, 0 < t < c, -a <_ x _< a.

Denote U (a, u, v), DU (U, U, Uy), and Db (b, x, y.); then system (1.9)
can be abbreviated as the following:

(1.13)
Ao(U)OtU + A1 (U)OxU + A2(U)OvU H1 (U, De),

/k2 q- B1(DU)O + B2(DU)Ou H2(DU),

where

Ao(U) 0 #(o0 0 A1 (U) o u#(o0 0
0, 0 ,() 0, 0 ,(.)

v 0 a / a2
A2(U) 0 v#(a) 0 #(a) u2F,(a),a, o v(a)

and B1, B2, H1, and H2 are sufficient smooth functions of their arguments in the
relevant domain; the explicit forms of these functions bear no importance in the
following discussion.

The first part of system (1.13) is a quasi-linear symmetric hyperbolic system for
U and the second is an elliptic equation in (x, y) for with linear principal part.
In particular, the variable t appears in the second equation only as a parameter for. We consider the solutions of (1.9)-(1.12) which are constants at y +/-oc. From
(1.9) and (1.11), these constants .are not arbitrary. They must satisfy the following
conditions:

(1.14) u O, v J u(1 a)4.
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Because the boundaries x +/-a are characteristic with respect to the hyperbolic
system in (1.13), we will use the partially tangential Sobolev spaces.

For any nonnegative integer m, let Em() denote the spaces

Em (w e L2(gt), (x2 ae) j k L.OxOyw E for 0

with norm

(1.15) IIw]]2 E ja I(x2 a2)i j 2
m OOyW dxdy.

O<i<j,k+2j-i_m

Denote Em,T as the space

(1.16) E,,T {w(t,x,y) Okt W e L([O,T],E,-k), for 0 _< k <_ m}

with the norm defined as

(1.17)
0<t<T k:0

In particular, for positive even numbers 2m, the spaces E2m coincide with the spaces
/2m in [1]. For these spaces, we have similar embedding results.

LEMMA 1.1. For the spaces E2m and E2m,T and for j

_
m- 1, we have the

following embedding properties:

c

E2m,T C Cj ([0, T]

The first part of the lemma is a special case of Proposition 4.1.2 of [1]; see also [6, 8].
The second part of the lemma follows directly from the definition in (1.16) for E2m,T.

In this paper, we prove the existence and’ uniqueness of smooth solutions for the
coupled system in (1.9) with the boundary and initial conditions in (1.10)-(1.12).
To simplify the discussioni we will assume the initial data U0 C(). Obviously,
certain compatibility conditions at (t, x) (0, +/-a) are necessary in order to obtain
the existence of classical solutions. The zero-order compatibility condition is simply
Uo(+/-a, y) 0. The first-order compatibility condition is obtained by comparing
Otu(O,+/-a,y) 0 with the value of Oty determined from the initial condition (1.11)
and the equations in (1.13). The higher-order compatibility condition can be derived
similarly. Since the value of at t 0 is not given explicitly and has to be found
by solving the Dirichlet problem, we will use the following equivalent concept of the
compatibility.

The initial data U0 are called kth-order compatible if there is an approximate
solution , such that

(1) (’, ) satisfies the initial and boundary conditions in (1.10)-(1.12);
(2) (,) satisfies

(1.18)
Ao((f)Ot(] + A()0xO + A2(O)0yO- H1 (5, D) =/1,

A + B1(D{])O + B(D(])Ou H2(D])
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with

(1.19) 0tt’/l(0, x,y) 0tt2(0, x, y 0, 0 _< j < k 1.

Interested readers are also referred to [1, 4].
Let G c (0, 1) R2 be an open set such that G cc (0, 1) R2, U E E2m,T, and

De e E2m,T with U(t, x, y) G for all (t,x, y) [0, T] t. Then the main result is
the following.

THEOREM 1.1. Assume the initial value Uo in (1.10)-(1.12) satisfies
(i) Uo e C(), and
(ii) Uo are 2ruth-order compatible,

(] cc (0, 1) R2 for all (t, x, y)
Then there is a T > 0 such that the equations in (1.9) with the initial-boundary

conditions in (1.10)-(1.12) have a unique classical solution (U,) with V(t,x,y)
C1([0, T] ) and (t,x,y) e C ([0, T], C2(t)). Furthermore,

(1.20) U, De E2m,T.

The outline of the paper is as follows. In 2, we derive the estimate for the
linearized problem of (1.9)-(1.12). Section 3 is devoted to linear iteration to establish
the existence of the local solution. Finally, the uniqueness of the solution is proved
in 4.

2. Estimate for the linearized problem. It is easy to see that Ao(U) is uni-
formly positive definite:

aI <_ Ao(U) <_ a-I.

Let (V, ) denote the perturbations of (U, ). Consider the linearization problem of
(y,

(2.1a) Ao(U)OtY + Al(V)OxY + A2(U)OyV F1,

(2.1b) A + BI(DU)Ox + B2(DU)Oy F2,

(e.e) v(0, x, =0,

(2.3) (t, +a, y) O, V2(t, :ka, y) O, (t, x, :l:oc) O,

where F1 E2,,T, F2, OtF2 E2,-I,T, and 0tFl(0, x, y) 0 for 0 < j _< 2m- 1. It
follows from (2.3) and OFl (O, x, y) 0 (0 <_ j <_ 2m- 1) that the smooth solutions
Y(t, x, y) satisfy

(2.4) 0tV(0, x, y) 0 for 0 < j _< 2m.

For the smooth solutions of this linear problem, we have the following estimate.
THEOREM 2.1. There are constants Ci and C2, depending only on the upper

bound of II]UI]I2m,T, such that the smooth solutions (V, ) of (2.1)-(2.3) satisfy the
following energy estimate:

IIIVIII2m,T CITIIIFII[I2,T,
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(2.6)

where De (,
Proof. In the following, C denotes a constant depending on IIIvlll  ,T, but inde-

pendent of T << 1.
The proof of (2.5) consists of two steps. First, we derive the purely tangential

estimate. In order to treat the nondegenerate terms, we need to use the first two
equations of (2.1a). Since V(t,x,y) e G, #() > 0, and V satisfies (1.11), there is a
constant > 0 such that for some e > 0, which depends only on min {2/#(c)} and
II0 (u + we have

with

forxe[-a,-+e]U[a-e,a], yeR, te[0, T].

For j + k + < 2m denote Vj,k,Z ,x.y.tV. From (2.1), we have

AoOV,k, + Ax0, V,k,Z + A20vV,k,z Fj,k,Z

Fj,k, (x2 a2).iAoOJcOy Ot A F1)
(2.9) + Ao[AIAIOV,k,t (x2 --m(AIAIOV)]

+ Ao[AA20,k,z_ (x2 -m(AA20V)].
Let A (Ao, A,A2) with V. A (Ao)t + (A) + (A2). Taking inner product of
(2.8) with ,k,t in (x, y) and integrating by parts, we have

Ot(,,z,Ao,,) + (Ai,k,, ,k,g): (,,g, (V. A) ,k,Z) + 2(F,,, ,k,).

The boundary terms at x a are

(,,, Al,k,Z) 2(x2 a2)2ja0x0y0VlJk OXOyOtV2.jk

They are all zeroes because for j 0, it is zero by the boundary condition in (2.3) for
V, and for j > 0, it is zero since (x2 -a2) 0. Applying Gronwall’s inequality and
(2.4), we derive for t e [0, T]

The F,, terms in (2.9) are estimated follows. Obviously, for the firs and the
third terms of (2.9), we have

ii(x AoOOuO(AF)llo CI]IFlll,T

and

(2.11)

IIAo[AAuOV,, (x a2).O kOO(AA.OV)]IIo
<c II(x a2)jjko o o{v(t)llo.

j+k+{2m

It remain8 to estimate

Ao[AIAIOx,k, (x2 a2)JOOO{(AAOxV)].
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In the interior domain away from the boundaries x +a, the term in (2.11) is
estimated in the same way as we estimate the third term of (2.9). We need only to
consider the estimate of (2.11) near x +a. (2.11) is the sum of two parts. The first
part consists of the terms such that the order of x-derivatives applied on V is at most
equal to the order of the factor (x2 a2). This part can be controlled by

j-t-k-bl<_2m

II(x2 a2)yO k

The second part consists of the terms of the form

(x2 --o2hjcjh-lklolV with kl +11 < 2m-j."x

Since u is the only nonzero element in the third row of AfflA1, the third component
in (2.13) is controlled by (2.12). For the first two components in (2.13), because
of (2.7) we can express V and V2 in terms of a combination of OtV, OyV, and F1.
Consequently, the first two components of (x2 --a2)Jo+lokyOV can be expressed as
a linear combination of

(2.14) x2 --’r2jrojr0k+1011"x"y Y (x a2) Oa-Y-Oz+V,t
and the later can be controlled by

(2.15) ii(x2_a2)y y k

To summarize, we obtain

(2.16) IIF,k,Z(t)llo C [IIIFIII2m,T +
Taking summation in (2.10) for all j + k + < 2m, we have

(2.17) E
jWkWl<_2m ]IIVj,k,z(t)llo C IIVj,k,Z(T)II0 + I]IFI]I2m,T dT.

+k+l<_2m

From (2.4) and applying Gronwall’s inequality, we obtain for t E [0, T]

(2.18) E
j+k+l<_2m

IIV,k,t(t)ll0 < CTIIIFIIII2m,T.

Next, we prove the nontangential part in (2.5). We prove the following by induc-
tion on 0 < r < m"

(2.19) E
O<_j-i<_r,k+lW2j-i<_2m

II(x2 a2)YV(t)llo < CTIIIFIlII2m,T’x’y "t

The case r 0 is simply (2.18). Assume (2.19) is true for 0, 1,...,r- 1. The
estimate in (2.19) is trivial in the interior domain; hence we need only to consider the
proof of (2.19) near the boundary. At the boundaries x +/-a, for 2r + i + k + _< 2m,
consider the first two components of (x2 a2)irgi+n k

x Oy 0 V. By applying the operator
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(X2 a2)i(i+r--1 k
x 0y0 to the first two equations in (2.1a), these first two components

can be expressed as a linear combination of the following terms:

(X2 a2)iDi+r-1Dk+log, x2 a2) iiTr-lvx Oyotk, I+lu,

By induction, the first two terms can be controlled by TIIIF11112m,T and the third term
can be controlled by TIl(x2 2 i+n-kt+-a 0 Fill0 which in turn is controlled by"y’t

Furthermore, because 2r + + k + < 2m, we can also apply the operators
(X2 --a2)iDi+r-lk+l _a2iDi+r-lDko+lvy -t or (x2 to the first two equations in (2 la)x x vy
to obtain the estimate for

ij(x2 a2)irOi+r+l,t a2 ii+rkl+l,ry mY,2110 + I1(x2 yt

For the third component, (x2- a2)i+z"x ,y,tV3, we consider the third equation of
(2.1a) as an equation for the variable V3 Applying the operator (x2 -a2)+kz’x ’y ’t

to this equation, we obtain an equation for the variable (x2 -a2)ii+kt,x,u,tV3

(2.21) (Or + uO + vO)(x + a.

In addition to the standard right-side term, (x2 2 i+r k--a O OyOF1, the term G in (2.21)
contains other two parts. The first part comes from the commutator

[(X2 a2)iDi+rDkD’x ’-’y’-’t, tt-l(/)(x]Y3,

which is the linear combination of the following terms:
(e.:e)
(x. an+nOya (x a2)i+lni++lnk-loy3vx y x y (X2 a2)i+lOix+r+lOyOtkl-1v3"
The first term in (2.22) is the standard lower-order term for (2.21). The other two
terms in (2.22) can be treated by further induction on k + by noticing that these
terms do not appear for k + 0.

The second part in G comes from the commutators

(2.23)

and

(2.24) X
2 i+r ka 0 00[a#- (o)0yYl].

The terms in (2.23) are either standard lower-order terms relative to (2.21) or terms
where x-derivatives are one order lower than + r. The latter can be controlled by
induction assumption. The term in (2.24) is obviously controlled by (2.20).

Since u 0 at the boundaries x :i:a, no boundary condition is required to
obtain the energy estimate for equation (2.21) from integration by parts. Finally,
applying Gronwall’s inequality, we obtain

(2.25)
]l(x2 a2),9+,’r3kO VxlIo + IIIFxlII2m,T
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This completes the proof of induction on r and consequently (2.5).
We now turn to the proof of (2.6). Applying the operator (x2 -a2) 000tj k to

(2.1b) for 0 _< i _< j, we have

A(x2 a2)iOjxokyoo _t_ Bl (DU)Ox(x2 a2)ioxoyO99j k

(.6)
/ B2(DU)Oy(x2 2 j ka ooo ,

where

2ijkl

(2.27) /2 (X2 a2)OOkyOF2 + [B(DV)Ox, (x2 a 00y0]
+ (x2 a2) [B2(DV)Oy, OOyOt] + [0

For the special case (j, k, l) (0, 0, l) with < 2m, from (2.26) and the fact that

0 0 on the boundaries, we can use the classical result for second-order elliptic
Dirichlet problems [5] to obtain

which implies that

l<2m

For (j, k, l) (0, 0, 2m), we have from (2.26)-(2.28)

o - + I11-,}.
om (2.29) and (2.30), it follows that

(2.30) ll0Dllo c {ll0m2llH- + IIIF21112m-I,T}"
l<2m

Next we estimate (x2-a2DjDkOD. By directly differentiating equation (2 lb),x-y

it is easy to see that the estimate of (x2-a2)iDjDkDID can be reduced to the estimate

of (x2--a2)O-nk+nZD. Therefore, we need only to consider the special case j 0y t
We will perform induction on k + 1. By (2.30), we will always assume k > 0.

Consider (2.26) with j 0 and k + r. Because of the boundary condition

similarly as in deriving (2.28), we obtain

k+l=v+l,k>O k+lr

By induction assumption, we have

llo, FI,-, + llfl!l-,}.(2.32) IlOODllo C {
k+lr

Therefore,

(.3) II(x )’ ’ o
ij,k+l+2j-i2m
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This gives (2.6).
Finally, the dependency of the constants on IIIUIII2,,T comes from the Nirenberg

inequality and the Banach algebra property of the space E2m,T for m > 1; see [1, 6].
This completes the proof of Theorem 2.1.

Remark 1. In Theorem 2.1, the term IIlOtF21112m_l,T is included in (2.6) to account
for the derivative in the t direction because the solution of Laplace equation has no
regularizing effect on the t-derivative. However, if F2 has the special form F2 DG2
in (2.1b), then (2,.6) can be replaced simply by

(2.34)

This is because, in this case, the regularizing effect of inverse Laplacian cancels the
one-order space derivative on G2 and the two sides of (2.34) have the same regularity
in the t direction. We will use this fact in the proof of Theorem 4.1.

3. Linear iteration. In this section, we will use linear iteration to prove the
existence of classical solutions for the nonlinear problem in (1.10)-(1.12) in Theorem
1.1.

Assume the initial data U0 E C_(t) are 2ruth-order compatible, and(,) are
the approximate solutions such that U E2m+I,T and D E2m,T with U(t,x, y)
G1 cc G2 cc G (0,1) R2 for all (t,x,y) [0, T] . From the embedding
property of the space E2m, there is an e0 > 0 so small such that if

IIIU- 81112m,T < 0,

then we have U(t,x, y) G2.
Our solution is constructed through the following iteration scheme:

(3.2)
Ao(U(k))OtU k+l) A- AI(U(k))OzU(k+l) A- A2(U(k))OyU(k+l) H(U(k),D(k)),

A(k+l) + Bl(DU(k))Ox(k+l) + B2(DU(k))Oy(k+l) H2(DU(k)),

(3.3) u(+) (0, , u) U0(x, u),

(3.4) u(k+l) (t, +/-a, y) 0, (k+l) (t, +a, y) 0, (k+l) (t, x, +/-) 0

for k 0, 1, 2,... with

u() (t, x, ) (t, x, ), (0) (t, , ) (t, , ).

Here, U(k+), (k+l) can be solved in any interval [0, Tk] in which

u(k)(t,x, y) e G2 for (t,x, y) e [0, Tk] gt

and

u(k)(t,x,y) e cl([0, Tk] a), (k)(t,x,y) e C([0, Tk], cl(a)).
For this sequence of (U(k), (k)), we also have the following result.

LEMMA 3.1. The sequence of (U(k),(k)) has zero traces at t 0 up to order

(3.5)
t" (v(k+l) )) (0, Z, y) O, 0 __< j __< 2rn,

0t ((k+l)_ )(O,x,y)= O, 0 < j < 2m --1
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:for k O, 1, 2,
Proof. It follows from (1.18) and (3.2) that for k 0, 1, 2, 3,...

Ao(U(k))O [U(k+l) --U(0)] + Al(U(k))Ox [U(k+l) --U(0)]
+ A2(U(k))Ov [U(+1) U(O)]
H(U(k),D(k)) HI(U(),D()) -’1 + H3(U(),U(k)),

(3.6)
A [(k+1) (0)] + BI(DU())0 [(k+1) 7(0)]
+ B2(DU(k))Ov [(k+) (0)]
H2(DU(k)) H2(DU()) -/>2 + H4(U() U(k) (0)),

where
(a.r)

Ha [Ao(U()) Ao(U(k))] OtU() + [AI(U()) AI(U(k))] OxU()
+ [A2(U())- A2(U(k))] OuU() 1,

H4 [B(DU()) BI(DU(k))] 0() + [B2(DU()) B2(DU(k))] 0re() -/2.

For k 0, (3.6) becomes simply

Ao(U())O [U(1) U()] + A(U())O [U(1) U()]
+ A(U())Ov U(1) U()] --if’l,

(a.s)
A [(1) (0)] + BI(DU())O [(1) (0)]
+ B2(DU(O))Ov [(1) (0)] --/2.

Since cOt/2(0, x, y) 0 (0 _< j _< 2m- 1), taking the derivative with respect to t in
the second equation of (3.8), we have

0t" [(1) @(0)] (O,x,y) 0 (0

_
j <_ 2m 1).(3.9)

Since both U(1) and U() satisfy (1.10), we have (U(1) --U(0)) (O,x,y): O. Therefore,
we derive inductively on j from (3.6), (3.9), and 0t/1 0 (0 _< j <_ 2m- 1) that

0tj (U(1) U())(0,x, y) 0 for 0 _< j _< 2m.

This proves (3.5) for k 0. The cases for k > 0 can be easily proved inductively by
noticing that the terms H3 and H4 in (3.7) have zero traces up to order 2m- 1 by
induction assumption.

The following lemma establishes the existence of iteration sequence in a common
time interval.

LEMMA 3.2. There are constants To > 0 and > 0 such that the iteration
sequence {U(k), (k)} satisfies

(3.10) ]]]U(a) Olll=m,To < no, IIID(() @)lll’.,To --< g

for all k Z+. The constants To and g depend only on the approximate solution (U, )
(which in turn can be determined from the initial data Uo) up to order
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Proof. This can be shown inductively on k. For simplicity, we denote U(k) by U,
(k) by , U(k+l) -U() by V, and (k+1)_ (0) by . We apply (2.5) and (2.6)
to system (3.6). Noticing that the right sides of (3.6) have zero traces at T 0 up
to order 2m- 1 and that the constants C1 and C2 in (2.5) and (2.6) depend only on

IIIUIII2m,T, we obtain

(3.11) II[VIII2,T

where the constants C and C’ depend only on

(3.12)
c= C(llllllll2m,T, I[IU U()Ill2m,T, I[ID(
C’-- C’(l][/2]lll2_l,T, IllS S()lll=m,T, IIID(

llllllll2m,T and 1ll21[ll2m-l,T depend only on 111[I[2+1,T and [IIDIII2m,T, By
induction assumption, IIIUIII2m,T and IIIDIII2m,T are uniformly bounded by (3.10).
Therefore, To can be easily decided from (3.11) and depends only on [[][112,+1,T and
[[IDO[[[2,,T. This completes the proof of the lemma.

Next lemma establishes the convergence of the solution sequence above.
LEMMA 3.3. There are positive constants T1, 0 < T1

_
To, pl,p2, Pl + P2 < 1,

and such that the functions {V(k), (k)} obtained from (3.1)-(3.4)satisfy

(3.13) iiIu(+) u(+l)]l]u,v _< pl]llu(+l) U()IIlU,T + pulIlu(a) U(-I)III,T
and

(3.14) IllDO(k+l) VO(k) lll2,T1 IIIU() U(k-1) l]12,T,

k 1, 2, 3,
Proof. Denote V(k) U(k+) U(k) and (k) )(k+l) 2(k), k 0, 1, 2, It

follows from (3.2) that
(3.15)
Ao(U(k))OtV(k) + AI(U(k))OxV(k) -t- A2(U(k))OuV

H(U(k) D0(k)) Hi (U(k-) DO(k-)) (Ao(U(k)) Ao(U(k-))) OtU(k)

(AI(U(k)) Al(U(k-1)))OxU(k) (A2(U(k))- A2(U(k-1)))

(3.16)
A(k) + BI(DU(k))Oxff2(k) + B2(DU(k))Oy(k)

H2(DU(k)) H2(DU(k-1)) (B(DU(k)) BI(DU(k-1))) (OxU(k)
(B2(DU(k)) B2(DU(k-1))) Oyu(k).

By Lemma 3.2 and the Banach algebra property of the space Era,T, there exists
C C(G) such that, for any 0 < T _< To,

I]IH1 (U(),D(t:)) HI (U(k-l)_
C((2) ([[]u(k-1)l[12,T -}-}[]n(k-1)lll2,T),

Ill (Ao(U(k)) Ao(U(k-))) OtU(k)llle,T + III (AI(U(k)) A.I(U(k-1))) OxU(k)lll2,T
+ Ill (A2(U(k)) A2(u(k-i))) OU(k)III2,T <_ C((?,2)lllV(k-1)Ill2,T,

[liD(He (DU(k))
+IIID ((B(DU(k)) BI(DU(k-1)))OxU(k))
/lllD ((B2(DU(k)) B2(DU(k-1)))OyU(k)) Illo,T <_
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Thus, applying (2.5) and (2.6) to (3.15) and (3.16), we have

(3.17) IIID(k+l)(t) D(k)III2,T <_ C2(J2)Illv(k-1)lll2,T,

(3.18)
]llU(e+)(t) U(e)(t)[I[e,T

_< CI(I2)T (lllv(k-1)lll2,T -t- IIIDq2(k-1)Ill2,T)_
CI (:I2)TIIIv(k-1)II}2,T + CI (2)C2(2)TIIIV(k-2)III2,T

Therefore, in order to prove Lemma 3.3, we need only to choose 0 C2(2), p2

C1(2)62(2)T1, and pl CI(I2)T1 with T1 < (C1(12)--C1(12)C2((2)) -1.
Now, we are ready to prove the existence part of Theorem 1.1.

Proof of Theorem 1.1. It follows from (3.13) and (3.14) that

E II[u(k+l) u(k)[]I2’T1 < O
k=l

and

k=l

Therefore, there exist U E E2,T1 and with D2 E2,TI such that

(3.19) lim (lllU(k) UIII2,T / [llD(k) DIII2,T 0.
k--cx

The Em,T space interpolation inequalities [1] implies that there exists a constant
C C(m) such that for any s e [2, 2m],

2m--s s--2
2m--2 2m--2(3,20) Ilvll <cIIVll2 IlVlls_ 2m

where II" 118 is the norm of the space Es. Thus from Lemma 3.2 and Lemma 3.3, we
have that, for any s < 2m

lim (IIIU() UIIIs,T + IIID() DIII,T) O.

If we choose s > 2, the imbedding property in Lemma 1.1 for the space Em,T implies
that U(k) U in C ([0, T2], Cl(Ft)) and (k) in C ([0, T1], C2(ft)). From (3.1),
we have

OtU(k+l) AI(u(k))HI (U(k), D)(k)) AI(u(k))AI (U(k))OxU(k+l)
-A (u(k) )A2(U(k) )Oyg(k+

thus OtU(k) OtU in C ([0, T1], C(a)). Letting k --. oc in (3.2), we obtain that
U(t,x,y) and (t, x, y) satisfy (1.9)-(1.12)in the classical sense. This completes the
proof of Theorem 1.1.

4. Uniqueness. The solution we obtained in 3 is unique in the following sense.
THEOREM 4.1. Let (Ui, i) (i 1,2) with Ui E2m,T, Di E2m,T be the

solutions of the coupled system in (1.9)-(1.12) with the same initial value Uo(x,y)
E2m(ft), which are 2ruth-order compatible. IfUi(t,x,y) e G2 for (t,x,y) e [0, T] xft,
then U1 (t, x, y) =_ V2(t, x, y), 1 (t, x, y) =_ 2(t, x, y).
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Proof. Setting U- U1- U2 and --1- 2, we have

with

(4.2)

Here

(4.3)

Ao(U1)0tU + A1 (U1)OxU + A2(U1)OyU W1,

A + B1 (DU1)Ox + B2(DU1)Oy W2

(t,-a, y) (t, a, y) O, (t, x,-) (t, x, x) O,
u2(t, -a, y) u2(t, a, y) O,

=o.

W1 HI(U1,DI) HI(U2,D2) (Ao(U1) Ao(U2))OtU2
(AI(U1)- AI(U2))OxU2 (A2(U1)- A2(U2))OvU2,

W2 H2(DU1)- H2(DV2)- (gl(DVl)- g1(DV2))Ox22(4.4) (B2 (DU1) B2(DU2))O2.
By the Nirenberg inequalities and Taylor’s theorem, there are constants C1 and C2,
such that, for t E [0, T],

(4.5) IIIW lll2m, C1 (lllUIII2 , + IllDlll2m,e),

(4.6)

From (2.34) in Remark 1 and (4.6), it follows that there exists C’ such that

(4.7) IIIDlll2m, -< C’IIIUIII2 , .
Again it follow8 from (2.5), (4.5), and (4.7) that there exists C" such that

(4.8) IIUII2m, _< c"tlllUIII2m, .
The inequality (4.8) implies that for t << 1, we have IllSlllm, 0 and consequently
I[IDIII . , 0. by the standard continuation argument, we obtain (U, )
(0, 0) for all t e [0, T]. This completes the proof.
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EXISTENCE AND BLOW-UP OF SOLUTIONS TO
TWO-PHASE NONEQUILIBRIUM PROBLEMS*

ZHICHENG GUANJ" AND XU-JIA WANGJ"

Abstract. In this paper, we deal with the one-dimensional Stefan problem

r’(t)5(x r(t)) in x + u(x, 0) uo(x)tt txx

with a kinetic condition r’(t) l(u) on the free boundary F-- {(x,t),x r(t)}, where 5(x) is the
Dirac function. We show that if If(u)l

_
M elUl for some M > 0 and E (0, 1/4), then there exists a

global solution to the above problem. We also give an example to show that the solution may blow
up in finite time if f(u) >_ CelUl for some C > 0.

Key words, free boundary, Stefan problem, existence

AMS subject classifications. 35K15, 35R35

1. Introduction. In this paper, we deal with the following one-dimensional Ste-
fan problem with kinetic condition on the free boundary:

(1.1)

ut uxx 0 in Q\F,
u-(r(t), t) u+(r(t), t) on F,
u- (r(t), t) u+ (r(t), t) r,(t) on F,
r,(t) f(u), F(0) b on F,
(x, 0) 0(x),

where Q + and F {(x, t); x r(t)} is the free boundary.
Problem (1.1) with Q (0,1) (0, T] has been studied by many authors [3, 9,

10], and the case when Q + has been studied by Yin [11]. In both cases, the
local existence and uniqueness of solutions have been established. But to obtain the
global existence of solutions, the condition that f(u)u

_
C(1 + u2) was imposed in [3,

9, 10].
Here we are interested in the existence of global solutions without the restriction

above. Recently one of the authors [8] obtained the global existence of solutions to
the problem (1.1) with Q (0,1) (0, ) under the following conditions:

(i) f(u) u2m,
(ii) F(0) Fo > 1 Ko-2m(1 )2m/(2m_ 1)

and K0 max{l]uo(x)llL(O,), ][u(O,t)llL(O,), ]]u(1, t)]]Lo(O,o)}.where rn > 5
In this paper, we will prove that if If(u)] <_ M ell for some M > 0 and/ (0, 1/4),

then there exists a global solution to the problem (1.1). If f(u) >_ 5ell for some 5 > 0,
we will give an example to show that the solution may blow up in finite time.

This paper is arranged as follows. In 1, we give the finite-time blow-up example.
In 2, we prove the global existence result for the problem (1.1).

2. A blow-up example. For any given T > 0, we construct f(u) and r(t) so
that the solution u of problem (1.1) blows up at t T.

*Received by the editors June 25, 1993; accepted for publication (in revised form) November
11, 1994. This research was supported by the NNSF of China and the NSF of Zhejiang Province.

Department of Mathematics, Zhejiang University, Hangzhou 310027, People’s Republic of
China.

1038



TWO-PHASE NONEQUILIBRIUM PROBLEMS 1039

Let r(t) c[0, T) be given; we consider the problem

(2.1)

Ut Vtxx 0
u-(r(t), t) u+ (r(t), t)
u- (r(t), t) u+ (r(t), t) r,(t)
u(x, 0) 0 and u(x, t) - 0

in Q\F,
on F,
on F,

Problem (2.1) is uniquely solvable. In the sense of distributions, the solution of (2.1)
is equivalent to the solution of

(2.2) ut u r’(t)5(x r(t))
(x, o) o,

in (0, T),

where 5(x) is the Dirac function. The solution of (2.2) is given by

(2.3) u(x, t) r,(s)5( r(s))K(x , t s)dds,

where

Hence

x2e 4, t > 0,K(x,t) o, t<o.

(2.4)

For u(x, t) given above, one can verify that (see [1, Chap. 14])

(2.5) lim
Ou(x, t)

x-r(t)- Ox
OKlr’.t.() + (r(t) F(s) t- s)F’(s)ds

OK
(2.6) lim

Ou(x, t) 1F,(t + (F(t)- r(s) t- s)r,(s)ds
x-,r(t)+ Ox -- -x

Hence the function u(x, t) in (2.4) is a solution of (1.1). Note that for any t > 0, the
maximum of lu(x, t)] in (0, T) is attained on F.

Now let F(t) -Sv/T- t, where 0 < 5 < 1/2 is a constant. Denote s T- t. We
have

r,,(t- s)(2.7) r,(t- s) 2v/.:t , 4( + s)3/2

Let F(t, s) lr(t) r(t- s)l =lx/’ + s- v/[2. Then

2
(2.8) F(t, s) - x/’ + s + x/ 4’
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(2.9)
O
F(t,s)=

2 ( 1
o- T,(/ +- v) v

1 ) 52 1

From (2.4), we therefore obtain

(2.10)

> log 1 + log
16 T- t;

and

(2.11)
1 Sotr,(t-s)u(r(t),t)<-- vq ds

1 ftl 5
!4vo +sx/vll

ds

2v
log 1 + -e +

_< {’?-t if t<_T/2. log -t if t >_ T/2.
From (2.10), it follows that u(r(t), t) --+ oo as t --+ T. Next, we show that u(r(t), t) is
strictly increasing in t E (0, T). We have

(2.12) So So r,(t- s)F"(t- s) F(t,,)d
u(r(t), t) e- ds Fte-g(t,s) ds

F(0) ir(t)_r(o)l./at+ e- "I+I2+Ia,

where I3 > 0. By (2.7) and (2.8), we have

d8
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From (2.9), we have

(2.14) Ir’(t- s)F,l
ds

< ]’* 5lr’(t- s)l
ds

Jo svfivv’ +
(53 f0 1-< 16/-ff (e + s)//-
53 ft/e 1

!v0 v(1 + )
53 / t

=8evarctg T-t’

d8

d8

Hence

(3.1)

For the function f(u) defined above, we therefore conclude that the solution u(x, t)
blows up at time t T.

Remark 2.1. Since F’(t) and u(F(t),t) are positive and strictly increasing, it
follows that f(u) is also positive and increasing in (0,T). From (2.10) and (2.11), it
is easy to see that f(u) is of exponential growth as u -- +c. From (2.10) and (2.15),
we have

(2.16) f(u) <_ : =eS/;

by (2.11) and (2.15), we have

5
eu/25 for u > 6,s() >_

where 5 e (0, 1/2] Moreover, lim-0 f(u) 2v
3. Global existence. Let us begin with the local existence and regularity for

solutions of (1.1). Suppose u(x,t) is a solution of (1.1). Then u(x,t) satisfies in the
sense of distributions that

ut u r,(t)5(x r(t))
(,, 0) 0(*).

u(x, t) K(x , t)uo({)d{ + F’(s)6({ r(s))K(x , t s)d{ds

/5 /oK(x , t)uo({)d{ + r’(s)K(x F(s), t s)ds,

in x

(2.15) f(u(F(t), t)) r,(t) 2v/T t"

where T-t. Note that since sin0 _> -28, for 0 E (0,-), we have >_

-2, arctg Hence if 0 < <_ 5, by (.la) and (2.14) we have I1 > /2, and so
d(r(t), t) > 0 for t E (0,1).

Since (r(t), t) is strictly increasing and tends to infinity as t T, we can define
I(): + --, + by
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where K(x, t) was as defined in 2. We have the following lemma.
LEMMA 3.1. Suppose no(x) e C(Kt)CL() and f(y) is locally Lipschitz contin-

uous. Then the problem (1.1) admits a local solution u(x,t) e C(QT)CC(QT) and
F(t) e C1[0, T] for some T > O, where Q+T QTC{x > F(t)}, Q QTf{x < F(t)},
QT 1R (0, T].

Proof. Let

A {r(t) e .ClIO, T]; r(0)= b,r,(b)= f(uo(b)), and IIFIICI0,TI --< M},
where M > 1 and T < 1 are positive constants to be determined. For any F(t) E A, let
u(x, t) be the function defined by (3.1). Then u(F(t), t) e C[0, T]. Direct computation
gives

lUl(rl(t), t) u(r(t), t)l < Ctl/llrl r llc io, l,
where C is independentof t.

Let G" r A r(t) A be a mapping defined by

/or(t) b + l(u(r(s), s)) ds.

Then F(0) b, F’(0) f(uo(b)), and F e CI[0, T]. If M is large enough and T is
small enough, by the Lipschitz continuity of f, it is easy to check that G(A) c A and
G is a contraction mapping. Hence G has a fixed point which gives a local solution to
the problem (1.1). D

Remark 3.1. The fact that G is a contraction mapping implies the uniqueness of
solutions to (1.1). Let

A {F e CI[0, T]N CI,I(0, T]; F(0) b,F’(0) f(uo(b)), and Ilrll  , (0,Tl < M},

where

IIFIII,I(O,T] [[FIIcI[o,T + sup th-l[F’(t + 5) r(t)l.
O<t<t+5<_T

Then more careful computation (see Lemma 14.2.8 in [1]) shows that G is also a
contraction mapping provided T is small enough. Hence the local solution satisfies.1+c,(1+c0/2F E C1,1(0 T] and (by the intermediate Schauder estimates) u "-’x,t (T,)
for anys(0, T) anda(0 1),whereQ+ =QTgl{t>s}T,e

The main result of his section is the following theorem.
THEOREM 3.1. Suppose no(x) C(:t) is bounded and f(t) is locally Lipschitz

continuous. If there exist constants M > 0 and / (0, 1/4) so that

(3.2)

then there exists a global solution to the problem (1.1).
Proof. For any T > 0, we will prove

(3.3)
4

u(x,T) <_ M(T) =: Mo + 1 + -M(1 + T)2ek’+2

where Mo IluOllL(),

(3.4) (1 4")/8,
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and

with

k* mx(k, k, k)

48(Mo+T+4) k:
1 ’71 4

k[=- log-- k= 1-4"7
(M0 + T + 4 + M(1 + T)).

Note that (3.3) implies u(x,t) <_ C1(1 + t2eC2t) for some C1 and C2 depending only
on Mo, s, ", and M.

To prove (3.3), we argue by contradiction. Suppose (3.3) is false at T > 0. By
the maximum principle, we have

(3.5) lu(F(T), T)I >_ M(T).

The first integral on .the right-hand side of (3.1) is the solution of the Cauchy
problem

ut u 0 in +,
(x, 0) 0().

Hence it is bounded with bound M0. For the second integral, we have

f0(3.6) r’(s)K(r(t)- F(s) t- s)ds
1 F’(s)

e
v/t

-(r(t)-r(s))2/4(t-s)ds

-1 foo e-(r(t)-r(’))/a(t-)dF(t)
2v’t s

1 ft r(t)- r(s)+ 4x/ Jo (t- s)3/
e-(r(t)-r())/4(t-s)ds"

Since

(3.7) e-’dt

the first integral on the right-hand side of (3.6) is bounded. We therefore conclude
that

Iw(T)[ _> 4v/(M(T)- Mo- 1),

where

(.s) r(t) r()W(t) (t- 8)3/2
e-(r(t)-r(s))/4(t-s)ds"

Note that the integrand in (3.8) satisfies

(3.9) It(t) r()l _(F(t)_F(s))2/4(t_s)
(t- s)a/

e <

Let

E {t e [0, T]; V s < t, It(t) r()l _< v’t /(4 + log2(t s))}.
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By the C continuity of F, it follows that [0,50] C E for some 50 > 0 small. Let
D [0, T]\E. For any t e D, let

6(t) inf{ e (0, t); IF(t) F(t- )[ > v/(4 + log2 )}.

Since F(t) E C [0, T], it follows that D is an open subset of [0, T], 5(t) is positive and
upper semicontinuous on D, and for any T E (0, T), there exists a constant Cr > 0 so
that

(a.0)

Moreover,

(.1)

5(t) _> Cr for any t (0, T).

It(t) r(t 5(t))l v/(t)/(4 + log2 5(t)) for t e D.

For any t e E, we have

fot 1It(t)- r(s)l ds < ds < 1.Iw(t)l <_
(t- s)/ (t- s)(4 + logZ(t- s))

Hence by (3.1), (3.6), and (3.7), we have

(3.12) lu(F(t), t)l < Mo / 2 for t E.

For any t D, by (3.9) we have

(3.1z) I,(t)l= + (t )/(t)

[t-e(t) l 2 1< ds+ ds
0 t- s e(t/ (t- s)(4 + log(t- s))
+ og r-oe(t) 1 + T- log e(t).

Since ghe first integral of the right-hand side of (a.1) is bounded with bound M0,
from (a.6) we have

r Ir’()l(z.14) a > (l(r(),)1- Mo) > (M()- Mo ).
t- s

Let

1/2(1--t--e)
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Combining (3.14) and (3.15)yields

> 4(T + 1)ek*+2.

For any integer k _> 0, let

Ak= {t e [O,T]; k <_ lu(F(t),t)l < k + l}.

Then

Let

Then

and by (3.16),

E mes(Ak)e2"(l+e)(k+l) >- 3.
k=O

ak e2"(l+e)(k+l)mes(Ak)/.

Eak >_ 1,
k--O

k* k* mes(Ak) (l+e)(k* +2) 1E ak <_ E mes(Ak)e2./(i+e)(k+l)< e2./ <
k=o k=O

2"

Hence

y. ak> 2
k--k*+l

Since k* k k 7-41 log I, we have

e_e,k
2"

k=k*+l

Hence there exists a k > k* so that ak k e-e’k.
For the integer k determined above, by ak >_ e-ek we have

e2’(l+e)(k+l)mes(Ak) > e-e’k,

which implies

(a.lr) mes(Ak) > e-2(1+2e)(k+).

From (3.12), we have Ak C D for k _> k*. From (3.1), (3.6), (3.7), and (3.13), we have

lu(r(t), t)[ < IluoIIr + 2 + Iw(t)[ _< Mo + T + 3 log 5(t).

Since k _< lu(r(t), t)l < k + 1 in Ak, by (3.13) it follows that

(3.18) 5(t) <_ e-k+M’ for t E Ak,

where M’ Mo + T + 3.
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Let to sup{t E Ak}, and to to -5(t). By the closedness of Ak, we have
to Ak. For any j >_ 1, we define tJ and tj inductively by letting tY sup{t _<
ty-1, t Ak} and ty tY -5(tJ). Since Ak is closed, it follows that tY Ak. By (3.10),
the above procedure finishes after finitely many steps, that is, there is a j0 > 0 so that
(0, tjo) N A .

We therefore obtain a sequence of intervals (ty, tY) which satisfies the following
properties:

(i) tj

_
tJ+l;

(ii) A c jo [tj=0

(iii) tJ e Ak.
By (i) and (3.11), we conclude

T jo

Ir’( lld > Ir(t) r(t)l V/5(tJ)/(4 + log2 5(tJ)).
j=0

Noticing that k > k 4S(M0+T+4) we have v/5(tJ)/(4+log2 5(tJ) > [5(tJ)](l+)/2
By (ii), (3.18), and (3.17), it follows that

io

T

>_ inf(]5(tY)]-(-)/e) 5(tJ)
>_ inf(15(tY)l-(-)/2)mesAk
>_ e(k-M’)(1-e)/2mesAk_

e(k-M’)(1-e)/2 e-2(1+2e)(k+1)_
e(1/2-2r-2e)k-M’-l fl.

On the other hand,

Ir’(s)lds <_ M el(r(8),8)lds

<_ M ds e2(l+)l(r(8),)lds

<_ MT(+2)/2(+)/2(TM) <_ M(1 + T)//2(+).

/2(+)

We obtain
e(1/2-2/-2e)k-M’-l

_
M(1 + T)/2(+).

But k >_ k* >_ (M0 + T + 4 + M(1 + T)), so we reach a contradiction because of
> 1. Hence (3.3) holds, which completes the proof. [:]

Remark 3.2. It is interesting to compare Theorem 3.1 with the finite-time blow-
up example in 2. Theorem 3.1 asserts that (1.1) possesses a global solution provided
f(u) <_ Mell for some M > 0 and (0, 1/4), while in the example of 2, if we choose
5 1/2 and let T be large enough, then the solution of (2.1) blows up in finite time,
though f(u)<_ TT(16u by (2.16).

Remark 3.3. The condition /E (0, 1/4) in Theorem 3.1 may be improved, but we
are unable to do so by the method employed above.
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It is not hard to see that the result in Theorem 3.1 is also true if the domain
Q ti+ in problem (1.1) is replaced by Q (0,1) (0,T]. Let us consider the
problem

tt ttxx 0
u-(r(t), t) u+ (r(t), t)
u- (r(t), t) u+ (r(t), t) r,(t)
r,(t) f(), r(0) (0,1)
(x, 0) 0()

in Q\F
on F,
on F,
on F,
and u(0, t) u(1, t) 0.

The problem (3.19) has been studied in [8], where the author proved the global ex-
istence of solutions under conditions (i) and (ii) stated in the introduction. Here we
have the following theorem.

THEOREM 3.2. Suppose uo(x) E C[0, 1], f(u) is locally Lipschitz continuous, and
[f(u)l < Melul for some M > 0 and 7 e (0, 1/4). Then there is a global solution to the
problem (3.19).

By global solution, we mean either 0 < F(t) < 1 for t e [0, T] and F(t) e C1,1 [0, T],
or there exists a to (0, T] so that the solution exists up to the moment t to,
limt--.to F(t) is 0 or 1 and F(t) e Cl,l[0,t0).

The proof is similar to that of Theorem 3.1 with (3.1) replaced by

(3.20)

where

O(x, t) E K(x + 2m, t)

and K(x, t) is the fundamental solution of the heat equation ut uxx 0. We omit
the proof here.

Acknowledgment. We would like to express our thanks to the referee for helpful
comments.
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GLOBAL UNIQUENESS IN THE IMPEDANCE-IMAGING
PROBLEM FOR LESS REGULAR CONDUCTIVITIES*

RUSSELL M. BROWN*

Abstract. If L div-V is an elliptic operator with scalar coefficient , we show that we can
recover the coefficient from the Dirichlet-to-Neumann map under the assumption that has only
3/2 + e derivatives. Previously, the best result required to have two derivatives.

Key words, inverse problem, Dirichlet-to-Neumann map, impedance imaging, Besov space
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Let gt c R, n _> 3, be a bounded open set and let L div 7V be an elliptic
operator on gt with scalar coefficient 7. We let A denote the Dirichlet-to-Neumann
map Af 70u/O, where u is the solution to the Dirichlet problem Lu 0 in, u f on 0t. In 1987, Sylvester and Uhlmann [10] showed that if we restrict
attention to 7 which are sufficiently smooth, then the map 7 A is injective.
Nachman, Sylvester, and Uhlmann [8] showed that injectivity continues to hold if 7
has two bounded derivatives. Extensions to slightly less smooth conductivities or the
related SchrSdinger equation are given in Chanillo [3] and Ramm [9]. Isakov [5] has
established injectivity for conductivities with jump discontinuities.

Since the only smoothness assumption needed to define A is that 7 be mea-
surable, it is reasonable to ask if the map 7 --* A is injective under less restrictive
hypotheses on 7. In this paper, we show that 7 need have only 3/2 + c derivatives.
There is no reason to believe that the result in this paper is optimal. We conjec-
ture that .the right smoothness assumption is that 7 have one derivative. However,
the methods presented here do not give this. To state our main result, we recall
the standard space of HSlder-continuous functions C(t) {f f t - R and
If(x) f(Y)l - Mix- Yl for some M > 0}.

THEOREM 1. Let C Rn, n >_ 3, be a bounded, Lipschitz domain. Then the
map 7 -- A is injective on the set {7" 7 > 0 in t, V7 E U>0 C1/2+()}.

The outline of our argument is the same as in [10]. We construct special solutions
of Lu 0 by studying a SchrSdinger operator A- q. The innovation here is that we
consider potentials q which lie in a Besov space of negative order.

We begin by recalling the Besov spaces and some of their simple properties. We
will use the monograph of Bergh and LSfstrom [2] as our reference for these spaces.
For s E R and 1 <_ p, q _< cx, we let B,q denote the Besov space of distributions.
Roughly speaking, a distribution in B8 has s derivatives in Lp We recall that ifp,q
0 < s < 1, 1 _< p, q < c, then f B,q if and only if

(1) IlfllL’ + ]f(x + h) f(x)lp dx Ihl -n-sq dh

is finite. Furthermore, the expression in (1) gives a norm on B,q. When p q

Received by the editors July 13, 1994; accepted for publication October 13, 1994. This research
was supported by NSF grant DMS-9305753 and by the NSF and the Commonwealth of Kentucky
through the NSF-EPsCOR.

Department of Mathematics, University of Kentucky, Lexington, KY 40506-0027 (rbrown@
ms.uky.edu).
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the limiting version of (1) is

sup [hl-81f(x + h) f(x)l.

s CsThis provides a norm for B, and thus, for 0 < s < 1, B, (Rn).
We also consider a scale of weighted Besov spaces B8, defined for 5 E R by--p,q

S" {f (1 -I-lxl2)/2f e B,q},q

with the norm

llfll , -11(1Bp,q

We will use B: to denote the distributions in B,q
and

which are compactly supported

Bp,]oc {f Cf e B,q for each e C(Rn)},q

We recall that B2,2 is the usual Lebesgue space L2 on Rn. If follows that

B2:2 {f (1 + [xl2)/2f e L2}

is the weighted Lebesgue space L used by Sylvester and Uhlmann. We also have that
B is the Sobolev space of functions having one derivative in L2 and that2,2

21,6(2) "-’2,. {f" f, Vf e L}.

Next we note that since B and2,2 "2,2 are isomorphic, we may identify the complex
interpolation spaces

lSO,619s,61 lSO,6
-’2,2 -2,2 J0 -2,2 0 < 0 < 1,

where so, sl e R, so (1- O)so + Osl (see [2, Thm. 6.4.5]).
The reason for introducing the Besov spaces to be able to define products of

(certain) distributions as bilinear maps between Besov spaces. This depends on the
following elementary result regarding multiplication in Besov spaces.

PROPOSITION 2. (a) /f I111 + IIVII <-- M, then for 0 < s < 1, 5 e R,
1 _<p, q_< x,

< Cllull ,,M,IlCullB:: B,,

where C C(n, p, q).
(b) ForO < s < l,

where C C(s, n).
We do not prove this proposition, but note that each result follows easily from

the norm for B,q given in (1). I thank Mike Frazier for telling me of part (b) of the
above proposition.
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Next, we give estimates for the operator G, which is the solution operator to the
equation

Au + 2. Vu f,

where E Cn.
We observe that G, defined by

(3) Gel= -I12 - 2imaps from S to S’. Here we are using the Fourier transform defined by ]()
frtn e-x’e dx. In [10], it is shown that if . 0, then G" L+1 --* L, -1 < 5 < 0,
with the bound

(4)
C

and -1<6<0.

We give a simple extension of this result to obtain mapping properties of G on ’2,2"
Shortly before this paper was written, A. Nachman established related estimates for
the operator G in two dimensions [7, Lem. 1.3].

THEOREM 3. Let Cn satisfy . 0 and [[ > 1. Then for -1 < 6 < 0 and
0 <_ s <_ 1/2, the map G defined by (3) satisfies

where C C(n, s, ).
Proof. We choose a function satisfying 1 on {

{" [[ < 811} and [VI _< Villi. For u e L, we define

Tu V[()v].

Il 4ll}, supp C

We claim that

(5) IITulln] <_ C[(I IlUllL, -1 <_ 5 <_ 1.

When 5 0, this is elementary since T is a multiplier operator whose symbol is
bounded by ClI. To obtain (5) when 5 1, note that

gives an equivalent norm on the weighted Lebesgue space L. Now

VTu iVfi + fiV(i)

and hence

IIVTUIIL <_ C(l(] + 1)IlUllL.
If we recall that I(I > 1, then (5) follows for 6 1. The estimate (5) follows by duality
when -1 and by interpolation for the remaining values of . E!
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Next, define on operator S by

i(1 -)/(Sf)^() (-I12 + 2i. )

1],

where () i1[(1 -)/(-I12 + 2i. ). The argument used to treat T shows that

I -, (])v
is bounded on L, -1 5 1, and the norm of this operator is bounded for ] 1.

The fractional integral f (]-l])v maps n+ to n, -1 < 5 < 0, by the
argument in [10, Lem. 3.1]. This gives

liSfllL C(n, 5)llfiiL+, -1 < < O.

Summarizing, we have VGcf T(Gcf) + Sf and hence

where the second inequality is (4).
Combining this with (5) and the characterization of nl,, in (2) gives

,, < CII fllB:+,, -1 < < o.

By duality, we have

o, < cll -,+ - < < o.[IGcfIIB:, B2,

Interpolating between these estimates and (4) gives

C

and

C

where each inequality holds for 0 s 1 and -1 < 5 < 0. Finally, interpolating
between (6) and (7) gives the estimate of the theorem.

If g is a function on R" satisfying

(8) -1 < g <

for some A > 0 and Vg is bounded and compactly supported, then for u C (Rn),
we may define a distribution ma(u) by

(9) mq(U)(V) /R. Vg V (uv) dx.
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Formally, q g-lAg will be the potential in our SchrSdinger operator and mq(u) is
the product qu. Our main result on mq is the following.

THEOREM 4. Suppose that g is defined on Rn, satisfies (8), and for some s, 0 <
s < 1, and M > O, satisfies

< M,(10) IIVg[I B-:

(11) supp Vg C {x" Ixl < M}.

Then there exists C C(M, A, s) so that the map mq satisfies

Before presenting the proof of this theorem, we note that if E C(Rn), then

(12) Up,q

r8Cand if E ’2,, with supp {x" Ixl < R), then

, < C(R, e)llulIB(13) IlullB=,=
In each case, the stated inequality follows by observing that if C(Rn) and
r R, then u -+ (1 + Ixl2)rCu is bounded on each eesov space.

Proof of Theorem 4. We ]})rove the estimate of the theorem for u smooth, and
then we may extend mq to Biby density. Let 1 on supp Vg with C(Rn).
Then we write

(14)
Imq(U)()l u

cx:,2 1,2

We use the fact that O/Oxi B8 s--1
2,2 --+ B2,2 Proposition 2(b), and then (13) to

obtain

IIV(=g-lu)IIB-, < CII’UIIB=1,2,

(15) CIIIIB I111B2,2 2,2

Using (12) and (15)in (14) gives that

Im(u)()l CIIVglIB-,IIIIB=,= B;:;

or that mq(U) is in the dual of BS’--12,2 (B2,28,-5-1)’ B2,2-s,i+l (see [2, Cor. 6.2.8] for
the duals of unweighted Besov spaces).

Remark. An examination of the above proof shows that in fact we have m
n,c We will use this in Corollary 6 to define m(1)2,2 --+ "-’2,2"



1054 R.M. BROWN

Our next theorem considers solutions to the equation

A + 2.V mq() f.

THEOREM 5. Let g satisfy (8), (10), and (11) and let e C" satisfy O. If
B-s’+l then there exists Co C0(A, M, s 5, n)0 < s < 1/2, -1 < 5 < 0, and f E 2,2

so that for I1 > Co, there exists a unique solution to

(16) A + 2. V- mq() =/, C 2,2,

and this solution satisfies

where C C(n, s, 5, M, A).
Proof. Consider the map G(mq()). By Theorems 3 and 4, we have

C, < I111 ,IIG(mq())]]B,- i1-

Hence, if Il is sufficiently large, then this map is a contraction on =’2,2"
From the uniqueness of solutions to A+ 2.V 0, e n (see [10, Cor. 3.4],

[4, Thm. 7.1.27]), satisfies (16) if and only if

(17) Go(f)+ Gc(mq()),

ns,5 Thus the contraction-mapping principle impliesand by Theorem 3, G(f) ’2,2.
ns,5 Dsolutions to (17) exist and are unique in 2,..

Now we are ready to return to the study of L div 7V. It will be convenient
to assume that 7 is defined in all of Rn and satisfies for some 1/2 > e > 0 and
R>O, A> i,

(19) --, ’,2 for some e > 0,

(20) "),(x) 1 if Ixl > R

The embedding in (19) follows easily from the definition of the B,q-norm [2, Def. 6.2.2].
Thus if g V, g satisfies the hypotheses of Theorem 5 with s 1/2- e.

COIOLLARY 6. Suppose that 7 satisfies (18)-(20) and Ca satisfies 0
and I1 > Co. Then there exists a solution to Lwu 0 of the form

u(x) 9,(x)-1/2(1 + (x))ex’, 1:1/2--e,) E =’2,2

Furthermore, D2u C Loc(Rn).
Proof. Given 7, we construct mq as in (9), with g v/-. We let be the solution

of

A + 2.V mq() mq(1)
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from Theorem 5. Since v eX’(1 + ) solves Av mq(V) 0 in S’ and mq(v) e
Be-1/2,c le+3/2,1oc

2,2 regularity theory for A implies v E "2,2 and, in particular, Vv E Loc.
Then a calculation shows that u /-1/2v solves Leu 0, Vu E Loc. Finally, since, is C1, regularity theory for L implies V2u E Loc. D

THEOREM 7. Suppose that Ogt is Lipschitz and AI A2. If ’/ E C1/2+2(t)
for some > O, then there exist extensions of to Rn so that, with gi x/,

let
VB1 V(g-I) ] Vg2. 7(g-l(), E C(Rn).

Proof. We begin by observing that since AI A2 and 0gt is Lipschitz, we have
1 /2 and 7"), 7"2 on (-. This result was proven for smooth conductivities in
[6] and for C conductivities in Lipschitz domains by [1]. Thus we may extend 1 and
"2 to Rn so that 1 Y2 in Rn \ t and satisfies (18)-(20).

We let ul and u2, be solutions of L ui 0, Vu E L2(t), i 1,2. We let
1/2v 7 u and obtain

r0
t2Ay Ul L /1V(’-I/2vl)" V(-l/2v2) dx

where have used the facts that /1 /a on OFt and the second equality depends on
the product rule.

Reversing the roles of u and u2 gives

ogt ulAu2 L -V/2 V(’l/2vlv2) + VVl VV2 dx"

If we subtract these expressions and use the fact that A is a symmetric operator,
we have

(21)
Ul (A/1 A.)u2 / V0/2 V(-1/2VlV2)

-f- V//2 V(/ll2vlV2) dx.

If we assume that Ul and u2 are defined in all of Rn, then (21), our assumptions that

A A: and that 71 72 in Rn \ give

1/20 --V[/2. V(yl/2vlv2)-- V2 V([I/2vlV2)dx.

To choose Ul and u., we fix k E Rn and then note that the argument in [10,
p. 157] and the estimate of Theorem 5 allow us to construct sequences un), u(2) so

B1/2-e,lcthat L..i
() 0 and v) v(2) ---+ eix’k in 1,2 aS n -- cx. Hence we conclude

that

/ vy, 1/2 ix.kV//2 V(1/2eix’k) ’12 V(-1/2 ), kERn

This implies the conclusion of the theorem.
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PROPOSITION 8. If the conclusion of Theorem 7 holds, then gl g2.

Proof. We have

for all E C(Rn). Replace by glg2 and observe that this gives

glg2V(log gl log g2) V 0.

In particular, if log then log 0 in Rn D
g2 g2

This proposition amounts to observing that the equality g-lAg -1
g2 Ag2 im-

plies that div glg2Vlog(gl/g2) 0. I thank J. Tolle for showing me this argument,
which is due to G. Alessandrini.

Proof of Theorem 1. Suppose that 71 and 72 are as in the Theorem and that

AI A2. Then we conclude that x/-l x/2 from Theorem 7 and Proposition
8. [:l

[10]
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LORENZ EQUATIONS PART I: EXISTENCE AND NONEXISTENCE
OF HOMOCLINIC ORBITS*

XINFU CHENt

Abstract. The Lorenz equations are a system of three ordinary differential equations

x’ s(y x), y’ Rx y xz, z’ xy qz,

where s, R, and q are positive parameters. We show that this system has homoclinic orbits associated
with the origin (i.e., orbits that tend to the origin as +/-c) if and only if s > (2q + 1)/3. The
method is based on Liapunov functions and a shooting argument used previously by Hastings and
Troy in studying homoclinic orbits of the Lorenz equations.

Key words. Lorenz equations, homoclinic orbits, shooting methods, Liapunov functions,
asymptotic behavior

AMS subject classification. 34C37

1. Introduction. The Lorenz equations we studied here are a system of ordinary
differential equations

(1.1)
x’ s(y- x),
y Rx- y- xz,
z’ xy qz,

where and s, R, and q are positive parameters. This system was first presented
in 1963 by E. N. Lorenz [11] in studying fluid convection in a two-dimensional layer
heated from below. In the last decades, there has been an immense amount of interest
generated by these equations due to the fact that for some parameter values, numerical
computed solutions oscillate in the pseudorandom way which people call "chaotic."
For more detailed description of the observed "chaotic" behavior and mathematical
theories built upon (1.1), such as the geometric models of the Lorenz equations,
Sil’nikov-type or homoclinic bifurcations, and averaging methods, see [3], [5], [13]-
[16], [18], a review book of Sparrow [17], a mathematical textbook of Guckenheimer
and Holmes [4], and the references therein.

Generally speaking, to apply certain well-developed theories to the concrete exam-
ple of (1.1), certain hypotheses have to be verified. One way to achieve this would be
by a computer simulation, but there are few rigorous results. Recently, Hastings and
Troy [8], [9], nassard, Hastings, Troy, and Zhang [7], and Mischaikow and Mrozek [12]
built up mathematical theories for certain characterizations of the chaotic behavior
of (1.1) and implemented rigorous arithmetic numerical schemes to verify the validity
of their hypotheses, and hence lead to affirmative conclusions on the chaotic behavior
they studied for the solutions of (1.1) for certain parameter values (s, R, q).

Among all the solutions of (1.1), a very special one is a homoclinic orbit associated
with the origin, which is a solution having the property that it approaches the origin as
t -t-c. In developing geometric model theories or bifurcation theories, homoclinic
orbits play an essential role. An example of its fascination and importance can be
read from the phase "homoclinic explosion," which is used to refer to the appearance
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of various kinds of chaotic behavior when parameters are perturbed from the values
where there is a homoclinic orbit; see, for example, Sparrow [17] and Robinson [14].
Therefore, it is important to find these homoclinic orbits. The existence of homoclinic
orbits associated with the origin for (1.1) can be seen from strong numerical evidence.
The first pure mathematical proof is given by Hastings and Troy [10]. Using a shooting
argument and a pioneering, though tedious, mathematical analysis on the nature of
the solution when (s, R, q) (10, 1000, 1), they were able to show that for each (s, q) in
some neighborhood of the point (10, 1) there is an R in the interval (1, 1000) such that
the Lorenz equations have a homoclinic orbit associated with the origin. A rigorous
numerical implementation of a similar method for the existence of a homoclinic orbit
was used by Hassard and Zhang [6] to pin down the value of the parameter R. They
showed that when s 10 and q 8/3, R is between 13.9265 and 13.927.

In this paper, we shall study the existence and nonexistence of homoclinic orbits
of (1.1). In particular we prove the following theorem.

THEOREM 1.1. Assume that s and q are given positive constants. Then the
Lorenz equations (1.1) have at least one homoclinic orbit associated with the origin
for some R E (0, cx) if and only if s > 2q+

3

For the existence part, the proof is based on a shooting argument developed in
[10], where the shooting parameter is R. In completing this shooting argument, one
of the essential difficulties lies in the study of the behavior of the solution for large R.
Impressed by the magnitude of the value R 1000 taken in [10], here we replace their
analysis for R 1000 by studying the asymptotic behavior of the solution as R
Though substantial information, compared to that obtained in [10] for R 1000, was
lost, the key properties needed to complete the shooting argument were not. The
main advantage of our method is that we can establish the existence of homoclinic
orbits for a large set of values of (s, q).

The proof of nonexistence is based solely on Liapunov functions. Fortunately, the
result obtained compliments perfectly the existence result, as is seen from Theorem
1.1.

We shall prove the nonexistence part of Theorem 1.1 in 2 and the existence part
in 3 and 4.

Remark 1.2. As will be seen in the proof of Theorem 1.1, the homoclinic orbit
established in this paper is the simplest one among all homoclinic orbits the Lorenz
system could have; namely, its x coordinate does not change sign and has only one
local extreme, so that in the x-x phase plane, the orbit forms a single loop on the
right or the left half plane.

In [1], we prove the existence of homoclinic orbits having the property that the
x coordinate can change any prescribed number of times, and in each time interval
where x does not change sign, x can change an arbitrarily prescribed odd number of
times (except in the first two intervals). Also we prove the existence of orbits having
the property that the x coordinate changes sign infinitely many times and during each
time interval where x does not change, x changes a certain number of signs according
to a prescribed double-bounded odd integer sequence.

In forthcoming paper [2], we shall prove the existence of homoclinic explosion for
the Lorenz system for certain parameters; namely, we shall prove the existence of a
horseshoelike Poincar map.

2. Nonexistence of homoclinic orbits. First, we recall a boundedness lemma
originated by Lorenz [11].
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LEMMA 2.1. The region D :- ((x,y,z) x2 + y2 + (z- (l + s)R)2 <
qR(l+s)2-kl
min{2s,2,q} } i8 positively invariant; that is, if a trajectory enters D at some time,
it will stay there forever. In addition, every trajectory will enter D in finite time.

Proof. Set V x2 + _y2 + -(z- (1 + s)R)2 qR(1A-s)2A-1
min{2s,2,q}" Then along any

trajectory of (1.1),

V’ -2sx2 _y2 (z (1 + s)R)2 z2 + qR(1-1- s)2 < min(2s, 2, q}V 1 z2

The assertion of the lemma thus follows. El

The following lemma shows that the case R E (0, 1] is trivial.
LEMMA 2.2. Assume that R E (0, 1]. Then for every positive s and q, every

solution of (1.1) approaches, as t --+ oc, (0, 0, 0) when R e (0, 1) or (x*, x*, 0) for some
x* (-oc, oo) when R- 1. Consequently, there are no homoclinic orbits associated
with any stationary points of (1.1).

Proof. Define Y(x, y, z) x2 + sy2 + sz2. Since R (0, 1], along any trajectory
of (1.1),

V’ -2s{[x- +,12 -(---+- }2 , + [1 )2]y2 + qz2 < O,

where the equal sign is taken only at the stationary points of the Lorenz system. The
assertion of the lemma thus follows from a standard theory of Liapunov functions. El

In what follows, we shall always assume that

s > 0, q > 0, R > 1.

In this case, (1.1) has three stationary points located at

c (0, 0, 0), C (:l:v/q(R-1), v/q(R 1),R-1).
When R > 1, the origin Co is nonstable and the linearized flow near the origin

has three real eigenvalues,

(2.1) A0=1/2{_(s+l)_(_l)iV/(s+l)2+4s(R-1)} (i=1,2), A=-q.

The eigenvect0rs corresponding to A and A2 lie on the x-y plane, whereas the eigen-
value 3 corresponds to the two trajectories being the positive and negative z-axis.
Since 1 is positive and 2 and .are negative, at C, there is a two-dimensional sta-
ble manifold which contains the z-axis, and a one-dimensional unstable manifold 3’
3’+ U3’- t2C, where 3’- is the reflection of 3’+ across the z-axis and 3’+ initially points
into the positive octant. In fact, the trace of 3’+ is a smooth curve starting from the

origin having the asymptotic behavior 3’ (x, (1 + s)X -[-O(X2), s(2ATq)XTs X-2 "4- O(X3))
for small positive x.

When R > 1, the characteristic function for the eigenvalues of the linearized flow
near the stationary point C+ and C- is

3 + (1 + s + q)A2 + (s + R)qX + 2sq(R- 1) 0.

This equation has a negative root, and, when the real part of the other two roots
(which are complex conjugate to each other) are nonnegative, its imaginary part is
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nonzero. That is, either C+ is stable or C+ has a one-dimensional stable manifold
and a two-dimensional unstable manifold on which the flow is of spiral type.

It is convenient to introduce

"t := z_ lsx2, tt 1 28"

Then, one can directly verify that the Lorenz equations (1.1) are equivalent to the
following system:

x" + (, +  x:}x(2.2)
Q’ + qQ #x2.

(= 1

To show that (2.2) has no homoclinic orbits associated with the origin when
s < we considered three cases-3

(1) 0<s<2 (2) s= q (3) 2<s<2 3

First we consider the case 0 < s < q
2"

LEMMA 2.3. Assume that 0 < s < 2" Then for any R > 1, (’1.1) has no
homoclinic orbits associated with any stationary points. In addition, as t -- cx, every
trajectory has a limit that is one of the stationary points of (1.1).

Proof. Define V=x’2+ +(x2-(R-1)q)2 Since#= 1- <:0,
substituting Q’ by -qQ + #x

2 yields

2 + 2

It then follows by using the differential equations in (2.2) that along any trajectory,

V’= 2x’{x"+ sx[x2 + Q-(R-1)]} + Q’{#x2 qQ}
s

-2(1 + s)x’2 +

Since # < 0, V’ _< 0 for all t E (-cx,cx) and in addition, V’ 0 if and only if
x’ 0 and Q’ 0. The assertions of the Lemma thus follow by the properties of the
Liapunov function V.

Next we consider the case s 2 > 0.
LEMMA 2.4. Assume that s 2 > O. Then the assertion of Lemma 2.2 holds.
Proof. Note that when s 2, # 0, so that Q’= -qQ. Consequently, Q(t)

X2].Q(O)e-qt In particular, on -+ Q(t) 0 so that x" + (1 + s)x’ sx[(R- 1)
Set V x’2 + 1/4Ix2 2s(R- 1)] 2. Then Y’ -2(1 + s)x’2 <_ 0 and therefore
approaches C+ as t - c. (Note that the set {(x, y, z)lY < 0} consists of two disjoint
domains with C+ and C- in each of them.)

For any other trajectories, Q(t) 0 as t c, and one can show that every
trajectory has to tend to one of the stationary points. Details are omitted.

Finally, we consider the case 2 < s < 3

LEMMA 2.5. Assume that 0 < 2 < s < 2q+ Then for any R > 1, the Lorenz3
equations (1.1) have no homoclinic orbits associated with the origin.

Proof. We need only show that+ does not approach the origin as t - . By
symmetry, we need only consider +.
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First, notice that # 1- > 0, so that Q’ + qQ #x
2 >_ 0. It then follows

that on 3’+, Q(t) > 0 for all t.
Define

V= x’2 +sx2{x2 +Q-(R-1)} +(1 + s)xx’.

Then, along 3’+,

V’ 2x’{x" + sx[2x2 + Q (R- 1)]} + sx2Q + (1 + s)x’2 + (1 + s)xx"

2x’{-(1 + s)x’} + sx2[-qQ + #x2] + (1 + s)x’2

+ (1 + s)x{-(1 + s)x’+ s[(R-1)- O- x2- x2]}
-(1 + s){x’2+ (1 +s)xx’+ sx2[x2+ O-(R-1)]} + (#s- 4)x4- sqOx2

-1 / /

where we have used the equations in (2.2) in the second equality, and the definition
of Y and the relation #s- l+s (1 )s- 1+ 3(s 2q+) in the last equality.4 4 --4 3

Since s < and Q > 0 on 3’+ the last equation yields

V’(t) + (1 + s)V(t) < 0 on 3’+ for all t (-cx3, cx).

In particular, since V(-c) 0, we have that V(t) <_ 0 for .all t. Since Gronwall’s
inequality implies that V(t) <_ V(O)e-(l+s)t for all t > 0, we have that IV(t)[ _>
IV(O)le-(l+s)t for all t > 0.

We now claim that 3’+ cannot approach CO (0, 0, 0) as t --. cx3. In fact, if a
trajectory is on the stable manifold of the origin and is not the z-axis, then for t
sufficiently large, x"= -(1 + s)x’ + (R- 1 + o(1))x, so that x,x’,x"= O(e[+(1)]t)
as t x. That is, if 3’+ approaches the origin as t cx, then V(t) O(e2[.+()]t).
But this is impossible since IV(t)l > IV(O)le-(i+s)t for all t > 0 and, from the expres-
sion of 2 in (2.1), A2 < -(1 + s). Therefore, 3’+ cannot approach the origin; namely,
there is no homoclinic orbit associated with the origin.

Summarizing Lemmas 2.2-2.5, we now can conclude the following theorem.
THEOREM 2 6. Assume that 0 < s < Then for any R E (0 cx) the Lorenz3

equations (1.1) have no homoclinic orbits associated with the origin.
Remark. Lemmas 2.3 and 2.4 show that when R > 1 and s _< 2, 3’+/- approaches

C+/- as t cx and every other trajectory of (1.1) approaches one of the stationary
points However, we are unable to show the same conclusion for the case 2

3. Existence of homoclinic orbits associated with the origin. We now
begin to show the existence part of Theorem 1.1; namely, we prove the following
theorem.

THEOREM 3 1 Assume that q > 0 and s > 2-q-TA Then there exists R (1 +
q x) such that the Lorenz equations (1.1) have a homoclinic orbit associated with28
the origin and lying on the half space {(x,y,z)lx > 0}.

Clearly, Theorem 1.1 follows from Theorems 2.6 and 3.1.
In the sequel, we shall always assume that s, R, and q satisfy

2q+ 1
q>0, s>

3
R> 1.
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Notice that the first two conditions imply that # 1 > 0.
The proof is based on a shooting argument first used by Hastings and Troy [10]

and later used by Hassard and Zhang [6]; here R is the shooting parameter. In what
follows, we shall use /+ to denote the trajectory of the stable manifold associated
with the origin which initially enters the positive octant. Also we use xR, yR, zR, Qa
to denote the solution with the trajectory /+. To set up the shooting argument, we
define a set as follows:

R>I (ii(i))3 T such that x(T)--0, x(T)< 0, and x >0in (-oc__T);T3 T > T such that x(T) =-sx(T) and x <-sx in , T];
(iii) T > T such that x(T) 0 and x <--sxR in (T, T].

Observe that x + sx 8yR, so that the second condition in the definition means
that y(T) 0 and y < 0 in ITS, T], and the third condition means that YR < 0
in (T, T].

LEMMA 3.2. The set is open.
Proof. Assume that / e . Since x(T)" O, (x + sx[)’(T) O, and

x(T) O, by the continuity of the trajectory R+ with respect to R and the implicit-
function theorem, for all R sufficiently close to R, there exist T, T, and T satis-
fying the three conditions in the definition of ; that is, R E . Hence, is op-
en. []

LEMMA 3.3. Assume that R
x < x/-, 0 < y < v/, 2x2 < z < 1} is positively invariant. Since initially /+R stays
in B, /+ stays in B for all t (-oc, oc). Consequently, R and there are no
homoclinic orbits associated with the origin.

Proof. The argument given below is adapted from [10].
To show that B is positive invariant, we need only check the direction of the

vector field of (1.1) on the boundary of B.
On the bottom face of B, Q 0. Since Q + qQ #x

2 >_ 0, we know that once Q
is positive, it will remain positive. It then follows that no trajectory can exit B from
the face (z xl2}.

On the top face of B, z 1. It follows that z xy- qz xy-q < 0 except
at (x, y) (/-, x/’)" When (x, y, z) (Vr, x/i 1), y’ (R 2)Vr < 0, z’ 0, z"
x/Y’ < 0, x’ 0, x" (R- 2)x/ < 0. Hence, no trajectory can exit from the top
face of B. Similarly, one can show that no trajectory can exit B from the left face
(x 0}, the right face (x gr}, and the front face (y 0} of B. It remains to
consider the back face (without edges) of B.

On the back face {y f, 0

SinceR<l+andz>x2 y’ 2s

(xfl- x)( 1) _< 0. We then also conclude that no trajectory can exit from B on
the face {y vf}.

In conclusion, B is positive invariant and R . Since an orbit cannot enter the
origin from the inside of B, there are no homoclinic orbits associated with the origin.
This completes the proof of the lemma.

LEMMA 3.4. There exists Ro >> 1 such that [R0,
This is a technical lemma, and we shall leave the proof to the next section. In

fact, this is the major difference of our proof from that of Hastings and Troy [10] and
Hassard and Zhang [6].

Assume for the moment that Lemma 3.4 has been proven. We can now complete
the proof of Theorem 3.1. The argument below is essentially the same as that in [10]
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and [6]. Here we provide it for completeness, as well as for the reader’s convenience.

Proof of Theorem 3.1. Define R* _= inf(R R E }. From Lemmas 3.3 and 3.4,
R* e [1 + , oc), so that /R+. is well defined. Since is open, R* . We now show
that +. is a homoclinic orbit, via the following steps:

1. there exists T. satisfying the first condition in the definition of ; namely,
xa. > 0 in (-oc, T.), x.(T.) 0, and x.(T.) < 0;

2. there exists T. satisfying the second condition in the definition of N; namely,
(x. + sxa. )’ < 0 on ITS., T. and (xa. + sxa.)(T.) 0;

3. xa. > 0 for all t (-oc, oc), x. < -sxa. for all t (T., (x)), and ")’a*+

approaches the origin as t - oc.
The first step. Since a* is on the unstable manifold of the origin, xa* > 0 and

x. > 0 for all t sufficiently negative large. We claim that there is a first time such
that x. 0. In fact, if it is not true, then x. > 0 for all t, which implies that as
t --. cx), /a* approaches the stationary point C+a. =_ (v/q(R 1), v/q(R 1),R*
1). (Recall that all the trajectories are bounded for positive t.) There are only
two possibilities: (i) Ca* is stable; (ii) Ca. is nonstable with a two-dimensional
unstable manifold on which the flow is of spiral type. In the first case, there is a
small ball centered at Ca* such that the vector fields of (1.1) intersect the boundary
of the ball nontangentially and inwards. Consequently, when R is sufficiently close
to R*, the vector fields with the parameter R also intersect the boundary of the ball
nontangentially and inwards, so that the ball is positively invariant. Since for all R
sufficiently close to R*, + is close to -+. up to the time when -+ enters the ball,
which means that /+ will be trapped into the ball before xa reaches its first zero.
Clearly, this violates the definition of R*. In the second case, there are two small balls
B1 and B2, both centered at Ca* and B1 C B2, such that any trajectory starting from
any point on the boundary of B1 has to wind around n+. at least two times before
it could possibly exit from the boundary of B2. This implies that for R sufficiently
close to R*, any trajectory that hits B1 has to wind around the stable manifold of
the stationary point C+ at least one time before it could possibly hit theboundary
of B2, which means that x has to change sign at least two times before xa could
possibly reach its first zero. Clearly, this is impossible for R in N. Therefore, there is
a first time T. such that x. takes its first zero.

Since T. is the first zero of x., x. > 0 in (-x), T.) and x.(T.) <_ O.
Therefore Q. +qQ. 2#xa.x. > 0 in (-oc, T.), so that Q. > 0on (-c, T.],

ix x. > 0 in (-, T.] as well. This excludes the possibilityandz. =Q.+ a
of x.(T.) being zero, since otherwise x. (T.) _> 0, and from the equation for
xa., one can derive that za* R* 1 and z. _< 0, which is impossible. Hence
x. (T.) < 0. Consequently, x. + sxa. > 0 .and (x. + sxa. )’ < 0 at T..

The second step. Since the solution of (1.1) is autonomous, we can shift t such
that T 0 for all R e N U R*. Under this normalization, since x(0) 0, by
the Implicit Function Theorem, the solution of (1.1) is both smooth in time t and
in the parameter R. We claim that T. lim infae,a\a. T is finite. In fact if

T. c, then by the continuity of the trajectory in R and the definition of T,
(x. + sxa. )’ <_ 0 and (x. + sxa. >_ 0 for all t > 0. It then follows that x. + sxa.
is positive and monotonically decreasing in [0, ), so that either x. reaches zero
and then becomes positive at some time in (0, x)) before xa* reaches its first zero
in (-cx), oc) or sxa. > -x. >_ 0 for all t > T.. The first case cannot happen
since R* is a limit point of in which xa obtains its first zero before x obtains
its first zero in (0, cx)). The second case implies that on the phase plane of x vis
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x’, (R* ,x.) approaches (0, 0) from the sector bounded by the positive x-axis and
the line x’ + sx 0 (the possibility that xR. monotonically decreases to v/q(R* 1)
can be excluded in a similar way as in the first step). This is impossible since the
direction that a trajectory can approach the origin on the x-x phase plane is (1, A2)
but 2 < -(1 + s). Hence, T. < x.

By the definition of T., the continuity of solutions in R, and the second condition
in the definition of , x. + sx. 0 at T. and (x. + sx.)’ <_ 0 in [0, T2.]. If
(xR. + sx.)’ 0 at some point T e (0, T.), then (x. + sx.)(T) > 0 and
(x. +sxR. )"(T) 0. From the differential equation (x’ -sx)’ +(x’ +sx) s(R-z)x,

[X(X’ --"we then have that zn. (T) < R* and z. (T) _> 0. In addition, from z"+qz’
sx)]’ x’(x’+sx)+x(x’+sx)’ <_ 0in IT, T.], we have that z. < 0in (T, T.]. Thus
z,. (T.) < R*. However, at T., sx. (R* zR.) (x. +sxR.)’ + (x. +sx.) <_ O,
which implies that zR. (T.) _> R*; we get a contradiction. This contradiction shows
tinct (x. + sx.) < 0 in (0, T.). Now if (x. + sxt.)’= 0 at T., then since by
continuity and the definition of R*, x. / sxR. is positive in [0, T.) and nonpositive
in ITS., T. + 5) for some 5 > 0, we must have (xR. + sxR.)" 0. Recall that
this is equivalent to YR* YR* Y* 0 at T., which, in turn, implies that

xR. y. zR. 0; clearly this is impossible. Therefore, T. satisfies the second
condition in the definition of .

The final step. Now let T. liminfe,\. T. We first claim that T.
Assume that this is not true. Then x(T.) 0 and x. _> 0 for all t e (-cx, T.].
From the continuity and the definition of R*, x. + sxR. <_ 0 for all t e ITS., T.].
If (x. + sxR.)(T) 0 for some T in (T.,T.), then (x. + sxR.)’(T) O,
(x. + sxR.)"(T) <_ O, and x.(T) > 0. But from the equations (x. + sx.)’ +
(x. +sxR. )’ s(R* zR. )xR. and z. x.l (x. +sx. --qzR. this implies that
zR.(T) R* and z.(T) < 0. Consequently, (x. + sxR.)"(T) -zR.(T)x.(T)
0, which is a contradiction. This contradiction shows that x. + sx. < 0 in

(T., T.). Also, since x. (T.) 0 implies that the trajectory is the z-axis, we
must have x’(T.) < 0. Therefore, T. satisfies the third condition in the definition
of . Hence, from the first two steps, we have that R* E-, again a contradiction.
This contradiction shows that T. cx. Hence, we have that xR. > 0 for all t and,
by a similar argument as above, x. < -sx. < 0 for all t > T.. Therefore, as
t - cx, xR. and x. approach zero. That is, "+. approaches the origin.

This completes the proof of Theorem 3.1.

4. Solutions for large R. To prove Lemma 3.3, we now study the behavior
of the solutions of (1.1) for large R. To this end, we introduce a variation of a
transformation which was first used by Robbins [13] and then by Swinnerton-Dyer
[18] to establish, among other things, the existence of periodic solutions of (1.1) for
large R. The transformation is as follows (assume that q 2s):

(4.1)

v/ (R
o-- 4#s/(1 + s),

x(t) 2v/s(R- 1)Xe(T),

+
=q/(l+s),

QR(t) 4#V/s(R- 1)Q(T).

Under this transformation, the system (1.1) or (2.2) becomes

(4.2) 2e xe(1 2x2) s(2 + axQ),
2
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where "- --In what follows, we shall use the phase space (x,2, Q), so that a trajectory of
(4.2) refers to its trace of points (X(T), 2(T), Q(T)) for all T

When s 0, the system (4.2) can be solved by quadrature. A solution of interest
is given in the following lemma.

LEMMA 4.1. When O, the system (4.2) has a unique trajectory %+ which
approaches the origin as T --+ --OO and lies in the first octant for sufficient negative
large T. Its corresponding solution is given by

(4.3) X(T) (cosh T) -1, QO(T) 1 + tanhT, t E (--c, c).

The assertion of the Lemma follows by a direct calculation and details are omitted.
Note that in (4.3), we have normalized the solution such that X obtains its

maximum at T 0.
One may notice that the stationary point (0, 0, 0) of (4.2) changes from saddle

type to degenerate type when e is changed from positive to zero, so that the continuous
dependence of the unstable manifold of the origin with respect to s has to be rigorously
verified. Hence, we provide the following lemma for completeness.

LEMMA 4.2. (1) For every >_ O, (4.2) has a unique trajectory %+ which ap-
proaches the origin as T ---, --OC and initially xe is positive.

(2) There exists a positive constant 51 such that for every e [0, 1], %+ has the
expansion

xe , ice P(, ), Q Q(s,) for all (0, (1],

where P(s,) and Q(e,) are analytic functions of and in an open neighborhood
containing [0, 51] [0, 1]. In addition, there exists a positive constant C1 such that for
all e [0, 1] and all e [0, 51], P(s, ) and Q(, ) satisfy the following estimates:

(4.4) IP(x, 5) P 5-,x:l _<c
[Q(, 5)- Al _< C12,

where AP V/1 + (s/2)2 s/2,.
where AeQ 1/(2Aeg +/s).

(3) There exists a small positive constant sl E (0, 1] such that for all [0, 1],
the xe component of %+ can obtain its first .maximum. In addition, if one normalizes
the solution (X,X, Q) of (4.2) corresponding to %+ such that X obtains its first
maximum at T O, then as a function of variables and T, (X (T), (T), Q(T))
is analytic in [0, 1] (--oo, oc). Consequently, for all T > O, there exists a constant
C2(T) such that

Ilx XII=([_T,T]) + IIQ -Ql[Ol([_r,r]) < C(T)e.

Proof. (1) When e > 0, (4.2) is equivalent to (1.1) so that %+ is well defined,
whereas when 0, 70+ is given by Lemma 4.1.

(2) In a small neighborhood of the origin, %+ can be obtained by .solving the
system of two ordinary differential equations:

d p x(1 2x2)/P s(1 + aQ/P)Z dQ xe/P- eQ/P,
where x is an independent variable. One can verify that this new system has a conver-
gent power series solution P P(s,x) -i=opi(s)xi, Q Q(s,x) "= =o qi(s)xi
in some interval [0,51] which is independent of [0, 1], provided that one takes

P0 0, pl AP, q0 ql 0, and q2 )2Q, where )P and AQ are defined in (4.4),
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whereas all the other coefficients are uniquely determined by the differential equations.
Clearly, this solution corresponds to -+. In addition, by adding a dummy equation
d
d- 0, if necessary, one can show by the implicit-function theorem that P(e, ) and
Q(s, x) are analytic in and x. This proves the second assertion of the lemma.

(3) From (2), the curve (51,P(,51),Q(,51)) is analytic in e [0.,1]. Taking
this as initial conditions for (4.2) at T 0, we have a solution (Ce(T),2(T), Q(T))
which is analytic in both s and T. In addition, since at the point where 20 obtains its

maximum, & -1 0, for all small s, we can use the implicit-function theorem to
solve, for Te, the equation (Te) 0 near the place where &0 obtains its maximum.
The function Te thus obtained is analytic in s in [0,sl] for some small positive
Shifting the time phase of the solution (&e, xe, (e) by Te, we then obtain the third
assertion of the lemma.

In what follows, we shall always use the representation (X,e, Qe) stated in
Lemma 4.2 (3) for %+, where e [0, 1].

LEMMA 4.3. There exists a constant s2 E (0,.] such that the.following holds:
(i) For every e [0, s2], e > 0 in (-oc, 0), Xe (0) 0, and Xe(0) < -1/2.
(ii) For every e (0, s2], there exists T2 e (0, x/ such that

8 8 X( + y-Xe)(T2) 0, (k +y < -1/4 in [0, T2]

Proof. Since (0) -1, the first assertion follows from Lemma 4.2, whereas
the second assertion follows by the continuity of the solution with respect to and T

and the implicit-function theorem.
Observe that under the transformation (4.1), the quantity x+sxR in the original

variables becomes 2(+8)2. ( + x) so that when R e [()2 oc) + defined
2

in 3 satisfies the first two conditions in the definition of . We now proceed to show
that the third condition in the definition of is also satisfied by + for large R, or
equivalently, by /+ for small .

2 4 2 Then, along any trajectory of (4.2),LEMMA 4.4. (1) Define He x + x x.
1//e .2(4.5) 2-7 --xe -(Qexee, for all >_ O, " (-oc,

(2) Define m :: 0)2 + oQOXO.(o dT. Then m y- s-

(3) For any T > O, there exists C3(T) > 0 such that .for all e [0, s2],

/_" [(2)2 +(QX2 ()2-aQX2] dT _C3(T).

Proof. The first two assertions follow from the differential equations in (4.2),
the explicit expressions of X and Q0 in Lemma 4.1, the definition of in (4.1), and
direct computation; details are omitted. We now prove (3).

Let T(5) < 0 be the time such that X{T(5)) 51. Since at T(51), > 0,
T(51) is analytic in s. Hence the integral of (X)2+aQX from [T(51),T] differs
from the integral of (.0)2+aQOXOO from [To(51), T] by a quantity of order s. Using
the change of variables X(), we have that

fTe((l) + +

0
(1

[P(0,)+ oQ(0,)] d + 0() f O<,l +.Qoxo. o + o().
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The third assertion of the lemma thus follows.
We now are ready to prove the following lemma.
LEMMA 4.5. Assume that s > _1. Then there exists So E (0, s2] such that or

e (0, 0], t zt T2 > T c tat too od:

X(T3 O, < Oin (0 T3 and (J(e + 8 ye
l+s’" < Oin(T2 T3]

Proof. Since s > m defined in Lemma 4.4 is positive. Let T, be a large3
positive constant such that

(0)2 + alQoXOj(O dT < m,
5m X(Tm) < min{

By the continuous dependence of the solution on s, we can find a positive constant
so e (O, min{1/v/,s2,m(8C3(Tm))-l}] such that for alls e [0, So],

se X T2(4.8) )e < < 0 in ,Tm + 1],
(4.9) IXe(Tm) X(Tm)I + IQe(Tm) Q(Tm)I <_ 1/25m.

Denote the value of He on %+ by He. Since He(-cx) 0, integrating (4.5) along
from -oc to Tm and using Lemma 4.4, we have that

+/-He(Tin) (2e aQeXe2e dT2

+ [(X)e +QX_(o)- oOxOxO dv- -C(T) [O,o].

Hence, He (Tin) me for all
Now for all 6 (0, eo], define

T3
"= inf {T > Tm Xe>0 )e < 0 and He> me in [Tm,T]}

In view of {4.8), T3 is well defined and T3 > Tm + 1.
Since Xe < 0 in [Tm,T3), we have that 0 _< Xe(T) <_ Xe(Tm) <_ hm <- for all

T e [Tm, T3]. In addition, from the definition of He, in [Tm, T3],

v/He + (X)2[1 -(X)2] _> ires + 1/2(Xe) 2.

Therefore, we have that -2 _> in [Tm, T3], which implies that T3 <_ X (Tm)/
< oc. Also we have that -) > Ze/v in [T,,T3], which, together with (4.8) and
the fact that So _< 1//, yields

y < 0 in (T2 T3] for all s [0 sol

Hence, to finish the proof, we need only show that Xe(T3) 0.
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At T3, there are only two possibilities: either Xe(T3) 0 or He(T3) me. We
shall show that the second alternative will not happen by integrating the identity (4.5)
from Tm to T3. To do this, we need an estimate for the maximum of e in [Tm, T3].
(Though this can be directly verified by using Lemma 2.1, we provide another proof
here for possible other applications.)

Since Qe > 0 for all T e (--c,) and all e >_ 0, Qe _eQe + (Ze)2 < (Ze)2.
Consequently, for all T E (T,, T3],

since Qe(Tm) Q(Tm) + 1/25m <_ and Xe(T,) <_ hm < 1/2. Integrating (4.5) from
T, to T E [T,, T3] then yields

+/-2e He (T) He (Tm)] <_ -a
Tm

1Xee dT <_ 2a(Xe(Tm))2 <_

for all s e [0, s0] since a < 4 and Xe(Tm) < hm < 1/4 It then follows froml+s
the definition of He that I)el <_ x/He + X2 <_ 1 for all T e [T,, T3].

Having the estimate for I)el in [Tm, T3], we can now integrate the identity (4.5)
from Tm to T3 and using the fact that -QeZee >_ 0 in (0, T3), obtain that

Therefore, He(T3 >_ He(Tm) 3s6m >{ms- 3S6m > [ms by the smallness of 6m.
Hence, we must have Xe(T3) O. This completes the proof of the lemma.

As mentioned earlier, since X + sXR e2 [2e + 1- ej, Lemmas 4.3 and
4.5 imply that for R large enough, satisfies the three conditions in the definition
; that is, R . The assertion of Lemma 3.3 thus follows, thereby completing the
proof of Theorem 3.1.

Acknowledgments. The author is grateful to Professor Stuart P. Hastings for
bringing the author’s attention to the fascinating Lorenz equations, demonstrating
invaluable numerical calculations, and providing much appreciated direction through
numerous communications.

Note added in proof. During this paper’s production, the author learned of
a previous result by G. A. Leonov [Differential Equations, 24 (1988), pp. 634-638;
Russian Math. Surveys, 43 (1988), pp. 216-217] He proved that when s > 2q+ the3
Lorenz.system has a homoclinic orbit for some large R.
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Abstract. A new criterion for the global stability of equilibria is derived for nonlinear au-
tonomous ordinary differential equations in any finite dimension based on recent developments in
higher-dimensional generalizations of the criteria of Bendixson and Dulac for planar systems and on
a local version of the C closing lemma of Pugh. The classical result of Lyapunov is obtained as a
special case.
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1. Introduction. Let the map x f(x) from an open subset D C Rn to Rn

be such that each solution x(t) to the differential equation

(1.1) x’= f(x)
is uniquely determined by its initial value x(0) x0, and denote this solution by

An equilibrium point E D of (1.1) is said to be locally stable--or simply stable--
if, for each neighbourhood U of , there exists a neighbourhood V of such that
x(t, V) C U for all t > 0; it is said to attract points in a neighbourhood W if x(t, xo) -+

as t - oo for each x0 E W. It is important to note that this convergence may not
be uniform for x0 W, and may fail to be stable when it attracts points in a
neighbourhood. This can be demonstrated by an example of with a homoclinic
orbit. However, if a stable attracts points in a bounded set W, then the attraction
is uniform with respect to x0 W. In this case, is said to attract W. We say
is asymptotically stable if it is stable and attracts a neighbourhood. The basin of
attraction of is the union of all points which it attracts. If is asymptotically
stable, its basin of attraction is an open subset of D and contains a neighbourhood
of . An equilibrium is said to be globally asymptotically stable--or simply globally
stable---with respect to an open set D1 if it is asymptotically stable and its basin of
attraction contains D1.

The local stability of an equilibrium can be routinely verified by construction of
a Lyapunov function in a small neighbourhood of or by linearizing (1.1) at if f is
C1. The primary interest of this paper is in the problem of global stability. Note that
if is globally stable with respect to D1, then is necessarily the only equilibrium
in D1 and there exists compact neighbourhood K of such that each compact subset
F C D satisfies x(t, F) c K for sufficiently large t. Such a K is called absorbing in

D for (1.1). An open set D c Rn is simply connected if each closed curve in D can be
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continuously deformed to a point within D. Without loss of generality, we formulate
the problem as follows:

THE GLOBAL-STABILITY PROBLEM. Assume that
(H1) D is simply connected;
(H2) there is a compact absorbing set K c D;
(n3) 2 is the only equilibrium of (1.1) in D.

Find conditions under which the global stability of with respect to D is implied by
its local stability.

The difficulty associated with this problem is largely due to the lack of practical
tools. The method of Lyapunov functions is most commonly used (see [5], [6]); its
application is often hindered by the fact that in many cases global Lyapunov functions
are difficult to construct and there is practically no general approach to the construc-
tion of such functions. The application of the theory of monotone flows [8], [21] is an
alternative which has been successfully implemented in recent years.

A new approach to the global-stability problem has emerged from a series of
papers on higher-dimensional generalizations of the criteria of Bendixson and Dulac
for planar systems and on so-called autonomous convergence theorems. Assume that
(1.1) satisfies a condition in D which precludes the existence of periodic solutions and
suppose that this condition is robust in the sense that it is also satisfied by ordinary
differential equations that are Cl-close to (1.1); then every nonwandering point of
(1.1) is an equilibrium, since otherwise, by the C closing lemma of Pugh [19], [20],
we can perturb (1.1) near such a nonequilibrium nonwandering point to get a periodic
solution. As a special case, every omega limit point of (1.1) is an equilibrium. In the
context of our global-stability problem, this implies that 2 attracts points in D. As a
consequence its global stability is implied by the local stability.

Higher-dimensional generalizations of Bendixson’s criterion have been obtained
in papers of R. A. Smith [22] and J. S. Muldowney [17]. This was further developed
and the generalized Dulac criteria derived in [11] based on the study of evolution of
general surface functionals under (1.1). Smith used the fact that his condition has the
required robustness to imply that all bounded trajectories converge to equilibria. Such
results are called, after Smith [22], autonomous convergence theorems, and they are
further explored in [12] and proved under the generalized Dulac conditions developed
in [11]. In the special case that (1.1) has a unique equilibrium 2 in D, it is proved in
[12] that each of these generalized Dulac conditions also implies the local stability of
2 and hence its global stability with respect to D. As shown in [12], the traditional
method of Lyapunov functions can also be interpreted in this context.

Each of these conditions will be called a Bendixson criterion in this paper. Our
main purpose is to introduce a new Bendixson criterion for (1.1) which is an extension
of the generalized Dulac conditions in [11] and [12]. Roughly speaking, instead of
requiring these generalized Dulac conditions to hold pointwise in D as in [11] and [12],
we require that they hold after being averaged over time along all the trajectories.
Because of this time average along trajectories, it is not always true that our Bendixson
criterion is robust under small C perturbations of f. We introduce the notion of
robustness of a Bendixson criterion under local C perturbations of f in the sense
that it is also satisfied by g which is Cl-close to f and differs from f only near a
point. We prove that our Bendixson criterion is robust in this weaker sense. Using a
local version of Pugh’s closing lemma [7], we develop the theory of [12] under weaker
conditions.

For autonomous systems which possess the Poincar6-Bendixson property, a dif-
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ferent method for proving global stability was recently used in [1] for a planar system
associated with a chemostat model and in [13] for a three-dimensional competitive
system arising from an epidemiological model. In this case, the key step is to rule
out periodic trajectories. This was accomplished by proving that periodic trajectories
are orbitally asymptotically stable whenever they exist using the stability criterion of
Poincar for planar systems (as in [1]) and its higher-dimensional generalizations (as
in [13])developed in [17].

The present paper is arranged as follows: in the next section, we establish the
general framework; in 3, we introduce our Bendixson criterion in Theorem 3.1 and
prove a new global-stability result in Theorem 3.5; in 4, as an example, we consider
a global-stability problem arising in an epidemiological model.

2. A general principle for global stability. We begin by formulating the
local version of the C closing lemma of Pugh as in [7]. Let I" denote a vector norm
on Rn and the operator norm which it induces for linear mappings from Rn to R.
The distance between two functions f, g E CI(D -+ R) such that f-g has compact
support is

If g]c sup { If(x) g(x)l + of Og
(x) (x)

Here and throughout the paper, denotes the Jacobian matrix of a mapping f. A
function g CI(D Rn) is called a C local e-perturbation of f at x0 D if there
exists an open neighbourhood U of x0 in D such that the support supp(f g) C U
and If giG1 < e. For such g, we consider the corresponding differential equation

x’=
A point x0 D is wandering for (1.1) if there exists a neighbourhood U of x0 and
T > 0 such that U Nx(t, U) is empty for all t > T. Thus, for example, any equilibrium,
alpha limit point, or omega limit point is nonwandering.

LEMMA 2.1. Let f C(D -+ Rn). Suppose that xo is a nonwandering point for
(1.1) and that f(xo) O. Then, for each neighbourhood U of xo and e > O, there exists
a C local e-perturbation g of f at xo such that

(1) supp(f-g)c U and
(2) the system (2.1) has a nonconstant periodic solution whose trajectory passes

through xo.
A Bendixson criterion for (1.1) is a condition satisfied by f which precludes the

existence of nonconstant periodic solutions to (1.1). A Bendixson criterion is said to
be robust under C local perturbations of f at xo if, for each sufficiently small e > 0
and neighbourhood U of x0, it is also satisfied by each C local e-perturbations g
such that supp(f- g) C U.

Given in the following are some examples of Bendixson criteria.
(1) When n 2, D R2, the classical result of Bendixson states that if

(2.2) div(f) < 0 in R2,
then (1.1) has no nonconstant periodic solutions. Bendixson’s criterion (2.2) was later
generalized to the Dulac criterion

(2.3) div(af) < 0,

where x -, a(x) is some scalar-valued function. Conditions (2.2) and (2.3) can be
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replaced by div(f) > 0 and div(af) > 0, respectively, so that it is not the sign but
having constant sign throughout D that is important.

(2) Let W be the Euclidean unit ball in R2 and let and OW be its closure and
boundary, respectively. If D c Rn, a function E Lip(W - D) will be described as
a simply connected rectifiable 2-surface in D; a function E Lip(0W -- D) is a closed
rectifiable curve in D and will be called simple if it is one to one. Let I" denote a
vector norm in Rg as well as the matrix norm which it induces for N N matrices.
The Lozinski measure #(E) of a N N matrix E with respect to the norm I" is
defined as

#(E) lim
[I+hE[-1

h--*0+ h

(see [3, p. 41]). Lozinskff measures have been used for estimation of eigenvalues of
matrices. They also arise in the stability analysis of linear differential systems when
certain vector norm of solutions are used as Lyapunov functions. Readers are refered
to [3] for their properties and applications. Consider a nonsingular () () matrix-

valued function x A(x) which is C in D and a vector norm [. [on R(). Let #
be the Lozinskff measure with respect to [-I. Under assumptions (H1) and (H2), it is
proved in [11] that if

Of[2]A_1) < -5 < 0 on K,(2.4) # A.fA-1 + A--ffx

then no simple closed rectifiable curve in D can be invariant with respect to (1.1).
Here AI (DA)(I) or, equivalently, Af is the matrix obtained by replacing each

entry aij in A by its directional derivative in the direction of f, *f, and - [2]
is the

second additive compound matrix of o_ (see [15] [17]) For readers unfamiliar with theC}QX

Lozinskff measure, the condition (2.4) is equivalent to assuming that Y(x, y)
is a Lyapunov function whose derivative with respect to the n+ ()-dimensional system

dx dy Of [2]

d-- f(x), d- 0-- (x)y

is negative definite. It rules out not only periodic trajectories but also homoclinic tra-
jectories and heteroclinic loops since each case gives rise to a simple closed rectifiable
invariant curve.

Setting A I in (2.4) leads to the following condition:

0f 2]), < 0,

which was first obtained in [17]. If the norm [. [is such that lY[ lY*Y[ 1/2
calculation of the Lozinskff measure # in (2.5) according to [2] or [17] yields

then

(2.6) A1 + A2 < 0,

where A >_ A2 >_.’. _> An are eigenvalues of (- q- - ), a condition which was first
established in [22]. Note that when n 2, condition (2.5) is the classical Bendixson
criterion. The criterion (2.4) provides the flexibility of a choice of () x () arbitrary
functions in addition to the choice of vector norms I" in deriving suitable conditions.
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(3) Let x V(x) be a scalar-valued function which is C in D. Then the condition

(e.7)
ov
Ox f(x) < 0 if f(x) 0

is a Bendixson criterion since V(x) is strictly decreasing along each solution of (1.1).
Such a function is usually called a global Lyapunov function for (1.1).

Suppose that f satisfies a Bendixson criterion which is robust under C local
perturbations of f at all nonwandering points of (1.1) which are not equilibria. Then,
for each C local e-perturbation g of f at such a nonwandering point, when e is
sufficiently small, (2.1) can not have any nonconstant periodic solutions. Therefore,
Lemma 2.1 implies that every nonequilibrium point of (1.1) must be wandering. We
thus have the following result.

PROPOSITION 2.2. Suppose a Bendixson criterion for (1.1) is robust under C
local perturbations off at all nonequilibrium nonwandering points to (1.1). Then every
nonequilibrium point of (1.1) is wandering.

Suppose D Rn and all solutions to (1.1) are forwardly bounded. Then for
each xo e Rn, w(xo) is nonempty and compact. If we assume that (1.1) has a unique
equilibrium 2 in R, then the conditions of Proposition 2.2 imply that w(xo) 2"
for all x0 E R. If 2 is also stable, then it is globally stable with respect to D. This
provides a solution to the global-stability problem.

THEOREM 2.3 (global-stability principle). Assume that
(1) D R" and all solutions to (1.1) are forwardly bounded;
(2) 2 e R is the unique equilibrium of (1.1) in R; and
(3) (1.1) satisfies a Bendixson criterion that is robust under C local perturba-

tions of f at each nonwandering point x for (1.1) such that f(xl) 0.
Then is globally stable in Rn provided it is stable.

If D C R is an open subset, results like Theorem 2.3 also hold under the as-
sumption (H2) that D contains a compact absorbing set K. In this case, the trajectory
of each solution to (1.1) eventually enters and remains in K; it does not approach the
boundary of D. Condition (3) of Theorem 2.3 implies that its omega limit set is the
singleton {2"}. Therefore, we have the following local version of Theorem 2.3.

THEOREM 2.4. Suppose that assumptions (H2) and (H3) hold and that (1.1) sat-

isfies a Bendixson criterion that is robust under C local perturbations of f at all
nonequilibrium nonwandering points for (1.1). Then 2. is globally asymptotically stable
with respect to D provided it is stable.

In many cases, a Bendixson criterion would imply that the unique equilibrium 2"
is locally stable. This is the case for conditions (2.4) and (2.7). The following result,
which contains the classical global-stability result of Lyapunov (see [5]), was proved
in [12].

THEOREM 2.5. Under assumptions (H), (H2), and (H3), 5 is globally asymptot-
ically stable in D provided that either (2.4) or (2.7) holds.

Remark. Another generalization of the global stability result of Lyapunov is
LaSalle’s invariance principle, [10, Chap. 2, Thm. 6.4], in which properties of limit

OVsets are obtained when (2.7) is replaced by the weak inequality W-f(x) < 0 in D. For
discussions on the relation of LaSalle’s result with autonomous convergence theorems,
we refer the reader to [12].

3. The quantity 2. In this section, we develop some new Bendixson criteria
which are robust under local C perturbations. Assume that (1.1) has a compact
absorbing set K C D. Then every solution x(t, xo) of (1.1) exists for all t > 0. The
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following quantities are well defined:

(3.1) 2 limsup sup
1 ft- xoeg - Jo

#(B(x(s, Xo))) ds,

where

Of[.]
(3.2) B AfA-1 / A-x A-1

and x A(x)is a () () matrix-valued function as in (2.4).
Let E Lip(0W - D) be a simple closed rectifiable curve in D. Then

(,D)=(eLip(WD) (OW)

is nonempty since D is simply connected. Define a functional S on (, D) by

O(3.3) S d() A

om Proposition 2.2 of [11] and the fact that A-(x) is uniformly bounded for x in
any compact subset of D, for each compact F C D, there exists 5 > 0 such that

(3.4) S 5

for all e ( D) such that (W) c F. Let x(t, ) Then yi(t) i= 1 2,
are solutions of the linear variational equation of (1.1)

(a.) ’() (())u()
and z(t) A a solution of the second compound equation of (3.5) (see [15]Ou Ouu
[]),

Of[]
(a.) z’() (())z().

Straightforward differentiation shows that w(t) A(t) A satisfies the differ-Ou Ou2
ential equation w’(t) B((u))w(t) with B given in (3.2). Suppose 2 < 0. Let
2e0 -2 > 0. Then there exists T > 0 such that, for t > T and x0 K,

,(((,0)))d -0 .
om a property of Lozinski measure,

Ot8 A()

8 exp(-e0 t).

(see [3, p. 41]). Therefore, St 0 as t . This contradict8 (3.4) if is invariant
with respect to (1.) since in this case, t e (, D) and t(W) C K for all sufficiently
large t. We thus have established the following result.
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THEOREM 3.1. Under assumptions (H1) and (H2), if
(3.7) 2 < 0,

then no simple closed .rectifiable curve in D can be invariant with respect to (1.1). In
particular, (3.7) is a Bendixson criterion for (1.1).

Remarks. (1) When A I and is chosen as the euclidean norm, the corre-
sponding 2 is related to a quantity q2 defined by Temam ([23, p. 277]) in the context
of evolution equations in an infinite-dimensional Hilbert space. Temam defines q2 over
a compact invariant set, whereas 2 is defined over a compact absorbing set. Suppose
K is a compact absorbing set in D. Then its omega limit set F ca(K) is the maximal
compact invariant set in D, which is usually called the global attractor of (1.1) in D.
Suppose q2 is defined over F. Then it is proved in [23, Chap. V, Prop. 2.1 and Thm. 3.3]
that q2 <: 0 implies that the Hausdorff dimension of F is less than two. By a result of
Smith [22, Thm. 5], E contains no simple closed piecewise smooth invariant curves.
In particular, (1.1) has no nonconstant periodic solutions. This shows that q2 ( 0 is a
Bendixson criterion. Since the global attractor E is not necessarily preserved under a
local C perturbation of (1.1) at a nonwandering point, the criterion q2 ( 0 may not
be robust under such perturbations.

(2) Condition (3.7)is clearly implied by (2.4).
Let x0 E D be a nonwandering point such that f(xo) t O. Then, for each suffi-

ciently small neighbourhood U of x0, there exists tl > 0 such that x(t, U) N U ,
and x(t, U) U for some t > tl. The following quantities are then well defined.

T(U; Xo) inf{t>0 x(t, U) V ,
and tl < t such that x(tl, U) U { }

and

(3.8) ’(x0) sup { T(U; Xo) V is a sufficiently small neighbourhood of x0};
when x0 is an equilibrium, T(Xo) is defined to be zero. We call T(Xo) the minimum
return time at the nonwandering point x0. It follows from the continuous dependence
on initial conditions that x0 is an equilibrium if and only if T(Xo) 0. In fact, the
following is true.

LEMMA 3.2. Let xo be nonwandering. A solution x(t, xo) to (1.1) is periodic if
and only if (xo) is finite, in which case T(Xo) is the minimum period.

Proof. From the definition, if T(Xo) < OC, there exist sequences xk - x0, tk
T(Xo) (k --+ oc) such that x(t,x2) x2+, which implies that x(t, xo) is a periodic
solution of period T(Xo). Thus the least period T satisfies 0 <_ T <_ T(Xo). Conversely,
if x(t, Xo) is a periodic solution of period T, then T(U, Xo) <_ T for all sufficiently small
neighbourhoods U of x0 since x(T, xo) xo U. Thus ’(x0) _< T. The lemma follows
from these two observations.

PROPOSITION 3.3. Suppose T(Xo) +OC. Then the condition-2 < 0 is robust
under C local perturbations of f at xo.

Proof. Let -2 > 0. Since K is absorbing, there exists T > 1 such that
x(t,K) C K if t > T and

(t t)(3.9) # (B(x(s,z)) ds <
2

for all tl, t2 _> 0 such that tl t2 > T and all xt K. The assumption T(Xo) +OC
implies that f(xo) 0 and T(U; Xo) > T for all sufficiently small neighbourhoods U
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of x0. Let H be a n- 1-dimensional transversal to the vector f(xo) at x0 and U1 be a
sufficiently small ball in H centered at x0. Consider the flow box

{x(t, u1) < t <

generated by the evolution of the ball U1 c II along the solutions of (1.1) for a small
time interval I-a, a] (see Figure 1). Let F+ x(a, U1) and F_ x(-a, U). By
taking the ball U c H and a > 0 sufficiently small, we can ensure that all solutions of
(1.1) starting in E leave E and that T(E; x0) > T. As a consequence, each trajectory
starting at F+ leaves E and returns to F_, if it ever returns, at a time greater than T._

i’ \ f(xo) .\ v(t;+)

F_

FIG. 1.

Let g be a C local e-perturbation of f at x0 such that supp(f-g) c E. Consider
the differential equation (2.1). K is also absorbing for (2.1) if E is sufficiently small
since f and g agree on D \ E. Let Bf and Bg denote the matrix B defined in (3.2) and
2(f) and 2(g) the quantity 2 in (3.1) for f and g, respectively. If the trajectory of
a solution y(t, yo) to (2.1) does not intersect E after a certain time, then it coincides
with the trajectory of a solution to (1.1) for sufficiently large t. There exists > 0
such that no solution of (1.1) and (2.1) remains in E for a time interval greater than. For such a solution, it follows from (3.9) that

I j0 5- it (Bg(y(s, Y0))) ds _<
4"

Suppose the trajectory of y(t, yo) intersects E infinitely often. We may assume that
y0 F+ K. Let to 0 and

T < Sl < tl < s2 < t2 < < sn < tn < Sn+l <

be a sequence such that
(i) s and t are the successive time y(t, Yo) intersects F_ and F+, respectively,

when it returns to E,
(ii) y(t, yo) E, s <_ t <_ t, for each i >_ 1,
(iii) y(t, Yo) E, t < t < s+ for each _> 0.

Then we have
(iv) t s _< for each _> 1,
(v) S+l t > T for each _> 0,
(vi) y(t, yo) coincides with the solution x(t,y) of (1.1) for t < t < s+l, where

y y(t, yo) for each _> 0 (see Figure 1).
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Since If- g]c < e, we may choose e sufficiently small that

I# (BY(x)) # (Bg(Y))I < 4-
for x, y in E. Therefore, for each > 0,

ftiq-1 fti-{-1# (Bg(y(s, yo))) ds # (BI(x(s, yi))) ds +
J ti J ti

,,+1 [# (Bf (x(s’ Yi))) # (Bg(Y(s’ Yo))) d8

< ---(ti+l- ti) nu (ti+l- Si+l)-2

--5 (ti+l ti) + -4_< --4 (ti+l ti)

since ti+l -ti k T > 1. Thus for all sufficiently large t, tn < t <_ tn+l for some n,
and

l for 1 fot’ lftI7 # (Bg(Y(s, Yo))) d8 7 #(Bg) q- #(Bg)

+ 7t
i=0 J ti

5 1 E(ti+l_ ti)+ #(B)
4t =o

5 tn 1i<- -- T + - # (B)"

5 Therefore, in this case,If t- tn > T, then, as in (3.10), ft #(Bg) < -#(B) -< 4

.TIf t- tn (T, then < T and thus > 1- > 1/2 when t is sufficiently large.-T T
Hence, in this case,

1 ft 8 tn t- tn 5

Jo max#(Ba(x)) <
t

#(Bg) <
4 t - t xEK 16

Therefore, for sufficiently large t and for Yo E K,

# (Bg(y(s, Yo))) ds < 16’

which leads to c2(g) < 0, completing the proof of the lemma. [Z]

By Theorem 2.4, the results established in Theorem 3.1 and Proposition 3.3 imply
that the global stability of the unique equilibrium 2 is equivalent to its local stability
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under condition (3.7). The following result is in the spirit of Proposition 2.4 in [12];
it deals with the asymptotic behaviour of solutions to (1.1) near an equilibrium under
condition (3.7) when multiple equilibria are allowed.

PROPOSITION 3.4. Under assumptions (HI) and (H2), if-2 < O, then the dimen-
sion of the stable manifold of any equilibrium is at least (n- 1); if an equilibrium is not
isolated, then its stable manifold has dimension (n- 1) and it has a centre manifold
of dimension one which contains all nearby equilibria.

Proof. Observe that at an equilibrium Xl, 2 < 0 implies

# Axx A-1 <0

since f(xl) 0 implies df(xl)(xl) 0. This is inequality (8)in [12], and the rest
of the proof is the same as the corresponding part in the proof of Proposition 2.4 in
[12]. [’1

THEOREM 3.5. Under assumptions (HI), (H2), and (H3), the unique equilibrium
2 is globally stable in D if Ct2 < O.

Proof. From Theorems 2.4 and 3.1 and Proposition 3.3, it remains to prove the
local stability of 2. Assume the contrary. Then 2 is both the omega limit point
and alpha limit point of a homoclinic trajectory, which gives rise to a simple closed
rectifiable curve 3’ whose existence is precluded by 2 < 0 from Theorem 3.1. The proof
for the rectifiability of 3’ is the same as that given in the proof of Corollary 2.6 in [12].
The key to that proof was the local structure of solutions to (1.1) near equilibria
established in Proposition 3.4.

Remark. In the presence of multiple equilibria, it was proved in [12] and [22] that
every nonempty alpha and and omega limit set is a single equilibrium under any of the
Bendixson criteria (2.4), (2.6), and (2.7). Results of this type are called autonomous
convergence theorems. The main ingredients in the proof given in [12] are the C
robustness of the Bendixson criterion, a result like Proposition 3.4, and the center
manifold theorem (see [4]). Therefore, the same result .holds under assumptions (HI)
and (H2) and our weaker condition 2 < 0.

4. Example: An epidemiological model. Let S,E,I, and R denote the
susceptible, exposed, infectious, and recovered fractions in a population. A one-
population SEIRS model for the spread of an infectious disease in the population
is described by the following system of differential equations:

(4.1) S’ -SI + S + 5R,
E’ IS- ( + ,)E,
I eE-(3"+v)I,
R’ +

Individuals are susceptible, then exposed (in the latent period), then infectious, then
recovered with temporary immunity, and then susceptible again when the immunity is
lost. The parameter 5 describes the rate that the recovered population loses immunity,
e is the rate that the exposed population becomes infectious, and 3’ denotes the rate
that the infectious population becomes recovered. There is no disease-related death.
The natural death rate and birth rate are assumed to be equal (denoted by v), and
thus S + E + I + R 1 for all time. All parameters are nonnegative. The case v 0
corresponds to no death and no birth. If 5 0, infected individuals recover with
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permanent immunity; that is, once recovered, they will not become susceptible again.
Note that e is assumed to be positive since we consider an infectious disease. We also
assume that + 5 > 0; otherwise, the model (4.1) is not interesting in that all the
population will eventually be recovered and there will be no susceptibles.

The model (4.1) has been extensively studied in the literature; see [14] and its
references. It is known that the qualitative behaviour of (4.1) is determined by the
contact number a /(e + )(/+ ), which satisfies a threshold condition. If a <_ 1,
the disease-free equilibrium P0 (1, 0, 0, 0) is the only equilibrium and is globally
asymptotically stable in the feasible region F { (S, E, I, R)
1}; namely, the disease dies out. If a > 1, then P0 loses its stability and a unique
endemic equilibrium P* emerges in the interior of F and is locally asymptotically
stable. It has been conjectured (see [14]) that P* is globally asymptotically stable in
the interior of F when a > 1 such that the disease remains endemic and approaches a
unique endemic equilibrium for all initial configurations.

This conjecture was proved to be true for the case 5 0 in [13]. A crucial part of
the proof is that, when 5 0, (4.1) can be reduced to a three-dimensional competitive
system. Since this property of (4.1) may not be preserved for 5 > 0, the method in
[13] does not apply to the case 5 > 0. In this section, we apply the theory developed
in previous sections to show that this conjecture is also true for small 5.

Using R 1 S- E- I, we can reduce (4.1) to the following three-dimensional
system:

S’ -ikSI + v vS + 5(1- S- E I),
E’ ASI- (e + u)E,
I’ eE- ( + u)I,

and transform the simplex F C R_ to the following convex region in R3"+
T= {(S,E,I) eR+ O<_S+E+I<_I}.

The disease-free equilibrium P0 becomes (1, 0, 0) and the endemic equilibrium P*
becomes an interior equilibrium in T. For simplicity of notation, we will denote these
two equilibria of (4.2) by P0 and P*. The following result can be proved in the same
way as in 3 of [14].

PROPOSITION 4.1. If a <_ 1, Po is globally asymptotically stable in T. If a > 1,
Po is unstable and the trajectories sufficiently close to Po leave Po except those on the
S-axis which approach Po along this axis.

In the following, we apply Theorem 3.5 to (4.2) to show that P* is globally stable
in the interior of T when a > 1.

To show the existence of a compact set which is absorbing in the interior of T is
equivalent to proving that (4.2) is uniformly persistent, which means that there exists
c > 0 such that every solution (S(t),E(t),I(t)) of (4.2) with (S(O),E(O),I(O)) in the
interior of T satisfies

liminf I(S(t),. E(t), I(t)) >_ c

(cf. [2]). Uniform persistence may also be defined for discrete dynamical systems or
iterated maps (see [9]). It can be proved that (4.2) is uniformly persistent if and only
if the time-one map associated with (4.2) is uniformly persisitent in the sense of [9].

A compact invariant set F C T of (4.2) is said to be isolated if there is a neigh-
bourhood N C T of F such that F is the maximal invariant subset of N. The stable set
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F8 of F is the set of P E T such that the omega limit set w(P) c F. These concepts
can be similarly defined for the time-one map associated with (4.2) (see [9]). Using
Theorem 4.1 of [9], we can prove the following result.

PROPOSITION 4.2. System (4.2) is uniformly persistent in T when a > 1.

Proof. We show that, when a > 1, the time-one map associated with (4.2) satisfies
the conditions of Theorem 4.1 of [9], namely, (i) the maximal compact invariant set
M in the boundary of T is isolated and (ii) the stable set M8 of M is contained in
the boundary of T..It can be shown that the time-one map of (4.2) satisfies (i) and
(ii) if (4.2) does. Since M {P0}, Proposition 4.1 implies that, when a > 1, M
is contained in the S-axis and thus in the boundary of T. It also implies that M is
isolated in T. Therefore, the proposition follows from Theorem 4.1 of [9].

THEOREM 4.3. Assume that a > 1. Then there exists > 0 such that the unique
interior equilibrium P* is globally stable in the interior of T when <_ .

Proof. By Proposition 4.2, when a > 1, there exists a compact set K in the
interior of T which is absorbing for (4.2). The proof of the theorem consists of choosing
a suitable vector norm I" in R3 and a 3 3 matrix-valued function A(x) so that the
quantity 2 defined in (3.1) is negative. We set A as the following diagonal matrix:

(4.3) A(S,E,I) diag(1 E E)’I’I

Then A is C and nonsigular in the interior of T. Let f denote the vector field of (4.2).
Then

(
The second compound matrix j[2] of the Jacobian matrix J - can be calculated
as follows"

0 AI -e 7 2u

(see the appendix of [12]). Therefore, the matrix B AIA- + A J[2]A-1 can be
written in the following block form:

(4.4) B= [ NixB21 B22B12]
with

Bll -AI 5 e 2u, B12 E E B21 0

The vector norm [. in R3 ---- R(2) is chosen as

(4.5) I(u,v,w)l sup{lu[, Ivl +
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The Lozinski measure #(B) with respect to 1. can be estimated as follows (see [16]
or [18])"

(4.6) #(B) _< sup {g,g2},

where

+(4.7) 81 Bll + [B121 -AI 5 e 2 + E

I E
--’,/-2u+(4.8) 82 1(B22)+ IB211 I

if 5 e/2. Note that p1(B22) is the Lozinskii measure of the 2 2 matrix B22 with
respect to the ll norm in R2, B2 and ]B2 are the operator norms of B2 and
B2 when they are regarded as mappings from R2 to R and from R to R2, respec-
tively, and R2 is endowed with the l norm. Also note that since B is a scalar, its
Lozinski meure with respect to any vector norm in R is equal to Bll. A solution
(S(t),E(t),I(t)) to (4.2) with (S(O),E(O),I(O)) in the absorbing set K exists for all
t > 0. om the equations in (4.2), we find

I(E) _E’(4.9) T E

and

(4.10)
ASI E’
E - +e+,

eE I’
(4.11) --Relations (4.6)-(4.11)imply

(B) < ----u+sup N-,XI, 0

Since (4.2) is uniformly persistent when > 1, there exist c > 0 and T > 0 such that
t > T implies

1
logE(t) c, I(t) c, and

2

for all (S(O),E(O),I(O)) e K. Set min{e/2, c}. Then t > T and < imply
/E- I O, and thus

1

for all (S(0), E(0), I(0)) K, which in turn implies that 2 < 0, completing the proof
of Theorem 4.3.
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BIFURCATION OF FIXED POINTS IN COUPLED
JOSEPHSON JUNCTIONS*
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Abstract. The fixed points of the equations describing a pair of coupled Josephson junctions are
investigated and are shown to undergo an infinite number of bifurcations as parameters are varied.
The bifurcation curves are then analyzed in a region of parameter space where interesting dynamical
behavior is also known to occur. It is shown that the bifurcation curves fall into four one-parameter
families, and the curves in each family are described. The paper concludes with a discussion of a
conjectured mechanism by which simultaneous bifurcations could give rise to interesting dynamical
solutions.
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1. Introduction. In this paper, we investigate the fixed points of the system

51 + %61 + sin Ol + k(ol 902 + H) I,

(1.1b) sin o2 k(ol o2 + H) 0,

which has been used to describe the behavior of a pair of coupled Josephson junctions
in the current-driven case [1-3] ((1.1) also describes the behavior of a pair of damped
nonlinear pendulums connected along a common axis of rotation by a linear spring,
with one of them driven by a constant torque I, as stated in [2, 4]). Here -y, H, I, and k
are constants, with the damping - and coupling parameter k both positive. Following
Imry and Schulman [1], we observe that the case of I < 0 can be transformed to I > 0
by replacing solutions Ol, 2 by --01, --2, and so will also require I to be positive.

Previous work on (1.1) has focused on its dynamic behavior. Some discussion
of fixed points was presented by Imry and Schulman [1], and a more comprehensive
discussion of equilibria in a related system that contains the case H 0 was done
by Henderson, Levi, and Odeh in [6]. The results of this paper provide a thorough
analysis of the fixed points of (1.1) and their bifurcations, especially in the region
of weak coupling (small k), and provide support for a conjectured mechanism by
which bifurcating fixed points may give rise to dynamical behavior. The interesting
dynamical behavior investigated by Levi [2, 4] and Imry and Schulman [1] occurs in
that region also.

In the work done here, -y and H are fixed, and we investigate the behavior of the
fixed points as the parameters I and k vary. As will be seen, fixed points can occur
only for ]I] < 2, and occur for any such I whenever k is small enough. Furthermore,
since the flow (ol, bl, o2, b2) induced on IR4 by (1.1) commutes with translation by
(2rr, 0,2rt, 0), each fixed point has an infinite number of equivalent copies. When
points of IRa that differ by such a translation are identified, the flow on the resulting
phase space S IR3 has only a finite number of fixed points, and it will be shown
that the number of fixed points is O(1/k) as k --+ oo.

From the dependence of the number of fixed points on I and k, it is clear that the
fixed points of (1.1) undergo a large number of bifurcations as these parameters are
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varied. As was shown by Imry and Schulman [1], these must all be static bifurcations
in which a pair of fixed points merge and disappear. It will be shown here that these
bifurcations are of two types: (1) those in which a sink merges with a saddle having
one eigenvalue with positive real part, and (2) those in which a saddle having one
eigenvalue with positive real part merges with one having two. Conditions for the
occurrence of these bifurcations will be analyzed for (I, k) in the set

S- (I,k)’0<I<2,0<k<min v/1-(I-1)2

allowing us to obtain bifurcation diagrams there (Figs. 2a, 2b).
The bifurcation diagrams in S make clear the existence of a countable number

of points at which simultaneous bifurcations occur. This has suggested a possible
connection with some of the running periodic solutions of (1.1). These are solutions
for which 99(t + T) 99(t) + 2mr, 1, 2, where T is positive and m is an integer.
It turns out that m must also be positive (this follows from a slight modification of an
argument in [2]). These solutions are periodic in the cylindrical phase space S R3
but not in R4. Among the most interesting of these are the so-called beating solutions
(Imry and Schulman [1] and Levi [2, 4]). These are running periodic solutions in
which first one oscillator is nearly constant while the other runs through a number
of oscillations, and then they exchange roles for the remainder of the period. In the
two transitions the solution is for a short while nearly static. This led Kopell [5]
to speculate that such solutions might arise from a pair of simultaneous sink-saddle
bifurcations in which the closure of the unstable manifolds of the saddles forms a
closed curve in the S [3 phase space, with each unstable manifold connecting
the sinks. This closed curve would become the orbit of the beating solution when
the fixed points merge and disappear (see Fig. 3). Support for this conjecture will
be provided by demonstrating that there are a countable number of points in S at
which simultaneous sink-saddle bifurcations occur, although no attempt will be made
to show that the unstable manifolds ever connect the sinks. Furthermore, it will
be seen that some of these bifurcations occur in the small region of S where Imry
and Schulman found beating solutions and involve fixed points near the nearly static
transitions in those beating solutions. It should be noted that beating solutions also
occur for the systems in [6-8].

The remainder of the paper is organized as follows. Section 2 contains general
results on the existence and stability of fixed points that are valid for all parameter
values. In particular, it is shown that fixed points correspond to the intersection
of certain horizontal lines with a closed curve C that depends on I and k. Further
progress is made in 3 by restricting attention to values of (I, k) in S. This allows
estimates to be obtained that make it possible to determine the shape of C (see Fig. 1),
and that will be needed later. It is then shown how the character of ra fixed point
is determined by the location of the corresponding point on C. Section 4 contains
an analysis of the bifurcation curves in S. It is shown that these bifurcation curves
fall into four one-parameter families, and descriptions of the curves in each family are
obtained. This is the main result of the paper and is contained in Theorem 4.2. The
paper ends with a demonstration that the results obtained are consistent with the
conjectures on beating solutions.

2. Existence and stability of fixed points. As previously mentioned, the
analysis of (1.1) can be simplified by restricting our attention to the S ]3 phase
space. This will be done here by representing each equivalence class of fixed points by
its representative (991,0,992, 0) with 991 e [-r/2, 3r/2). From (1.1) we see immediately
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FIG. 1. A sketch of the curve C C1 U C2 U C3 U C4 for values of (I, k) in S with the locations
of the critical points Xl,...,x4 indicated. Each intersection of C by a horizontal line of height
I k(2LTr + h) corresponds to an equivalence class of fixed points, each having 1 equal to the
x-coordinate of the point on C (mod 27r). Bifurcations occur when these correspond to one of the
critical points. (Note: certain features of C have been exaggerated for purposes of illustration.)

that (991,0,992, 0) will be a fixed point if and only if the constants 991,992 satisfy

sin 991 + k(991 992 + H) I,

sin 992 k(991 992 + H) 0,

which is equivalent to

(2.1a) sin 991 + k(991 992 -4- H) I,

(2.1b) sin 991 + sin 992 I.

From (2.1b), it follows that III < 2 is necessary for the existence of fixed points,
and that 992 must be given by either

(2.2.1) 992 sin-1(I sin 991) 2Lr

or

(2.2.2) 992 r sin-1(I sin 991) 2LTr

for some integer L. Together with (2.1a), this shows that if 0 < I < 2 and 991 E
[-r/2, 3r/2), then (991,0,992, 0) will be a fixed point if and only if there is an integer
L such that 991 satisfies

(2.3.i) fi(991) I- k(2LTr + H)

for either 1 or 2, and 992 is given by the corresponding equation (2.2.i). The
functions fi" Jx ] (i 1, 2) are given by

fl(x) sinx + k[x sin-l(/- sin x)],

f2(x) sinx + k[x + sin-l(I sinx) r],

with domain Jx [sin-l(/- 1), 7r- sin-l(/- 1)]. To emphasize their dependence on
parameters, fi(x; I, k) will sometimes be written for fi(x).



BIFURCATION IN COUPLED JOSEPHSON JUNCTIONS 1087

As is readily verified, the functions f(x) are continuous on JI and smooth on its
interior (with respect to I and k as well as x) and agree at its endpoints. Furthermore,
fl(x) > f2(x) on the interior of JI, with f(x) - +c, f --+ -cx as x approaches
the left endpoint and f (x) -cx, f(x) --+ +oe as x approaches the right endpoint.
Consequently, the graphs of f(x) together form a smooth closed curve C. As shown
by (2.3), we now have the following proposition.

PROPOSITION 2.1. Each equivalence class of fixed points corresponds to an in-
tersection of C by a horizontal line of height I k(2Lr + H).

Since the horizontal lines are separated by a distance 2rk and the functions f
have O(1) variation across JI, (1.1) must have O(1/k) nonequivalent fixed points as
k - 0, whenever 0 < I < 2. Further results will be obtained from the shape of C,
which the restriction to (I, k) E S, made in the next section, will make it possible to
determine (see Fig. 1).

To consider the stability of fixed points, let /2 b and rewrite (1.1) as the
first-order system

991

d /21

dt 992

/21

I k(991 992 -- H) sin1 /21

/22

k( 2 + H) sin . ")’/22

The linearization of this system about a fixed point (991,0,992, 0) has coefficient matrix

0 1 0 0

-(k + cos) -/ k 0

0 0 0 1

k 0 -(k+cos)

which has eigenvalues

11(_, + V/2 4a+) and (--), :t: V/’),2- 4a_)2

where

a: =k+
COS 991 - COS 992 _}_

2
COS 991 COS 992 . k2

2

1/2

Thus each fixed point has at least two eigenvalues with a negative real part,-with the
remaining eigenvalues having real parts whose signs are determined by the relative
magnitudes of

k+
COS 991 - COS 992 and

cos 99/91 cos 992 k2
2 +

1/2

and the sign of k + (cos 991 + cos 992)/2.
Now define

g(991,992) COS 991 COS 992 - k(cos 991 -cos 992)
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as in [1], and let

h(991,902) k --(cos 1 -+-cos 2)/2.

It is easily verified that ]h(91, 2)1 has the same relation (>,=, <) to [((cos 91
cos )/2) +k]1/ as g(,) has to zero, so we now have the following propositiom

PROPOSITION 2.2. An equilibrium solution (1,0, f12, 0) will be
(i) a sink if.g(l, 2) > 0 and h(l, 2) > 0,
(ii) a saddle having a one-dimensional unstable manifold if g(, 2) < O,
(iii) a saddle having a two-dimensional unstable manifold if g(991, 2) > 0 and

h(l, 92) < 0.
Since the equilibrium solution is structurally stable in each of the above cases, and

since h cannot be zero if g is positive, bifurcations can occur only when g(, 2) 0.
In that case there will be exactly one eigenvalue with real part zero. This rules out the
possibility of Hopf bifurcations, which require the existence of a fixed point having two
eigenvalues on the imaginary axis. We note also that the types of equilibria described
above are the only types that occur for the related systems in [6-8].

We now show that the sign of g at a fixed point can be determined by the location
of the corresponding point where the curve C is intersected by a horizontal line of
height I- k(2L + H). Since 2 is given by (2.2.i) when this point lies on the
part of C given by the graph of f, we define functions g JI I (i 1, 2) by
gl(x) g(x, sin-l(I sinx)) and g2(x) g(x, sin-l(I sinx)). Thus

gl (X) (COS X)V/1 (I sin x)2 + k(cos x + V/1 (I sin x)2),

g2(x) -(cos x)v/1 (I sinx)2 + k(cos x V/1 (I sinx)2).

Comparison of g(x) with f(x) shows that

(2.4) gl(X) f(x)v/1 (I sinx)2 and g2(x) -f(x)v/1 (I- sinx)2

on the interior of J. Since the term under the radical is zero only at the endpoints
of J, the sign of g at an equilibrium solution is determined by the slope at the
corresponding point of C and the segment (graph of fl or f2) it lies on. It is also
easily verified that g : 0 at the endpoints of Jx for 0 < I < 2, so we now have the
next proposition.

PROPOSITION 2.3. Bifurcations can only occur at fixed points that correspond to
a point at which the curve C has a horizontal tangent.

3. Restriction to parameter region S. From now on we will only consider
(I, k) E S. This will allow us to determine the shape of C (Fig. 1). In particular, we
will see that C has a horizontal tangent at four points. Bifurcations will occur only
when a horizontal line of height I k(2L + H) passes through one of these critical
points, and the stability of nonbifurcating equilibria will be determined by which of
the four segments bounded by the critical points the corresponding point of C lies on.

To begin, observe that the shape of C is determined by the way in which g and
g2 change sign across Jx, as shown by (2.4). In order to understand the behavior of
gl and g2, we need some observations about cos x and [1 -(I- sin x)2] /2 on J. As
a notational convenience, define a" JI by a(x) [1 (I sin X)2] 1/2. We then
have Lemma 3.1.

LEMMA 3.1. If (I,k) e S, then there are points a, bi in (sin-l(I 1),r/2) C JI
and their reflections a -a, b r-b in (7/2, -sin-(I- 1)) C Ji(i 1,2,3)
with a < a2 < a3 < b < b2 < b3 and b > 0 such that
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(i) a(al) k/2, a(a2) k, a(a3) 2k, and a(a) cr(ai)(i 1,2,3);
(ii) cos bl 2k, cos b2 k, cos b3 k/2, and cos b cos bi(i 1, 2, 3);
(iii) a is increasing on [sin-l(/- 1),a3] and decreasing on [a3, r-sin-l(I 1)]

with a > 2k on (a3, a);
(iv) cosx is decreasing on [bl, b] with cosx > 2k on [sin-l(I-1),bl) and cosx

-2k on (bl, - sin-(I- 1)].
Proof. First, observe that a has a critical point at r/2 and that a(/2) [1

(I- 1)2] 1/2 is greater than 2k since (I,k) S. rthermore, a is zero only at the
endpoints of J and is symmetrical about r/2. If 1 I < 2, then a is increasing on

[sin- (I- 1), /2], while if 0 < I < 1, then a increases until it reaches its maximum
value at a point of (sin-l(I 1), /2) and then decreases to its value at /2. In either
case, (i) and (ii) follow immediately, with a < a2 < a3 all in (sin-l(I- 1),.r/2).

Now observe that 2k < 1 since k < /3 in S, so we can define bl cos-l(2k),
etc. Also, cos x is decreasing on Ibm, b] since [bl, b] c (0, u), and b < b2 < b3 are in
(sin-l(I- 1), /2) since cos(sin-l(I 1)) [1 -(I- 1)2] /2 is greater than 2k in S.
The inequalities in (iv) now follow easily, so (ii) and (iv) are proved.

All that remains is to show that a3 < bl. But we must have a3
b, since a(sin-l(I/2)) cos(sin-l(I/2)) (1- I2/4) 1/2 is greater than 2k for
(I, k) e S.

We can now obtain enough information about gl and g2 to determine the shape
of C when (I, k) S. The results are stated in Proposition 3.2.

PROPOSITION 3.2. If (I, k) S, then
(i) fl has a local maximum at a point Xl in (b, b) and
(ii) f2 has a local maximum at a point x3 in (b, b) and a pair of local minima

aat x2 in (a a2)and x4 in 3, a).
Furthermore, f and f2 do not have any other critical points.

Proo In view of (2.4), it is sufficient to show that g is positive on [sin-l(I-1), b]
and negative on Ibm,- sin-(I 1)], with g < 0 on Ibm, b], and, similarly, that g2 is
positive on [sin-l(I- 1), a] Ibm, a] and negative on [a2, b] U [a,- sin-(I 1)],

awith g < 0 on [a a2] [ 3, a] and g > 0 on Ibm, b].
To show that g2 is positive on Ibm, a], observe that cos x < -2k on (b, a] and

a(x) > 2k on [bl,a) from Lemma 3.1, so that g2(x) (k- a(x))cosx- (k +
X)ffcos (x) is clearly positive on Ibm, a]. Similarly, to show that g < 0 on [al a2],

observe that g -[(k + cosx)(I sinx)cosx]/a (k a) sinx. Also, on [al,a2]
we have I- sin x > 0 (since a is increasing), k/2 a k, and cos x > 2k. Then
I- sinx (1 k2) 1/2 since a k, and sinx < (1 -4k2) 1/2 since cosx > 2k, so
g < -[3k(1-k2)1/22k]/k+(k/2)(1-4k2)/2 (k/2)(1-4k2)1/2-6k(1-k2)1/2 < O.

The other proofs are similar and are thus omitted.
It can also be shown that f2(x2) < f2(xa), so that f2 takes its global minimum

only at x2. Thus the shape of C must be as indicated in Fig. 1.
The critical points divide C into four segments, which we label C1,..., C4 as

in Fig. 1. We now show that the stability of an equilibrium solution is completely
determined by which of these segments the corresponding point of C lies on. To begin,
observe that (2.4) shows that g will be positive at a fixed point if the corresponding
point lies on C1 or C3 and will be negative if it lies on C2 or Ca. By Proposition 2.2,
this determines the nature of equilibria whose corresponding points lie on C2 or Ca,
but for the rest we also need to know the sign of h. To this end, we make use of (2.2)
to define

hi(x) h(x, sin-l(I sinx)) (2k + a(x) + cosx)/2
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h2(x) h(x, r sin-l(I sin x)) (2k a(x) + cos x)/2.

From Lemma 3.1 we see that hi is positive on [sin- 1(i 1), b] and that h2 is
positive on [sin-l(I- 1),a3] and negative on [r/2, 7r- sin-l(I- 1)]. Together with
Proposition 2.2, this now yields Theorem 3.3.

THEOREM 3.3. If (I, k) is in S, then an equilibrium solution (1, O, 2, O) will be
(i) a sink if the corresponding point lies on CI,
(ii) a saddle having a one-dimensional unstable manifold if the corresponding

point lies on C2 or Ca,
(iii) a saddle having a two-dimensional unstable manifold if the corresponding

point lies on C3.
Recalling Proposition 2.3, it is now clear that when (I, k) E S, a bifurcation will

occur at an equilibrium solution if and only if it corresponds to one of the critical
points Xl,..., x4 of C.

4. Existence of bifurcation points in S. Now define functions Fi (i 1, 2,
3,4) by

FI f(x(X,k),I,k) I + k(2nr + H),

Fi f2(x(I, k), I, k) I + k(2nTr + H) (i 2, 3, 4).

If (I, k) is in S, then a horizontal line of height I k(2Lr + H) will pass through
the critical point x(I, k) of C if and only if F 0 for those values of I, k, L, and H.
Thus bifurcation points in S correspond to zeros of the functions F and, as will be
seen, for any given H E each function Fi will determine a one-parameter family of
bifurcation curves in S parameterized by the integer L. To analyze these curves, we
need estimates for the functions F and their derivatives

0El

Ok

Ok Xl --sin-l(I- sinxl) + 2Lr + H,

0El
OI -[k/a(x)]- 1,

x + sin-(I- sinx) + (2L- 1)r + H,

0F
OI [k/a(xi)]- 1 (i 2, 3, 4).

The required estimates are easily obtained from Lemma 3.1 and are contained in
the following lemma. The proof is elementary and so is omitted.

LEMMA 4.1. Given any H I and integer L, the functions Fi satisfy the follow-
ing for all (I, k) in S.

(i) v/1 k2 I + k(2Lr + H) < F < v/1 k2/4 I + k[(2L + 1)r + HI,

-V/1 k2/4 + k[(2L- 1)r + H) < F2 < -v/1 k2 + k(2Lr + H),

x/1 4k2 I + k[(2L 1)r + HI < F3 < v/1 k2 I + k[(2L + 1/2)r + HI,

-x/1 k2 + k[(2L 1/2)r + HI < F4 < -v/1 4k2 + k[(2L + 1)r + HI.
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(ii)

(iii)

OF12L + H < -0-ff < (2L + 1)r + H,

OF(2L-1)r+H< <2L+H,

OF(2L- 1)r + H < --0-ff < (2L + 1/2) + H, (i 3,4).

3 0F1 OF
2
< -0- < -1,0 < -- < 1,

OF3 1 1 OF4
-1<--0--< 2’ -5<-0- <0"

Lemma 4.1 contains most of what we will need to analyze the bifurcation curves
in S. The results are contained in Theorem 4.2.

THEOREM 4.2. Let H be given. For each of the functions F, the zeros in S form
a family of smooth curves, each associated with a value of the integer L. Furthermore,
we have the following.

(i) For each L for which 2L7 + H

_
I-r, 0], the zeros of F1 in S form a smooth

curve having one endpoint at (I, k) (1, 0) and the other on the upper boundary of
S. Curves in the subfamily for which 2Lr + H > 0 have positive slope M(I), while
those for which 2L +H < -r have negative slope. Each curve lies above those of its
subfamily that corresponds to larger values of ILl.

(ii) For each L for which 2Lr + H >_ r + 4v/3, the zeros of F2 in S form a
smooth curve with endpoints that are on the upper boundary of S and opposite sides

of the line I 2/3. Each of these curves has negative slope and lies entirely above
those that correspond to larger values of L. F2 does not have any zeros in S for those
values of L for which 2Lr + H <_ 3/V.

(iii) For each L for which 2Lr+H

_
[-r/2, ], the zeros ofF3 in S form a smooth

curve having one endpoint at (I,k) (1, 0), and the other on the upper boundary of
S. Curves in the subfamily for which 2Lr + H > have positive slope, while those
for which 2Lr + H < -r/2 have negative slope. Each curve lies above those of its
subfamily that correspond to larger values of ILl.

(iv) For each L for which 2L+H >_ r + xfl, the zeros of F4 in S form a smooth
curve with endpoints that are on the upper boundary of S and opposite sides of the
line I 2/3. Each of these curves has positive slope and lies entirely above those that
correspond to larger values of L. F4 does not have any zeros in S for those values of
L for which 2Lr + H <_ 3/x/- /2.

In each case, the curves accumulate on the I-axis as L -o +cx, and as L
in cases (i) and (iii).

Proof. That the zeros of F in S form smooth curves follows from the fact that
OF/OI is never zero in S by (iii) of Lemma 4.1. Proofs of (i) and (ii) of Theorem 4.2
follow. The proofs of (iii) and (iv) are done in the same way.

(i) First, observe that F1 1- I on the lower boundary (k- 0) of S, by (i) of
Lemma 4.1. Now consider the case when 2L + H > 0. Then OF/Ok is bounded
above zero in S from Lemma 4.1, so F will have a unique zero in S for each value
of I in (1, 2) that is close enough to 1 but will not have any for I _< 1. The curve
formed by these zeros must have positive slope since OF/OI < 0 from Lemma 4.1.
Consequently, the other endpoint must lie on the upper boundary of S. Furthermore,
it is clear from OF/OI < 0 that F1 cannot have any other zeros in S for this value of
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L. That each curve in this subfamily lies above those corresponding to larger values
of L follows easily from (ii) of Lemma 4.1, since the lower bound for OF1/Ok when
L j + 1 is larger than the upper bound when L j for each integer j.

The case when 2Lr .+ H < -r is similar but with OF1/Ok bounded below zero.
(ii) Observe that F2 -1 on the lower boundary (k 0) of S, and that the

largest value of k to occur in the closure of S is v//3 and occurs only at the point
(I, k) (2/3, x//3) on the upper boundary of S. To see that F2 cannot have zeros in
S when 2Lr+H.< 3/xf, notice that then OF2/Ok < 3/f from Lemma 4.1. But then
the maximum value of F2 in the closure of S must be less than -1+(//3)(3//) 0.

Now let L be such that 2L + H >_ + 4v//3. Then OF2/Ok >_ 4v//3 in
S from Lemma 4.1. At any point of S for which k _> x//8, we have F2 > -1 +
(v/8)(4v/3) 1/6. Since such points occur for all I e (1/4, 3/2), it follows that
F2 has zeros in S for all such I. The curve formed by these zeros has negative slope
since OF2/OI and OF2/Ok are both positive and clearly must have endpoints on the
upper boundary of S. That F2 cannot have any other zeros in S for this value of L
follows from the fact that they would form curves that have endpoints on the upper
boundary of S and must either lie to the left of I 1/4 or to the right of I 3/2.
But F2 cannot have more than one zero on the upper boundary of S to the left of
I 1/4 since dF2/dI > 0 there. Similarly, F2 cannot have more than one zero to the
right of I- 3/2 on the upper boundary of S since dF2/dI < 0 there.

All that remains is to show that each curve of this family lies entirely above those
that correspond to larger values of L. But this follows from (ii) of Lemma 4.1 in the
same w.ay as the corresponding claim in (i).

Theorem 4.2 is the main result of this paper. Although it does not describe the
bifurcation curves outside of S, it provides a nearly complete description of them in
S. As is clear from the theorem, the bifurcation curves in case (iii) appear.similar to
those in case (i). Similarly, those in case (iv) appear like those in case (ii), though
with slopes of opposite signs. The curves in cases (i) and (ii) are sketched in Figs. 2a
and b.

Remark. We now have enough information about the bifurcations in S to de-
termine whether or not the conjecture by Kopell [5] that beating solutions could
arise from simultaneous sink-saddle bifurcations is consistent with what is known
about the beating solutions from numerical experiments (see Fig. 3). Let L1 and L2
be integers such that the line of height I- k(2Lir + H) passes through the criti-
cal point of C at xi (i 1, 2). If the conjecture is correct, then we would expect
the beating solutions to be such that transitions when 2 becomes nearly stationary
occur for (1,2) near points equivalent to (x,sin-l(I- sinxl)- 2Ll) (mod
in each component), and that the other transitions occur near points equivalent to
(x2, r sin- (I sin x2) 2L2). Furthermore, when is nearly constant we would
expect it to slowly move from near a value equivalent to x2 (mod 2r) to near one
equivalent to xl. Similarly, 2 would be expected to slowly vary from near a value
equivalent to sin-I(/- sinxl) to near one equivalent to r sin-I(/- sinx2) when it
is nearly, constant. Appropriate values of L1 and L2 can be found by observing that
2LlVr would approximate the minimum and 2L2r the maximum value of -2 in
the beating solution.

For , 0.5, H 0, and k 0.001, Imry and Schulman [1] report finding beating
solutions only for I.I- 1.61 < 0.05, and that the extreme values of 1 --2 for these
are close to 188r and 320. Since L1 corresponds to a curve in family (i), and L2 to
a curve in family (ii), a first test of the conjecture is to determine if the bifurcation
curve with L 94 in the family from F1 intersects the one with L 160 in the family
from F2 at a point of S near (I, k) (1.6, 0.001).
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upper boundary ofS

2

upper boundary ofS

FI(. 2. (a) A sketch of the bifurcation curves in family (i) for H 1/2. Bifurcation curves
in the subfamily having positive slope correspond successively to L 0, 1, 2,..., while those in the
subfamily having negative slope correspond successively to L -1,-2,-3,.... In each case, the
curves accumulate on the I-axis as ILl x. (b) A sketch of the bifurcation curves in family (ii) for
H .I These curves have negative slope, correspond successively to L --,1 2, 3, and accumulate
on the I-axis as L-- c.

FIG. 3. A highly schematic illustration of the idea of the conjecture. The fixed points disappear
in a pair of simultaneous sink-saddle bifurcations, leaving a beating solution in their wake.

From Theorem 4.2, we see that these two curves intersect in at most one point,
since they have slopes of opposite sign. Using L 160 in the estimate for F2 in Lemma
4.1 shows that 0.000994 < k < 0.000998 along the corresponding bifurcation curve.
Similarly, the estimate for F1 with L 94 shows that k < 0.000994 at I 1.587,
and k > 0.000998 at I 1.593 on the L1 94 bifurcation curve. Consequently, these
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curves must intersect at a point very close to (I,k) (1.59,0.000996), which is in
good agreement with the conjectured intersection near (I,k) (1.6, 0.001).

To further test the conjecture, it should be mentioned that numerical approx-
imation of the beating solutions shows that during the time when they are nearly
stationary 1 and 2 slowly vary from being near values equivalent to r/5 (mod 2r)
to being near values equivalent to r/2. On the other hand, the estimates in Lemma
3.1 show that when k is small (e.g., near 0.001), xl and x2 are very close to r/2 and
sin-(I- 1), respectively. Since I is near 1.6, we see that x2 is near /5. It now
follows that sin-(I- sinx) is near r/5, and that r- sin-(I- sinx2) is near r/2.
Thus, the conjectured behavior of 1 and 2 when they are nearly constant is also in
good agreement with the numerical results.

In light of the conjecture, the similarity of the bifurcation curves in families (iii)
and (iv) to those in families (i) and (ii) suggests the possibility that there might be
another class of beating solutions. In this regard, we mention that the existence of
unstable beating solutions has been proved by Levi [2, 4]. Such solutions could perhaps
arise by a mechanism similar to that of the conjecture but involving simultaneous
bifurcations corresponding to an intersection of curves from families (iii) and (iv). In
that case, the role of the sinks in the conjecture would be played by saddles having
a one-dimensional unstable manifold, and the role of the saddles would be played by
saddles having a two-dimensional unstable manifold. The work done by Levi in [2]
and [4] does not appear to have an impact on these conjectures, since it excludes the
region of parameter space where bifurcations of the beating solutions occur.

Acknowledgments. It is with pleasure that I thank Nancy Kopell and Mark
Levi for many interesting discussions of Josephson junctions.
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MINIMAL PERIODS FOR SOLUTIONS OF SOME CLASSICAL
FIELD EQUATIONS*

D. STUARTt

Abstract. Time-periodic solutions of a class of coupled semilinear wave equations in any space
dimension are considered. It is shown that there is a lower bound on the period of solutions which
have finite energy and decay at a certain rate at spatial infinity. This generalises results of Coron and
Levine which obtained the same bound for, respectively, scalar equations in one space dimension and
solutions with spherical symmetry on exterior domains in higher space dimensions. The methods
used are adapted from work of Kato on the absence of positive eigenvalues for Schrhdinger operators.

Key words, breathers, minimal period, nonlinear wave equations, period solutions

AMS subject classification. 35B

1. Introduction. In this note we shall extend results of Coron [2] and Levine
[7] on the minimal period of (time-) periodic solutions of nonlinear wave equations
to certain systems of semilinear wave equations in several space dimensions. The
proof is an adaptation of Kato’s method in Schrhdinger operators [6]. We shall start
by recalling some known time-periodic solutions, and then we will explain the lower
bound on the period of such solutions. In one dimension, the sine-Gordon equation

utt uxx + sin u 0,

where u is real valued, has periodic solutions called breathers with period larger than
2r (see, for example, [8]). For single equations in one space dimension, this example
is expected to be essentially unique; see [1, 3]. Spherically symmetric solutions on R3

which are not bounded at the origin are discussed in [9]. However, for systems, there
are plenty of periodic solutions given by the following method. Consider the complex
field equation for " Rl+n -+ C of the form

Ctt A / a2
where f is real and f(0) 0, f’(0) 0. This has periodic solutions for a large class of
functions f (see, for example, [4]). These solutions are of the form (t, x) eitu(x),
where u satisfies an elliptic equation and w2 _< a2. Therefore, the period of these
solutions is always bigger than or equal to 2.

a
In [2], the equation

ut u + g(u) 0

with g e C2(R), g(0) 0, was considered. It was proved that if u(t, x) is a twice
differentiable real-valued function such that u(t + T, x) u(t, x) and

/+_ T’u(t,x)’dtdx < c,

lim (ut + O,

Received by the editors September 12, 1994; accepted for publication (in revised form) December
6, 1994. This research was supported by National Science Foundation grant DMS-9214067.

Department of Mathematics, University of California at Davis, Davis, CA 95616 (dmstuart@
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lim max lu(t x)l O

then either u is independent of time or (2)2 < g’(0) This gives a lower bound
for the period. In [7], this was generalised to real scalar equations in several space
dimensions under the assumption of spherical symmetry. (In this paper, it was only
assumed that the solution existed in an exterior domain; thus regularity at the origin
was not required). In the present paper, we will generalise this lower bound on the
period to classes of systems in several space dimensions without assuming the solution
to be spherically symmetric. We will do this by by obtaining lower bounds at infinity
on a solution which violates this condition. We then show that these bounds imply
it has infinite energy. To do this, it is necessary to make some assumptions about
the decay of the solution at spatial infinity which are somewhat stronger than those
required for Coron’s result. We will state some consequences of the main theorem
before stating the result in generality. In what follows, a T-periodic function u is a
function of (t, x) e Rl+n such that u(t + T, x) u(t,x).

THEOREM 1. Consider a T-periodic solution u of the following system of coupled
wave equations in R1+3,

Au + us futt + (u) =0,

which is not independent of time, which satisfies the condition in equation (3) be-

ixlow, and which is such that u 0(-) as Then if for all a f(u) is a

homogeneous polynomial of third degree, then the period T >_ 2.
THEOREM 2. Consider a time-periodic solution u of the system of nonlinear wave

equations in Rl+nn _> 3

utat Au + fa(u) O,

which satisfies the condition in equation (3) below and which is such that u

O(Ixl- as Ixl --, . Then if n >_ 4 and if for every a, f(u) is a homoge-
neous polynomial of second degree, then u is independent of time. If n 3 and if for
every a, fa(u) is a homogeneous polynomial of third degree, then u is independent

IX
___

of time. In the case n 3, if u o(y[) as x and if for every , f(u) is a

homogeneous polynomial of second degree, then u is independent of time.
These theorems are consequences of the main theorem, which we give in the next

section. Another type of restriction on the possible existence of time-periodic solutions
can be obtained by arguments based on Pohazaev-type identities [5].

2. The main theorem. Consider the system of equations

(1) 2 a faAu + ku + (u) OUtt

for a vector-valued function u {Ua}am__l of (t,x) e Rl+n. We do not use the
summation convention. We will assume that f Rm --+ Rm is a twice continuously
differentiable function with f(0) if(0) 0 and that u is a twice continuously
differentiable solution which is T-periodic in time and not independent of time. We
can then write

x) + e(t, x),
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where- - f[ u(t, x)dt and fi = 0 and satisfies

It turns out to be useful to think of the equation as an ordinary differential
equation in r with values in the Hilbert space H which consists of T-periodic functions
on the unit sphere with norm

where dS is the usual measure on the unit sphere. The corresponding inner product
will be written (., .). Since f is C2, it follows from the fundamental theorem of calculus
that there exist continuous functions h(g,) such that

Introduce the following function:

q[ul(R)- max max
II (R)II E(t,x)h ((t, x),

Notation. Here the norm on the linear transformation
R" is that induced from the Euclidean norm on R". We will often omit the argument
[u] from q. Define k max

We will prove the following theorem.
MAIN THEOREM. Assume that u E C2(RI+n;Rm) is a T-periodic solution of

equation (1) which is not independent of time and such that the following-conditions
are satisfied:

(3)

(4) lim Rq[u](R) O.

Then T > 2-E
k

Remark. To prove this theorem, we will assume we have a solution for which

(5) > k

and use a sucession of lemmas which place lower bounds on the behaviour of certain
spherical averages as Ixl r --. c which contradict the first assumption.

The technical difficulties which arise from the lack of spherical symmetry are due
to the fact that the operator -A contains a component -r-2As, where As is the
spherical Laplacian. This term has the opposite sign to the term 0t2 + k2a. It seems
not to be possible to eliminate this difficulty by averaging over the sphere due to the
presence.of nonlinear terms.
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Let K be a diagonal m m matrix such that (Ku) kau and (K2u)a ku2.
It will be clear from the proof that we could generalise this to consider a system of
equations in which the matrix K is positive definite but not diagonal. We will work
with 2, which satisfies

It is convenient to rescale .as follows: define

(6) w r z and w, =_ r’w.

We then calculate that these satisfy the following equations:

1

where # 1/4(n- 1)(n- 3), As is the spherical Laplacian, and’ means
understand the solutions, we introduce the following quantity:

Q(,,) IIw’ll = + I1011 = 1
(w, Asw).I111 + 7

This is useful because of the following result.
LEMMA. There exists a number R1 such that for r >_ RI,

0
O-- (rQ(r)) >_ O.

Proof. First of all, using f[ wdt 0, we calculate that

where k max Ikl. It is clear that this is a nonnegative quadratic form for large r,
on account of equations (4) and (5).

The next stage is to show that there are arbitrarily large values of r for which
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Q > o. To do this, we introduce, following Kato, a subsidiary function:

2 2

LEMMA. For every R2 > O, there exists a number sl > 0 such that for s < sl,
there exists a number M1 such that for m >_ M and r >_ R2, we have

(r2Q(r; m, s))’ >_ o.

Proof. Using f[ wmdt 0, we calculate that

(rQ(r;m,s))’= 2r [(2rn + 1)llw’mI[ 2 + IImll 2 llmll2r -IIKwmll2

+ r(w,)’, rm+-fa() + Ewmh7(’ ) -- m

2 s
E 2r (2m + 1)llwmll / IIwllr

-21(rq(r) + 2s)lllw’ll IIwll].
The condition for this form to be definite is therefore satisfied for sufficiently large m
as long as we choose s such that

-k-s- >0.

So we let S be given by

81-- R2(( 27r 2

Next, for s < 81, the condition for positivity of the quadratic form is

(rq + 2s)2 < (2m +1)((2__.)2 k2 _s)r

and since rq(r) is bounded, this is satisfied for r _> R2, s < sl if m larger than some
number Ml(s).

Before going on, we will record the following formula for Q(r; m, s)"

(7)
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COROLLARY. There exist arbitrarily large values of r for which Q(r) > O.
Proof. Since we are assuming that f u2tdx f Ilwll2dr < oo, we may assume

that there is an unbounded subset S of the positive real axis such that for r E S,
(w, w’)(r) < O. At such a point, we know from equation (7) that

Q(r; m’ s) <- r2m (Q(r) ( 2sr .(2.+ )) ). I111 for rES.

Now let R3 be a value of r for which Ilwll 0. Such a number exists because we
assumed that u is not independent of time. Then, first of all, we can find a number
M2 such that for m >_ M2, Q(R3; m, s) > 0 because Q(R3; m, s) is quadratic in m
from equation (7). Then we apply the previous lemma to deduce that for sufficiently
small s and large m, Q(r; m, s) > 0 for all r _> R3. Choosing r S sufficently large
that 28 m(2m+l)

r r2 > 0, it then follows from the preceeding formula that Q(r) > 0 as
required on an unbounded set.

Proof of Main Theorem. Finally, to prove the theorem, we choose a number
R4 > R1 for which Q(R4) > 0. Then by the first lemma, we know that for r > R4,

Q(r) >_ RaQ(Ra)

from which it follows that Q(r) is not integrable. Now to complete the proof, notice
that

1
+ llwll 2 from equation (2)

> ii,.,ll (n- 1)(w, w’) + (n- 1)2
r 4r2

27r2 1

1 ( 27r2> -(tlw’ll 2 + Ilwtll 2) + T2-2

from equation (6)

(n- 1)2 )
1> -Q()

-2
for sufficently large r > Rh.

It follows that /.n--1 (IIV?112
__

llu, ll2) is not integrable on [Rh, oo) and hence that the
finite-energy assumption

( + Iwl=)axgt f0
is violated. This completes the proof.

Acknowledgments. I would like to thank Richard Montgomery for discussions
related to this work and the referee for helpful comments.
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ASYMPTOTIC AND NUMERICAL APPROXIMATIONS OF THE
ZEROS OF FOURIER INTEGRALS*

DAVID SENOUFt
To the memory of Midge Bennahum.

Abstract. The asymptotic behavior as y +cx) of Fourier integrals of the form

fn(y) e-t+itdt, n E N, n >_ 2,

is derived via the method of steepest descents. A general formula is found for the coefficients of the
expansion of fn (Y) in the sector Iarg Yl < 21,-- centered about the anti-Stokes line y E . A
high-order asymptotic approximation of the real zeros of fn (Y) is also obtained. A simple numerical
method designed to compute the zeros of fn (Y) is described. For n 2 and n 3, the asymptotic
estimates of the zeros are compared to numerically computed values.

Key words, asymptotic expansions, steepest descents, Fourier integrals, Pearcey integral, zeros

AMS subject classifications. 30E15, 33B10, 41A60

1. Introduction. In [20], P61ya showed that functions of the form

(1) e-at4+bt’+ct2/iYtdt, n E N, n _> 1, a > 0, b E IR, c_> 0,

have only real zeros. Similar results are found in [19] concerning functions of the form

(2) fn(Y) e-t+iYtdt, n N, n >_ 2.

In [7], de Bruijn generalized P61ya’s results to a larger class of functions whose zeros
are real. Recently, Paris analyzed in [16] a generalized form of the Pearcey integral
of which the "P61ya" functions given by (1) are particular cases. He studied the
asymptotic behavior of

(3) P(X, Y) ei(u"+xu"+r)du, n e N, n >_ 2,

-teZ) and useas IXI - oc or IYI --. oc. By rotation of the path of integration (u
of Jordan’s lemma, it can be expressed as

/_w e-t2n --xt +iytdtP(X,Y) P(x,y) e

with x Xe z and y Ye. For n even, x > 0, Pn(x,y) falls into the category
of functions (1) considered by Phlya. For x 0, f and Pn are related by fn(Y)
e-4- Pn(0, y). The Pearcey integral P2(x, y) has been studied by Kaminski [14], Paris
[17], and references therein. The advantage of the method described by Paris is that it

Received by the editors August 1, 1994; accepted for publication (in revised form) January 9,
1995. This research was partially supported by NSF grant DMS-9306720.

Department of Mathematics, University of California at Los Angeles, Los Angeles, CA 90095-
1555. Current address: 4 rue Jean Ferrandi, Paris 75006, France (senouf@calvanet.calvacom.fr).
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avoids the complicated, sometimes impossible task of finding a closed-form expression
for the saddle points.

Although a large portion of this work is devoted to the derivation of the as-
ymptotic expansion of fn(Y) as y +, our main objective is the derivation of
asymptotic approximations for the zeros of fn (y). The order of this real analytic even
function, which is defined as the positive number n for which maxlyl_r If(Y)l <-
exp(r+) Ve > 0 as soon as r is sufficiently large, is the rational number 1 < An
2 <2. The order being fractional, it is known that fn (Y) has infinitely many zeros2n--I

[2, 4], which, from the results of Phlya, must be real; thus we are mainly interested
in the behavior of Pn(0, y) for large real values of y. The expansion we find is an
expression on the anti-Stokes line arg y 0 where two saddle points have equal con-
tributions. Hence we first consider the real-valued function fn(Y) IR ]R, which, by

z < in
terms of another function ’n(#) defined as follows:

(5) fn(y)= JZn

where for arg#l < r/2,

(6) e (2niz-z)dz 2 o+ cos(2n#z)e-z2" dz.

The advantage of introducing the function 9v(#) is that its saddle points are fixed to
the unit disk, contrary to those of fn(Y), which depend on the large variable y.

The expansion of functions of the type of fn(y) can be found as early as 1916 in
the work of Brillouin in [5] and then in 1924 in the work of Burwell [8], who obtained
first-order asymptotics for the location of the zeros of such functions (see also [3]).
Recently, Christ also characterized the zeros of similar functions in [9, Lem. 2.1]. In
[18, Chap. 3], Paris and Wood investigate the asymptotic properties of high-order
differential equations whose solutions have integral representations closely related to
(2). In their work, they derive recurrence relations to determine the coefficients of
the asymptotic expansions (see, for example, [18, Eq. 3.4.16]). We provide a different
approach than Paris and Wood’s using the classical method of steepest descents, and
we derive the full (generalized) asymptotic expansion of ,’n() aS --> --(X) valid in
the sector arg#l < r/2 together with high-order asymptotic approximations of its
zeros. We provide a systematic way of calculating every coefficient of the expansion
of ’,(#) via series reversion in terms of multinomial coefficients. This formulation
can be compared to the results of Paris and Wood in [18] in which the coefficients are
described by a 2n-term recursion relation which is derived from ordinary differential
equation (ODE) methods.

In the last section, we describe a simple numerical algorithm which computes the
zeros of the function ’n (#). This algorithm is efficient for small values of the zeros,
and for n 2 and n 3, it is implemented to gauge the accuracy of the asymptotic
estimates. An application of the high-order asymptotic approximations of the zeros
of ’2(#) derived in this article can be found in [22]-[24].

We introduce the following definitions and notations.

DEFINITION 1.1. Compound asymptotic expansion (c.a.e.) of f(z) with respect
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to the asymptotic sequences {1(z)} and {2n(Z)}: we write

f(z) z---zo gl(Z) fnl(Z); {(n(Z)} -- g2(z) fn2(Z); {(2n(Z)}
n--0 n--0

where it is understood that

as z -o zo.

As an alternative to a c.a.e., it may be possible to express the asymptotic expan-
sion of f(z) as a generalized asymptotic expansion.

DEFINITION 1.2. Generalized asymptotic expansion (g.a.e.) of f(z) with respect
to the asymptotic sequence {n(z)}: let {n(z)} be an asymptotic sequence as z
zo E R, where R is a region in the complex plane and f(z) and f(z), n 0, 1,...
are functions such that for each positive integer m,

m-1

f(z) f(z)+ o (()) (z zo e R).
n--O

Then we say thatn fn(Z) i8 a g.a.e, with respect to the asymptotic sequence
and write

:() /();
n--0

{n(Z)} as z -- zo e R.

For convenience, we also write it as

f(z) z--.zo
{n(z)} =o

We prove the following.
THEOREM 1.1. Let n N, n >_ 2, and for arg #1 < r/2, let

JZn(#) et,(2niz-z2n)dz"

The g.a.e, of jz(#) as # -- +oc with respect to the asymptotic sequence {j(#)
#-}, valid in the sector arg#l < /2, is

:n(P)
{-} Vn(2n- 1)#

exp -#(2n-1) sin tn 2

where

( () )r
(1 n(l+2j))-n(t) E On’J

COS (2n- 1)cos 4n- 2 + 4n 2
j=o #
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and the coefficients crn,j are normalized rational numbers (Crn,O 1) given by

F(j + 1/2) 2j ( (1/2 j m)m
-(n(2n- 1))J o (-2n- 1))m

The summation ’ is to take place over all possible tr (al,..., a2n-2) N2n-2

such that al +a2+." "-f-t72n-2 m and al +2a+...+ (2n-2)an_2 2j. Moreover,
the first-order approximation of the kth ordered positive zero of Zn (it) is given by (for
k_>l)

#() r ( 7r ) (n-1 1+2k)+(9() ask--+x.,n=4n_2sec 4n-2 2n-1

Let

On, sin n,1 sinn(#) # + (2n- 1)it 2n- 1 2# 2n-. 1__
33n,n,1

3P21n’2 -- 3On,3 ( 3nTr ) sec(-n-)2sin
2n- 1 (2n-1) On’l#2 sin2 ()}2nn_1

Then the fourth-order approximation is given by

#k,n --gn k#k,n) t_ 0 a8 k --+

The corresponding kth ordered zero Yk,n of fn (Y) is given by

2n--1

(7) Yk,n +/-2n (#k,n)

Similarly, the corresponding expansion for the function f, (y) is obtained from that of
S’n(#) by relation (5). Note finally that the behavior of fn(Y) is exponentially small
for large y in the sector argyl < /(4n), and the behavior of n(#) is exponentially
small for large # in the sector arg#l < /(4n- 2). In the respective complements
of these sectors within argyl < 2n-. (resp. arg#l < /2) the behavior of2n 2
(resp. (#)) is exponentially large for large y (resp. large #) (cf. [17, 5]).

2. Asymptotic expansion of f(tt) f-oo e(az-z’)dz as tt - -f-oo.
We first describe the procedure for n 2 corresponding to a special case of the
Pearcey integral, which we generalize in the following section to arbitrary n N. The
result in this section has been derived by Paris and Wood in [18, pp. 64-72] using
differential equation methods and will serve as comparison. The coefficients they
derive, corresponding to the coefficients ae,y in Corollary 2.1, are given in terms of a
recurrence relation, whereas we offer a different approach and a different formulation
in terms of elementary functions and combinatorial coefficients. This section serves
as exposition for the general case n N and as such contains more details.

We are interested in deriving an asymptotic expansion of F(#) as # - +o, where

F(#) eW()dz, w(z) 4iz- z4.

The method we use to do so is a standard method for asymptotic expansions of
integrals depending on a parameter (cf. [6, 11, 25]). This method, known as Debye’s
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method of steepest descents, is based on deforming the original path of integration
through the local extrema of the integrand. The new path is chosen in such a way
that along it, the integrand does not oscillate; i.e., the imaginary part of w(z) remains
constant. If there are several extrema zs, only those for which Nw(zs) is greatest
are taken into consideration. Those that qualify are called the contributing saddle
points. In our analysis, we expect two such extrema which must satisfy the condition
.w(zo) NW(Zl). These two equally relevant saddle points allow for the cancellation
which generates the zeros of F(#).

2.1. Saddle points, steepest paths, and contour deformation. We first
locate the zeros of w(z), which we denote z -4- r/ and refer to as the saddle
points of the integrand. For the quartic polynomial w(z) 4iz z4, there are three
saddle points:

(8) 0 w’(z) 4i 4z {zo, zl,z2} e" e,"A

To determine which saddle points have a dominant contribution, we find w(zs) for
4 4 3iz ands 0,1,2. Since 0 w’(z) iz-z, we find w(zs) 4iz-z

therefore

( 2ri
3e- 3{w(z0), w(zl) w(z2)} 3e-V-,

{-3/2 + 3x//2,-3/2 3-/2, 3}.
It would therefore seem that the dominant contribution comes from z2 -i. However,
we will see that it is not possible to deform the original integration path through z2.
It is also apparent that zo and Zl are equally valid candidates, for they have the same
contribution:

,W(Zo) }W(Z1) --3/2.

It is, in fact, this symmetry which allows for the cancellation of the two asymptotic
expansions generated by z0 and Zl, which in turn will permit the determination of the
asymptotic zeros of F(tt) with as much precision as necessary. Note that subsequently
we often use the subscript s to state a property that is valid for both relevant saddle-
points indexed by s 0, 1. The deformed path of integration must satisfy the following
conditions:

(i) The new path must go through a zero z of w’(z).
(ii) w(z) w(z) on the new path.
(iii) w(z) < w(zs) on the new path.

The next step consists of analyzing the hills, valleys, and paths of steepest descent
and ascent of these saddle points. The level curves separating the hills and valleys of
the saddle points z8 and the steepest paths emerging from them are given by

(i) steepest paths: { w(z) w(z) } O,
(ii) level curves: { w(z) w(z) } O,

where

w(z) w( + i) 4i( + i7) ( + i7)4

-47 4 + 6722 4 + 4i( 37 + 73).
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The level curves that separate the hills and valleys above and below the saddle
points are determined by the real branches of the following equations:

-4r/- 4 + 6r/22 r/4 w(zs),
1}.

Solving the biquadratic equation in for as a function of wherever it is permitted
(both and /are. real variables), the asymptotic behavior of these curves as

is given by (r/) A-V/3 =k 2/r/; that is, they all end at cz exp(+-)-ri) for some
kEN.

The steepest paths out of each of the saddle points are determined by the real
branches of the following cubic equations:

+

0}.
It can be shown that the (steepest) descent paths emerging from the saddle points
go from cxze/2 - z0 --* +cx and from - - Zl --+ cze/2; the (steepest) ascent
paths go from cxze-/4 +-- z0 -- ce/4 and from cx)ei3r/4 -- Zl - cxze5/a. The
steepest descent path through z2 -i is the imaginary axis ( 0), and as such,
we may not deform the original path through it. Therefore, this saddle point does
not contribute to the asymptotic expansion of F(#). The convergence of the integral
is preserved because the new paths always remain in the valleys of z0 and zl, and
w(e z) O(,(i z)4) O(-z4) as z - +c. The path deformation through z0
and Zl displayed in Fig. 1 is justified by a simple application of Cauchy’s theorem.
The solid lines represent the steepest paths and the dotted ones represent the level
curves separating the hills and valleys above and below the saddle points z0, zl, z2.
The complete topography of the surface u(, r/) is shown on Fig. 1.

Although we have just seen that it is possible to carry out the full (global) analysis
of the steepest descent paths, it is not necessary do so. From a local analysis of the
steepest directions at the saddle points, one can choose a simple path that will have
the desired properties. Let as be the steepest descent direction at the saddle point
(also known as the axis of the saddle point zs). It is determined by the inequality

(z- Zs)2 w"(zs) < 0 == arg{z- zs} -+-7c/22!

(cf. [6, Chap. 5]). Since as limz--.z8 arg{z- zs} along the steepest paths, where the
correct choice of as is determined by the direction in which the saddle point is crossed,
we find that as -(-1)Sr/6. The path we consider is a combination of half-lines
and line segments in the complex plane: -y (-cx,- x/’3-] t2/21 t2/0 U [x/-, +cx), where
0 and 1 are given by

:0" z(t)=er/6+e-ir/6t -l<_t<_l,
1 z(t) ei5/6+ei/6t -l <_ t <_ l

(see Fig. 2). Note that s is the parametrized line interval z(t) zs + east for
-1 _< t _< 1, on which z(0) zs, z(-1) -x/-, z(1) on 1 and z(-1) i,
z(1) on/20. Let hs(t) {w(z(t))- w(zs)} [-1,1] --* . Since hs(t)
-6t2 (-1)s2t3 + t4/2, its only maximum for t E [-1, 1] is located at t 0, which
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Im z

\ Stec’est descent/
steepest asc

...,.....

valley ,,/’
hill

steepest pa
level cue

FIG. 1. Hills, valleys, level curves, and steepest paths of the saddle points zo eiw/6, Zl

ei5r/6 relevant to the expansion of F(#)

corresponds to z zs. Hence the maximal contribution on the paths 0, 1 Occurs at
z0, Zl. Moreover, the contributions on the real intervals (-x,-x/3-] and [x/, +cx)
are negligible since w(z) -z4. Thus the new path /is admissible and we can still
apply the series-reversion process that follows. Indeed, we would only need to verify
that the steepest descent path runs from +oc to i, and we would infer that the
descent path 7 is asymptotically equivalent to the steepest descent path F.

Now that the path deformation is justified, we can proceed with the expansion
regardless of whether we use the exact steepest descent path F or just an approximate
descent path 7. Since on the steepest descent paths {w(z) w(zs)} 0 for s 0, 1,
we have w(z) w(z) -r, " E IR+. Therefore,

(i) as z - ei oc for k e N, 7- w(z) w(z) --, +x,
(ii) as z --, zs, T w(zs)- w(z)--, O.

Deforming the path of integration from the real axis to

r r0 u r? rt + r0+

F(#) can be written as

F(#) jfr eW(Z) dz jfr_r+ e() dz + jfr+o_r ew(z) dz.

Here F are the respective steepest descent paths emerging from the saddle points
zs, where the + signs refer to the corresponding branches Z(T) of the solution to the
equation T W(Zs)--W(Z) on F. The assignment of the correct branches Z(T) to the
two steepest descent paths emerging from the saddle points z will follow once we have
the series expansion for Z(T) about T 0. Proceeding with the path deformation,
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Im z

z o, Zl relevant saddle points

argument of axis

1.c.= level curves

Valley

s.a.p steepest ascent path

s.d.p.= steepest descent path

d.p. descent path
Hill

FIG. 2. Comparison of the localfglobal analysis of the hills, valleys, level curves, and steep-
est paths of the saddle points zo eir/6, Zl ei5r/6 relevant to the expansion of F(iz)
f_o et(4iz_Z4)dz as # +o.

we have

F(#) jfr eg(()-)dz+j[r eg(W(o)--)dz
? -r+ -r

e#(w(zl)-’) (7") 47"
dT d7"

+ e"(w(z)--) (T) dTdT dT

=0,1
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where bs(T) (- dz_) (7")d-

2.2. Series reversion. We have transformed the original integral into a sum
of Laplace integrals. It is now necessary to find a series expansion in the sense Of
Watson (cf. [11, 22]) for 8(7") and justify the use of Watson’s lemma in order to
obtain the asymptotic expansion of F(#) by term-by-term integration. From the
Lagrange formula for the reversion of series (see [12]), we can invert the equation
7" w(zs)- w(z) for z as a function of T for T near 0. We find that the two branches
Z(T) corresponding to the steepest descent paths starting at z z(0) z are
given by convergent series in powers of x/ in a neighborhood of 7" 0:

(9) Zs (T) Zs Af_ Cn(Zs) (-[-V/")n,

where

(10)
1

lim f(z) -n/2c,(z)
z-zs dz-1

and f(z) (w(zs) w(z)) /(z zs)2 is defined by

T W(Zs) W(Z) (Z Zs)2f(Z) (Z Z)2 (6Z2 + 4Z(Z Z) + (Z Z8)2).

In the definition of the coefficients c(z), we are taking the principal value of the
square root of f(z) for which V/f(z) x/z. We thus have

dz n )nT12-1(11)
dT (7") -C,(Z,) (+1

n=l

so that

s(7")
dT dT

nCn(Zs)
2

n--1

We may now look into assigning different branches of Zf(T) to the different paths
Ff. The motion of z(7") along the paths Ff as 7" increases from 7" 0 to some
0 < T << 1 is determined by

(19.) zf( ) +/- + 0+.

Since c(zs) limzzs f(z)-/2 (xzs)-, we have arg(cl(zs)) -arg(zs). Since
arg(z0) 7r/6 and arg(zl) 57r/6, we have cos(arg(z)) cos(57r/6) < 0 and
cos(arg(z0)) cos(Tr/6) > 0. Hence Z+o(T) has increasing real part for 7" increasing,
and therefore z0+ (T)is the branch that goes from z0 to +o and conversely z-(T) is
the branch that goes from z0 to ei o. We name the branches, respectively, F0+ and
F-. Similarly, we find that z-(T) is the branch that goes from Zl to eio and Z+I(T)
is the branch that goes from zl to -o. We name the branches, respectively, F- and

rl+.
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2.3. Watson’s lemma and asymptotic development. In order to apply
Watson’s lemma, we need to verify that

dz+
dT dT

for some positive K and b independent of T when T >_ T0 > 0 (see [11])"

(z) (z), or z e r
3dT

--W’(Z) 4(Z3 i) 4(Z3 Z8)=:
dz

dz+ dz: 1( 1 1 )-- () () () t() z z:() z
Since (T)] O(1) as T +, using Watson’s lemma, we may substitute the
series expansion of (T) (in the sense of Watson) and integrate term by term to
obtain a compound asymptotic expansion with respect to the ymptotic sequence
{n() -n} (see Definition 1.1):

F(,)’2 (-1)Se"w(z’) nCn(Zs) 1-(-1)n F
s=0,1 n=l

2

(-1)e"(z) (2n + 1)c2+(z)F n + ,-(+/2).
s=0,1 n=0

We let

(13)

so that

1
lim f(z) -(n+1/2)an(zs) (2n + 1)C2n+l(Zs) (2n)! zz8 d-

(14) F(#) ,-+oo 1
oo

( 1)/-n.v/-fi E (-1)SeW(z’) an(Zs)F n +
s=0,1 n=0

We proceed with the explicit determination of the coefficients an(Z) in the expansion
of F, where an(Zs) is the 2nth coefficient in the Taylor expansion of f(z)-(n+} about
z z. Using the binomial theorem twice, we find

-(.+1/)

(z- z) 1 + (z- z)z +E
k

--n )2k-j
k=O j=O

In order to take into account every term that contributes to a(z), we find the range
of k over which we sum by setting 2k j 2n, that is j 2(k n). Since j ranges
from 0 to k, k ranges from n to 2n. Thus summing over k from n to 2n, we find

2nan(Zs):6--(n+l/2)--(4n+l)42n Zs (-:)(k)(8)n)

k=O
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We introduce normalized coefficients (c0 1) which do not depend on zs: let

c F(n + 1/2) a(zs) ’8

then the compound asymptotic expansion of F(#) with respect to the asymptotic
sequence (#-) as # - +oo is

F(#) "--’+ r (_l)e.() ~-(4,+).-

s=0,1 n=O

where the rational coefficients an are given by

r( + n) --(15) an= 62n k+n
k=0

The first five values of n can easily be computed using a computer algebra system
such as Mathematica [21] either directly from (15) or using the Mthematic code
provided in Appendix C (see also Table 3):

7 385 39655 665665
(16) a0 1, a 144’ a2 41472’ a 17915904’ aa 10319560704"
One can compare the coefficients a to the coefficients Cn introduced by Paris and
Wood in [17, p. 397] and [18, p. 72, Eq. 3.4.16], which are found via a 4-term recurrence
relation. It is easy to see that they are related by a Cn/3. Since

z0 , z] (z0) ( - +e,
r (z)=()=1

, z - ,we have

F(#) "-*+
r e-t ei(3-it--) ane-z--

n=0

We can formulate this as a generalized asymptotic expansion with respect to the
asymptotic sequence {,-} (see Definition 1.2):

(1) (.) "+ e-" a cos 3
{,-} 6 3

2.4. Asymptotic zeros of F(). To determine the asymptotic zeros of F(),
we make use of the compound asymptotic relation

(18) h()e"F()+ ( ) (2n)-ncos a .-g cos
+sin 3 ansin
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Let h,(#)be the partial sum

(19)

r 2 71"
It--nhm(#) cos 3 #- ancos

n--0

+sin 3 asin
n=l

Then solving the equation hm (#) 0 is equivalent to solving

(20) tan 3 # ’nm=l an sin (2n._g._) #-n

that is,

(21) 3--It k r tan-1 End-- an cos (?-) It--n
n__l an sin \ 3 It-(2nr n

where [tan-1 x[ < r/2. For m sufficiently large, we have, as It --
(22)

3 / __71"
_) It-n 2

49
+
497664f

7 7
96 x/5 p 576 x/- It2

379351

268738560

Thus we have, as It -- +c,
(23)

r {r 7
a---It--=k- 2 96 x/- It

7 49+ +
576 v/ It2 497664

379351

268738560VIt5
+

Letting

(24) It(o) 2r
k ,_(k- 1/3), k _> 1,

we have

7{ 1 7 54193
(25) It It(kO) + 432}t 1

6 It 5184 It3 -" 2799360

We now state a lemma which enables us to improve the first-order asymptotic estimate
to a higher-order one. Its proof is based on the reversion of (asymptotic) series by
either Lagrange’s formula (see [15, p. 21, 8.4]) or using the method of successive
resubstitution (see Appendix A).

LEMMA 2.1. If It(0) O(k) as k ---, +c and

al ( a3 a4 a5 a6 ) (_)It=It(O) +__ a2+--+ + + +CO
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is an asymptotic relation which holds as # +c, then

al ( a3 aa ala22 a5 3aa2a3
# #(o) +

_
\a +

_
+ t(o) +

a6--2ala+2aa32-nala2a4) (1)q-"
p(0) 4

q-- 0 - as k-+ +(x.

Combining (15), (24), (25), and Lemma 2.1, we have proven the following.
COROLLARY 2.1. For n 2, the rational coefficients a2,j in the expansion of

.2(#) f-c et(4ix-X4)dx are

02,j

For k >_ 1, the approximation of the kth ordered positive zero #k,2 of 2(#) is given
by

(k,2 3V
k- +0

The sixth-order approximation is

6() +

as k--- +cx).

as k --+

7(1_1 ( 7( 5(432# 1+7- 1-1-p 1+

The fact that this is actually the expansion of the kth ordered zero of F(#) can
be proved by the argument principle (see [12, 15]).

3. Asymptotic expansion of .T’n(tt) as tt ---* +cx). For n _> 2 and arg #1 <
r/2, we consider the function introduced in (6)"

’,(#) e. (.riz-z2’)dz"

The saddle points z8 of the integrand and their contributions are given by

{ wn(z)=2niz-z2n’wn’(zs) 2niz 2.,t"~2-1 0, ==> { z exp(4-2 (1 +4k))’w(z)=(2n-1)izS,
0 Zw’ 2n Wn(Z) -(2n- 1)@zs2n n(zs) =izs-zs

Thus

4n-2(l+4k) k-0,1,...,2n-2.

On the two steepest descent paths emerging from relevant saddle points, we have

w(z) -w(z) -(z z)2f(z) --T <_ O,

’- (2+) (z) (z 1f(z) (k / 2)!
k-O
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As before, we expect to have contributions from two equally relevant saddle points
which come in symmetric pairs satisfying the relation z0 - (see 3.2). The
assignment of the branches Z(T) to the steepest descent paths must be dealt with
carefully. From Lagrange’s formula, we express Z(T) aS convergent series in powers
of V in a neighborhood of T 0:

+
j--1

with

Since Cn, l(Zs) fn(Zs) -1/2 (22n)-1/2 I-z the behavior of Z(T) in a neighborhood
of T 0 is determined by

+ + o(-,-) ,,- 0+.

In the definition of cn,j(zs), we have taken the principal value of v/f,(z) for which

V/(22n) -1 In what follows, we assume that the pair of relevant saddle
points {z0, zl -.0} is the first pair with smallest positive imaginary part, that is,

ex- it exp(- i-
z0 P-d) and zl ---). This is so because it is the only pair whose
steepest descent paths are admissible in the sense that the original path of integration
cannot be deformed through any of the steepest descent paths emerging from the other
saddle points with negative imaginary part. Indeed, such saddle points would yield
an incorrect increasing exponential behavior since we would then have wn(z)
-(2n- 1)zs > 0. None of the other saddle points with positive imaginary part
(all saddle points come in symmetric pair {zs,-} except those for which z 0)
have admissible steepest descent paths. Even if it were possible to deform the path of
integration through another pair, their contribution would be exponentially smaller
than that of the pair {z0,-}. On the steepest descent paths F corresponding to
the equation T W(Z)- W(Z), we have

Z(T) zl =I: (-1)nv/7 + 0() as -, 0+.

Following the motion of Z(T) along F for increasing T > 0 as in (12), one can
correctly choose the branches z(-). Hence we see that the assignment of the branchesz(T) changes from the upper branch to the lower one (as shown in Fig. 3) depending
on the parity of the index n. Note that this feature is not present in the case of z(T).
In the case n 3, the paths of steepest descent labeled F go from e - z0
i 1 2ri

e 1- - +c; the ones labeled F go from -cx - zl --5 e- e--. There is
a third path labeled F2 which connects F+ and F-. This third path remains in the
common valley of the saddle points z0 and --5 and is subdominant with respect to the
other paths. In other words, its contribution is exponentially small compared to the
contributions of F0 and F1. In the general case, the topography remains similar. We
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n even n odd n even or odd

Zo+(X

FIG. 3. Interchange of the branch assignment z (T) according to the parity of the index n.

expect the paths of steepest descent emerging from the saddle points at z0 e4-2

and zl --6 to end in respective valleys. Let

r. r0+ + rl-)/’ rl +

denote the new path of integration, where

F_) ={ F+ ifneven,
Fi- if n odd

and reciprocally for I’-)+1 The asymptotic behavior of these paths is as follows:

One can also choose a simple descent path which is the straight line % z
z0 sin(an_2) in the complex plane going through both saddle points z0 and -g6
parallel to the real axis depicted in Fig. 4 as a dashed path (see the argument in [9,
Lem. 2.1]). We now deform the original contour of integration along the path Fn
or "n as in Fig. 4, and we take into account the interchange of the branches Zl(T)
based on the parity of the index n by including a factor (-1)s’n, s 0, 1, in (14). We
notice that I(I)s(T)l Idz+s/dT dz-/dT (9(1) as T -- +O, SO we can appeal to
Watson’s lemma to find a compound asymptotic expansion for ’n() with respect to
the asymptotic sequence {j (#) #-J }:

(26)

(27)

n(#) -+ 1 s(l+n)e,W(zs) 1 #_Z (-1) Z an,j(zs)F j + -s=0,1 j=0

..() (2y + 1)c..+x(z)= (2y)! - d-N f’()-(+/)

3.1. Coefficients of the expansion. Let

1 d2
anS(zs) (22)’! lim {gj(fn(z)) }

Z--4Za Z2J
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(_
n /(4n-2)) Re z

FIG. 4. Steepest descent path (solid) Fn Fo+ F +F-)+1 F-)’ -t- F2 and alternate path

(dashed) n" z zo --sin( in the expansion of iTzn(tt) f_o ett(2niz_z2 dz as tt +3

forn> 3.

where

gj(z) Z-j-1/2 f(z)
k+2 z8

k=0

According to the definition of Pochhammer’s symbol (Z)n, we let (1/2 j m),
r(1/2 j)/r(1/2 j m) (-j 1/2). (-j 3/2)... (1/2 j m) for m _> 1 and
let (1/2- j)0 1 so that we may write

(28)

(29)

_2n--2 --j--1/2--mAm) (f(zs)) (n(2n 1)zgj ) (1/2-j-m)m,

f(k):i(z) { (k2_2)z-2’-2-k0, 0 -<k>2n-l,k_< 2n 2,

Using (28) and (29) in Fa di Bruno’s formula (see (50)), we find

(30)

2j
2,-2 -J- 1/2--maj(z) E (n(2n 1)z (1/2 j m)m

m--0

1 2n 2n-2-k
ak

k=lO’k! k+2 z8

The summation ’ is taken over all 2j-vectors tr (al,..., a2j) E II2j such that
the following conditions are simultaneously satisfied:

(31)
al + (72 -- - O’2j m, ]

al + 2a2 +... + 2ja2y 2j, /(k --0 ’ k >_ 2n- 1

The last condition ak 0Vk >_ 2n- 1 arises from the fact that f,(z) is a
polynomial of order 2n- 2 and therefore any derivative of order k _> 2n- 1 of fn (z)
is zero. In order for the product to be nontrivial, we must set the corresponding
powers ak to zero when k >_ 2n- 1 (see (50)). This amounts to using the truncated
(2n- 2)-vector tr (al,... ,(Y2n-2) E 1%12n-2 in the last product, whereby we can
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reduce conditions (31) to a new set of conditions

(32)
al + a2 "" + a2n-2 m,

al + 2a2 +... + (2n- 2)a2n-2 2j, /ak--0 Vk>_2n-1

We express (30) as

(33)

Using the first and second condition in (32), we notice that

z2n--2)m--2j

We can therefore extract the z8 dependency from the summation signs in (33)"

(34)

1--n(l+2j) 2j (
Z8 / (1/2 j --m)m

(n(2n 1))j/l/2 m--O (n(2n- 1))m

1 2n

k= ak! k+2

We introduce normalized coefficients (an,0 1) which do not depend on the saddle
points z:

(35) , r(j + 1/2) in(2n-7 1)Z(I+2j)_ {ln,j(Zs).

The jth coefficient for j _> 0 is then a rational number given by

(36)

F(j + 1/2) (1/2 j m)m
x/-(n(2n- 1)) i (n(2n- 1))m

1 2n

= ak! k+2

where the summation a is taken over all possible er E 12n-2 such that

(37)
(T -- (T2 --’""-- O’2n_2 m, ]

cr + 2a2 +... + (2n- 2)a2n-2 2j ]
A Mathematica code is provided for the reader’s convenience in Appendix C to com-
pute the coefficients n,j from (36) and (37) (see also Table 3).
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find
3.2. Asymptotic expansion of .T’n(tt) as tt d-o. From equation (26), we

s--0,1 j--0

Since z0 - e A {z e C [z 1} and w,(zo) Wn(Zl), we find

/
(38) -(#) u-*+ / euw"(z) 7-ln(#),

{u-J} yn(2n- 1)#

where 7-/n (#) should be interpreted as a generalized asymptotic expansion with respect
to the asymptotic sequence {#-J }:

(39) 7-l,(#) an,__ cos (# Wn(Zo) + (1 n(1 + 2j))arg(z0)).
j=0 #3

Since wn(zo) (2n- 1)iz0 and z0

Nw,(zo) -(2n-1)zo -(2n-1)sin ( r )4n- 2

w,(zo) (2n- 1)Nzo (2n- 1)cos
4n- 2

Thus (38) is

{u-J} n(2n 1)#
exp -# (2n 1)sin

4 2

and (39) becomes

( ( r ) 1-n(ld-2j))c,j (2n 1) cos + r(41) 7-/n (#) #---- cos 4n 2 4n 2
j=o

3.3. Asymptotic zeros of .’,(tt)..7-/(#) is the component of the expansion
of ’(#) that determines its zeros, and its mth partial sum 7-/n,,(#) can also be
expressed as a compound asymptotic expansion (see Definition 1.1):

an,.j njr
-n,m(#) COS # (2n- 1)cos

4n- 2
r
4n- 2 #3

cos
2n- 1

n Oln’J sin(42) +sin #(2n--1) cos
4n--2 --rn--2 #3 2n--1

The first-order approximation for the zeros of 7-/,m (#) is found immediately by setting
v n-1cos(, (2n 1)cos(-:) r --) 0. Thus we find that the kth ordered positive

(0) 0) by(0) of ’n(#) is given (for k > 1 so that k,n >zero k,n

(43)
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as k +c. Solving the equation ’]’n,m (#) 0 yields

#(2n-1) cos
4n 2 r4n_2

() E:0 cos -1)
kr tan-1

.]E%1 si
_

We expand the tan- for large p and sufficiently large m and combine it with (43)
and (44) to find

,(0) sec() { ( n ) -2,)sin( 2 ) 1
,1 sin (,1" ’+ (2n-l). 2n-1 k2n-1 2.

a3 ( 3nr ) 1
+ n,1 3a,a,2 + 3a,3)sin 2n- 3.2

, 4,, +2, +4,,a 4,)sin 2n 1 4.a

+ ( n,1 5,1n,2 + 5n,ln,2 + n,3 2n,3

-g,l,+5,)sin
2n-1

+O

Appealing to Lemma 2.1, we define

n,1 8i
n,1(4al (") "+ ( 1). . i

+ n,1 3n,ln,2 + 3n,3
sn"

3n : an, nr

3p2 2n- i (2n- 1) .2
sin2 2n-- i

Let Pk, denote the kth ordered positive zero of (p) so that the fourth-order ap-
proximation of Pk,n is given by

Combining (a6), (aT), (40), (41), (4a), and (4g), Theorem 1.1 is proved.

.4. Coeeengs ,. or n 2, we veri the validity of formula (a6) by
finding the corresponding coecients ,j, which should match the coecients j of
2. The conditions (a2) on (,...,) come out to be

ak m,
k:l
2j

kak 2j,
k:l

ak=O Vk3

om the third condition, we have that the only nonzero coefficients are a and a2.
om the first and second condition, they satis the 2 2 system

ffl if2 m
al + 2a2 2j,
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whose unique solution is er (al 2(m- j), a2 2j -m). Using n-- 2, we have

E H ak--, k+2 (2(m-j))!

Equation (36) becomes

1
(2j m)!"

0/2,j
r(j + 1/2) (1/2 j m), 42(m-j) 1

x/6J 6’ (2(m- j)) (2j m)"rn----0

We discard all terms m < j; thus we let m k + j so that k ranges from 0 to j"

r(j + 1/2) (k + j) t-J-1/2
"\ k+j ] 16k 1

a2,j- V62j 6k (2k)!" (j- k)!
k-=0

3.5. Asymptotic zeros of ’a (tt). For n 3, the first four coefficients a3,j, j
1,..., 4 are given by

11 517 -22253
(46) 0/3,0 1, /3’1 180’ 0/3,2 64800’ 0/3,3 174960000

(see Appendix C and Table 3). In order to describe the asymptotic approximations
of the zeros of $-3(#), we need the following trigonometric expressions"

sin =-cos
4

cos -- 4

sin =- 2
cos =sin = 2

sin =-sin g =-2sin cos

Using (36), the first-order approximation is

(47) ,(0) 2rl 2
k’3=-- 5+V

k- k>_l (#>0),

and combining (45) and (46), the fourth-order approximation is given in the following
corollary.

COROLLARY 3.1. For n 3 and k >_ 1, the approximation of the kth ordered
positive zero #k,3 of ’3(#)= f-o et*(6iz-Z6)dz is given by

g+v +o as k---- +oc.
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The fourth-order approximation is

{ (o)\ + co

11, /1- - 1 11
+ 9oo 9oo

as k --.

165 2 -4. Numerical evaluation of the zeros of .T’n (p). In this section, a numerical
method is designed to compute the zeros of the function ’n(#). The purpose of
including such an analysis is to judge the accuracy of the asymptotic approximations.
This numerical algorithm shows that the high accuracy of the asymptotic predictions is
attained for moderatly large zeros, thereby confirming the strength of the asymptotics.

The function ’n(#) is approximated using Simpson’s rule and extrapolation, to
which we apply the secant method to locate the zeros. The asymptotic approximations
of the zeros #k,2 and #k,3 of -2(#) and ’3(#) derived in the previous sections are
compared to their numerically calculated values. We also compare these estimates to
the zeros of hi0(#) T/2,10(#) and 7-/3,10(#) (see (19) and (42)), which are computed
with the secant method.

4.1. Numerical approximation ’_ nmJ() of-%’n() by Simpson’s rule.
The numerical evaluation of Pearcey-type integrals has been studied by Connor and
Curtis in [10]. However, since we consider a special case of Pearcey integrals, we devise
a simple algorithm to numerically evaluate ’n(#). Using the alternate expression for
’n(#) (see (6)) given by

+x)

>’n(#) 2 cos(2n#y) e- y dy,

we construct the approximation by dividing the range of integration into subintervals
over which the integrand does not oscillate. Let

X-- 0

so that

gn(#, Y) 2 cos(2n#y) exp(-#y2n),

where

Xk Xk(#) (k + l/2)r forkeN,
2n#

Z(#) (-1)k Ig(#, Y)I dy
--1

xm

’(#) gn (#, y) dy,
+

n’(#) g(#, y) dy.

We first estimate the remainder 7(#):

ITC (#) < 2 e-"y=’ dy
r
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where r(a, x) is the incomplete gamma function defined for a > 0. Since F(a, x)
e-Xxa-1 as x -- +(:x) (see [1]), we find that

e ttX2mn
ITC (#)1 nx- for sufficiently large x.

The endpoint Xm(,) (m + 1/2)/(2n,) is chosen in such a way that the contribu-
tion from the remainder n(p) is negligible for a fixed (bounded) p. If we require
that

(48) exp (-,x") < e 10-, , e N,

then it yields a good initial choice for m given by

(49) m m[; n, max] Int. max ( log 10) + 1,

where Int Ix] denotes the integer part of x and max is a bound on the largest zero we
wish compute. It is clear from this analysis that the larger Pmx is, the larger m will
need to be, which is why this algorithm is practical only for small roots k..

We now approximate Q(p) by Q’t() for large and moderate m (due to the
rapid decay of the integrand),

m m

E E(,) z(,) _ (,) Zn (’),
k=0 k=0

where each integral () is approximated by ’t(p) using Simpson’s rule: is the
number of gridpoints and the spacing h is defined by

h= Axk__ Xk+--Xk__
2npl"

Since the discretization errors for ’t and Q.t are given by

z(,) z,(,) + v (,) ,(,) + v

we can use extrapolation with Q.t to improve the approximation of ’t as follows"

’(") ’(") + 24 1

Thus the final approximation is

as + and +. Clearly, the constraint on this algorithm arises from the
choice of since a moderately large value of m << is sucient to make the remainder

() as small as desired. Moreover, it is dicult to estimate the asymptotic constant

in the term O(m/l), which may be large since it involves 9(,,) Hence the
choice for is made by doubling its value until two successive values of 11 the eros

k,n < max agree to 10 significant digits.
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4.2. Numerical approximation of the zeros of

_
n,l(tt) and 7-t,,m (tt) by

the secant method. We use the secant method to approximate the zeros of
and n m() which appear in the "Numerical values" column and the "- (0)"n,m
column of Tables 1 and 2, respectively. om (42), we express ,m() as

,(,) a, cos , (2n 1)cos
4n 2 + r

j=o
4n 2

and let E(,) stand for either ,t() or n,m(P). Then the procedure consists in
successively evaluating, for any k >_ 1 (# > 0),

o_ 7r#k,n--4n 2sec n-2 2n-1

0 25#
+

,n j--1
k,nj+l j

k,n k,n-

until the convergence of k,n
form

l+2k),
K: 0

K:(# j > 1n

(5# 10-2),

#k,, which is based upon a relative-error test of the

j+l j
k,n < tol 10-1

4.3. n 2. If m is chosen so as to satisfy (48), then a crude initial choice for
is 10/5 (typically 12 = 250). We take #max 11 to be a bound for

the largest zero we wish to compute and take 12 so that from (49), we find that
m m[12; 2, 11] 18. Starting from 10/5 250, we double the value of until
all 10 significant figures in the column "Numerical zeros" of Table 1 do not change.
The first such value is 1000. Note that for k _< 5 (#max _< 6), m 12 is sufficient.
One can see in Table 1 that the values computed from the asymptotic approximations
are very good. Notice that the first zero #1,2 is not well approximated by any of the
asymptotic predictions since it is less than 1. Beyond the first zero, the asymptotic
approximations improve with increasing index k. For 5 _< k _< 8, 7-/,0(0 agrees with

the numerical values up to 10 digits. For k > 5, #(5) and the numerical values agree
up to 8 digits. For k _> 8, the numerical and asymptotic values grow apart due to
the lack of accuracy of the numerical procedure (see the comment following equation

(49)). Note also that for k > 8,, (5) and 7-/.0(0 agree up to 10 digits (7-/,0(0)tk,2
is computed for the sake of comparison of the asymptotic and numerical estimates).
In computing 7"/2,10(#), the 10 coefficients a2,j,j 1,..., 10 are determined using
Appendix C. The same is done for 7-/3,10(#) below.

4.4. n 3. Once again, we take #max 11 to be a bound for the largest zero we
wish to compute and take 12 so that from (49), we find that m m[12; 3, 11] 25.
As in the case n 2, starting from 250, we double until all 10 significant figures
in the column "Numerical zeros" of Table 2 do not change. The first such value is

(3) (see (3.1)) and1000. For k _> 10, there is 6-digit accuracy when we compare tk,3
the numerical values; for 10 _< k _< 14, there is also 10-digit accuracy when comparing

-1the numerical values with 7-/3,10(0 and 7-digit accuracy between (3) and 7-/,0(0tk,3
for k _> 16. These results are reported in Table 2.
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TABLE 1
Numerical approximation of the zeros ttk,2 of ’2(tt) f_< et(4iz-za)dz.

k,2 Numerical zeros #() (24)k,2

1,2 0.8221037147 0.8061330508

#2,2 2.0226889660 2.0153326269

3,2 3.2292915284 3.2245322031

4,2 4.4372464748 4.4337317792

5,2 5.6457167459 5.6429313554

6,2 6.8544374340 6.8521309316

#7,2 8.0632985369 8.0613305077

8,2 9.2722462225 9.2705300839

9,2 10.4812510476 10.4797296601

t(5) (Corollary 2.1)k,2

0.8227392717

2.0226917275

3.2292916648

4.4372464915

5.6457167492

6.8544374349

8.0632985372

9.2722462225

10.4812510479

,o(0) (4e)
0.8240052094

2.0226893916

3.2292915324

4.4372464749

5.6457167459

6.8544374340

8.0632985369

9.2722462225

10.4812510479

TABLE 2
Numerical approximation of the zeros ttk,3 of ’3(tt)- f_< et(6iz-z6)dz.

k,3

1,3 0.5006640277

2,3 1.1311965433

3,3 1.7905548747

4,3 2.4492569634

#5,3 3.1089250327

6,3 3.7689127436

7,3 4.4290976016

8,3 5.0894021100

9,3 5.7497857943

10,3 6.4102244359

1,3 7.0707027897

12,3 7.7312107680

13,3 8.3917414319

14,3 9.0522898522

15,3 9.7128524305

16,3 10.373426479

(o) (aT)Numerical zeros k,3 (3) (Corollary 3.1) -, ,o(O)
0.4624572398

1.1231104397

1.7837636396

2.4444168394

3.1050700392

3.7657232391

4.4263764389

5.0870296388

5.7476828386

6.4083360384

7.0689892382

7.7296424381

8.3902956379

9.0509488377

9.7116020376

10.372255237

0.4845169688

1.1333562062

1.7903635764

2.4492848081

3.1089251416

3.7689140713

4.4290981557

5.0894024443

5.7497859980

6.4102245680

7.0707028789

7.7312108304

8.3917414769

9.0522898854

9.7128524558

10.373426499

0.46750721075

1.1332534896

1.7903439964

2.4492788273

3.1089227904

3.7689129739

4.4290975781

5.0894021124

5.7497857940

6.4102244359

7.0707027897

7.7312107680

8.3917414319

9.0522898522

9.7128524307

10.373426480

Appendix A. Proof of Lemma 2.1. To prove this lemma, we succesively
substitute higher estimates in the equation: Let #(0); then the asymptotic relation
reads

We have

ala2 (2)=+ < +o
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followed by

We now have

=+ + +o

ala2 ala2 ( ala2 ala3 )
13 ala3 II 2

6/’16/’2

so that there is a -(ala2)2/3 and a -3aa2a3/a correction term:

=+, + + + +o

Finally, we use

ala2)

so that we must add a (-4aa2a4 + 2a31a 2aa)/5 correction term. Thus we find

al ( a3 a4 al a22 a5 3ala2a3
# + -- \

a2 -+- --( + 2 + 3

a6 2aia W 2aa32 -4aia2a4)+ 4 + 0 as #(0) ,
Appendix B. Fah di Bruno’s formula. For a (al,a2,...,an) E Nn, fol-

lowing the notation in [1], we define the multinomial coefficients

n!
(n;al,a2,... ,an)

al!a2! .an!’
n!

(n; a,, a,.., a)’ (l!)alal !(2!)a2a2! (n!)a,an!"
The nth derivative of the composition of two functions is given by Fa di Bruno’s
formula in [1, 24.1.2] and [13]:

m=O N k=l
n n’ n f(k)(X)ak

t

where the second summation sign Y’. is taken over all integer n-vectors a
(al, a2,..., an) E Nn such that ’k kak al + 2a2 +’" + nan n and [a[ -k ak
a + a2 an m.
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On,j

3

4

10

7
144

11
180

15
224

19
270

115
1584

27
364

217
2880

35
459

117
1520

TABLE 3
Coejficients an,j for n 2,..., 10 and j 1,..., 5.

2 3 4 5

385 39655 665665 1375739365
41472

517
64800

7O5
100352

931
145800

29785
5018112

1485
264992

88753
16588800

1085
210681

23049
4620800

17915904

--22253
174960000

--23595
22478848

--111587
73811250

--42479045
23846068224

--188595
96457088

--1487341219
716636160000

--295295
136521288

--78289029
35118080000

10319560704

--158440051"
125971200000

--26196885
20141047808

27614845’
637729200000

--163420180175
151088688267264

--138332205
140441520128

--7471144611931
8255648563200000

--1787240455
2130551220528

1486016741376

-377666873
4534963200000

--908943106’5
31581162962944

4ioa
172186884000000

56283394450535
239324482215346176

128908298475
357844993286144

Appendix C. Mathematica code for the computation of the coefficients
an,j. We present a code in Mathematica to compute the rational representation of
the coefficients On,j which appear in Theorem 1.1. They are given by

r(j + 1/2) .m02J { (1/2- j- m)m.
v/-ff(n(2n- 1)) (n(2n- 1))

1 2n

r k--1 ak! k + 2

where the summation ’]’a is to take place over all possible er (al,... ,2n-2) E
1N2n-2 such that al + a2 +... + a2n-2 m, and al + 2a2 +... + (2n- 2)a2,-2 2j.

<< DiscreteMath’ Combinatorica’

vector[n_, j_, m_] Module[ {dim,k2), dim=2n-2; k2=2j;
If[ j==O, 1, Apply[ Plus, Map[ (Apply [Times, Flatten[
MapIndexed[((Binomial[2n, #2+2]^#1)/#1!)&, #],l]])&,
Select [ Flatten[ Map[ Permutations, Select [
Map[ (Join[ Table[O, (dim-Length[#])] ,#]), Partitions[m]],
(Length[#] dim)]],l], (Range[dim] # k2) ] ] ] ] ];

Alpha [n_ j _] Gamma[j+1/2] / (SqrtEPi] (n(2n-1))^j)
Sum[ Pochhammer[1/2-j-m,m] / (n(2n-1))^m, vector[n,j,m], {m,O,2j}];
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SETS OF SUPERRESOLUTION AND THE MAXIMUM ENTROPY
METHOD ON THE MEAN*

F. GAMBOAt AND E. GASSIAT$

Abstract. Consider the problem of recovering a probability measure supported on a compact
polish space U, endowed with a probability P, when the available measurements only concern some
of its (I)-moments; (I) is here a given k-dimensional continuous real function on U. Provided the
true moment c lies On the boundary of the convex hull of (I)(U), we exhibit a support of uniform
concentration, that is, a measurable set Rc,5(e) (depending on a small positive number 6) such that
for any solution which satisfies f d#-cll2 -< e, we have z(Rc,5(e)) _> 1- K(e) and P(Rc,(e)) _<
C.K(e), where K(e) decreases to 0 with e and C is a constant number. The construction of Rc,(e)
and the results are intimately connected with the maximum entropy method on the mean (MEM)
developed by Gamboa and Gassiat. This method gives a general framework for superresolution theory
via Pythagoras inequalities on families of dissimilarities linked with MEM. In particular cases, we
prove that K(e) is the exact rate of uniform concentration over Rc,(e).

Key words, superresolution, moment problem, dissimilarity, positivity constraint, maximum
entropy

AMS subject classifications. 62A99, 52A40

1. Introduction. Consider the equation

(1) YJ --/u ij(x) d#(x) + ej, j 1,..., k,

where U is a compact measurable space, ((I)j) are known continuous functions,
(j)j=l k represents noise, and we want to recover the positive measure #. A typical
example of such a situation is band-limited discrete Fourier measurements, problems
in tomography, spectroscopy, astronomy, etc. To recover #, we first suppose that all
we know about the noise (ej)j=l k is that it is bounded in 12-norm by a known
constant e. We now call reconstruction any method of recovery ft(y) based on the
observations y (Yj)j=I k.

The particularity of such problems is that they are ill posed. In general, the
moments fu j(x)d#(x),j 1,... ,k, are not sufficient to characterize the measure

#. For example, if the (I)j consist in the first trigonometric functions, the first k
Fourier coefficients do not determine # in general. Years ago, techniques called gener-
ically maximum entropy techniques (ME) were developed and seemed, in particular
situations, to significantly improve the restored solutions, compared with the usual
linear methods. Such techniques consist of choosing a reconstruction by minimiz-
ing a functional J(#), subject to the constraint f d#- YlI2 < , or to minimize

J(#) + All f (I)d# YlI2, which is the same by an appropriate choice of A. Typically,

u
d# d#J(#) - log -fi dP,

where P is a given prior measure. These reconstructions are highly nonlinear in
the observations. It has also been well established that the improvement is due to
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two major facts: ME takes into account a priori information by imposing implicitly
important restrictions on the solution (e.g., positivity), and the true measure # is
sparse enough. This improvement was described in terms of superresolution by Frieden
(see [11]). Let us explain what we mean by resolution and superresolution. When
the observed moments are the Fourier coefficients, all linear translation invariant
reconstructions obey the so-called Rayleigh limit R at fixed noise level. If # consists of
two spikes spaced by more than R, linear reconstructions may show clearly two spikes;
in the opposite, if # consists of two spikes spaced by less than R, linear reconstructions
are unable to resolve clearly the two spikes. This is why R is a resolution limit. Now,
as is shown in [11] on some examples, ME is able to resolve clearly two spikes spaced
by about R/3: this is the so-called superresolution phenomenon. Though for moments
other than Fourier there does not exist such a quantified resolution limit, we extend
the notion to any moment problem.

Theoretical results on the subject are very few and recent; see 5 for a survey. The
key idea is that, provided the true measure # exhibits some extremal conditions (e.g.,
sparsity), and provided we incorporate in the reconstruction method adequate a priori
information (typically the positivity of #), the resolution of # (when # is interpreted
as a signal) can be surprisingly high (see, for example, [18], [11], and, for a large
bibliography on the subject, [7-9]). Our aim in this work is to understand clearly and
quantify precisely what happens in such problems, as well as to give computational
solutions for the applications. Let us first give a very simple explanation of the
superresolution phenomenon. For this, we need to make our notations precise.

U is a given compact Polish space.
:= (1,..., Ok) is a given k-dimensional real function on U. We assume that

is continuous and that 1 := 1.
Define A+(U) the set of all positive measures on U and P(U) the set of all

probability distributions on U. Let

{c E k # E J+(U), /u d# c}
KI :- ]( CI {el ,-- 1}.

ri(]C1) will denote the relative interior of ](]1 (see [24]). Obviously, ]1 is the convex
hull of O(U). We shall now consider only probability measures as searched measures.
Define

and

S(c) := {# E T’(U)"/v(X)d#(x)-c}

{# c

In some sense, as e decreases to 0, S(c, ) tends to S(c) so that, if S(c) is reduced to a
singleton, the diameter of $(c, e) for a weak convergence distance decreases to 0 with
e. This is formalized in Theorem 1.

Now, if S(c) is reduced to a singleton, then - fv O(x)d#(x), where # .is an
atomic measure. If e is small enough, any member of the set $(c, ) will be very
close to #: this is exactly a superresolution phenomenon. Let us now state the precise
theorem (which extends the main Theorem of [16]), which is proved in 6. Let d be



SUPERRESOLUTION VIA THE MEM TECHNIQUE 1131

any distance on P(U) which is continuous for the weak convergence topology (the
Prokhorov distance is an example of such distances).

THEOREM 1. The following propositions are equivalent:

(2)

(3)
(4)

We will say that c is a determined point if the set ,S(c) is reduced to a singleton.
Conditions on c to be determined are given in [14]. The result of Theorem 1 is
qualitative. It says that superresolution phenomena appear only around determined
points and for reconstructions that preserve positivity. We will call it the strong
superresolution phenomenon, as it describes the whole signal (location and intensity).
We see that the a priori information is the positivity of the measure (see the definition
of $(c)), and that the extremal condition on # is that the point fv a2(x)d#(x) is
determined, which implies a special atomicity of #. (This explains the necessity
that the true measure be sparse enough for superresolution phenomena to appear.)
Notice that Theorem 1 shows that entropy does not play any particular role in the
superresolution phenomenon. Indeed, any reconstruction that satisfies the positivity
constraint will exhibit the same superresolution property as soon as the moment
constraint is near to be determined. It is surprising that the first formulation of
superresolution as a boundary problem in the moment problem appears in [16].

Our precise interest in this paper is to make clear how the resolution of a signal
may be improved by imposing positivity. To be more precise, we are not interested
in the whole signal but in the location of the signal. Indeed, in many applications,
the location of the signal is the significant information which is looked for. In our

formulation, we want to see how good approximations of the support of # may be
found and to understand the role of the moment functions 1,..., k in this process.
In earlier quantitative results (see 5 for references), the space U is discretized, so
that some a priori resolution is imposed, and the quantification is essentially made
for the intensities. Surprisingly, except for the qualitative paper of Gassiat [16], no
earlier works posed the problem in terms of location, that is in terms of support of
the measure.

Let us return to our problem. The set of determined points is included in the
boundary of/C1. In general the inclusion is strict. If c lies in the boundary of KI (and
is not necessarily determined), a weak superresolution phenomenon holds. Indeed, all
the measures of ,S(c) are concentrated on a level set

c(c) := {x e u: 0}

for a particular choice of v (see [19, Th. 1.1, p. 58]). The aim of this work is to develop
similar ideas as in Theorem 1 for the subset of C(c),

UEs()Suppa := Re,

and to quantify the results. Namely, we propose a construction of uniform con-
centration supports: Rc,5(e) such that any probability measure of S(c, e) is nearly
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concentrated on Rc,(e). Rc,(e) will be the approximating set of Re; it is built as a
particular level set of a O-polynomial (v*, (I)). We quantify this concentration prop-
erty and, in particular cases, we get the exact rate of superconcentration. This enables
one to locate a signal at a known precision, depending on the error e, even when no
strong superresolution phenomenon holds. All the results are based on the general
reconstruction method called MEM for moment problems developed in [13]. It is in-
teresting to notice that, as soon as one knows this reconstruction, all theorems proved
here involve,only elementary computations. In other words, as soon as the structure
of the problem is clearly seen, the superconcentration properties do not involve sophis-
ticated techniques; they are all "hidden" in the MEM method. In particular cases,
direct calculations on appropriate level sets lead to the exact superconcentration rate
without the use of the MEM dissimilarities. However, we would like to emphasize
several points to show the interest of the technique developed therein. First, MEM
leads to a general framework for superresolution theory in a different context: see [14]
for Ll-superresolution results; see also [15] for a continuous superresolution result.
This general framework also has a computational advantage: the computation of the
parameter v* of the level set, via MEM, involves strictly convex optimization, and the
superresolution rate K(e) is a by-product of the computation. Moreover, the idea of
using level sets as approximations of the support arose directly from MEM. This lead
several authors, inspired by the first version of this work, to develop the pure level set
point of view [10], [20]. In general, the MEM framework exploits general probabilistic
ideas: Laplace methods and developments of Cramer transforms on the boundary of
their domain, which have interest by themselves.

To our knowledge, all these results are new and give new ideas to understand
superresolution. Notice also that, though numerical applications of the results are
easy to obtain using convex programming, explicit formulations are untractable, even
on very simple examples. We will develop numerical examples and other ideas in a
forthcoming paper.

The paper is organized as follows. In the next section, we give our notations and
recall the basic results concerning MEM. In 3, we state and illustrate our superres-
olution results. In 4, we study a family of dissimilarities which gave the key idea to
prove the superconcentration theorems. In 5, we give a survey on earlier results and
study connections with ours. All technical proofs are collected in 6.

2. The MEM basic results. Our work is based on results about the MEM.
Let us recall what will be useful for this paper. Let P be a given reference probability
distribution on U such that for any vector v in k,P((v, O} 0) 0. Let F be a
given probability measure on [0, +cx[ whose convex hull of the support equals [0,
Define by

(t) := log f[0,+[ exp(tx) dF(x), t e R,

and suppose that (t) is finite if and only if t E] c, hi, a < +c.
Define

/(s) := sup(st (t)).

For any measurable function f on 1+, let

r(f) := f [f(x)] dP(x).
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For any # in A//+ (U), let

d#

For any c and v in Rk and any nonnegative e, let

g(v’c) := fu ((v, (z)})dP(x)- (v,c}

where [[v]]k-1 is the Euclidian norm of the vector (v2,..., v). Define also

h* (c, e) := inf g(v, c).
v

In [13], we proved the following results. (For related works in optimization, see [1],

THEOREM 2. Let c Rk be such that the Euclidian ball centered at c with
diameter e intersects ri(). Let v be the unique minimizer of g(v, c). There exists
a positive measure a such that

:= ’((, + e

Su,p c {x; (, .}.

h* (c, e) -H(v, c) inf F(f) min I() I(GMEM’).

THEOREM 3. Assume that F weighs {0}; then

h*(c,O) < -logF({0})+c c e ri(]C1),

h*(c, 0) log F({0}) + a c e bd(E1),
h* (c, 0) +cx , c /1.

The idea of such characterization of bd(/C1) arose from the probabilistic interpre-
tation of GMEM’e and its relation with the large deviations theory. Lewis has shown
later in [21] that these theorems hold for a wider class of convex functions .

3. Superresolution results.

3.1. Main theorem. Let be a point in the boundary of 2C1. The MEM solution
in S(, e) is GMEM’e as defined in (5). Observe the following.

First, Vx E U, (v, (I)(x))

_
a as follows from the definition of v". Indeed, if not,

as (I) is continuous, H’(v, -) is infinite, which contradicts Theorem 2.
Second, any accumulation point of the sequence GMEM’e as e decreases to 0 is

a singular measure (with respect to P) a such that

Vx e Supp a, lim_.0(ve, (I)(x)) a,

Vx Supp a, limo(v, (I)(x)) -oc.

Intuitively, we may now approximate R by a set of points x such that (v, (I)(x))
is near . Precisely, define

ge(x) a (v, ((x)).
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For any positive real , define

:= e u: a (x) <

R,(e) will be the approximating set of R. We have the following theorem.
THEOREM 4. Assume that F weighs 0 and set

F := + F({0}))F1,

(t) := log rio,+o[ exp(tx) dFl (x).

Let a := l-F({0}) We haveF({0})

P(R,(e)) log(1 + ae1(a-)) + 5 sup tt(R,(e))<_ K(e),
cs(,)

where K(e) := -log F({0}) + a h*(’6, e) decreases to 0 with e, and Pcc,5(e) denotes
the complementary set of R,(e) in U.

Observe that R,(e) depends on e, and that 5 is a parameter which has to be
chosen: it might be chosen as a function of e. R,5(e) also depends on the choice of
F. We will discuss this problem in a forthcoming paper.

This theorem quantifies the concentration of the supports of any solution of the
moment problem near the boundary. Indeed, it says that, keeping 5 fixed, you can
define a measurable set R,5(e) (which is a level set associated with an MEM solution,
reachable using convex programming) such that, simultaneously, its P-measure is
small, and any solution of the moment problem with perturbation e is concentrated
on this set except for a small part, small being quantified by the speed K(e) in both
assertions.

Example. Choose for F1, the exponential distribution with parameter 1,

1
1 (t)= log 1--L-_t

so that a 1. Choose also 5 := 1, F({0}) e-1, and the theorem says

P(R, (e)) + sup #(R, ())

_
K(e)

ues(,)

so that simultaneously

P(R,I(e)) _< K(e)

and for any e-solution # (that is, # E S(, e)) of the boundary point

#(R,l(e)) _> 1 K(e)

(# is K(e)-concentrated on R,(e)).
Remarks. For particular moment problems (especially T-systems), the approxi-

matir/g set may be chosen as the level set (7(c) defined in 1, and it can be proved
to lead to the optimal rate. This was developed later in [10] and [20]. However, the
advantages of our method are that, on the basis of the observations, the level set is
computed through strictly convex minimization programming together with the rate
K(e) (see 3.4), and our method gives a general framework for other superresolution
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problems using the dissimilarities defined in 4 as explained in 3.4.5; see also [14]
and [15].

Proof of Theorem 4. We first prove the decreasing property of K(e). To see this,
observe that h*(c, 0) is a convex function with domain K:, so that it is continuous
on ri(/C1). Moreover, h*(c, 0) converges to h*(, 0) when c tends to and when c
stays inthe relative interior of K:I. We easily have (using, for instance, subgradient
arguments)

(6) h* (, e) inf h* (c, 0) min h(c, O) h* (c, 0),

where IIc- 11 < e. Since h* is strictly convex and constant on bdK:l, c is in the
relative interior of K:I for all positive e, and c tends to when e tends to 0; therefore,

and it follows that

lim h*(, e) h*(, 0) log F({0}) + a
e---0

lim K(e) 0.
e---*0

Now let a be any element of S(e, e). Let

I :=/u ((v’ ((x)))dP(x)- log F({0})+ fu(O- (v, ((x)))da(x).

First, we have

I= fu ((v’((x)))dP(x) <v’ /u((x)da(x)> + c logF({0}).

Using equation (6), we have

h(, e) -/u ((v’ O(x) dP(x) + (v,
-/v ((v’ O(x))) dP(x) + (v,-d) ellv

and fv v, O(x))da(x) ]] < e, so that using the Schwarz inequality, we have

and

-Iv ((v’ O(x)))dP(x) + Iv (v’ o(x)) da(x) > h*(,e)

(7) I _< a log F({0}) h* (,

Now, obviously,

(s)

Also,

ge da >_ 5a(R-,(c)).

ve )) dP log F({0}) fv log(1 + ae1(-g)) dP.
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Using the fact that 1 is increasing,

/u ((v’ ))dP-log F({0}) _>

so that

(9) ] ((v

log(1 + ae1(-)) dP,

O))dP-log F({0})>_ P(R,5(e))log(1 + ael(a-)).

Adding (8) and (9), we have

P(R,(e)) log(1 + ae("-5)) + 5a(R,(e)) <_ K(e).

Taking the supremum over ,.q(, e), we get the inequality of the theorem.
Remark. The idea of considering the functional I to get inequality (7) has in

itself no intuitive evidence. The idea from which it comes, which is hidden in (7), is
analogous to a Pythagoras inequality which holds for a dissimilarity linked with the
MEM construction. This will be explained in 4.

3.2. Lower bound for the superconcentration. In 3.2 and 3.3, we will
assume that U is a compact set of IRd. Theorem 4 gives an upper bound for the
superconcentration property over R,(e). Here we will give a lower bound for it
which holds for any choice of F.

THEOREM 5. Suppose that P is the normalized Lebesgue measure on U, (
[C(Uo)] k, where U c int(Uo). Then there exists a positive constant C (depending
only on d) such that for small enough e,

sup #(R-,(e)) _> CeK(e)-l/d[log(1 + ae("-))] I/d.
es(,)

3.3. Exact rate of superconcentration. Under additional assumptions, we
are able to give the exact rate of superconcentration over R,(e). We restrict F to
be member of the following family of distributions. For all/ > 0, FZ denotes the
Poissonized distribution of the -y(/, 1) distribution. That is, F/ is the distribution of
the random variable Z defined by

N

where Y0 := 0, (Y/) is a sequence of independent random variables with common dis-
tribution -y(/, 1) and N is an independent random variable with Poisson distribution
of parameter 1. Then, the log-Laplace transform of FZ is

1
Ce(T)= (1-- T’)P

--1 if-<l

=+ if-> 1.

It is obvious that a 1, FZ({0}) e-1 and / satisfies the assumptions required for
the MEM construction. KZ will denote the associated K function.

We will now make an integrability assumption. For this purpose, let us introduce
the following definition.
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DEFINITION 1. Let-5 E bd(]C1). The critical exponent o(-5) is the upper bound of
the set

Z _> 0, c . Vx c u, (, (x)) >_ 0; (, e) 0,
(v, ())z <

Under the assumption that fl0(-5) is positive, for small e and for fl < fl0(-5), we
give a precise description of Kfl(e) and the associated vector v*. Precisely, define

u "= (1 vl,-v,...,

:= ((, e), i,..., i),
W

d() "=
]] (41(), ()),

(x) "= ((x) e)=:,...,,
dP(x)

d (dl d) C k.e,o(d) "=

(mx(0, (,$(x))))e’
PROPOSITION 1. Suppose o() > O. Let < o(). Then the following hold.

d(e) converges to (0, (0)), where (0) is the unique minimizer of {Z,o(d) on the
intersection between the unit sphere and the hyperplane d O.

K(e) Ce/+1, e + 0 for a positive constant Ch.
We will now assume that e [C2(V)] k and

(I2) 2x e int(V), 2a e S() such that

,({x}) > 0,

((0), D=(x)) o.
We are now able to give the following theorem.

THEOREM 6. Suppose that [C2(U)] k, &() > O, < &(), and (I2) holds.
Then, for e suciently small, there exist two constants C1, C2, which depend only on, , and e, such that

Cle+* sup (R,a(e)) C2e+*.

In the specified situation, Theorem 6 says that the rate of uniform concentration
over R,5(e) is exactly e/+l.

In specific situations, when is a T-system (see also 3.4.4), it is possible to choose
a different approximating support set" a level set of the supporting hyperplane at the
boundary point -5, and simpler calculation leads to the optimal rate el/3. However,
this particular level set is difficult to compute, even for known -5. However, this other
point of view was developed afterwards in [10].

We show in 6 (Lemma 5) that assumption (I2) holds whenever the following
geometrical assumption holds.

(I3) Xm int(U), a 8(-5), and there exists an orthogonal basis (b2,..., bk)
of Rk-1 such that

({x}) > 0,

<, m> >o,

<b1, D2(Xm)> : O.
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3.4. Remarks and applications.

3.4.1. Superconcentration for positive reconstructions. Consider the
problem of estimating the support of # using observation (1). With the same ar-
guments as for Theorem 4, it is easy to get

P(ny,e(e))log(1 +de(a-6)) +6 sup a(n,e(e)) <_ -logF({0})+a- h*(y,e).
a(y,e)

Here, as e tends to 0, y tends to fv d#, so that as soon as lies on bd(K:l),
log F({0})+a- h*(y, e) tends to 0, and the inequality is again a superconcentration

inequality, in which only the knowledge of the observations y and of the noise level e
are involved.

As # S(y, e), we get

P(Ry,(e)) log(1 + ae(-)) + 5.#(R,(e)) <_ -log F({0}) + a h*(y,e),

and Ru, is a good estimator for the support of it on the basis of y.

3.4.2. Superconcentration for a point near the boundary. All the results
we have given have been written for measures of S(, e), where is a boundary point
of (:1. Let c* "= + e Ac with Ac := (0, Ac), [IAcllk_l 1. We assume that c* is an
inner point of K:I. When e is small, we can ask, "What are the superconcentration
properties of 8(c*) ?"

Since 3(c*) c 8(, e), all the results given before stay true, changing 3(, e) by
S(c*) everywhere. However, using the MEM technique, we can give more local results.
(Indeed, the previous ones do not depend on the given direction/c.) Let

GEM ((V*, O(x)})P + a

be the element of S(c*) selected using MEM procedure with prior F/ (see 2). Let

/*,e,3 {x e U, 1 -(v*, (I)(x)) _< 5}.

Then, under some regularity assumptions (as in Theorem 6), using the Pythagoras
identity (10) (see 4) and following the same ideas as before, we have

ced+ < sup .(/.,e,:) < ce,+,
es(*)

where the constants C1 and C2 depend only on 3, 5, and c*. For a given bound-
ary point and for almost all directions Ac, the constant of the superconcentration
inequalities are significantly better when we use this local formulation.

3.4.3. Asymptotic behavior of/,5,3(e).
LEMMA 1. Let

{ }V(, ) x e U,-E dj(O)-j + ((o), O(x)) o
j=2

Suppose that o(-) > O. Then, for all < o(-),

Ues()suppa C lim R,5,3(e) c lim R,5,3(e) c V(, 3).
e--,0+ e-*0+
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Proof. If x e lim,__.0+R,,(e), then there exits a decreasing sequence (e) con-
verging to 0 such that

which is equivalent to

VneN, (v,O(x)}_<5,

VneN, dl(e)+

Taking the limit as n goes to infinity, we get ((0), (x)) 0.
Let x e Ue.v()suppa. Then there exists a e S() with a({x}) p > 0 (see [19,

Whm. 3.1, p. 71). Therefore, by Theorem 4, a(,5,Z(e)) . Now, as soon as

5 < p we have a(,5,(e)) < p and x

3.4.4. Examples. Explicit calculations are untractable even for simple exam-
ples, but numerical applications may be directly developed. For this we refer to
forthcoming paper. However, let us give ideas about typical situations.

Analytic functions. Suppose that U [0, 1], P is the uniform probability, and
is analytic. Then for all v in k, the set

O(v) {x e [0, 1], (v, O(x)) 0}

has a finite number of elements. Therefore, since we can develop the function (v, O(x))
near each point x* of O(v) in a convergent entire series, for all boundary point of

we have 0() > 0. Then Proposition 4 always holds (see 6). We do not know
if the assertion 0() > 0 is still true for an analytic system on U C d. In the
multidimensional framework, even when the components of are polynomials, the
description of O(v) and its connected components is not easier [22], [17].

T-systems. Let V [0, 1], (x) be a T-system (Vv e , O(v) k- 1), and
P the uniform probability. In this case, any boundary point is determinate (see for
example [19, Thm. 4.1, p. 78]). More precisely, a point is determined if and only if
(see [19, Whm. 4.1, p.78])

q q

pjO(xj), pj 1,xj xj,,j j’,
j=l j=l

with i()= E=I (xj) k- 1, where, when is not periodic,

(x):=l ifxe]0,1[

:=2, x=0orx=l

and (x) "= 1 for all x when is periodic. It is possible to prove that, for any
determined point , 0() , and that assumption (I3) and Theorem 6 hold as soon
as one of the xy 0, 1 (see Lemma 5).

As an example, suppose now that O(x) (1,...,xk-), that i() k- 1, and
Vj 1... q, xy 0, 1. Then there exists a unique nonnegative polynomial which
vanishes at points x1,..., Xq. Therefore, we have

zld(o))l
j=O
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where

by E (-1)J E xjl,... ,xq_ E xl,...,xq_,.
+l’--j <_j <j2 <"’<jq-t <_q <_j <j2 <"’<Ja-l’ <-q

Through this evaluation of Z,0[(0, d(0))], we see that the constant that appears in the
superconcentration inequality is smaller whenever i() < k- 1. Indeed, in this case
the set of nonnegative polynomials which vanish at points x1,..., xq is not reduced
to a singleton.

3.4.5. Further applications. The methodology introduced in this paper to in-
vestigate superresolution phenomena can be used in other situations as soon as we
dispose of the MEM reconstruction technique. This is the case in the following exam-
ples.

Markov moment problem. In this inverse problem, we replace the set of all positive
measures by the set of all nonnegative measurable functions bounded by L > 1 (when
the searched functions are probability densities (see [19, Chap. VIII for more details
on Markov moment problems). The MEM method could be applied exactly as we did
previously. A determined point admits for some d E IIk the representation

L (x)l{xeU,(d,O())>_o} dP(x).

The Dirac measures are replaced here by indicator functions, so that stronger distances
may be used to describe superresolution. Using the C-dissimilarity (see 4) for an
appropriate prior we can evaluate for small e

or

sup
feCo,L,f of dPeB(-,e)

Ill-

sup
f,geCo,L,f Of dPeB(’,e),f Of dPeB(’,e)

where Ilflll := f Ill dP and

C0,L :"- {f measurable, 0 <_ f .<: L, P almost surely}.

We remark that the compactness assumption (x) I can be removed here. Indeed,
the condition f E C0,L is a very strong compactness assumption. We also remark that,
for the Markov moment problem, the evaluation of the superresolution rate function
g(e) is easier. Indeed, the Lagrangian function He(v, c) (see 2) is defined here on
all of k [5].

These ideas are developed in [14] and later in [20].
Multidimensional moment problems. We will discuss here the case of superresoluo

tion rate for multidimensional moment problems. That is, keeping the same notations
as in the previous sections, @ is now a matrix-valued function from U to
with

l,j(x) := 1, j 1,...,m.
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The inverse problem consists of recovering a vector-valued positive measure #
(#j)j=l m (we can also require more than the simple positivity of the components,
typically (d#)/(dP) E C, where C is a given convex set) satisfying the linear constraint

v
(X) d#(x) c.

The MEM method for this reconstruction problem has been developed in [12]. There-
fore, with extra work, we can hope to find the same kind of superconcentration results.

4. A dissimilarity linked with MEM construction. In this section, we in-
troduce and study a dissimilarity between a nonnegative function and a positive mea-
sure. This dissimilarity is linked with the MEM construction. We first begin with its
definition.

DEFINITION 2. Let G be in A4+(U); g will denote the Radon-Nikodm derivative
of G with respect to P. Let

A4+’G := {nonnegative measurable function h on U, ’-1(h) e LI(G gP)}.

Let h be in A4+’c. The generalized C-dissimilarity :D(G,h) between G and h is

defined by

T(G, h) := D(g,h) + a(G gP)(V) ] ’-1 [h(x)] d(G gP),

where the C-dissimilarity De(g, h) between g and h is defined by

/t g(x)(’-l[g(x)] ’-l[h(x)]) dP(x)D(g,h) :---

fu [’-l{g(x)}] dP(x) + fu 2[)t--1 {h(x)}] dR(x)

when all the functions involved are integrable, and +o otherwise.
The terminology of dissimilarity is justified by the following proposition (proved

in 6).
PROPOSITION 2. We have that

VG A4+(V),h +,c, T(G, h) _> 0

T(G, h) vanishes if and only if

dG ( dG
ar

h (P almost surely) and Supp _-P c {x e U, h cx}.
dP

We can also give a dual definition of the dissimilarities in the case of densities.
PROPOSITION 3. For any measurable nonnegative functions g and h,

D(g,h) sup { ful(x)g(x)dP(x) /u[l(x) ’-l{h(x)}]dP(x)}ec(v)

+f [’-l(h(x))] dP(x).
Yu
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The following Pythagoras theorem gives a relation between the C-dissimilarity
and the MEM method. It has been the key tool for finding our superconcentration
result (7). Indeed, using Lemma 2, (11) leads to (7). It is a consequence of the
same relation proved by Csiszar for the Kullbak divergence in [3]. (See the proof of
Theorem 7.)

THEOREM 7. Let c be an inner point of 1; then

va e s(), 9(a, ’(0))= (a)
(0) 9(a, ’((*, ))) + v(a,’(0))

Let c be a point of Ik such that S(c, e) is nonvoid; then

VG e 8(c, ),

(a, ’(0)) ()
()

((, Ct((Ve, O))) -- (MEM,e,(,’((Ve, O}))--/(MEM,e).

LEMMA 2. Let G E A/+(U); then

I(G) <_ log F({0}) + c.

Lemma 2 is proved in [13, Eqs. (19) and (20)].
5. Earlier results on superresolution.
The first qualitative result on superresolution appears in Gassiat [16]. It gives

the qualitative results of Theorems i and 4 in the restrictive situation where O1,. Ok
form a T-system. The proof relies on properties of such a system, which is clearly not
necessary.

The first quantitative superresolution result appears in Donoho et al. [9]. In
this work, U is the discretized torus and the functions Oj are the sine and cosine
first functions (so that the cj are the first Fourier coefficients). The authors give an
evaluation of

sup E
ttl ,#E$(c,) xEU

The techniques rely heavily on Fourier analysis.
In Donoho [7], the author gives a superresolution inequality in a very different

context. The space U is again discretized: U is the lattice AZ. The moment con-
straints are no longer of finite number: the observation is the Fourier transform of

2 In thisthe measure, (w), Iwl <_ t2, where t2 is less than the Rayleigh constant
work, the measure # is supposed to be sparse enough, not necessarily positive, and
the set of reconstructions is supposed to be the set of measures (possibly signed),
which possess the same sparsity property, and satisfy

As U is not compact, uniqueness is necessary here, but it is not known if unique-
ness is sufficient for superresolution to hold (compare withTheorem 1 in the compact
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situation). The superresolution inequality given shows also how sparsity quantifies
the capacity to superresolve (see [7] for exact result). The techniques rely on hard
Fourier analysis and connections with interpolation problems.

Following similar ideas, in [8] Donoho and Gassiat give superresolution inequali-
ties when # is supposed to be positive and sparse enough, but the set of reconstructions
is now the set of all positive measures such that

An application is given for the case of the torus.
In our work, the ej do not need to be trigonometric functions for the result to

hold. The dependence on the ej appears in the computation of the function K(e),
through He(v, c). In our opinion, these results are very complementary to ours.

6. Proofs.

6.1. Proof of Theorem 1.

(2)= (3). Indeed,

Ve > 0, sup d(#l, #2)

_
sup d(#l, #2).

1,e$(c,c) 1 ,: eS(c)

(3) = (4). As U is compact, S(c, e) is a compact set of positive measures. Now,
d(., ac) is continuous (for the weak topology on J4+(U)) so that

V > 0, 3# e q(c,e)" sup d(#,ac) d(#,ac)..

Again using the compactness of S(c, ), the sequence (#) has at least one ac-
cumulation point #* when e decreases to 0. Using the continuity of the application
# -- f (I)d#, #* lies in S(c). Therefore, #* ac and lime_,0+ d(#, ac) O.

(4) = (2) is obvious using triangular inequality.

6.2. Proof of Theorem 5. Using assumption (I1), we can write

q

i=1

where pi > 0 y.q
i--1 Pi 1.

Define

q

C() EPi(Xi) -- O1 h()l(X)(xl) -- h()(X)(xl +
i--2

where u is a point in ]d of modulus 1, h and are positive and small functions of e
such that h(e) < pl, and xl + l(e)u lies in U. (This is possible with an appropriate
choice of u even if Xl E bd(U).) Using the Taylor expansion until order 1, we get

IIc(e) [I <-
Therefore, set

(12) h()l(e)llO’ll,uo := e,
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so that
q

+ +
i--2

is in ,S(, e).
As soon as Xl -1-l()t is in R,5(e), we will have

sup #(R,5(e)) _> h(e).
,es(,)

Using Theorem 4 we get

with C1 1/log(l+ael(-5)). For small enough e, Xl e R,5(e); see Lemma 1. Now

P(B(xl, r)) rgct(d, P),

so that for r (C1K(c) lidCt(d,)) there exists u of modulus one and l(e) <_ r such that

xl + l(e)u is in R-,(e) and we may take

l(e) := [CIK(e)/Ct(d,P)] 1/d.

Evaluate h(e) using (12), and the theorem is straightforward, rl

6.3. Proof of Theorem 6. When/30() > 0, we will study the behavior near
0+ of KZ(.) for all </3o().

LEMMA 3.

re_>0, V/3>0, K(e)=-- (1+)
ee,lle fu ))I]--1 max(, /: - (x) dR(x)

where (x) := (Oj(x)- j)j=2 k,d := (dl,a).
Proof. By definition,

KZ(e) log F({0}) + 1 h*(,

=1+1+ inf [/g dP(x)
vetk (1 min(1, (v, O(x)))Z

1 (v,} + ellvl[k_l

Making the variable changes u := (1 -v,-v2,...,-vk) and w := ((u, }, u2,..., Uk),
we find

K(e)= inf [/u dP(x) ]wee (max(0, Wl

inf inf [1 fs dP(x) ]dee,ld= >0 (max(0, d + (, (x)))Z + r(d + eli’[I)

where d := (dl, d), w := (Wl, ).
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Now, by an obvious optimization calculus,on r, we get

I 1inf 3--f 1+K()
dk,lldll=l max(0 -- (d,

1+
,=1 mx(Oii,-())) ()

LEMMA 4. Suppose that the critical exponent flo() is positive. Let

aP(), > o, o < < o(), d aZ,(d) := max(0l + (d, O(x)})
dP(x) o < < o() d ez,0(d)

mx(0, (, (x)})Z’
Then we have the following.

For all > 0, Z,(.) has a unique minimizer d(e) on the unit sphere.
,0(.) has a unique minimizer (0, d(0)).on the intersection between the unit

sphere and the hyperplane d O.
Moreover, dl() is a positive function of and

lim d(e) (0, d(0)),
0+

lim ,[d()] Z,0[(0, (0))].
0+

An application of the previous lemma leads to the following proposition.
PROPOSITION 4. Suppose that the critical exponent o(-) is positive. Then, for

sufficiently small and 0 < < 13o(-),

K,() C,,
where

Ca := (,o[(0, ((O))l) --f--i- (1+ ).
Lemma 4 and Proposition 4 prove Proposition 1.

Proof of Lemma 4.
For e > 0, uniqueness of d() follows from uniqueness of the Lagrange multiplier

v (see 2).
For e 0, let v E k such that

dP(x)Vx e u, (, (x)) > o; (v, ) o, (:/, < .
Therefore,

k

Vl VjCj
j--2
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so that

I111- f P(*)
max(O, (, )(x))) < c,

and infdek,lldll_-- C,o(d < cx.

Now, on the convex set {(0,) , I111 }, the function ,o(.) is strictly
convex, so its minimum value is reached at a unique point (0, d(O)). Since

we necessarily have I1(0)11 1.
We shall now prove the last points of the lemma. Let (); we have

W > O, (1()+ (J(),()))d()=1().

Therefore, snce 1()+ (J(), ()) is nonreactive on , dl() O.
Now, since ()= [’,,{()}]/(’+1)(1 + )1/(,+) wev tt

lim d () O,
0+

lim I1()11 1.
0+

Therefore,

max(0, (o, )(x))} dP(x) <_ ,[d()].

Let d* be any accumulation point of the function d() as decreases to 0. We have,
using Fatou’s lemma,

lim ,[d()] >/u 1
dP(x).

--+o+ (max(0, (J*, ((x))))Z
On the other hand, V d e k, ]]d] 1, ,(d()) _< ,(d).

Taking dl 0 and minimizing the right term of the previous inequality, we find

,[d()] <_ ,o[(0, d(o))].

Since Cz,o(O, .) is strictly convex we have d* a(O) and

lim , (d(e))= ,0(0,a(0)).
e--.O+

We remark that we also have lim__,o+ d() O.

Indeed, let d lim_0+ d(); then, by Fatou’s lemma,

(d + 1)ZCZ,o(O, (0)) _< CZ,o(O, (0)).
And d 0. 0
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LEMMA 5. Let bd(/C). Suppose that U c Nd and that C:(U). Suppose
that the critical exponent o(-d) is positive. Let

q

a p,(x,),
i--1

where pi > 0 and qEi=I pi 1.
Suppose there exists at least one x, of the xj,j 1,..., r, such that there exists

an orthogonal basis (b2,... ,bk) ofNk-1 satisfying
(by,(x)) >_ 0,Yx e U,j 2,...,k;
x, int(U);
(b, D:(x,)) O, j 2,..., k. Then, (d(o), n:(x)) O.

Proof. Obviously, for (0, d), (0, ) IRa,
Z,o[(0, ) + (0, )] _< Min(z,0[(0, a)], ,0[(0, )]),

so that

( (0,(0’ ) + (0,))+ (0, )][ ) _< [[(0, a)+ (0, ),]flMin(fl,o [(0, )], ,o [(0, )]).z,o

Suppose that

((0), De(x.)) 0

and let

k

d(0) (0)
j=2

be the decomposition of d(0) on the basis (b2,..., bk).
Now, because (bj, (x)},j 2,... ,k, is nonnegative on U and vanishes at the

point Xr, we have (bj, D2((x,)) > 0, j 2,..., k. Therefore, one of the components

(@(0)) is negative. So we can assume that a(0) < 0. Thus, for 0 < A < --20b2(0), we
have

lid(O) + A (O)b2ll < 1

so that

(o, d(o) + a (o).) ) < ,,o[(O (o))],,,o II(oid(o) + a d(o)b)ll

which contradicts the fact that (0, o(0)) achieves the minimum of CZ,o[(0,.)] over

{llal] 1}. We may conclude that ((O),D2(Xm)} O. 0

Proof of Theorem 6. Without loss of generality, we may assume that (a(0),
D(Xl)} :/: 0. Define

h(e)c(e) := EpiO(xi) + (1 h(e))plO(Xl) + ---pl(I)(Xl + l()t) + O(Xl --l()t),
i=2
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with u e IRd, Ilull 1, and we choose h(e) < 1. We can write

c(e) f O(x) da(x),
dv

where

a "= p5 + p1(1 h(e))5 + Pl-- +l
i--2

is a probability distribution, with support in U as soon as l(e) is small enough. We
have

() e +{(+ t()) (x) + (x t()) ()}.

Using a Taylor extension of order 2, we get

(13)

We are now going to prove that either xl + l(e)u or Xl- l()t is in R-,a(e for a special
value of l(e) and a special choice of u. Using an exact Taylor extension of order 2, we
have

with

0 _< I*1 _< 1, 0 _< I**1 _< 1.

Now, using the convergence of d(e) and the continuity of D2, we have

lim a (v, (I)(xl)) 0
e---}O+

and

/2(e) D l() ,D
2

(v ,(x +O*l(e)u)(u,u)),-,, --llvlla-l(d(o) (x)(u,u)).

We can also write a similar formula for the other term.
Now choose u such that

(((0), D2)(Xl)(U, u)) r > 0

and

z()=_5 ].

Observe that we have lim_+0+ l(e) O.
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For small

12(e) 55
0*(v,:e(l + O*l(e)u)(u,u))- -g2_id(e) D2(Xl + l(e)u)(u,u)) > 25.

2 ’r/

We can also write a similar formula for the other term.

Therefore, for small e,

OZ <re, (I)(Xl + l()t)> + Oz <re, (I)(Xl l@)t)> > 2(,

so that either

. (, (x + ())) > 6

or

(14)

Now define

2
h(e) "-iiDeOll/().

Notice that h(e) - 0, as/2(e) Ct e).
In view of (13), a e S(, e), and in view of (14),

h()

Now

h(e)
pl-

2
Pl @11V[1-1 CK(,).IID2,I, Iloo

And the theorem is proved.

6.4. Proofs of Propositions 2 and 3. Proposition 2 follows from the study of
the function

0(7")

For a fixed -, O(T) is nonnegative and vanishes if and only if T T. Proposition 3
follows from the function change k := l--1(h) and variational calculus (see [12] or
[2s]).
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6.5. Proof of Theorem r. Let G E S(c) with I(G) < x; we have

(,’((*, ))) De , ((*, )) + -P (V)

(*.(x)> -P (dx)

F (v*,O(x))dP(x)

+ @((v*, O(x)))dP(x) + a G r (U)

(.*.(x)) -p (dx)

=r -*,

+ ((v*, (x))) d(x) + -p ()

v(a, ’(0)) v(a,’(0)).
so (10) is proved.

Let gP S(c, ) with g > 0 and g C(U). Let (x) be a sequence of points of
n g converges weakly to P. Let X be theU such that the empirical measure =1

probability distribution on (,B()) with density with respect to F-n

ex,{,- [a(x.)]
i=1

where Y,..., Y are the coordinate vriables on (, B()). Then we have that for
large enough n (see [5]),

(15) Ex O(x) B(c,e).
n

i=1

Let pE be the probability given by the MEM construction at stage n for the relaxed
constraint problem (see [13]). Now, a nice property of pE is that it satisfies a
Pythagoras theorem (see [4], [26]). In particular, since X stisfies (15), we hve

K(x,Fn) _> K(P ’F) +
n " pE)

Simple cMculations lead to

(x..n) ((x)).
n n

j=l

1 K(pME F@n 1
(’[(n,(X)}]),

n n
j=l

n

g(x, P2) {(){’-1[(x)]- ,(x))}
n n

j=l

-[’-1{(x)}] + [;, (x))]},
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where (vn) is a sequence of ]k converging to vc. Taking the limit as n goes to infinity
we find (see [13]),

(6) r(g) _> i(aMEM,c) -- De(g, ’((v, O(x)))).

Now, for any G E S(c, ) by Lemma 6 (see below) there exists a sequence of positive
continuous function (gn) such that (gnP) converges weakly to G and (17) and (18)
hold. Therefore, using inequality (16) for g,, as n goes to infinity we find (11). E]

LEMMA 6. Let G Y4+ and h be a nonnegative measurable function on U
such that ,-1(h) is continuous and T(G, h) < c. Then, there exists a sequence of
continuous positive functions (g,) such that g,P converges weakly to G and

(17) nlim D(g, h) limT(gnP, h)

1) (G, h),

(18) lim l)(g, ’(0)) lim,(gnP
9(a, ’(0)).

Proof. The existence of a sequence (g) such that g.P converges weakly to G
and (18) holds is proved in [13, Lem. 3]. Therefore, we will only verify that (17) holds
for this sequence. This is obvious using the formula

D(g,h) r(gn) r(h) +/u(h(x) gn(X))’-l[h(x)] dP(x).
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A DISTRIBUTIONAL SAMPLING THEOREM*

YOUMING LIUt
Abstract. The classical Shannon sampling theorem has many extentions [A Tutorial in Theory

and Applications, C. K. Chui, ed., Academic Press, 1992, pp. 51-70], one of which is to functions of
polynomial growth. In this paper, we shall prove the following theorem:

Let F(w) be a distribution with compact support on [-r, r] and f(t) be the Fourier transform.
Then

sin r(t n)
f(t) f(n) r(t-- n)

holds in the sense of (C, ) summation under a very mild condition.
The above result improves the theorems in both [SIAM J. Math. Anal., 19 (1988), pp. 1198-

1203] and [Generalized Functions, Convergence Structures, and Their Applications, B. Stankovic et
al., eds., Plenum Press, 1988, pp. 349-357] given by G. G. Walter.

Key words, sampling theorem, distribution, (C, ) summation

AMS subject classifications. 40G05, 41A05, 42C15, 94All

1. Introduction. The classical sampling theorem says that

(1.1) f(t) f(n)sin (t n)

for any finite and -bandlimited signal f (i.e., f E L2(R) and the Fourier transform
F of f has compact support on [-, r]). The importance of this theorem was first
recognized by Shannon in communication theory. However, many signals in commu-
nication do not have finite energy, i.e., f L2(R). A general class of such signals is
given by the Fourier transform of distributions with compact support. Without loss
of generality, we consider A, (" F S and supp F C [-, ]), where S denotes
all linear continuous functionals on Schwartz class S and F is the Fourier transform
of a distribution F.

Several versions of the sampling theorem that are appropriate for such signals
have been studied by Campbell [2], Pfaffelhuber [3], Lee [4], Hoskins [5], and Wal-
ter [6]. All suffered from the same shortcoming--that (1.1) had to be modified to
obtain a convergence theorem. G. G. Walter retained the elegant formula (1.1) by
requiring that the convergence of the series in (1.1) be interpreted in the sense of Abel
summability [7].

In this paper, we establish (1.1) for some F A in the sense of (C, a) summa-
bility, where a depends on F.

2. Preliminaries and lemmas. Let g be a 2r-periodic function and g L2[-,
r], its Fourier series cen. The so-called (C, a) summability of the above series
means that

lim a (x)= lim ce f(x),
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1994.
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where a,(x) is called the (C, a) partial sum of nth order and (c)n C+ or (+).
0 rIn particular, an (x) Sn(X) is the usual sum and Sn(x) - f_,, g(y)Dn(x y)dy

xwith D,(x) sin(n / 1/2)x/2sin , the Dirichet kernel, an(X an(X) is the (C, 1)
xmean and an(X) - f_ g(y)Fn(x y)dy with Fn(x) sin2 n21x/2(n + 1)sin2 is

known as the Fejer kernel. In general ([8, p. 88]), o"n (x) Lr g(y)K,(x y)dy,
where the (C, c) kernel K,(x)= (1/())yvn=0(- 1)-vDv(x).

To introduce our main result, we need the following lemmas.
LEMMA 1 ([8, p. 115]). For any real number o > -1 and complex number z,

(2.1) E(a)vz a- 1)z -(O)nzn+l
1

1-z’
v--0

where (O)n F(O -- n -- 1)/r(a + )r(n + 1) and r(t) s the Gamma function.
The proof can be given by the Abel transform [8]. However, when we restrict

a to the integer case as in this paper, a fundamental argument follows. In fact, by
multiplying both sides of (2.1) by 1 z and using (a)v (a 1) we can find a
proof after some simple calculations.

Based on Lemma 1, we can show the following.
LEMMA 2. For any positive integer a, the (C, a) kernel K(t) can be given by

K (t)
sin[(n + -21)t- -] - (k 1),

sin [a k

(O)n(2sin ]c+l (o)n 2
t

3] k=l

Proof. We have pointed out that Kr(X (1/(C)n)Ev__0(C- 1)n-,D(x). For
c nsimplicity, denoting 2sin-(O)nK(t) by In, we have In v=0(o- 1)n_ sin(v +

1)t Im[zn+1/2 -vn=0(c- 1)z-] where z eit and Im denotes the imaginary part of2

z. By Lemma 1, we can also express In as In Im[z+1/2/(1 z) -n__0(c 2)z-v]
(c- 1)nImz-1/2/(1 z-l). Furthermore, it also follows from Lemma 1 that

zn+1/2 n a

Ez-’-E(k-1)nXm(1- z-l)a-1 v--0 k----2
(1 Z-1)a-k+l"

That is,

z+1/2 z-1/2 EIn Im
(1- z-l) (k 1)Im

z-

k=2
(1 z-l)c-k+l In1 q- In2’

where

z +1/2 -z-1/2
I Im

(1 z-l)
and In2 E(k 1)aim

z-

k=2
(1 z-l)a-k+1"

On the other hand, it is easy to see that

I- 1 { [(a+l) ] (-t sin n+ t- -sin
a 1

(2 sin ) 2 2
t
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and

I2 E(k 1)n sin[a--kt tY(a k 1)]

=2 (2sin )-k+l

(k-since z eit Therefore

1)nsin[-t- (a k + 1)](2 sin )-k+l. Finally, it follows that

K(t)

](sin[(n + )t2 ] (k- 1)n
sin

a- k r
(a- k + 1) 2sin

(a) (2sin 

from the notation In 2sin (a)nK(t). This completes the proof of Lemma 2.
LEMMA 3. If a >_ 1 and a E Z, then (C, ) kernel K,(t) >_ 0 for each t R.
In fact, for a 1 K(t) n- -v=0 Dv(t) Fn(t), which is the Fejer kernel,

In general, since F.and Fn(t) >_ 0 since Fn(t) sin2 n21t/2(n + 1)sin2 . V4- [Do+
D1 +... + D], we have that Dv (v + 1)F- vF_ and, furthermore, K(t)
(1/(a)n) Evn__0(c- 1)n-vDv(t) (1/(C)n)-vn=0(a- 1)n--v[(V + 1)Fv -vFv-1]

n -v=0 (O 1)n-v-1+ 1)F (v + +
n--11)Fn + -v_0 [(o- 1)n-v- (o- 1)n-v-1](v - 1)F} _> 0. To prove Theorem 5 below,

we also need the following Lemma.
LEMMA 4 (see [6]). For any distribution F with compact support on [-, ], there

is a piecewise continuous function G with the same support on [-, 7] and an integer
p such that

p-1

F DPG +E cJh(J)’
j=0

where Dp is the pth differential operator and 5(J) is the j th derivative of the well-known
Dirac functional in the distribution sense.

3. Main theorem. With the four lemmas introduced in 2, we are now ready
to derive our main theorem.

THEOREM 5. Let f A {f ,F S’ and supp F _C [-r,r]} and the
corresponding G in Lemma 4 satisfy that G(w)/(w2 2)p+2 L(R). Then

f(t) E f(n)
sin (t n)
7(t- n)

n

holds in the sense of (C, ) summability with > p and a Z+.
Proof. We can assume that a p+ 1 since (C, p+ 1) convergence is stronger than

(C, a) convergence for a > p + 1. Let at(w be the (C, a) mean of the nth partial
sum of the Fourier series of the 2r-periodic extention of eUK[_,,,] (w). The proof
will be divided into two steps. First, we show

a(DPG, a,t} -----+n--(x

G(w)DPat(w)dw n-. G(w)DPeUdw.
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Note that the set of all distributions with compact support is identical with the dual E
of E C (R), where E is equipped with the topology of locally uniform convergence
of functions and all its derivatives ([9, Chap. 1.13, Thm. 2]). Here, because a,t(w
and et" are test functions in E, (3.1) makes sense. Since DPat(w ---no DPeitw

a.e. for a > p ([10, p. 59]), we only need to prove L boundedness of G(w)DPa,t(w
to use the Lebesgue dominated-convergence theorem.

Consider DPaant(W) f’L DPK(w -)etd Noticing that both K,(w) and
DPK(w) are 2r-periodic, we have

DPat(w) 2i sin rtDp-lK(w r) itDp-lant(w

by the formula of integration by parts. Similarly it is easy to see that

(3.2)
p

DPat(w) E Pk(t, sin rt)Dp-kK(w r) + Pa+l (t, sin rt)at(w),
k--1

where Pk(t, sin 7rt) are kth-degree polynomials of t and sin rt.
On the other hand, it is easy to show that IDksin nt/sin+1 t <_ cknkl sin tl --1.

In fact, it is true for k 1 due to the inequality sin nt <_ nl sin t for n E Z+. Now
suppose it is true for j 1, 2,..., k- 1. We prove that the same is true for j k. Since
0k sin nt Dk((sin nt/sin+1 t) sin+1 t) k-1 kj=0 (j)DJ (sin nt/sin"+1 t)Dk-j sin"+1 t+
Dk(sin nt/sin+ t) sin+1 t, it follows that IDksin nt/sina+l t <_ cnel sin t[ --1. There-
fore,

(3.3) IDp-kK(w- r)l <_ Ck sin
2

for 1 _< k _< p due to Lemma 2. Obviously, at(w is bounded since Kan(W) >_ 0
(Lemma 3) and

Combining (3.2)-(3.4), we have

p

IDP  t(o )I AkCk
k--1

sin
2

if- Aa+l

for any t in bounded set, where Aa+l and Ak(1 <_ k <_ p) are constants. Furthermore,
it follows that G(w)DPat(w is L bounded from the assumption on G and the
assumption at the very beginning of the proof. Hence (3.1) is proved.

Next, it is easy to see that

It follows that (F,at) n-, (F, eits} f(t) from (3.1) and the above limit for-
n eitwe--ikwmula. But (F, ant (F, (C, a) -k=--n ck(t)eikW), ck(t) f dw



A DISTRIBUTIONAL SAMPLING THEOREM 1157

sin r(t- k)/r(t- k), and (F, ek} f(k). Therefore, we have that

n

linm(C, a) E f(k)sin r(t k)
k) y(t),

sin r(t n)
f(t) E f(n) n)

in the sense of (C, a) summability. This completes the proof of Theorem 5.
Remark 1. The condition G(w)/(w2- r2)p+2 E LI(R) in Theorem 5 cannot be

removed. For example, take F(w) 5(w r) 5(w + r) DK[_,](w). Then F
satisfies all conditions in Theorem 5 except for this L condition. It is clear that the

eiwt}sampling theorem fails since f(t) (F(w), sin ut and f(n) 0 for each
integer n but f(t) is not equal to 0 identically.

Remark 2. Theorem 5 improves the result in [6, Thm. 4.3]. In fact, the condition
supp F C [- + a, 7- a] in [6] implies this L condition. This theorem also improves
the main result in [7] in some sense since (C, a) convergence is stronger than Abel
convergence. In [7], G. G. Walter used a strange terminology on F, strongly integrable.
Instead, in this paper, we used an easily understandable condition on G, i.e., L
condition, which is very weak. It should be pointed out that the strong integrability
of F implies that IG(w)/(w 7r)P and IG(w)/(w + 7)P converge to 0 as w -- :i:Tr [7].
Therefore, our conditions and Walter’s are closely related.
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Abstract. Fractal interpolation functions are used to construct a compactly supported contin-
uous, orthogonal wavelet basis spanning L2(]R). The wavelets share many of the properties normally
associated with spline wavelets, in particular, they have linear phase.

Key words, wavelets, fractal interpolation functions, linear phase
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1. Introduction. A wavelet basis of some function space, for example L2(]R),
is obtained by considering translates and dilates of one or several suitable functions
[1, 5, 16, 17, 19]. Much of the recent interest in these bases has stemmed from
the fact that they can be built having various useful properties such as continuity,
orthogonality, compact support, vanishing moments, etc. Most of the wavelets that
have been investigated to date can be constructed using the notion of multiresolution
analysis [16, 17]. Let be a function in L2(]R) and set Ck,j(x) (2kx- j). For
each k e , denote by Vk the L2-closure of the algebraic span of {k,j j E W}. The
function is said to generate a multiresolution analysis if the following conditions are
satisfied:

(i) c V_ c Vo c V c...;
(ii) clOSL2 (Uke Vk) L2;
(iii) ke Vk- {0); and
(iv) {0,j j E } is a Riesz basis for V0.
If generates a multiresolution analysis, then is called a scaling function and

will satisfy the refinement equation

(1.1) (x) Ecj(2x j).

There also exists a e L2(]R) such that span{C(.- i), i } W0, where W0 is the
orthogonal complement of Y in V1 [16, 17]. Furthermore, the function satisfies the
equation

(1.2) (x) Ed(2x j).

If {o,k} is an orthonormal basis for Vo, the formula

(1.3) dy (-1)cl_y
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gives a simple way of computing the coefficients of equation (1.2). The celebrated
work of Daubechies [5] gives explicit construction of finite sequences of coefficients {cj }
which give solutions of equation (1.1) that are orthogonal and compactly supported
and have varying degrees of smoothness.

Recently, Hardin, Kessler, and Massopust [13] showed that certain classes of frac-
tal interpolation functions (FIFs) also generate a multiresolution analysis of
This multiresolution analysis has certain geometric features that are similar to the
multiresolution analysis generated by splines [4]. These results have been generalized
to several dimensions in [8] and [9]. In [10], scaling functions were exhibited that form
an orthonormal basis for the V0 given in [10]. Here we continue the investigation of
the multiresolution analysis arising from FIFs and construct orthogonal, compactly
supported continuous wavelets. Wavelets with varying orders of differentiability will
be considered in a later paper [7]. These wavelets fall outside the class constructed
in [5] and the multiresolution analysis from which they arise yields several sCaling
functions instead of just one. In this case (1.1) takes the form

(1.4) O(x) Cj,(2x j),

where each Cj is a square matrix the size of which is determined by the number of
scaling functions. Multiresolution analyses based upon several scaling functions have
also appeared in the work of Micchelli [18], Goodman, Lee, and Wang [11], Goodman
and Lee [12], Jia and Shen [14], and Herv [15].

We proceed as follows. In 2, we review the relevant facts on FIFs and the
multiresolution analysis arising from these function spaces. Then in 3, we exhibit
and solve the equations that give scaling functions whose dilates form an orthonormal
basis for a certain V0. We also examine the smoothness of these scaling functions and
exhibit their Fourier transforms. In 4, we use the scaling functions constructed above
to find compactly supported, continuous, orthogonal wavelets. We investigate the
support properties of these wavelets and discuss how to convert them into a wavelet
basis for L2[0, 1]. Finally, in 5, we extend the methods developed in 3 and 4 to
integer scalings other than 2. For these cases there are a number of parameters that
are free to be specified. We examine this in the case of scaling by three and exhibit a
one parameter family of symmetric scaling functions.

2. Fractal interpolation functions. Let I [0, 1], B(I) denote the Banach
space of bounded real-valued functions on I with the oc-norm, and let C(I) c B(I)
be the space of real-valued functions continuous on I. Let ui [0, 1) -- [0, 1) and
vi [0, 1) x ]R JR, i 0, 1,..., N- 1, be as follows:

1
(x + i),(2.1) ui(x) -

where Ai(x) E IIm, the set of polynomials with degree at most m. It will always be
assumed that s max I’si < 1. Let Ii ui([0, 1)) [, ---N) for 0, 1,2,...,N-i,
A (A0, 1,..., AN-l), and define Oh: B(I) B(I) by

(2.3) (q?),f)(x) vi(ztl(x), f(zt-l(x)))



1160 G. DONOVAN, J. GERONIMO, D. HARDIN, AND P. MASSOPUST

for x e Ii, i 0,1,...,N- 1. Note that f(0) Ao(0)/(1- so) and f(1-)

Equations (2.2) and (2.3) imply that (I) is a contraction on B(I) with contrac-
tivity s; thus,

(2.4)

and so (I) has a unique attractive fixed point f, E B(I). In the event that (I) satisfies
the join-up conditions

(2.5) vi+ (0, f(O))= v(1-, f(1-)), i-O, 1,...,N-2,

then f is continuous and is called a fractal interpolation function (Barnsley [2]). In
general, G graph f is typically a fractal set in lR2 made up of images of itself. To
see this, let wi" [0, 1) R [0, 1) R be given by

u))

for 0, 1,..., N 1. Then (2.3) implies that

N-1

[.j
j=0

Let ();___1 IIm and/k E 3. The following theorem gives the basic correspondence
between elements in and functions in B(I).

THEOREM 2.1. (See [10, 12].) The mapping ) f is a linear isomorphism from
to
We will be interested in the case when m 1. If f satisfies equation (2.5), then

f C(I) and the space 0(();__ II1)["l C(I) So is N + 1 dimensional. Thus each
element g So is completely determined by g(i/N), 0, 1,..., N. This allows us to
view 0 in a slightly different manner. Given RN+l let f be the unique element of

i, yi) 0, 1 N. We shall call functions f SoSo passing through the points (
affine fractal interpolation functions (AFIFs).

COROLLARY 2.2. The map RN+I -- o i8 a linear isomorphism.
The fact that So is isomorphic to RN+I adds a geometric component to the

multiresolution analysis associated with FIFs and will play an important role in our
construction of wavelets. Let Cb(IR) be the space of bounded continuous functions on
]R Fix s0, s,..., 8N-l, let V0 {f" fl[i,i+) is an AFIF}NCb(IR)NL2(]R), and define

f e k v f(N-k.) e (/o. Then it was shown in [10] and [13] that the sequence {}
has the following properties"

(a) Y-1 C ]/ C Yl’..,
(b) kenk {0}.
Note that in contrast with [16] and [17], the spaces {} given above are defined

independently of any particular scaling functions, which is one of the several properties
these spaces share with the spline spaces S with integer knots (see [10], [11]). In fact,
0 is spanned by sets formed from the integer translates of several scaling functions.

We say a multiresolution analysis is continuous and/or compactly supported if
it is generated by a finite set of scaling functions {i(x)}i=,g i(x) L2(]R), i
1,..., N such that each is continuous and/or compactly supported on lR. If (i(.),
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CJ(.- k)) 5,5k,o, i 1,..., N, then the {i}’s generate an orthogonal multireso-
lution analysis.

In order to find orthogonal scaling functions {i,N that generate a continuous,i=1
compactly supported, orthogonal multiresolution analysis, we develop some quadra-
ture formulas for AFIFs. Set I* f fgdx, where f E So and g E L2(I). Then from
(2.3), we find

I* fgdx E vi(ul(x), f(ul(x))g(x)dx
i=0 /N,(iT1)/N] i=0 /N,(iT1)/N]

vi(x, f(x))g(ui(x))dx.N

If-we use equation (2.2) along with the assumption that ;ki(x) aix + b,
0, 1,..., N- 1, in the above equation, we find that

(2.6)
(aix + bi)g(ui(x))dxN

+ - =o
si g(ui(x))f(x)dx.

If g 1, then (2.6) yields [13]

/01 EN___I bi)(2.7/ I* =m0 f(x)dx - ( +

while for g(x) x, we find [13]

With (2.7) and (2.81, integrals of two fractal functions may be computed. To this end,
let Oi(x, y) i(x) + .iy with i 5ix +/i, 5i ui, i 0, 1,... ,N 1, and set
g ]. Then [13]

(2.9)

/oI* ]O(x)f(x)dx

1N EiN (siiml + iai?l + 8ibi?TtO " ibi?o-- + (a,,+b)2 + bii)

where 0 and 1 are the Zeroth and first moments, respectively, of ]9.
Consider the N + 1-dimensional basis {f, }N=0 spanning So, where e, 0 <

i < N, {ei}/N=0 being the standard basis in Rg+l, lo (1, ql,..., qg-1,01, and
N (0, Pl,..., PN-1, 11. The sequences {pi} and {qi } are chosen so that (fo, f
0 (fN, f) for 1,..., N- 1. Extend f, 1,..., N- 1, to be functions in



1162 G. DONOVAN, J. GERONIMO, D. HARDIN, AND P. MASSOPUST

0 by defining each of them to be equal to 0 for x I. Let {}N=2 be a sequence of
orthogonal functions in 0 obtained from {f }N__l by the Gram-Schmidt procedure.
The fact that these functions are nonzero follows from Corollary 2.2. Set

(2.10) CN-I(x)- fo(X- 1),
0

xe [0, 1),
z e [1, e),
elsewhere

and i(x)= i(x)/II(x)IIL=; then we find the following.
THEOREM 2.3. Let Vo and, 0,..., N- 1, be as above. Then Vo closL2span

{i(._ l) 0,...,N- 1,1 e 7Z}. Furthermore, the set {i} generates a
continuous, compactly supposed multiresolution analysis.

Proof. om Corollary 2.2 and (2.10), we see that each , 0,..., N- 1, is
compactly supported and is an element of . Since every f 0 is determined by
its values at , , f has a unique expansion in terms of f, 1,..., N- 1, and
cg- and their integer translates. Thus every f 0 has a unique expansion in terms
of {} and their integer translates. In order to show that {} generates a

multiresolution analysis, we must show that (a) {i}=l and its integer translates
IiN-2 andform a Riesz basis for Vo and (b) clOSL keZ k L2. Since the set tw =0

its integer translates are an orthogonal set, it follows that we need only show that
there exits constants A and B, 0 < A B < , such that Vc {c} 12, Ac]t

cg-l( --i)L B]]ct. It is easy to show that B provides an upper
bound, while the lower bound is obtained by observing that cN-l( --i)]]
Ei Ji (ciN--I(x i) + Ci-IN-I(x (i 1)))2dx. Since fo and f are linearly
independent, the matrix

is positive definite. Let A be the smallest eigenvalue of K/lieN-l 112; then A can be
taken to be equal to v.

To show that [Jkez k is dense in L2, we note that for all x

l__i (lfgj(x__i))\j--1

where cJ 1 -pj -qj. Now (b) follows from Proposition 3.1 in [10]. El

3. Orthogonal scaling functions. We begin by considering AFIFs with scal-
ing N 2. By Theorem 2.3, 1 (note that in this case 0 fl) and its integer
translates span 0, and we look for three mutually orthogonal functions.fo, fl, and

f2. From (2.1), (2.2), (2.3), and (2.5), we find that for fl, A0 x, A1 1-x for f,
AO (Pl SO)X, A1 (1 81 pl)X + Pl, while for fo, Ao (ql + so -1)x + 1 so,
,’1 (81 qX)X - ql 81. Substituting these values into (2.9) gives

(3.1)

olf
l f92 dx

(4 6s0 + 16pl 28180 4s 4s2 + 4p18081 -- 38 -- 38o8 4pls 4p18)
3(2- 80 81)(4- 80 81)(2- 8 812



WAVELETS USING FRACTAL INTERPOLATION FUNCTIONS 1163

(3.2)

oo
ffll fflo dx

(4 681 -I- 16ql 28180 48 48 zt- 4ql SoS1 + 38 + 3818 4ql 8( 4qlS)

and

(3.3)

3(2- so 81)(4- 80 81)(2- 802 8)

olf
flo f9.dx

[4(pl + q1)(2s) + 28 + 8081 2) + 8plql(s + s 8081 4)
+ (So2 + s12) 2 -(s + s + 1)3 -4(so + Sl)2 + So3(-2 + 2Sl -6ql)
+ s13(-2- 6pl + 2so)+ 6qlso(2- s)+ 6p181(2- s)
-4-680 A-681 A- 28180]/6(--2 -+- 80 -4- 81)(--4 A- 80 A- 81)(--2 -4- 802 A- 8).

Solving (3.1) for pl and (3.2) for ql yields

(3.4) Pl
-(4 6so 281so 4s 4s / 3s + 3SSl)

16 + 4SOSl 4s 4s21
and

(3.5) ql
-(4 6Sl 2SlSo 4So2 4s21 + 3831 + 3sos)

16 + 4SOSl 4So2 4s2
If we substitute (3.4) and (3.5) into (3.3), we find that

p(so, sl)
ffof2dx 12(-4- 8o81 -t- 8 nt- 8)(-2 -4- 80 nt- Sl)(-4 + so + 81)-’

where

p(8o,81) 2841 nt- 6831 783180 nt- 18SS0 28S21 7818 nt- 18818
14SlS0 + 1281 + 2804 + 68 288 + 12S0 + 8.

Consequently, we have the following.
LEMMA 3.1. The AFIF8 fo, ffll, altd f92 with 1o (1, ql, 0), 1 (0, 1, 0) atd

2 (0,pl, 1) constitute an orthogonal basis for So only for pairs (so, sl) such that

Isol < 1, ISll < 1, and p(so, sl)= O.
COROLLARY 3.2. The only pairs (so, sl) such that the basis {fel, fe, fea} with

21 (0, 1, a), 22 (0, b, 1), and 2a (1, c, 0) can be made an orthogonal basis for
So are those pairs for which p(so, 81) 0. The same is true for bases of the form
{fe, fe., fea } with 21 (a, 1, 0), 22 (0, b, 1), and 23 (1, c, 0).

Proof. Let (so, Sl) be such that {fe, fe., fea} is an orthogonal basis. Suppose
a # 0 (otherwise the result follows from Lemma 3.1 and let {], ], ]3} be the
corresponding orthonormal basis. If] (1) a’ and ]. (1) b’, set wo b’fel -a’^f.
and w a’) + b’fe., where a’2 + b’2 1. Then {To, Wl, 33 } is an orthonormal basis
of So with To(0) To(l) 0 and Wl(0) 0. But by Lemma 3.1, this can only happen
for values (80, 81) such that p(so, 81) 0. An analogous argument can be applied to
the basis {re1, fe, fea }. 1
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From Theorem 2.3 and Lemma 3.1, we have the following.
THEOREM 3.3. Suppose that the pair (so, Sl is such that p(s0, Sl) 0 with

< 1 and ISll < 1. Then i, 0, 1, generate a continuous, compactly supported,
orthogonal multiresolution analysis of L2(]R).

It follows from Theorem 2.3 that for general pairs (so, s1) with Isol < 1 and

0)(a.) (x) 1
C(- ).

i=0

The 2 2 matrices Ci, 0, 1, 2, 3, may be computed by evaluating (3.7) at x ,
1,2,... ,8. From the values of Ai, O, 1, for fo, fl, and f. computed earlier,

we find

(.8)

so + 1/2 p 1
C1 1-s-p H-p(sl q) 1+ p(o p) p

1-s-q + q(s q /+q(sl--q) 0

For later use, we define the inner product

where

<0, > OO*dx O(x)l(x) |
1
dx E2

(1 (x)l (x) ]

E__[llOll o ]o I1111
We will now show that even if longer supports are considered, compactly sup-

ported, continuous orthogonal scaling functions whose integer translates span V0 can
only be constructed for those values (so, Sl) for which p(so, Sl) 0 with Isol < 1 and

LEMMA 3.4. Suppose for a given three-dimensional subspace V of C(I) there is
no orthonormal basis with two functions vanishing at one endpoint and the remaining
function vanishing at the other endpoint. Then any continuous, compactly supported
pair offunctions 1 and 2, composed of linear combinations of the basis elements ofV
and their integer translates constructed so that <(x), CJ(x- k)) 6,6k,O, must have
the property that the leftmost nonzero components of1 and 2 are linearly dependent,
as are their rightmost nonzero components.

Proof. Suppose the supports of 1 and 2 are [0, N] and [0, M], respectively, with
N + M _> 3. Because of continuity, 1(0), 2(0), l(x -- N- 1)lx=l and 2(x + M-
1)lx=l all vanish; furthermore, 1(x)1[0,1 and 2(x)1[0,1 are orthogonal to 1(x + N-
1)[[0,1] and 2(x + M- 1)[[0,1]. Now 1(x)1[0,1 cannot be independent of 2(x)1[0,1
nor can 1(x +N- 1)110,1 be independent of 2(x +M- 1)110,1 without violating the
hypothesis of the lemma. D

We note that by rotation it can always be arranged that M = N.
LEMMA 3.5. If the hypotheses of Lemma 3.4 are satisfied, then no such pair of

functions 1 and 2 exists.

Proof. Suppose that 1 and 2 exist and that M < N, and set y 1/111112
and z 2/112112. Then y and z are orthonormal and for a suitable basis can be
represented as

y (yl, y2,..., YM, 0, 0,..., 0)
((Yl,1,0, 0), (Y2,1, Y2,2, Y2,3),..., (0, 0, YM,3), (0, 0, 0),..., (0, 0, 0))
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and
Z (Z1, Z2,..., ZN) ((Z1,1,0, 0), (Z2,1, Z2,2, Z2,3),..., (0, 0, ZN,3)),

where 2 _< M < N and Zl,1 ) 0.
Consider the rotation r defined on pairs of vectors of the above form,

2 Z2Yl,1 -[- 1,1

(Zl,lY Yl,IZ, Yl,lY "k Zl,lZ) (, ),

where

((0, 0, 0), (2,1, 2,2, 2,3),..., (N,1, N,2, N,3))
;--" ((v/z12,1 -[-y12,1,0, 0), (;2,1, ;2,2, 2,3),..., (-.N,I,N,2,N,3)),

and the shift map s defined on the range of r by

8(, ) ((2, 3,..., N, 0), (1,..., N)) (, ).

Both s and r are continuous, 112112 11)112 1, and ) and 2 satisfy the necessary
orthogonality relations. The operations also preserve continuity of the components,
so the functions corresponding to ) and are continuous. By Lemma 3.4, we know
that )1 and 21 are linearly dependent, so )1,2 0 )1,3. It follows that (), 2) is back
in the domain of r, so we can iterate the map s o r on (y, z) to produce a sequence
(s o r)J(y, z) (y(J), z()) for j 0, 1, 2, Since this sequence is contained in a
compact set, we can extract a convergent subsequence with limit--say (Y, Z). By
continuity of the inner product, we have that IIYII2 -IIZII2 1, Y and Z satisfy the
orthogonality relations, and the functions corresponding to Y and Z are continuous.

Observe that (Y) is monotone increasing in j Since it is a component of a unit"1,1
vector, it is bounded above by 1 and hence converges to Some number Z1,1. We also

(Y))2 (to Z2have that (Zl, converges 1,1) SO that the increments of this sequence, (z(Y+l))21,1

Z1,1) 2 {1,2,... ,N 1}Y1,1)2, must converge to 0. We claim that for each i e
limj__.o (y) 0. We have just shown that this is true for i 1 so suppose it is trueYi,
for some i. Then for each j, we have

y(j+l)
() () (J)(Y)

Zl,lYi+l, Y1,1i+1,1

V 1,1 "- (Z1,1

Since (y) and (Y)
Yl,1 1,1 are both components of unit vectors, each is no larger than 1. Thus

the denominator (above) is no larger than < 2, and we have

y(j+l) (j) (j) (j)(j)
i,1 1--> 1/2[Zl,1Yi+1,1[- 1/2[Y1,1"i+1,11,

or
(j) (j) [y(j+l) (j)z(j)11,1Yi+1,11 2 i,1 "- [Yl,1 iTl,ll

< 2ly(j+l) (j)
i,1 ["t-[Yl,1 ["

By our induction hypothesis, this last expression converges to 0. Furthermore, -(J) >"1,1

z1,1 > 0, so limj_ () 0 and the claim is established by induction.Yi+l,1
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Now, our limit point (Y, Z) must have the property that 1,1 0 for i
1, 2,..., N. But by the lemma, we also know that the leftmost nonzero 3-tuple in
Y--say Yp--is linearly dependent on Z1 (Z1,1,0, 0). So Yp has the form (Yp,, O, 0),
and We have just shown that Yp, 0. Therefore, Y must be 0, which contradicts the
fact that IIYII 1. El

With the above lemmas we are now able to prove the following.
THEOREM 3.6. If sO and Sl do not satisfy the relation p(s0, Sl) 0 (equation

(3.6)), then there are no continuous, compactly supported, orthogonal scaling functions
formed from the AFIFs generated by so and Sl such that the L2-closure of the linear
span these functions and their integer translates is Vo.

Proof. It is easy to show that 0 cannot be spanned by the integer translates of
one continuous, compactly supported scaling function. This is because, if the scaling
function is supported on [0, M], M > 1 and we consider an interval of length N, there
will be at most N + M- 1 translates of supported on this interval. However, the
same interval will contain 2N+ 1 interpolation points. Consequently, for large enough
N, there will not be enough translates of to match all the necessary conditions. By
Lemma 3.5 we need now only consider pairs so and Sl that allow an orthogonal basis
for So in which at least two basis vectors vanish at either 0 or 1. But Lemma 3.1
and Corollary 3.2 show that this can occur only in the case when p(s0, Sl) 0, which
proves the result. El

Since compactly supported, continuous scaling functions constructed from AFIFs
occur only for the pairs (so, s), Is01 < 1, Isl < 1, such that p(so, sl) O, we examine
the zero-set of this polynomial. The next lemma shows that the particular set we are
interested in is convex. This confirms the contour plot given in Figure 1.
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LEMMA 3.7. The zero-set of the polynomial

p(80, 81) 28 q-6803 7881 q" 18881 28802 780831 if- 18SOS21
14SOSl + 12S0 + 2S + 6S3 28S2 + 12Sl +.8

has two connected components, one a convex closed curve and the other a pair of
asymptotically linear curves that cross at a point.

Proof. First, we transform the polynomial using the change of variables

so =x-y,
sl =x+y

to get a new polynomial,

q(x, y) 18y4 + (-42 + 24x2)y2 lOx4 q- 48x3 70x2 + 24x + 8.

Note that q is symmetric with respect to y for all values of x. The transformation is
just a rotation by 45 and a dilation by f, so it preserves all relevant properties of
the zerset.

Now, we want to find out where the transformed polynomial, q, takes the value
0. To do this we consider the equation q(x, y) 0 and solve for y as a function of x.
This gives

y +/-y/ x2 + x/v/12x4 32x3 + 28x2 16x + 11,

or

-x2 vv/12x4 32x3 + 28x2 16x + 11.

The first solution gives a pair of asymptotically linear curves that cross at x 2,
1] givestwo halvesy 0. The second solution, which is real valued only for x E [-,

of a symmetric closed curve, , and is the one that we are primarily interested in.
Let f denote the positive branch of . If f is a concave down function, it follows

by symmetry that is a convex curve. Furthermore, since the square-root function is
monotone concave down, it suffices to show that f2 (- f. f) is concave down. Thus,
we wish to demonstrate that the second derivative of f2 is nonpositive on [-, 1].
That is,

4 x/(48x3 96x2 + 56x- 16)2 (144x2 192x + 56)0 _> - + 24p3/2 12p/2

where p 12x4 32x3 + 28x2 16x + 11. Note that p is positive for all values of
x, so the above expression is well defined. Also, since the denominators are powers
of p, they are positive as well, and we can multiply them out to get an equivalent
inequality,

0 _> -4p3/2 x/(-144x6 + 576x5 888xa + 832x3 780x2 + 528x 122).

7 3To show this, we approximate vffi with a linear polynomial, q /( x). Observe
that q _< vffi on [-, 1] since p_q2 6(x_l)(192x3_320x2+101x_29 is nonnegative
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on that interval. Thus, by substituting pq for p3/2 in the above and expanding, we
have

4p3/2 --V’3(-144x6 + 576x5 888x4 + 832x3 780x2 + 528x 122)
< /-(-144x6 + 612x5 1068x4 + l140x3 1024x2 + 673x- 199)
_< x/-(-144x6 + 612x5 1068x4 + l140x3 1024x2 + 673x- 199)

+ v (37683- 19989x)3125

-4-(5x- 4)2(4500xa 11925x3 + 11415x2 9729x + 9128)3125

<0.

The last inequality is justified since both factors involving x are nonnegative for all
values of x. El

Let (a, b) be the appropriate pair that solves the equations dp 0 and p 0,dsl
which yields a .. -.4628. Then by examining p(s0, Sl) and using Lemma 3.7, we see
that for every so e [a, 1), there is at least one and at most two values of Sl, Is1] < 1
with p(so, sl) 0. If so sl, then x 0 in the polynomial q(x,y) and we find
q(O,y) -10y4+48y3-70y2+24y+8 -2(5y+l)(y-1)(-2+y)2. Thus a
solution of this equation is y - so sl, and equations (3.4) and (3.5) give

8Pl ql 130 Consequently, for so -, the functions fo, fl, and f.,
with o [1,-Y6,0], 1 [0, 1, 0], and 2 [0,-Y5, 1], are mutually orthogonal. The
scaling functions 0 and 1 given as in Theorem 3.3 are shown in Figure 2. Note that
0 is symmetric about 1/2 while 1 is symmetric about 1. Consequently, individually
both exhibit linear phase [4].
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TABLE I.

80 81 Pl ql

--.45
--.45
--.4
--.4
-.35
-.35
--.3
--.3
-.25
-.25
--.2
--.2
-.15
-.15
--.1

-.05
-.05

.0

.05

.1

.15

.2

.25

.3

.35

.4

.45

.5

.55

.6

.65

.7

.75

.8

.85

.9

.95

.24913840973997585189

.50007955918728063419

.090530851689329739269

.64049995285638175410
-.0072635265148628714356
.72178391100872377451

-.083203336756332486470
.78288589774512971988

-.14618214061458410571
.83269626630597925447

--.2
.87501353979083931481

-.24668956302990954576
.91187113158837005532

-.28747604282460888331
.94449789445249286835

-.32315154257329379535
.97369298030356868681

-.35424868893540940950
-.38113082998341069519
-.40404262161178188244
-.42313982625655554203
-.43850726493738378110
-.45016949520593589167
--.45809667756743604588
-.46220699424886229565
-.46236637072924777344
-.45838588104810280947
-.45001697146890813343
-.43694444222791179535
--.41877692441505661965
-.39503429791626321840
-.36513096401300933813
--.32835278119092827591
-.28382303116974082780
-.23044714090374489214
--.16681210426698377456
-.090979774570901825562

-.38009192840012554360
-.35582657114704781388
-.36870444702962973875
-.31094033110232474973
-.35283756141879955795
-.27028183540476446288
-.33573733406363060725
-.23067148400259886260
-.31804590990375360555
-.19153057613718116605
-.30000000000000000000
-.15268371309061925454
-.28170568236593494170
-.11408486745843612530
-.26321338049774688720
-.075743258091117265968
-.24454544031947412926
-.037696611328522325658
-.22570811482256823492
-.20669731648304742064
.18750151351161996512

-.16810316494975289571
-.14847932732430920238
-.12860173660964793697
-.10843651287567490963
-.087943553306688133513
-.067075631539224926148
-.045777188693243047605
-.023982773837446344605
-.0016150611545678131322
.021417671915978278429
.045224794037227840313
.069937623736922198158
.095715398034445688010
.12275412910594040701
.15130096524457396024
.18168005062200866695
.21434488601106355137

-.12894659319741025282
--.023947660348619628508
-.19115180858473286044
.040636075681553380445

-.22845520471397257834
.081026963799106383553

-.25696121868399870140
.11334323161084481474

-.28030023201699694275
.14123278956066272834

--.30000000000000000000
.16624529998818764227

--.31686046415475332193
.18920768747150983345

--.33134872545322789185
.21061989468097328770

--.34375214058248711088
.23080887479344090984

--.35424868893540940950
--.36294295781760398380
--.36988575837081197105
--.37508507407448600005
-.37851197269001982088
--.38010331409967757543
--.37976221812377236383
--.37735680556076141315
--.37271747797639839730
--.36563286121393223513
--.35584445910606541603
--.34304002442650905123
--.32684563685890545470
--.30681645638723853448
--.28242603273601441995
--.25305374190333264848
--.21796900696794990496
--.17630849139663963600
--.12703592667444104842
--.068856253193915809433

If we normalize so that ((, ) I, then the coefficients in (3.7) can be re-

expressed as (x) 3-=o x/((2x -i), where i E-1CE/v/-. The {} for

s0=sl---- are

(3/10 4/5 ) (3/10 0 )Co -i/20 -3x//20 CI 9/20 x/-/2

(o o ) (o o)C2= 9/20 -3x//20 C3:-1/20 0

The values of p and ql for other acceptable pairs so and s are given in Table 1.
We now consider the smoothness and approximation order of the function i,

i 0, 1. Recall that the HSlder exponent of f E C(I) at x is

c lira inf{log If(x) f(y)l/loglx yly e B(x,)}
e---O
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and a inf{ax,x E I} is called the Hhlder exponent of f.
Let S be a closed subspace of L2(IR), E(f, S) min{llf sll" s e S}, ] be the

Fourier transform of f, and w2k(]R) {f e L2(]P) Ilfllw I1(1 +1" Ik)]ll < cx}.
Following de Boor, DeVore, and Ron [6], we say that S provides approximation order
k if for every f e w2

k (JR),

E(f, Sh) <_ Cshkllfll (JR),

where Sh {s():s e S}.
LEMMA 3.8. Given any pair (s0, Sl), Is01 < 1, Isll < 1, letf So. Iflsol < 5

and Isll < 1/2, then f is Lipschitz continuous, i.e., there exists an M < o such that
Vx, ye [0,1],lf(x)-f(y)l <- MIx-Yl. If maxlsil > 1/2 and f is not a line, then f
has Hd’lder exponent a log max Isil/ log 2.

We note that the second part of the lemma has already been proved by Bedford
[3], and we include the proof for the convenience of the reader.

Proof. Let s maxi Isil, in {il,i2,...,in}, ij e {0,1}, j 1,...,n, and
a(in) il/2+i2/4+’..+i,/2n. Then for x e [a(in),a(in)+ 1/2hi, we find from (2.3)
that

(3.9)

f(x)
n k

im
2k-lxd-bik- 2n-- HSi

k=l m=l j=l

+ sis f 2nz- 2-mi
j=l m=l

Suppose 1/2n+l
_

IX- Yl -- 1/2n and x,y e [a(in),a(i) + 1/2]; then the above
formula shows us that

(a.10)
n

[f(x)- f(Y)l <- (28)k-llx --Yl "- 8nC,
k=l

where C 211fll. Suppose first that s < -12 then
n

If(x)- f( )l < +
k=l

where the fact that 1 _< 2n+ Ix- y] has been used to obtain the last term in the above
expression. Since 2s < 1, we find that

1+2C
(3.11) If(x) f(y)[ < lx Yl.1-2s

If 1/2n+ <_ Ix- Yl <- 1/2n but x and y are not in the same dyadic interval, let x0
be the boundary point between the respective intervals that x and y are located in.
Then If(x) f(Y)l <-If(x) f(xo)l + If(x0) f(Y)l, and applying (3.11) gives

If(x) f(Y)l - e(1 + ec)
Ix- l1- 2s

for all x, y [0, 1]. This gives the Lipschitz continuity of f.
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If s max Isi[ > 1/2, assume without loss of generality that f(0) 0 f(1). For
if that is not the case, we can modify f by adding linear functions LI(X) and L2(x)
so that ] f + L1 + L2 is still in So, ](0) ](1) 0. If 1/2n+l < Ix- y[ <_ 1/2n,
a(in), x, y e [a(in), a(in)+ 1/2HI, (3.10) implies

If(x) f( )l < C + C +
k--1

Since 1/2+1 < ix- Yl < 1/2, we find that ix- yl > 2-(+1) 2-2-n 2-sn

In swith a ._-.. Hence
lnl/z

( 2s)(3.12) If(x)- f(Y)l < 2 C+
1- 2

[x-yl

for x, y in the same dyadic interval of length 1/2. If x and y are not in the same
dyadic interval, then using the same argument as in the case when 2s < 1, we find

If(x) f(Y)l < 2+1 C+

for all x,y E [0, 1]. We need only show that a is the largest possible exponent.
Suppose without loss of generality that s Is01. Since f vanishes at 0 and 1 and
f(1/2) 0 since f is not a line), there exist distinct points xo and yo e [0, 1] such that
f(xo) f(yo) and (xo yo)/(f(xo) f(yo)) > 0. With x xo/2 and yn yo/2n,
we find from (3.9) that

n-1

f(Xn) f(Yn) Z(2S0)k-1 X0 Y0
2n

k--1

+

Therefore,

[f(x)- f(Yn)l snlf(Xo)- f(Yo)l 1 +

> snC > klxn- yl,
xo Yo

f(xo) f(Yo) 1 280

which proves the result. El
We can now prove the following.
THEOREM 3.9. Suppose the pair (so, s) is such that Isol < 1 and Is[ < 1 with p

and q satisfying (3.4) and (3.5), respectively. Then Vo provides approximation order
2. If so and sl are both in magnitude less than , then , i O, 1, are both Lipschitz.
If s max si > 1/2, then , O, 1, have Hhlder exponent a log s/tog 2.

Proof. In order to show that I/b provides approximation order 2, we need only
prove that the hat function

x, 0 <_ x <_ 1,g(x)= 2-x, l<_x<_2

is in Vo [20]. It is easy to see from (2.3) that for any pair so, s with 0 < Is01 < 1 and
0 < ISll < 1, f[o,1/2,1](x)= x. Consequently,

g(x) (1/2 p)(x) + 1(x) + (1/2 q)(x 1).
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The fact that 0 and 1 are Lipschitz when s < 1/2 follows from Lemma 3.7.
Purthermore, Lemma 3.7 also shows that if s > 1/2, then the HSlder exponent of 0
is log Isl/log 1/2. This will also be true of 1 once it is shown that ql is not piecewise
linear. For s > 1/2 this can happen only if pl ql 1/2; however, from (3.1) we find
that with pl 5,

-2+ so
(-2 + so + sl)(-4 + so + sl) - 0,

which is a contradiction. Therefore, f. is not a line. A similar argument shows that

fo cannot be a line, and the result now follows. El
We complete this section by computing the Fourier transform of 0 and 1. To

this end, set g(x) ekx with N 2 in (2.6) to find

For 0, ao 1, bo 0, al ---1, and bl 1. Consequently,

O(k) 8ek/2sin2 k/4 l
(so -i-eik/2sl)O lIk----v-+

With C(k) 1/2(so + ik/281) and hi(k) 8eik/2(sin2 k/4)/(k2), we find that

(k) E Ic(2J_l)
n--O j--1

The above series converges uniformly for k e 1 since IC(k/2J)l <_ (]sol + Is11)/2
r < 1, j 1, 2..., and since sinx/x <_ 1 for all x E IR.

To compute the Fourier transform of 1, we use the fact that 1 can be written
in terms of the hat function g and o as shown above. Thus

1 ql) eik

In Figure 3, the magnitude of the Fourier transforms of 0 and 1 are plotted when
80-81 5"

4. Construction of Compactly supported wavelets. Having constructed a

multiresolution analysis based on the vector (:) and its dilates and translates,
we now construct compactly supported, continuous wavelets. If ldo is the orthogonal
complement of 0 in 1, then any e l/do can be written as (x)= l(x)),((x) where

(x)l[j/2,(j+l)/2), 0, 1, is an AFIF with interpolation points at the quarter integers.
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(I)(x)- (:(x)h is supported on [0, 21 we shall look for (x) to be supported onSince (x)]
the same interval. Therefore, set

(4.) (x)

gi (x), 0 < x <
2

1
g(), <x< ,

i--O, 1.
3

g(x), < x < ,
3

g9 (x), - <_x <_ 1,

Here . are the values i(x) taken at the quarter-integer points in the intervals
indicated. In order to preserve continuity and keep the support of (I)(x) on [0, 2],

[0, a, a], y [a, a, a], y [a, a, a], and [a, a, 0], i= 0, 1. The
coefficients aj, j 1,2,..., 7, 0, 1, are adjusted so that (x) is orthogonal to

(x) and its translates and <o(X), el(x)) O. In the case when so - s and
pi lO3 q, it follows from (2.7)-(2.9) that for 0 or 1,

(4.2)
41

i(x)(x)dx -a + -a2 -- -a + a*4,

(4.3) jo 4 2 41 2i(x)(x + 1)dx a4 + a + -a6 + a,

2 1 107

(4.5)
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{(x) (x 1)dx

and

(4.7)

25
(aolla + aa + a5a + 0

2

(x)l(x)dx - aTaT)
73 (aa12 + o o o+ - a6a6 + a4a4 + a6a6)
3 (alaa+aO4a+ 0 0+ a6a4 + a6a4)
5 (aO2a+ 01 01 01+ -- ala2 + a3a2 + a2a3

q_ 01 01 01 01 01
a4a3 + a3a4 + + a4a5a5a4 4- a6a5

+01 01 0aa + aa + aa,).

The above equations once set equal to 0 will fix all but three of the unknowns. Two
of these are used to normalize the integrals of 0 and 1. One unknown remains
because of the one parameter family of rotations taking into other mother wavelets.
A remarkable.fact, to be shown below, is that once (4.3), (4.5), and (4.6) are satisfied,
then (O, 0(. + i)) 0 V E , i 0. A solution to the above equations that give
(O, O} I with having the smallest possible support is

(4.8)
yl0= 0,

200 20 20’ 200 2

2 200’ 20 J’ y4-- 2’200’

(4.9)
[0, 0, 01,

y= -1, 25’ 5 yl 1
4 ,’-6, 0

(see Figure 4). Since E V1, we have

3

(4.10) O(x) E DiO(2x i),
i--0

where for the particular given by (4.8) and (4.9),

(4.11)

,/g/2oDo= 0 0

D2 (3x/-/20 -v//20 )3v/-/10 x/-g/5

-9//20DI= 0

-//60D3 -x/g/30

)1/-g
0o).
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In order to see why the orthogonality of to the translates of (I) implies the
orthogonality of to its nonzero integer translates, we examine the multiresolution

analysis arising from (I) and consider the slightly more general case where (I) E ]RN,
which we will use in 5. In this case, each C in (3.7) is an N N matrix and (I) satisfies
the N-scale dilation equation

2N-I

O(x) E CO(Nx -i).
i=0

Likewise, the mother wavelet satisfies

2N-1

(x) = E DiO(Nx -i),
i=0

where the matrices D are N(N- 11 N matrices. The orthogonality of (I)(x) to its
integer translates can be reexpressed as

2N-1

(4.121
k=0

where IN is the N N identity matrix. Likewise, the orthogonality of against its
translates gives

2N-1

(4.13/ E DkD-Ni 5i,OIN(N-1) V i e 7Z.
k=O
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The fact that Wo is orthogonal to V0 in V1 means

2N-1

(4.14) E CkD-Yi 0
k=O

VIEW,,

while V1 Vo @ W0 can be expressed as

(4.15) E Cn-Nken-Nk "j- Dn-NkDn-gk 5m,nIN V n, m E W,

k

(see [5]). If we set

H (Co, C1,..., CN- ), H (Cv, Cv+,, C.v-),

G (Do, D DN-1),
then (4.12) can be recast as

and G2 (DN, DN+I,..., D2N-1),

(4.16) H1H =0

and

HH + H.H IN.

Likewise, (4.13)and (4.14) become

(4.18) GG 0,

(4.19) GIG + G2G IN(N-),

(4.20) H2G O,

(4.21) H1G 0,

and

(4.22) HIG + H2G O.

Equation (4.15) can be recast as

(4.23) HH + HH2 + GG + GG2
and

(4.24) HH2 + G’G2 O.

The general solution to (4.16) is H PY, where P1 ][N2 - ]pN2 is an orthogonal
projection onto the null space of H1 and Y is any N2 N matrix. Likewise, from
(4.21), it is easy to see that G PIX, where X is any N2 N(N- 1) matrix. If we
set Hi* (IN-P1)Y, then (4.16) and (4.17) are satisfied and Y Hi* +H. Observe
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that Y*Y IN. Equations (4.18)-(4.20) now suggest that G (IN2 --P1)X with
X*X IN(N-I), and (4.22) says that Y*X 0. Since Y is an N2 N matrix, and
X is an N2 N(N- 1) matrix, it is an idea of Gil Strang that X can be obtained

by letting its columns be the remaining orthonormal basis vectors for the IIg2, the
first N basis vectors being the columns of Y. That is, we choose X so that the matrix
(Y X) is an orthogonal matrix. If this is done, (4.23) and (4.24) will also be satisfied
since YY* 4- XX* IN. Thus equations (4.16)-(4.24) and the assumptions on G,
G2, H1, and H2 can be summarized as

The filters arising from the above equations are closely related to those found in
Vetterli [22] (also see Strang and Strela [21]). Thus we have shown the following.

THEOREM 4 1 Let {Ci2N-1 be N N matrices satisfying (4.12) Then thereJi=0
2N--1ezist N(N-1) N matrices {Di}=0 constructed as above so that equations (4.13)-

(4.15) are satisfied.
We now show that for any wavelet q that is constructed using the above scaling

function , the minimum length of the support of any of its components is -3
2 and at

least one component must have a support greater than or equal to 2. Before proving
the next lemma, we note that for Is01 < 1, Isll < 1, and f E Vo,

lbl(x i))(4.25a) f(x) -(c(x i) 4- c

where

1)(4.25b) c f(i +
and

0 ( 1) __C11 () 1 (3)(4.25c) c f 4- - -c_ -LEMMA 4.2 For any pair (so, s) such that p(so, s) 0 with Isol < 1 and

1811 < 1, there is no wavelet function supported on [0, 1] or on [1/2, ].
Proof. Denote by U1 the restriction of Q to the interval [0, 1]. That is, U1

{fl[0,] f E frl}. We see that U1 is a five-dimensional vector space. For notational
simplicity, let

Xl )1][0,1], X2 (" + 1)l[0,],
Xa (2" /1)1[0,], Xa (2"--1)l[0,a].

Note that rank{,Xl,X2,X3,X4} 5. Suppose that o is a wavelet supported on

[0, 1]. Then o is orthogonal to x, x2, and o because of the orthogonalit between
wavelets and scaling functions. Also, from (4.25) applied .to functions in V, we see
that o is orthogonal to (2. +1) and (2.-1) (and hence to x3 and xa) since
vanishes at both 0 and 1. Thus o {o, xl,x,x3,xa} {0}. This cannot be, so
there is no such wavelet

Now suppose that o is supported on [, ] and let

y, 1[o,1/2],

Zl: (.

Y2 1[o,1/2],
[o,1/2],

0(. +  )llo,1/2].
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Note that the above are AFIFs on [0, 1/2]. Since f.(2.) is orthogonal to fl (2.), it
follows from (3.8) that if so 0 then yl and y2 are linearly independent. A similar
argument shows that if sl 0 then y3 and ya are linearly independent. Orthogonality
between 0 and (.- j) dictates that Zl must be orthogonal to y3 and ya. This
implies that zl is orthogonal to all functions in Qll[0,1/2] vanishing at 1/2 since this space
is three dimensional with basis {f (2.) }=0.3 Similarly, z2 is orthogonal to all functions
in Qll[o,1/2] vanishing at 0. Thus it follows from (4.25) that 0 is a multiple of 1(2.-1).
Now, 1 does not .vanish at 1, but we require that (1, 0) 0. This cannot be, since
among the functions (2.-j), of which 1 is a linear combination, the only one that
does not vanish at 1 is 1 (2.-1).

For the case of so 0 (or similarly for Sl 0), we can apply the quadrature
formulas (2.9). Solving p(0, Sl) 0 yields sl V- 3, which implies that y3 and ya
are linearly independent. Thus Zl is still a multiple of the left half of 1(2.). Rescale

0 so that zl(1/2) 1; hence z2 must have the form f[1,r,0](2"), where r is yet to be
determined. Since so 0, (x)l[0,1/2 f[0,1/2,1], which is a line. From (2.9),

2 4- 12r- 6sl 4- s21(0(. 4- 1), 0) (z2, yl)
6(sl 2)(sl 4)

In order for this to be equal to 0, r - x/- 3. We must also have2 12 6

(0,1) 0. From the above remarks, we find that bl[1/2,1] 1[0,p,11(2"-1), while

11[1/2,1] /[p, 1-,1+,+281P,11(2.--1 and (/)1[[1,1 f[1, __+= ,q](2.-2), where from (3.5) q

(3s2 + 281 2)/(4Sl + 8) v/-3 and from (3.4) p (1 s)/(s2 4) (x/ 4)/6.
Prom (2.9), we find, after change of variables,

eLI ILl(0, 1} f[o,p,11(x)f,l_,,++.,1,,ll(X)dx 4-

_
fil,r,ol(x)fil,,+_= ,ql(X)dx

(7 + 5v)(6r 4v/ + 25)
76

Thus in order for the above integral to be equal to 0, r (4yr- 25)/6, which cannot
be. O

This leads to the following.
THEOREM 4.3. For any pair (so, sl) with p(so, Sl) 0, Is01 < 1, and ISll < 1, let

be a wavelet. Then the support of one component of must be of length > , while
the support of the other component must be of length > 2.

Proof. Lemma 4.2 shows that both components of must have support lengths
of at least . It is easy to see that not both may be supported on [-1,-]2 since in
that case either the pieces supported on [-1,-1/2] or those on [0, 1/2] must be linearly
dependent. A rotation of the components could then be used to find a wavelet whose
support length is 1 which would contradict Lemma 4.2. A similar argument shows
that not both components of may have support [-,

1 b [-1/2,1]. In thisSuppose (,.), where supp [-1 1/2] and suppb2

case, the coefficients for the expansion of in terms of the normalized (I)(2.) have the
form

0 0 0
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with all others being 0. The relation (0, 1 0, which must be satisfied, implies
that (2so 2ql+ 1)55 0. If 55 is not to be 0, then this is equivalent to q 1/2 + so.
However, equation (3.5) also gives ql in terms of so and Sl. Equating right-hand sides
and simplifying gives

0- (80, 81)= 881 --4sos + s31 + 6s + 6s 1081 12.

Of course, p(so, 81),-- 0 must still be satisfied, so

0 --p(80,81) --(80, 81)
-2s + 7sso + 7818 2s -6s31 19s21so lnslso2 7s(
+ 22s + 14SlSO + 22%2 12s 2so + 4

+ e )d i +

where d 3- 81, (2 3- 280 81, 1 --2804 -- 14S03 20S02 + 58S0 158,
7 2

r2 --- 831 -8 81 - 2__5 and 2 --s21 + 1/4 SlSO + -s0 + 1-81- 1/480 2_ .. It is

easy to check that 1, 2, 1, 2, and 2 are all positive for (so, Sl) E (-1, 1) 2, so the
above equation has no valid solution, and it follows that 55 0. A similar argument
shows that 56 0.

Now, (o, 1) 0 implies that 5a57 0, which is satisfied only if 54 0 or

57 0. In the former case, o is supported on [-1, 0], and in the latter case, 1 is
supported on [0, 1]. By Lemma 4.2, neither case is possible. D

Although it has been shown by Daubechies [5] that with one scaling function,
compactly supported, continuous wavelets cannot be symmetric, this is not the case
with two scaling functions. In order to obtain wavelets supported on [0, 2] that are
symmetric or antisymmetric with respect to 1, it must be that so sl. To see this,
suppose that is such a wavelet with support [0, 2]. Since E 11, it follows using (2.2)
and (2.3) that for x e [0, 1/2], () cox + s0(x) and (2 ) -asx + s1(2 x).
The symmetry of implies that () =i=(2- ), where the plus sign is used if
is symmetric with respect to 1 and the minus sign if it is antisymmetric with respect
to 1. Comparing these equations we see that either 80 Sl, which implies that both

_1s values are equal to , or is linear on the intervals [0, 1] and [, 2]. In the latter
case, one can apply the same argument to [1/2, 1] and [1, . These cannot both be
lines, since in that case they might as well have been constructed for so Sl 0,
contradicting Theorem 3.6. Suppose that one wavelet 8 is symmetric while the
other Ca is antisymmetric with respect to 1 and set 0 [0, a, a], 2 [a, a, a],
3 [aa,a,a2] a2, a, 0], 91 [0, a, a2], 2 In21, a, 0], [0,-a,-a2],
and 4 [-a21,-a,0]; then equations similar to (4.2)-(4.5) ((4.6)is automatically
satisfied) give a 1, a -30, a3 111, a -100, a 1, a -30, and a 81.
Here 11811L X/-IIalIL2. If 8 and Ca normalize to 1, then the corresponding
matrices in (4.10) are

x/ /20 -3/10 D1- 9x/ /20 0

0]-9x/- /20 3/10 D3= 0

These wavelets are plotted in Figure 5. Consequently, 8 and Ca individually exhibit
linear phase.
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FIG. 5.

A similar computation where both wavelets are assumed to be symmetric with
respect to 1 and supported on [0, 2] yields no solution.

Finally, we note that the multiresolution analysis arising from AFIFs is well suited
for compact intervals. In fact, if we let V k f L2[0, 1] and Ck,j~i Ck,jl[0,1],i then

{V} provides a multiresolution analysis for [0, 1] and k,j, J E , 0,1, is an

orthogonal basis for V/. To see what to do with the wavelets, write
and [[j-l,j], 0, 1, j 1, 2. We now rotate the wavelets, i.e.,

+,O=aO+b, +,=_b0+

with lal 2 + Ibl 2 1 so that

(4.27) <-,o, }> O, j 1,2.

To see that this can be done, note that (4.27) is equivalent to

(4.28) a(0,) + (1 ) 0

and

(4.29) a(0, ) + (t,) 0.

However, the fact that (0, 1) (10,)
_

(20’ 21) 0 and (1, (1) (11, ()
_

(, 1) 0 shows us that (4.28) and (4.29) are not independent, which allows us
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to construct the desired rotation. With +,0 and +,1 constructed as in (4.26), set
,j :1[0,1] and

0 if +,1
(4.30)

k,j otherwise.

Then the nonzero components of {k,j}jE form an orthogonal basis for W,k >_ 0,
where V+ V (R) W. This leads to the following.

THEOREM 4.4. -{k,j (k,j[[0,1] k

_
0, i 0,1,--i _< j _< 2k --1} is an

orthogonal basis for V Vk N n2[0, 1], while {,j,k >_ 0, 0, 1, i 1 _< j _<
2k -(i + 1)} forms an orthogonal basis for W. Furthermore, Yd (k>0W L2[0, 1].

For the case where so sl -, it is easy to see that ok,j are just the symmetric

wavelets restricted to [0, 1] i.e., 0 Ck,yl[0,1] while ,ys Ca if the support ofk,j k,j,y C [0, 1] and 0 otherwise.

5. Scaling by other integers. Many of the results of the previous sections can
be used to produce scaling functions and wavelets satisfying dilation equations of the
forms

O(x) E CiO(Nx -i)

and

(x) E DiO(Nx i)

with N > 2. Note that in this case the matrices Di will in general not be square
matrices. We begin by considering the N + 1-dimensional basis {f }N=0 spanning So,
where i ei, 0 < _< N, {ei}N=0 is the standard basis in RN+l, and the last vector 0
is given by 0 [1, ql, q2,..., qN-1,0]. What is needed is to adjust qi, 1 <_ i _< N- 1,
and sj, 0 <_ j _< N, so that fo is nonzero and orthogonal to f, 1 _< N.
Once this has been accomplished, orthogonal scaling functions i, 0 _< i _< N- 1,
can be obtained by applying the Gram-Schmidt procedure to the set {f }N=l. The
functions i, 0 _< _< N- 2, obtained from the functions {f }/N__I will be continuous
and supported on [0, 1] since each f, 1 _< _< N- 1, vanishes at 0 and 1. The
last function N-1 can be obtained by subtracting from fN its projection onto the

IAiN-2 then piecing it together continuously with fo as wassubspace spanned by Lw Ji=0
done in the case N 2 in 3. It follows from Theorem 5.3 below that it is sufficient
to consider only a basis for So of this type.

Since there are N orthogonality relations and 2N- 1 unknowns (qi, 1 <_ <_
N- 1, and sj, 0 _< j _< N- 1), it may be possible to impose other desirable condi-
tions besides orthogonality and still obtain the required basis {i}N=-. If O*(x)
(1 2 (N-1), then (I) will satisfy (I)(x) 2N-1’=0 CiO(Nx-i). (x) may now
be obtained from (I)(x) using Theorem 4.1 or the orthogonality equations (2.9) and
solving as in 4.

In order to compute the orthogonality relations (fy, fo 0, 1 _<

_
N, A. (x)

a}x + b, 0 <_ <_ N, 0 <_ j <_ i- 1, need to be computed. From (2.1)-(2.3) and
6i--l,j- 6i,j- 8jbN,i and b 5i,y for 1 < i < N and(2.5), we find that aj

o0 _< j _< N 1 with q0 1 and qN 0. Also, aj q+l qj + sy and b qy sj for

0 _< j _< i- 1. If 1 E/N___ 8i and $2 N__I isi, it follows from (2.7) and (2.8)
that m 1/(i- Cl), mi ((i- c1)i -+- c2)/((/- $1)(/2 ’1)) for 1 _< i _< N- 1,
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m0
N (1 $1)/(2(N-

mN N(3N- 1)+ (1 5N)S1 + 3(1 N)S2 + 2S
6(N-S1)(N2-S1)

and

1 S + 2EN-i=1 qm 2(N Sl

7Ytl
0 Sl(Sl (N -- 1))- 3(N- 1)$2 + N + 6 :,iN__l qi((N- Sl)i -6(N-S1)(N2-S1)

With the above moments, (2.9) yields

f o)

(8n-1 8n)m -[- (m m) E 8i(qi 8i)
i=0

N-1

+m E 8i-1 qi + Snm Sn=-1 -}- 2Sn
6

i--1

1
+ -’ (qn- -’]- 4qn + qn+ N s

i=0

1 <_n<_N-1,

and

IN,O ?Tt01 8N-1 8 + moN raN1 si(qi si)
i=0 i=0

+ Si_lqi(mN1 1/3)+
qN-1 8N-1 N- 8

i=1
6

i=o

For N 2, (5.1) and (5.2)yield (3.2) and (3.3) with pl --0. For N 3, (5.1) and
(5.2) become more complicated and we shall restrict ourselves to considering s values
that give symmetric or antisymmetric wavelets.

Just as when N 2, we require that the s values be arranged symmetrically, so so
must be the same as s2. In this case, a one-parameter family of continuous, compactly
supported, orthogonal scaling functions, each with linear phase, will be produced.

We proceed as before, examining what conditions so must satisfy for compactly
supported scaling functions to exist. Let To be the space of vectors vanishing on both
sides and T1 be those vanishing on the left. Then To is a two-dimensional space and
has a basis of the form ;1 [0, 1, 1, 0] and 22 [0, 1,-1, 0]. Let -3 [0,pl,p2, 1] be a
vector orthogonal to To in T1, so that {21,2,;3} forms an orthogonal basis for T1.

Now, if we can find 24 [1, ql, q2, 0] orthogonal to T1, then we easily generate
the scaling functions

0={f1 on[O, 1], l={f2 on[O, 1], 2 {f3 on[O, 1],
0 elsewhere, 0 elsewhere,

and f4 (" 1) on (1, 2],
0 elsewhere.
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If there exists no such 4, then there are no compactly supported scaling functions,
as we can see from the following general result.

THEOREM 5.1. Let V be an N-dimensional subspace of C[0, 1] such that there
does not exist an orthonormal basis with N-1 of the basis functions vanishing at 0 and
the remaining function vanishing at I or vice versa. Then there do not exist compactly
supported C(]R) functions {J}1 composed of linear combinations of basis elements
of V and their integer translates constructed so that (J(x), (x- 1)) ij,50,.

Proof. The proof is by induction on N. The case N 3 was established in
Lemma 3.5. We only consider the step from N 3 to N 4, as the general argument
is similar. For ease of notation set x 1, y 2, and z 3 and suppose that each
is supported on a subset of [0, M]. Suppose V satisfies the hypotheses above. Then
there are three cases we need to consider.

Case 1. One of the functions (say x) is supported on [0, 1], or x, y, and z can be
transformed by a finite number of rotations and shifts so that this is the case. First,
perform this transformation if necessary. We see that the components of y and z are
restricted to a three-dimensional space, which has no orthonormal basis of vectors
with two functions vanishing on the left and one vanishing on the right or vice versa.
Thus by Lemmas 3.4 and 3.5, the scaling functions y and z cannot exist.

Case 2. All three functions have support [0, 2] or longer, and the leftmost compo-
nents, {Xl, Yl, zl }, have rank 1. In this case, we may begin to apply the rotate-and-shift

strategy of Lemma 3.5 on y and z. If for some finite j, yY) and zy) are not linearly
dependent, then we go to Case 3 below. Otherwise, the proof of Lemma 3.5 applies
and we are done.

Case 3. All three functions have support [0, 2] or longer, and the leftmost com-
ponents, {xl, yl, zl }, have rank 2. Note that {xl, yl, Zl} cannot have rank 3 because
then the rightmost nonzero component of any of them would be orthogonal to all
functions vanishing on the left, which we assumed was impossible. Here We apply an
argument similar to the one found in Lemma 3.5 using two rotation maps instead of
one. Many of the details in this proof are analogous to those in the proof of Lemma
3.5, so they are omitted here.

Since two among xl, yl, and Zl must be linearly independent, we may assume that
yl and Zl are independent. We can rotate y and z so that yl and Zl are orthogonal,
and for an appropriate basis, we have

X ((Xl,1, X1,2, 0, 0), X2, X3,..., XM),
Y ((Yl,1,0, 0, 0), Y2, Y3,..., YM),
Z ((0, Zl,2, 0, 0), Z2, Z3,..., ZM),

where y1,1 > 0 and Zl,2 > 0. As before, we have a rotation rl which transforms x and
y into

x, ((0,x’ 0,0)1,2

0, 0),
leaving z unchanged, and a rotation r2 which transforms x’ and z into

,, (0,
z, ((0, 0, 0),

leaving yt unchanged. We also have the shift map s, which takes xt to

0) x,,,
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leaving y and z unchanged. The resulting vectors x", y, and z are themselves
orthogonal scaling functions, and thus the leftmost components cannot have rank 3.
Clearly, y and z are linearly independent, so their rank is 2. Now we iterate the map
s o r2 o rl to obtain the sequence (x(J), y(J), z(J)) (s o r2 o rl)J (x, y, z), which must

(j) ,()have some limit point (X, Y, Z). Analogously to Lemma 3.5, both (Y1,1} and t.1,2 } are
monotone increasing, from which it follows that Xk,1 Xk,2 0 for k 1, 2,..., M
and hence that X --0, which we know is not possible.

To proceed to higher N, we need only consider the analog of Case 3 above since
the other cases are eliminated by the induction hypothesis. The analog of Case 3 is
when all N functions have support [0, 2] or longer and the dimension of the space
spanned by the leftmost components of these functions is N- 2. In this case, N- 2
rotations are needed to reduce by iteration one of the functions to 0, thereby forcing
a contradiction. E]

Next, we investigate what conditions must be imposed on so and sl in order that
such a basis should exist. The vectors [0, 1, 0, 0], [0, 0, 1, 0], and [0, 0, 0, 1] form a basis
(not orthonormal) for T1, so it suffices to check for orthogonality between 3 and each
of these vectors. From (5.1) and (5.2), we find (where i, 0, 1, 2, 3 are used), after
some manipulation,

II,o 8SOSlq2 108ql 27q2 + 12so + 42Sl + 60soql 48soq2 8sos
24slq1 24slq2 + 76So2 + 31s + 8ssoql 24s 6s1 27

+ 20sq2 12ss 12sos slq2 + 8slq 16q18 O,

I2,0 8soslq2 27ql 108q2 + 12s0 + 24s 48s0ql + 60s0q2 8sos
24slq1 24slq2 + 28s02 + 16Sl2 + 8SlSoql 16s]q2

+ 8s21q2 sql + 20qlS O,

I3,0 --88081q2 27q2 + 48so + 12soql + 12soq2 4sos + 24sq
+ 42sxq2 50s 21s 881s0qx 12s02sxq2 32S] 8s
+ 76soq2 16s)s 16sos12 + 31sq2 + 16sq + 28qlsg

24so3q2 + 8881 -[- 6s]s + 4sso 6sq2 12ssoq2
+ + o.

Solving the first two for q and q2 gives

328 768 32881 q- 248081 -+- 16SoS 24S + 36- 56S 16Sl
(6SO + 21S + 45) (2SO 81 3)

q2
40So 20So2 4SSl + 12sos1 + 20sos1 36so 3081 19s 9 2s

(6so + 21Sl + 45) (2so s 3)

If we substitute these expressions into the third equation and simplify, we get the
desired relationship,

0 48s 256So + 16ss + 192SoS1 + 400s + 16sosl 96sosl
272sos1 192so + s + 16s + 70s + 48Sl + 9.
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FIG. 6.

Let the polynomial on the right be denoted by iS(s0, sl). The zero set of i5 is shown in
Figure 6. From the above, the following is now clear.

THEOREM 5.2. Continuous, compactly supported, orthogonal scaling functions
}j=o can be constructed so that this set and its integer translates span o (N

3, s2 so) if and only if ]sol < 1, Isl < 1, and (so, s) O.
As an example, we construct the scaling functions and wavelets generated from

so s2 , s -. It is easy to check that these values do satisfy the conditions of
Theorem 5.3, so the construction above gives the scaling functions shown in Figure 7.
We then generate the wavelets, which are shown in Figure 8. The interpolation values
for these functions are given in Tables 2 and 3. Table 4 gives the matrices in the dilation
equation for the scaling functions obtained from 21,22, 23, 24, (80, 81,82 arbitrary)
given above.

For general N, we consider two special cases" Case A, s 0, 0 <_ <_ N- 2,
sg-1 s; and Case B, s s, 0 _< i _< N- 1.

and

For Case A, S s and $2 (N- 1)s. Therefore,

m (1 s + 2 -ff__ q)
2(N- s)

and (5.1) yields

(s2 s(3N2 5N + 4)) + N + 6 EN= q((N s)i + (N 1)s)

(5.3) In,0-

6(N2 s)(N- s)

(m m)s(qN-1 S)) + (qn-1 + 4qn + qn+l)
N 82

With the benefit of hindsight, we set qN-1 8 and solve

In,o qn-1 + 4qn + qn+ l_<n_<N-2,(5.4)

1_< n <_.N-2.
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1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0 0.5 1 1.5 2

2

1 1

o[ 1.5 2

-1

2

FIc. 7.

with boundary conditions qo 1 and q-I s. The solution is

Un-18 UN-n-2
qn

UN-2 UN-2

where U is the Chebyshev polynomial of the second kind evaluated at x -2, i.e.,
U (A+I A-(+I))/(A_ A-l) with A -2 + x/-. Using (5.4), we also find that

N-1

n--1

1
(5qN-1 + qN-2 + q 1)
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0
-1

-2

0

-1

-2

2

1.5 2

2

0

-1

-2

3

1.5 2

4 5

1.5 2 or r ’i 1.5 2
/ !

Fic. 8.

TABLE 2.

0 9 9 9 9 3 9 9
14 5 16 79 3 -" 2
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TABLE 3.

2 4 5 2 7 8

2
0 -64/

_
1 -4/ -149/ 7/

294 147 14 147 294 7 147 147

0 17 --64/’ 5_ 12 --4 --44 !04

0 -o , 0 0 -o
301 301 43 43 301 301

0 --698 422 --60 !2 12 --60 422 --698
207 2107 ao 49 49 0 207 07

0 586 --934, 60 0 0 --60 934 --586
39781 39781 5683 5683 39781 39781

0 --7762 818 8088 --8 808 --8182

10 11 4 13 14 5 16 17 2

147 147 7 294 147 14
--104 --121 --16 --5

147 147 7 294 147 14

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

--64V 17 0147 294
64 -176 0147 294

0 0 0

0 0 0

0 0 0

0 0 0

TABLE 4
Dilation matrices for n 3, so, 81,82 arbitrary.

2s0 -{- 1--(pl TP2)

6’o 1-(+.
-(l+3(pl-p2)6 1 )6SO--(1+3(pl--P2))

(Pl --P2+13) (s0 --pl
2 Pl

2slT2-(pl+p2TqlTq2)
2

C1 Pl +P2--(ql +q2)
2

(Pl +P2)(Sl +1--p2)--sl--Pl (ql +q2)
2

--(Pl--P2+ql--q2)2 1 )81 + 1/3 + p-p2-(q-q.) --1
(pl--p2)(1/3+sl--p2)TSl3--pl (ql--q2)

P22

2 + /2 (q
2
+q)

C2 ql+q2--1
2

1,--pl + (Pl -}-P2 1) --P2 (ql -}-q2
2

q2--q12T1/3 O0 )2s2 1/3Wql --q2

2
4p2--3Pl--!+3s2(Pl--p2+l/3)--3P2(ql--q2) 16

0

sO (ql -l-q2 1) --ql (Pl +P2 )--q2 -I-
2

o o)3so(ql--q2--1/3)--3ql (Pl--P2)+3q2--4ql +1
6 ql

0

C= 0
(sl--ql)(ql +q2--1)Wq2(1--Pl--P2)

2

o o)(sl--ql)(ql--q2--1/3)--q2(Pl --P2 +1/3) q22

I o

(s2--q2)(ql+q2--1)
2

o o)(s2--q2)(ql--q2--1/3) 02
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and

N-1

(5.6) E nqn
n--1

((5N- 4)qg-1 + (N- 1)qN-2- 1)

To obtain IN-l,O 0 with qN-1 s, we find from (5.1) that

( 1
(.) .o +.oo + g(q_ + 1 o.

Likewise, from (5.2), we find that IN,o 0 only if s(s- 1)m 0. Since s 0 or 1,
we find

(.s) .? 0.

Substitute (5.5) and (5.8)into (5.7), and (5.5) and (5.6)into (5.8) to find that (5.7)
and (5.8) are both equal to 0 if and only if s satisfies the equation

(5.9) s2 + (N + 1)(UN-3 + 2UN-2)s + N 0, N _> 2.

This leads to the following.
THEOREM 5.3. Suppose N >_ 2, si -0,0 <_ <_ N- 2, and 8N-1 8

(-b+v/b2-N)/2 with b (N + 1)(VN-3 + 2UN-2) with Ui (Ai+l
A-(i+l))/(A_ A-l) with -2 + v/. Then there exist continuous, compactly sup-
ported, orthogonal scaling functions {i}N__l supported on [0, 2] such that this set and
its integer translates span Vo.

A set of mother wavelets {J};(1N-l) may be constructed using Theorem 4.1 or
the orthogonality equations (2.9).

For Case B, $1 Ns and $2 N(N- 1)s/2. Therefore,

1 s(N- 2n- 1) + 2nm= N(1-s)’ m= 2N(1-s)(g-s)
I<_n<_N-1,

1 Ns 4Ns2 s(3N + 4N + 1) + 6N- 2mN=
2N(1 s)’ mN 12N(1 s)(N- s) m

and

1-Ns+2a
2N(1 s)

mO 2Ns2 s(3N2 4N + 5) + 2 + 12(1 s)a + 6(N 1)sb
12N(1 s)(N- s)

where a -N=I qi and b- .N,_liqi. The orthogonality conditions become
(5.10)

In,o 0 s[s2(N2 N(2n- 1)) 2s(N2 n(N + 1) + 1) + 3N- N2 2n]
+ 4(N s)sa
N(1 s)(N s)(q,_ + 4qn + qn+l), 1 < n < N 1,+ 3

and

(5.11)
( 1)IN,o O ms(1- Ns) + moN-raN1 s(a Ns + l)

( 1) qN-l--8+sa m-g + 6
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with n N- 1 in (5.10), and we find

a
s3(N2 3N) + 4s2 + s(N2 N 2) -(1 s)(N s)(qN-2 + 4qN-1)

4s(N- s)

Therefore, for 1 _< n _< N- 2, (5.10) becomes

(5.13) 0 qn- + 4qn "k- q,+ d,,

where dn (qg-2 + 4qN-1) + (6IN(N- s))s(sN 1)(N-n- 1). With q*
(ql, q2,. qN-2), H the N 2 x N 2 tridiagonal matrix with 4 on the diagonal and
1 on the off diagonal, and 6" (dl 1, d2,..., dN-3, dN-2 --qN-1), we find that

(5.14) q=H-16.

It follows from HH-1 I that

(5.15)
u,__uN_._, n<n<m<N_l,H-1 uN_:

n,m
H- --1
,m Hjn,,O < m <_ n < N- 1.

N>3,

Here Ui is as in Case A above. The equation above gives qi,1 _< _< N-2, in
/_/-1terms of qN-2 and qN-1. Since H-1N_2,i -Ui-1/UN-3, we find that -]ig=2 Y--2,i

(UN-2- UN-3- 1)/UN-3 Solving (5.14) for qN-2 then substituting in the above6
calculations yields

qN-2

36s(sN-1)(4 2UN-3 6UN-2)qN-I + 6 N(N-s) EN----12 Ui-i (N n i)
5UN-3 "+" UN-2 1

To solve for qN-1, sum equation (5.10) from n 0 to N- 2 to find

a
s2(3 N2 3 N) + s(3 N2 8 N) + 6

N(6 sN 12 s + 6 N)
(qN-1 + ql)(8- 1)N
6sN- 12s +6N

Eliminate ql from this equation using (5.12), and then comparing it with (5.12) gives
a solution for qN-1. Using a symbolic manipulation language such as Maple to solve
these equations and using the recurrence formula for Chebyshev polynomials of the
second kind, we find

s3N((21N2 93 N + 104 )UN-3 -- (6 N2 24N + 28 )UN-4 6 N2 + 12 N + 4)
qN--2

d
2 s2((45 N2 -45N -+- 52)UN-3 -+- (12 N212 N + 14)UN-4 +6N3 -+- 2)

d
3 sN((7N2 N 30 )UN-3 n (2 N2 8 )UN-4 2 N2 + 4 N) 12 N3

and

-s3N(4 + 3N2 9N) 2s2(3N3 2) + 3sN2(N- 3) + 6N3

qN-1
d

UN_4(s3N(213 N2 369 N + 388) s2(336 N2 336 N -+- 388) sN(213 N2 33 N- 336))+
d

UN_5(s2(90 N2 90 N + 104) s3N(57N2 99 N + 104) + sN(57N2 9 N- 90))
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where
d 2 N(s N)(s(2 + UN-4(168 N 194) + UN-5(45 N 52))

+ N(168 UN-4 nt- 45 UN-5)).
Note that d is nonzero for -1 _< s _< 1. What remains is to solve (5.11). If we multiply

N-1(5.10) by n- 1, sum for n 1 to N- 1, and then solve for -],=o nqn b, we find,
after using (5.12),

s2(g3 3N2 + 2N) s(N2 3N + 1) g (2 g- 1) Nqg-1+b-
6N-6s 6

Substituting the above equations in (5.11) and simplifying using the recurrence formula
for the Chebychev polynomials yields

0 N(83 (UN_4 (35 N2 12 N3 + 35 N2 36 N 7)
-+- UN-3(--45 N3 + 130 N2 135 N 26) N2 1)
+ s2(UN_4(--12 N3 + 45 N2 + 2 N + 21)
-+- UN-3(7N 45 N3 + 168 N2 + 7N + 78) 3 N2 + 2 N + 3)
+-6sN((3UN_a + 11 UN-3)(N + 1)+ 1)+ 6 N2)(s- 1)(s + 1)/dl,

which is equal to 0 for sl < 1 when

pN(s) s3(UN-4(35 N2 12 N3 36 N- 7) + UN-3(130 N2 -45 N3 135 N- 26) N2 1)

+ s2(UN_4(21 12N3 + 2N +45N2) +UN-3(TN + 168N2 -45N3 + 78) + 3+ 2N- 3N2)
--6sN(aUN_a(N + 1) + 11UN_3(N + 1) + 1) + 6N2 0.

Here
dl s(24 + (2016 N 2328 )UN-4 -q- (540 N 624 )UN-5)

+ 2016 UN-4N + 540 UN-5N(s- N)2.

Note that dl is nonzero for -1 _< s _< 1. To see that the above cubic has a zero for
Isl < 1, we evaluate the polynomial PN at s :t:1. Thus,

pN(1) --2 (N- 1)2 ((45 N- 26)UN-3 + (12 N- 7)UN-a 1)

and
pN(--1) 4 (i + 1)2 (1 + 7 UN-a + 26 UN-3).

Since IUN_31 > IUN_al >_ 0 and IUN_31 _> 1 for N >_ 3 and since sign UN-3
(--1)N+I, we see that sign pN(1) (--1)N, while sign pN(--1) (--1)N+I for N _> 3.

It now follows from pN(O) > 0 that there is a real root SN of PN with ISNI < 1
and sign SN (--1)N+I, N _> 3.

Thus we have shown the following.
THEOREM 5.4. For N >_ 3 and si s, 0 <_ <_ N- 1, with s a real root of

PN, Isl < 1, there exist continuous, compactly supported, orthogonal scaling functions
{i}N__l supported on [0, 2] such that this set and its integer translates span (/o.

We now give some examples from the above theorem (here we have factored a
constant out of pN(S)). For N 3, p3(s) 9s3 7s2 + 15s- 1, ql --(982 -- 28

3)/((3s + 5)(s 3)), and q2 g(18s3 982 22s 3)/((3s + 5)(s- 3)). For N



1192 G. DONOVAN, J. GERONIMO, D. HARDIN, AND P. MASSOPUST

4, p4(8) 53sa+3s2+51s+ 1, q3 1/4(48s3 25s2 -61s + 2)/((5s + 7)(s- 4)), q2

1(2s2 + 1)(3s + 1)/(5s + 7), and ql -- (4s3 + 33s2 + 9s 10)/((5s + 7)(s 4)). Fi-
nally, for N 5, we have p5(s) 715383 + 306182 + 45958- 25.
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CONTINUOUS DEPENDENCE ON INITIAL DATA FOR
DISCONTINUOUS SOLUTIONS OF THE NAVIER-STOKES

EQUATIONS FOR ONE-DIMENSIONAL COMPRESSIBLE FLOW*

DAVID HOFF

Abstract. We prove that discontinuous solutions of the Navier-Stokes equations for one-

dimensional, compressible fluid flow depend continuously on their initial data. Perturbations in the
different components are measured in various fractional Sobolev norms; L2 bounds are then obtained
by interpolation. This improves upon earlier results in which continuous dependence was known only
in a much stronger topology, one inappropriately strong for the physical model. More generally, we
derive a bound for the difference between exact and approximate weak solutions in terms of their
initial differences and of the weak truncation error associated with the approximate solution.

Key words, continuous dependence, discontinuous solutions, Navier-Stokes equations

AMS subject classifications. 35Q30, 35R05, 65M15

1. Introduction. We prove the continuous dependence on initial data of dis-
continuous solutions of the Navier-Stokes equations for one-dimensional, compressible
fluid flow,

(1.1)

with Cauchy data

(1.2) (v,u,e)It:o --(vo,uo,eo)

under assumptions consistent with the known existence theory. Here v, u, e, p, and T
represent, respectively, the specific volume, velocity, specific internal energy, pressure,
and temperature in the fluid, t >_ 0 is time, and x E is the Lagrangean coordinate
(thus the lines x- constant correspond to particle trajectories), s and A are positive
viscosity and heat-conduction coefficients.

The key point of interest here is that the topology of continuous dependence is
that of L2(]), which is particularly appropriate for the physical problem. By contrast,
the only other known continuous dependence result, Theorem 4.1 of [2], is formulated
in an exceptionally strong norm, one which dominates the variation in perturbations
of the discontinuous quantity v. This norm appeared to be natural for certain tech-
nical reasons related to the fact that only incomplete smoothing occurs, owing to the
degeneracy of the viscosity matrix and also to the particular rates of (partial) smooth-
ing near the initial layer t 0. On the other hand, this very strong norm is not at all
appropriate from the physical point of view. For example, the mass measure is one

*Received by the editors March 21, 1994; accepted for publication (in revised form) February
16, 1995. This research was supported in part by NSF grant DMS-9201597.

Department of Mathematics, Indiana University, Bloomington, IN 47405-5701.
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of the physically observable quantities, and the density 1/v is its derivative. The re-

sult of [2] therefore requires that the local variation in the derivative of an observable
quantity be small; and this we must regard as unsatisfactory. There is also a very
practical reason for clarifying the issue of continuous dependence; this is the fact that
error bounds for approximate solutions can be derived only in norms in which the
problem is known to be well posed. In particular, for the system under consideration
here, error bounds for certain finite difference approximations are derived in Zhao and
Hoff [4]; the rates of convergence obtained are unrealistically low, however, precisely
because they are formulated in a norm which is inappropriately strong.

The goal of the present paper is therefore to show that, under assumptions con-
sistent with the known existence theory of [1] and [2], discontinuous solutions depend
continuously on their initial values in L2, which is clearly a more suitable norm for the
physical problem. This result is stated in the theorem below and is proved in 2 and
3. (Actually, we prove a more general result, in which the difference between an exact
weak solution and an approximate weak solution is bounded in terms of the truncation
error associated with the latter and t.he difference in initial values.) The key idea is
to substitute an adjoint-equation analysis for the more usual approach based on di-
rect L2-energy estimates. The adjoint functions are estimated in (positive) fractional
Sobolev norms; error bounds are obtained by duality in (negative) fractional Sobolev
norms, and L2 information is then extracted by interpolation. As we shall see, this
device hag the effect of splitting nonintegrable singularities at t 0 into the integrable
products of singularities at the initial and forward times.

The present paper generalizes the result of Hoff and Zarnowski [3], in which L-continuous dependence was proved for the isentropic/isothermal version of (1.1), which
consists of the first two equations only and with p p(v). The full Navier-Stokes
system discussed here presents a number of technical complexities and difficulties not
encountered in the simpler case, owing particularly to the coupling of the square of
the velocity gradient into the energy equation in (1.1).

We now give a precise formulation of our results. First, concerning the functions p
and T appearing in (1.1), we assume that there is a compact rectangle R Iv__, ] x [_e, ]
contained in the open, positive quadrant of v-e space, such that

(1.3) p E Cl(_), T E C2([_,.]),

and that there is a positive constant C such that

C _( T’ (e),(1.4) C-l _< T(e) _< Ce

for e
Next, in order to describe weak solutions having different values at x +oc, we

introduce states U+ Iv+, u+, e+] with (v+, e+) R, and we construct a smooth
function (x)- [5(x), g(x), g(x)] such that

(1.5) O(x) U+, +x >_ 1.

Weak solutions U [v, u, e] on R x [0, {] with initial value U0 and end-states U+
should then satisfy the following minimal regularity conditions:

(1.6) U 0 C([0, {]; L(R)),
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u(.,0)- Vo,

(v,e) R a.e.,

(1.9) u , e L2((0, [ ); HI()).

We let X denote the test-function space

X([tl,t2]) (L n Lo n H n C1)(] x

and we give the following weak formulation of the system (1.1)-(1.2).
DEFINITION. Let U [v,u,e] satisfy (1.6)-(1.9) above. Then U is a weak

solution of (1.1) on N x [0, [] with initial value Uo and end-states U+ provided that,
for all intervals [tl,t2] c_ [0, -] and all test functions ,,X E X([tl,t2]),

(1.11) + -)t- p(v,e) + ez dxdt
v

=0;

 T( )xXx
dxdt

The existence of weak solutions and their additional regularity properties will be
discussed below.

Solutions and approximate solutions will be compared in various fractional-norm
Sobolev spaces. To describe these, we let/ E R and $ (S is the Schwartz class of
smooth, rapidly decreasing functions), and we define

where denotes the Fourier transform. We then take Ha to be the completion of $
with respect to .the norm I" In. Observe that if/31

_
/32, then I11 - IV ., so that

H C_ HI. I" Io is the usual g2-norm, which we shall always denote by I1" It. Standard
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properties of the Fourier transform show that, given a nonnegative integer k, there is
a positive constant C C(k) such that

We now choose indices c, , and 5 satisfying

e (0,1),(1.13) 0 < c < < min{, 1/2}.

The difference between an exact weak solution U and an approximate solution Uh

Ivh, uh, eh] will be measured in the norm given by

(1.14)
E(t) -[IAv(.,t)l + IAu(.,t)l_ +

+ t5/211Au(.,t)l + t/211Ae( .,
where Av vh v, etc. The constants a,/3, and 5 will be fixed throughout.

Clearly, an estimate for E(t) must involve not only the initial difference E(0),
but also some measure of the extent to which the approximate solution Uh fails to
be an exact weak solution. This measure, which we call the weak truncation error,
is essentially the norm of the functional 121 (R) 2 (R) a over the space X3, suitably
topologized. Specifically, given (, , X) X([t, t]) 3, we first define the norm

(1.15)
I[[(, , )[][[tl,t2] sup F[[(’, t)[[ + [(.,t)] + [(.,t)]

ttt

(t t)(1-)/ll(.,t)l + (t t)(-)/l(.,t)l]
+ + X + (t2 t)l-a + (t2 t) 1- Xt dxdt

Then given an approximate solution Uh [vh, uh, eh]t satisfying (1.6)-(1.9), we define
the weak truncation error

(1.16)
Q1 (tl, t2; Uh) sup

[1 (81, 82, ; Uh)[ + [2(81,82, ; Uh)[ + [3(81,82, ; Vh)].

The sup here is taken over intervals [s,s] It1, t] and over test functions (,
X([s,s])a. It is clear that the first three terms in the definition (1.15) of
are dual to the first three terms in the definition (1.14) of E(t). The other terms
in (1.15) appear for technical reasons and reflect anticipated rates of smoothing for
the adjoint system corresponding to (1.1). We shM1 also have need for the following
auxiliary error functionals:

(1.17) Q2(tl,t2;Uh) =sup [limsupl2(s,s2,jn.teAu;Uh)l
k V0

where jn(x,t) is the standard space-time mollifier and the outer sup is over intervals
[Sl, s2] (t, t2); and

(.s) Oa(t, t; u) sp(,,:/x; u),
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where the sup is again taken over intervals Is1, s2] C_ It1, t2] and over test functions

X E X([sl, s2]) for which
(1.19)

sup [llX(.,t)l + (s2 t)l/2llXx(.,t)[]] + [X2x + (s2 t)xt2] dxdt 1.
sts

Finally, we define the total truncation error,

(1.20) Q Q1 + Q2 + Q3.

We expect that, in most contexts, QI will be the dominant term in Q. Observe that,
if Ua is an exact weak solution with end-states U+, then Q(tl,t2; Ua) 0.

Next, we describe the regularity properties of weak solutions which will be re-
quired for our analysis. Besides the minimal conditions (1.6)-(1.9), we shall assume
that there are positive constants Co and r such that

(1.21) sup IIv(.,t)- + foo f + <_ Co;
o<t<

(1.22)
e C((O,-] ;L2(N)) and

71/2t-1/4II(.,t)ll, II(.,t)ll, II(.,t)ll < 0

(1.23)

vt, u e Lo ((0,] L ()) and

tmin{6’/2}llttx(’,t)ll2L(lz)dt
< 0,

(1.24) ut e L2((-,/); L2()) for all 7- > O.

Some discussion of these assumptions is in order. First, the local existence theory
of [1] shows that (even when p and T are somewhat more general than in (1.3) and
(1.4)) a local solution exists and satisfies all but two of the conditions (1.6)-(1.12) and
(1.21)-(1.24), with Co a multiple of the initial norm ]]Uo-O]12+[.Var(vo)]2+[Var(uo)] 2,
which is assumed to be finite. The two exceptions are the continuity (1.6) of e(., t)
into L2(N) at t 0 and the smoothing rate in (1.22) for Ilex(.,t)ll. The second of these
is proved in [2, Thm. 3.2], but under the additional assumptions that p and T satisfy
the conditions (1.3) and (1.4), that e0 BY, and that

(1.25) AI/Co]IT" I]([_,e]) << 1,

where Co is now a multiple of IIg0 uII + [Var(U0)] 2. Once the smoothing rate
IIx(.,t)ll t-/4 has been established, an easy energy argument can be applied to the

third equation in (1.1) to obtain that fo fe tl/2+e2t dxdt < oc for any 0 > 0 (this is
the analogue for e of the estimates (1.17) and (1.20) in [1] for u). The continuity (1.6)
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of e(.,t) into L2 at t 0 then follows easily. We observe that the condition (1.25) is
vacuous in the polytropic case that T is a constant multiple of e and is in any event
rather mild since , is presumably small. We also point out that the rates of smoothing
in (1.22) for Ux and ex are optimal, even for solutions of the heat equation with initial
data in L2 n BV.

Concerning the assumptions (1.23), we appeal to the result (1.4) of Theorem 1.1
in [I], which shows that, for any 0 > 0,

o<t<

This provides more than adequate justification for the assumptions (1.23).
In the present paper, we simply assume that a weak solution U exists and satisfies

the conditions (1.6)-(1.12) and (1.21)-(1.24); it will be unnecessary to make explicit
reference to particular properties of U0 or to relate U0 to the constant Co. The
smallness condition (1.25), on the other hand, will be made an explicit hypothesis
in our main theorem, stated below. It appears to be necessary in order to achieve
the required estimates for solutions of the adjoint of the first variation of the energy
equation in (I.i) (see Lemma 2.2 below).

We can now state our main result.
THEOREM. Assume that p and T satisfy the conditions (1.3)-(1.4) and let (] be as

described above in (1.5). Then there are positive constants C and such that, if U is
a weak solution of (1.1) with end-states U+/-, satisfying (1.6)-(1.12) and (1.21)-(1.24),
if Vh satisfies (1.6), (1.8), (1.9), and (1.21)-(1.24), and if

,/.CollT" Loo([__e,g]) < ,
then for intervals It1, t2] C_ [0, -],

(1.27)
sup E(t) + t5Au2 dxdt

tl <_t<_t2

<_ C[E(tl) + Q(ti,t2; Uh)]
The error functional E(t) here is as defined above in (1.14), with Au uh u, etc.,
and Q is the total truncation error, defined in (1.16)-(1.20). The constant depends

T’only on v, inf[_,e] (e) (see (1.3)-(1.4)), and on an upper bound for ;. The constant
C depends on e, , Pl R’ Tl[_,e], a, , 5, and r, and on upper bounds for Co and the

reciprocal of the difference between, the two sides of (1.26).
(1.27) shows in particular that

(1.28)
sup [llAv(.,t)ll + IAu(.,t)l- + IAe(.,t)l-z]
o<t<-

_< C[E(0) + Q(o, ; u)],
where

E(O) II,’Xvoll + I,’Xol_ + I,,’Xol_,.
Bounds for Au and Ae in L2 can be recovered in either of two ways, both of which
entail the introduction of an initial layer. First, we may simply appeal to the definition
(1.14) of E to obtain

(1.29)
sup [llAv(-,t)ll + t/211Au(’,t)ll + t/llAe(.,t)ll]
o<t<

_< C[E(0) + (0, ; u)].
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Alternatively, we may apply the bounds (1.22) for Ux and ex and interpolate as follows"

II/X(.,t)ll- I/X,lo I/Xl/(l+)l/Xl_/(+)

<-- Ct-/n(I+)IAul 1/(l+c)-c
so that

IAul_a >_ C-lta/411Aulll+a.
Treating Ae in a similar way, we then find from (1.28) that

sup Av(.,t),l / t/411A(.,t + / t"/411Ae(.,t)
(1.30) o<t<

<_ VIE(0) + Q(o, ; u)].

(1.30) may be an improvement over (1.29), depending upon the context.
The bounds (1.29) and (1.30) degenerate when t is close to zero. This difficulty

may be dealt with as follows. The result (1.20) in Theorem 1.1 of [1] shows that, for
every 0 > 0, there is a constant C C(O) such that

(1.31) fo / t(l+)/2u2t dxdt <- C

The same bound holds for et, at least under the hypotheses of the present theorem,
as discussed above. It then follows easily that

(.,t) ol, Ile(.,t) oll Ct(-)/4.

If the bound (1.31) holds as well for uth and eth (as when Uh itself is an exact weak
solution), we can then simply triangulate to obtain that, for any 0 > O, there is a
constant C- C(O) such that

(1.32) /x(.,t)ll + Ilzxe(.,t)ll c [ll/Xoll + IlZXeoll + t(1-0)/4]

(1.32) may be an improvement over (1.29) or (1.30) when t is close to zero.
In the case that Uh is itself an exact weak solution, Q(0, [; Uh) 0, and (1.28)-

(1.30) imply the uniqueness of weak solutions of the initial-value problem for (1.1)
as well as the continuous dependence of the solution on the initial condition. Alter-
natively, when Uh is an approximation to U, the results (1.28)-(1.30) allow for the
derivation of bounds for the error Uh U from bounds for the weak truncation error
Q, which is a measure of the consistency of the numerical procedure used to generate
Uh, and which presumably can be estimated in terms of mesh parameters or ranks of
projection operators.

In 2, we prove the above theorem be estimating the various terms appearing in
the definition (1.14) of E. The key estimates are obtained by subtracting the weak
equations j(.; U) 0 from the corresponding definitions (1.10)-(1.12) of the func-
tionals j(. ;Uh) and choosing the test functions to satisfy an appropriate adjoint
system. These adjoint equations are solved backwards in time, with "initial" data
given in the appropriate dual classes. We state a number of important properties
of these adjoint solutions, which we then apply to prove the main estimate (1.27).
Bounds for the adjoint solutions follow from standard energy methods and interpola-
tion theorems and are derived in 3.
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2. Proof of the theorem. In this section, we prove the theorem described in

1 by estimating the various terms appearing in the definition (1.14) of E(t). These
estimates will be obtained in a sequence of lemmas directly from the weak forms (1.10)-
(1.12), in which the test functions , , and X will be chosen to satisfy appropriate
adjoint equations. The hypotheses of the theorem will be in force throughout this
section, and C will always denote a generic positive constant as described in the
theorem.

We begin with a bound for the term
LEMMA 2.1. There is a constant C such that, for 0 <

(2.1)

Proof. Without loss of generality, [tl,t2]

_
(0,). We subtract the equation

3(tl, t., t/X; U) 0 from the definition (1.12) of/3(tl, t2, t/2X; Uh) and rearrange
to obtain

(1vh
+ - t(/2)-Aexdxdt + 3(tl,t2,t3/X; Uh).

We shall choose the function X so that the first two terms on the right here cancel, mod-
ulo lower order terms. Specifically, we let j be the standard space-time mollifier and
we define e jn * e, e j, e, and v j, vh. We let A(x,t) T[e(x,t), e(x,t)]
be the usual divided difference, and A T[e, e]. We then take X to be the solu-
tion of the following adjoint system, solved backwards in time, with data specified at
t=t"

V--- x

0,

X(x, t2) H(x).

t

For the present, we take H in the Schwartz class (). The first two terms on the
right side of (2.2) then become

)1
ATxXx + ((A- A)Ae) -v dxdt.v



CONTINUOUS DEPENDENCE ON INITIAL DATA 1201

We thus obtain from (2.2) that

(2.4)

+ I(uh + x)uxl + Iw2l dxdt

+ C t(/-edzdt + Ia(tl,t,t/; Uh)l.

We shall bound each of the terms on the right side of (2.4) in terms of Ilgll and then
let 0. irst, however, we need to obtain various estimates for the adjoint function

in terms of its data H.
LEMMA 2.2. There are positive constants and C, as described in the statement

of the theorem, and independent of , such that, jf (1.26) holds, then the solution X of
the system (2.3) satisfies

sup [llX(.,t)l + (t2 t)l/llX(’,t)ll]
0<t<tz

+ [llx(’,t)ll’ + (t, t)llt(.,t)ll 2] at

CIIHII
and

(2.6) sup IIx(’,t)l / [[,(’,t)ll’ dt < CIHI1.
0<t<tz

(2.5) and (2.6) follow from standard energy estimates; details are deferred to 3.
We now apply Lemma 2.2 to bound each of the terms on the right side of (2.4)

in terms of IIHII; we then let r/ 0 and take the sup over H S. We shall present
the details for five representative terms. Similar arguments apply to the others.

Applying Lemma 2.2, we may bound the first term in the double integral in (2.4)
by

C Ifti f AT(vh v)dxdtl
1/

The integrand here approaches zero .e. as 0 nd is bounded pointwise by CAT
LI( Its, t]). This term therefore approaches zero as 0. Next, we split the
fifth term in the double integrM in (2.4) by writing lApl C(]Av[ + lAe[). Applying
(1.22) nd Lemma 2.2, we may then bound the second of the terms that result by
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Applying (1.22) and Lemma 2.2 again, we may bound the next term in (2.4) by

:/2

since/ > 5 by (1.13). Next, we bound the second last term in (2.4) by

’2
C t(/)-:lAe(.,t)l_[;(.,t)l dt

_< C sup IA(.,t)l_ t(/)-:ll(.,t Ii-ll(.,t)lldt

CIIHII sup I1- t(/)-1 (t t)-/dt

ClIHII sup I1-
since/ > 0. Finally, since 3 is linear in the test function, we can apply the definition
(1.18) of Q3 to bound the last term in (2.4) by IIHIIQ3(t:,t2; Uh). Assembling all
these estimates, then letting r/- 0 and taking the sup over H E $, we obtain from
(2.4) that

A simple Gronwall-type estimate then enables us to eliminate the second term on the
right here. This proves the lemma. D

In the following lemma, we extend the result (2.1) to include a bound for the
term ts/2llAu(.,t)ll appearing in the definition (1.14) of E.

LEMMA 2.3. There is a positive constant C, as described in the statement of the
theorem, such that, for 0 < t <_ t2 <_ ,

(e.7)
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Proof. Without loss of generality, It1, t2] C_ (0, ). A simple approximation argu-
ment shows first that we may take tAu in the definition (1.11) of 2(t, t2, ; Uh)
and also that (tl, t2, tSAu; U) 0. We subtract the latter equation from the deft-
nition of (tl, t, tSAu; Uh) and rearrange, applying the fact that

which holds because An C([t,%];L2(R)) and Ant L2(R x [t,tz]) by (1.6) and
(1.24). The result is that
(.s)

ltJllA("t)ll + i" S
tllAu(’,tl) + 5tS-1Au + t5 (ApAuz + O(Av)uzAuz)2

--/22(tl, t2, thu; Uh).

A simple interpolation allows us to bound the first term in the double integral on the
right by

since 5 > oz by (1.13). The second term in the double integral in (2.8) is bounded by

C t(IAv + IAe )lAuldxdt

titt

Next, we can bound the third term in the double integral in (2.8) by

by (1.23). Finally, we apply the definition (1.17) of Q2 to bound the last term in (2.8)
by Qe(tx,t.; Uh). Assembling these estimates and applying Young’s inequality, we
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thus obtain from (2.8) that
(2.9)

1/2

ttt

sup
tNtt

We now add a small multiple of (2.1) to (2.9), apply a simple Gronwall argument, and
then take appropriate sups to obtain the result, rl

In the following lemma, we obtain bounds for the terms IIAvll, IAuI_, and IAel_
appearing in the definition of E.

LEMMA 2.4. There is a positive constant C, as described in the statement of the
theorem, and a positive ezponent O, depending only on a, , 5, and r, such that, for
O<tl<t2<,

Proof. Without loss of generality, It1, t2] C_ (0, ). We subtract equations (1.10)-
(1.12) j(tl,t,. ;U) 0 from the corresponding definitions of the functionals
j(t, t2, .; Uh) for test functions p, , X E X([t, t2]). Writing Ap aAv + bAe
and rearranging, we obtain
(2.11)

t

+ Av(t + aCx) Au(t + )+ Aue
vh

vh j
dxdt

]f[ (ll)uxCx+A(ll)TxXx+Auxphx+ -bAe+ v v vh v

+ Apux + e(u + u)Auv + e (lv vl ) u] dxdt"

We shall choose the test functions , , and X so as to effectively eliminate the
first double integral on the right-hand side in (2.11). First, we again denote the
standard space-time mollifier by jn, and we write vv j v, vh jn * Vh, etc. Then,
just as in the proof of Lemma 2.1, we take A and Av to be the divided differences
A Tieh, e] and A T[eh, e]. Next, we define the section pc by pc(v) p(v,e),
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so that Ap p[vh,v]Av + p(vh, eh) --p(vh, e). We may then take a p[vh, v] and

av p, [vh, vv]. Now, given F, G, H e S(I), we solve the adjoint system

(2.12) =0,
x

-o

backwards in time, with initial data given at t- t2"

(F,G,H).(e.) (, , X)
,:,:

Observe that the third equation in (2.12) is identical to (2.3) so that, just as in the
proof of Lemma 2.1,

(2.14)
vh ]

dxdt

Substituting (2.12) and (2.14) into (2.11) and rearranging, we thus obtain that
(2.15)

I/(Av + Au + Ae)(x, t2)dx

_< /(+x+x)(x,t) dx

9- f;’/ [(av-a)Av@.+.Au.@. ( h vl )
+ AATx vh v + A (d- dv)Ae x dxdt

+ -bAe+ vh v vh

(+ 1

1) TxXx + Auxphx
V

dzdt

Before proceeding further, we need to obtain various bounds for the adjoint functions, , and X in terms of their data F, G, and H.
LEMMA 2.5. There are positive constants C and , as described in the statement

of the theorem, and independent of ], such that, if (1.26) holds, then the-solution
(, , X) of the adjoint system (2.12)-(2.13) satisfies
(.)

(:, , X)l][t,t.] sup +

+ (t t)(1-)/2II(.,t)l + (t t)(1-’)/IIx(.,t)]l]
+ [ + + ( )-..,, + ( )-,] dxd

<_ CK,
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where K--IIF]I + Il + IHl.
(2.16) follows from standard energy estimates and interpolation results; the proof

is deferred to 3.
Applying Lemma 2.5, we can thus bound the first integral on the right-hand side

of (2.15) by CKE(tl), and straightforward arguments similar to those given in the
proof of Lemma 2.1 show that the second integral vanishes in the limit as 0. We
shall apply Lemma 2.5 to bound the two most difficult terms in the third integral
on the right-hand side of (2.15); similar, but simpler, arguments apply to the other
terms. The second term in the integral in question is bounded by

We apply (1.23) and (2.16) to bound the second term in (2.17) by

c sup IIAv(.,t)ll Ilullolllldt
tl<_t<_tg.

<_ CKlt2 tll sup E(t).
tl <_t<_t2

To bound the first term in (2.17), we note that, from the second equation in (2.12),
2

Thus by (1.22),
(2.18)

<_ CKlte-tl sup E(t).
tl<t<_tg.

This completes the argument for the term in (2.17). Next, in order to estimate the
second-to-last term in the third integral on the right side of (2.15), we shall derive a
bound for I]XII in terms of IXlfl and ]XI1. Thus let m() 1 + I1 and choose

(2.19) qe [0,1]C3 0,2(1_/)
Then

(2.20)
1/2

< CK(t2 t)(Z-1)(1-q)/2.
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Applying (1.22) and (2.20), we may then bound the second-to-last term in the third
integral in (2.15) by

]< CK teAu2 t-e-1/(t2 t)(-l)(1-q)dt
1/2

Treating the cases > 1/2 and <_ 1/2 separately, we find that q can be chosen,
consistently with (2.19), so that the integral in this expression is bounded by It2- tl ,
and the term in question is bounded by

(It is here that we use the hypothesis (1.13) that 5 < min{1/2,}). Last, we apply
the definition (1.20) of Q and the estimate (2.16) to obtain

I1 + IzZl + Ial 1ll(9,,p4)lll[t,t.]Q(tl,t; gn)
<_ CKQ(t, t; Uh).

Estimating the other terms in (2.15) in a similar way, letting r -- 0, then taking
the sup over (F, , H), we finally obtain the result (2.10). E]

Proof of the theorem. Adding a small multiple of (2.10) to (2.7), we obtain that

E(t) + teAux

<_ c [(t) + It tlo sup
t <_t<_t.

E(t) + Q(t, t.; Uh)].
A simple Gronwall-type argument then enables us to eliminate the middle term on
the right. This proves the main estimate (1.27). El

3. Adjoint equation estimates. In this section, we prove the estimates (2.5)
and (2.16) in Lemmas 2.2 and 2.5 for solutions of the adjoint system (2.12)-(2.13).
We begin with a statement of two interpolation results; these will be used to derive
the required fractional-Sobolev norm estimates from L and H estimates.

LEMMA 3.1. (a) Let T: S(R) L(R) be linear (S is the Schwartz class), and
suppose that there are constants Cj such that, for g E S(R),

ITglb <_ Cjlgla, j- 1, 2,

where aj, bj I. Let s [0, 1] and set

(3.1)
a= 8a1+ (!--8)a2,b-sbl+( -s)b,
c cc-.
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Then

for all g E S(I).
(b) Let S" $() -- L2( x [tl, t2]) be liTtea" and w e C([tl, t2]) be 8t?ictly positive.

Suppose that there are constants Cj such that, for g e $(),

wbj ISgl 2 dxdt _< CjIglaj, j 1, 2,

where aj, bj . Let a, b, and C be as in (3.1); then

for all g $().
These results follow from straightforward variations of the proof of the Riesz-

Thorin theorem; we therefore omit their proofs. (However, see [3, Lem. 2.2] for related
interpolation results in which is replaced by a finite interval.)

Proof of Lemma 2.2. Let X be the. solution of the adjoint system (2.3), and define

Choosing times t <_ tl

_
t2, we then obtain from the partial differential equation in

(2.3) that

71 i (2dxl’lt Ju ftl i A2v dxds-- ttl i ’IA)Xvh dxds.

The term on the right here is bounded by

dt

by (1.22), where C now denotes a generic positive constant depending only on the inf
of v in R and the inf of T in [_e, ] (see (1.3) and (1.4)) and on an upper bound for A.
Thus

i X(x, t)dx + ,k X2 dxds

<_ c f + /1/4 [IT#11ocC/2 sup
t(s<tl
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Next, we multiply the partial differential equation in (2.3) by (t2 s)Alxt and
integrate to obtain that

The second term on the right here is bounded by

by (1.23). Thus

Adding a small multiple of (3.3) to (3.2), we obtain

We now choose to E [0, t l, take the sup over t E [to, t 1], and apply the hypothesis

(1.26) that C1/411T.I1C/2 < 1/2; the result is that

sup A(t) + AX2 + (t2 t)x2t dxdt
to<_t<_tl

<C ,A(tl)+,0 [tl-t0 sup jr(t)

A simple Gronwall-type argument then completes the proof of (2.5). The proof of
(2.6) is similar, rl

Proof of Lemma 2.5. We first observe that the initial-value problem in (2.12) and
(2.13) for X is identical to (2.3), so that the estimates (2.5) and (2.6) hold. We shall
apply Lemma 3.1 to obtain bounds for the various fractional norms of X in (2.16).
Thus fix a time t < t2 and define a linear operator T S(lI) -, L2(N) by TH X(’, t),
where X is the solution of the problem (2.3). Then by (2.5) and (2.6), ITHIo <_ CIHIo
and ITHI1 < CIHI. Lemma 3.1(a)therefore applies to show that ITHIz < CIHIz,
that is, that IIX(’, t)llZ < CIHIz In addition, ITHI1 < C(t2- t)-l/21HIo and ITHI <_
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C]HI1 again by (2.5) and (2.6), so that, by Lemma 3.1(a), IIXx(.,t)l <_ ITH]I <_
C(t2 t)(3"l)/2lH].

To obtain a bound for the last term on the left side of (2.16), we fix a time t < t.
and define a linear map S $ L(R x [0, t’]) by SH Xt, where again X is the
solution of (2.3). The estimates (2.5) and (2.6) then show that

(t2- t)ISHI dzdt < CIH]0

and

Lemma 3.1(b) therefore applies to show that

so that

Summarizing, we have thus shown that

sup (I)(, t)l + (t t)(-)/ll(., t)ll)
0<t<t

ClIn.
This completes the proof of those bounds in (2.16) which involve .

Next, we derive bounds for and @ in . We multiply the first two equagions
in (2.12) by and @, respectively, and add and integrate. Dropping the modifiers on
ghe coecients a and v, we obtain that, for t

1
) (x t) dz dzds

(f, + a,)ax + (a- ). axe,.
2

It follows easily that

/2
sup (ll(’, t)ll + I]@(, t)l)+ @ dxdt

(3.5) 0<t<t

c(llFII + all).
To derive an H bound for , we multiply the second equation in (2.12) by
and integrate to obtain

(t. -t) (.)(x t)dx + .
+ .[ + (t. .)ax]
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Applying (3.5), we then get

<c IlYll /llall2/ <t2 2-)11

The last term here is bounded by

C supt<<t
by (1.23). Substituting, we conclude that

sup
(a.g) O<t<t

A simple variation of the above argument would show that
/

sup I$(,t)ll + dxdt
(3.7)

C(IIFII + I 1).
To obtain the fractional-norm estimates in (2.16) for , we fix a time t < t and linear
mps z. L d T. L by Z(F, ) (., t) nd T Z(0, ).
(3.5) and (3.7) then show that ]TG]0 CIGIo and ]TG] CIG] so that, by Lemma
a.(),
(a.s) ITal CIaI.
In addition, we have from (3.7) that

(.) IZ(F, 0)1 IZ(F, 0)1 ClIFII.
Combining (3.8) and (3.9), we thus obtain that

I(., t)l IZ(F, a)l
(a.10) IZ(F, 0)1 + I1

C(IIFII + I1).
The bounds

sup t(1-a)/2]lx (., t) +] (t2 t) 1-a"/’2wt dxdt
(3.11) 0<t<tg.

follow in a similar way, just as in the derivation of (3.4) above. Combining (3.4), (3.5),
(3.10), and (3.11), we thus obtain (2.16). B
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A STEFAN PROBLEM FOR MULTIDIMENSIONAL
REACTION-DIFFUSION SYSTEMS*

AVNER FRIEDMANt AND BEI HUt

Abstract. This paper deals with a Stefan problem for a system of three weakly coupled semi-
linear parabolic equations. This system describes the dissolution of a particle in a solution. The
dissolved species A reacts chemically with species B already in the solution, thereby forming species
C. Species C diffuses in the solution and some of it adsorbs to the particle’s boundary and causes
either (i) a decrease in the dissolution rate or (ii) an increase in the dissolution rate. It is proved that
for the model in case (i) the solution is unstable in any small time interval, whereas for the model in
case (ii), the problem has a unique solution in a small time interval.

Key words. Stefan problem, free boundary, nonstability

AMS subject classifications. 35B35, 35R35, 35R25, 35K57

1. Introduction. Consider a solid particle composed of chemical A with uniform
concentration A*. The particle is in a solution. In the solution there is also another
chemical B. As the particle dissolves, the A that enters the solution reacts with B
to form C. Then species C diffuses in the solution and some of it reaches the solid
particle and adsorbs to its surface. We shall denote the concentrations of species A,
B, and C in the solution simply by A, B, and C, respectively.

We consider here the two-dimensional model in polar coordinates (r, ). Assuming
that the solid particle is enclosed by a surface r g(O,t), the reaction-diffusion
equations are

OA
(1) Ot DA AA KAB,

OB
Ot DB AB- KAB,
OC

(3) Ot De AC + KAB

in {r > g(O, t)}, where K is the reaction rate and DA, DB, and Dc are the diffusion
coefficients.

Let g denote the inward normal to the surface

and V the velocity of Ft in the normal direction. Then

(4) n (nr, no)
v/g2,+ g, gv/g2 + g

(5) -9
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By conservation of mass, the rate at which the particle’s boundary moves is
proportional to the flux of species A away from the particle, that is,

OA
(6) V oDA-n on Ft (c > 0).

Since there is no flux of B through or adsorption of B to the particle’s surface,

OB
(7) On

=0 on Ft.

The adsorption of C to the surface is proportional to the local saturation and is
given by the empirical law Dcca7 -’YCn for some positive constants and n. As
in [2; Chap. 18], we take n 4, i.e.,

OC _,),C4;(8) Dc On

all the results of this paper, however, remain valid for general n.
As in [2, Chap. 18] and [4], we take

(9) A(ec, t)= 0, B(, t)= B*, C(oc, t)- 0,

where "oo" means the limit as r goes to oc, uniformly in 0, and B* is a positive
constant.

We next define the boundary condition for A. Denote by 4(0, t) the concentration
of C which covers A in a unit area (length) of the free boundary at the point r
g(O, t); ((0, t) 1 if the point r g(O, t) is fully covered. We take the boundary
condition for A on the free boundary, as in [2, Chap. 18], to be

(10) DA (0, t)OA+(1-*(0, t))+(A-A*)-0 on Ft.

Finally, we impose the following initial conditions:

(11)

(12)

v(o, o) vo(O), (o, o) o(O),

A(r, O, O) Ao(r, 0), B(r, O, O) Bo(r, 0), C(r, O, O) Co(r, 0).

For simplicity, we shall henceforth take a 1 and "y 1.
Before we can analyze problems (1)-(12), we need to derive an equation for the

evolution of {. There are two factors affecting the change of {(0, t)" the flux -DcC
and the change in the surface element of Ft along the normal.

Denote by Dt the total derivative along the normal direction. Then

(13) D4(O, t)
lim

(0 + VnnoAt, t+ At)- (0, t)
Dt At-O At

o o
Ot + noV 00"

If we introduce the surface element along Ft,

S(O, t)= q2(O, t)dO, where 9(0, t)- V/92(0, t)+ 9(0, t),
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then the evolution of can be described in the forth

(o + VozXt, t + zxt)s(o + VoZXt, t + zxt) (o, t)s(o, t)
OC

-De -3-" S(O, t)At + 0 ((At)).
From this equation, we easily derive

(14)
D( OC
D--- + Q( -Dc On’

where

Q- lim
At---o

s(o + V.oZXt, t + zxt) s(o, t)
zxt. s(o, t)

q;(O + VnnoAt, t + At)d(O + VnnoAt) (0, t)dO

lim

At. q;(O, t)dO
(0 + VnnoAt, t + At)[1 + At. (O(Vnno)/O0)]- q;(O, t)

zxt-o At. (0, t)
t + Vnoo + (Vno)o

1- V/92 + 9
+ (Vnno)o (by (5))

1 9o ( (V) (5))-{-V- )o + 0} (by(4) and

1 { Vn (go) } Vn Vn (go)-V+ o +o
Substituting this into (14) and using (13), we get

(15)
0( 0( { 1 1 ( 9o ) }(__Dc__oU + 0u. N + -g,+ + g+ o

It will be convenient to work with the variable

1
() (0, t)- ((0, t)"

Then equations (6), (10), and (15) become

OA-’+ Da N -(- )+(* -) on r,() U. --
0C

-’=-2C4 on F

When the initial data are independent of 0, it is shown [4] that the system has a
unique classical solution. However, the situation becomes more complicated when we
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allow the initial data to depend on 0. In fact, it will be shown that the problem is thus
not well.posed for classical solutions. In 2, we linearize the problem about a radial
solution. We then show that the solution to the linearized problem is unique (4) but
may blow up in arbitrarily small time no matter how smooth the initial data are (3).
Furthermore, the full nonlinear problem is not stable near the radial solution (5).

There are some similarities between our problem and the Stefan problem with
supercooled water. The Mullin-Sekerka instabilities for the latter problem are not as
bad as in our case; the linearized problem (for the supercooled water model) is well
posed for all time provided the data are smooth, and the instability is only in the
sense that the absolute value of the solution goes to oc as t oc. To explain the
origin of the instabilities for our problem, consider a nonradial particle as in Figure
1.1.

A

t-0

FIG. 1.1.

At a convex point A on the free boundary, as the particle dissolves, the local area
shrinks. This increases the concentration , which will then slow down the dissolution
near A. The reverse situation occurs at a point B: the local area increases, decreases,
and the dissolution increases. This process tends to accentuate the ripples in the free
boundary and will generally result in blow-up of the C1+ norm of Ft, at a very short
time. This situation does not preclude the existence of a "weak solution," but the
construction of an appropriate weak solution remains an open problem, even for much
simpler Stefan problems such as in [3].

In the final section (6), we shall consider the model where the adsorbed C in-
creases the dissolution rather than inhibits it. (A situation like this arises, for instance,
for an oil drop in water when soap is added to the water.) We shall establish in this
case the existence and uniqueness of solutions for some small time.

Remark 1.1. It will be shown that (r, 0) satisfies a nonlinear second-order partial
differential equation which is elliptic in case (i), where the adsorption of C slows the
dissolution rate, and hyperbolic in case (ii), where the adsorption of C increases the
dissolution rate; this equation is coupled, of course, to the equations for A, B, and C.
In both cases, the data for are the Cauchy data. Since the Cauchy problem is well
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posed for hyperbolic equations and ill posed for elliptic equations, this would explain
mathematically why we get instability in case (i) and stability in case (ii).

Remark 1.2. The results of the paper extend to three-dimensional particles; the
formulas are more complicated but the methods are the same.

2. The linearized problem. When the initial conditions in (11) and (12) are
independent of 0 and satisfy some regularity and compatibility assuInptions, it is
proved in [4] that the nonlinear system has a unique global radial solution (A, B,
Co, o, Ro) and that there is a finite shutdown time T*, that is, ((T*) 1 (and
((t) > 1 if t > T*). The radial solution satisfies

(19)

and

Ro, o E C2[0, T*),
R(0) Ro > 0,

dR d(
<0, -T >0

o(0) 5 E (0, 1),

for 0<t<T

(20)

A, B, CO C2+’1+{r _> R(t), 0 < t < T*},
OA OBo

-g- <o, >o,

A>_0, B>_0, C>_0,

where 0 < u < 1; it is assumed that initially (20) holds, that

(21) A(r, O) O, C(r, O) O, B(r, O) B* if r>_R0+0

for some 0 > 0, and that the compatibility conditions

(22) O2A(RO,or2 O) O2B(RO,or2 O) OC(RO,or2 O) O, A(Ro, O) < A*,

hold.
We linearize the system (1)-(3), (17), (18) with boundary conditions (7) and (8)

about a radially symmetric solution by setting

(23)
A A + eA B B0 + aB C CO -Jr- eC

g R + eh, o + el,

where o 1/o.

(24)

Clearly,

Substituting (23) into (1)-(3) and dropping O(e2) terms, we obtain

)A- DA A -K(AB + AB1), r > R(t),

DB A B -K(A1B + AB), r > R(t),

c (A + Ael), > (t).
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Therefore, by (17),

OA
DA --gt -+- O(s2)On

Using (23), we get

OAo
Da

r--g

OAo

On
r--R

dRo

dt

r--g

Oh

r--/o

so that, after dropping O(e2) terms,

OA 02A Oh
() D D O<. h-

Ot
on -(t).

Similarly,

(:gB 02B0

() 0 0
h-0 on =(t),

(27)
0C1 02C OC

R0

On Or2
h 4(C)3C +4(C)3----r h on r- (t).

We next substitute 9 and from (23) into (17) and (18) to obtain linearized
equations for h and ]. From (17),

(28)
(29)

G -g + o(e),
-gt (- 1)(A* A)+ O(e2).

Substituting 9 and from (23) into (29), we get

dR
dt

Oh el(A* A) eA( 1)

+ (o 1) (d* A)
( r=g

-(A* A)
R }

+ (o 1)(A* A) + O(e).
r=R

Dropping O(e2) terms, we obtain

(30)
Oh
Ot

,(A* A) (o 1)A + (o 1).(A AO)h.

Next, substituting (28) into (18) and recalling that go O(e), we get

gtgo gt ( g__o ) gt _C4-- o + --= + o(d).
9" 9 o 9
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Substituting 9, , and C from (23) and dropping O(e2), we find that

(3)

1 dR1 dR o 1 dR 1 Oht -4 Ohrt+ (RO)2 dt c boo R dt r--ffd (Ro)2 dt

OC Ro-2(C)4r 4(C)3([)2C1 4(C)3()2 h on r (t).

We next express r/in terms of h and ht from (30) and substitute this into (31).
This results in the elliptic equation

(32)
o( Oh) Oh Oh

h - al (t) -- + a2(t) + b(t) -- + c(t)h

f(t)Cl(R(t), O, t)+ f2(t)Al(R(t), O, t)
0 RO+ - [f3(t)Al( (t), 0, t)],

where

1
(33) al(t) -A* A(R(t), t)’

1 dR (t) co(34) a(t)- (Ro(t)) dt
(t),

(35) b(t) -({(t) 1)2 {(t)
DA R(t)

(36)

(37)

(38)

(39)

(t)

( (t) < o),

(a2(t) < 0),

{ (())4 1 d/io(t) } 1
2 (t) C R (t), t) R (t) dt A* A (R (t), t)’

d(t) o2 d(t)+ (t)DA ((t) 1)
dt (R(t))2 dt

/4 o(o(), 0 (o(/) (o(),)

{ ( )4o(t) c (o(t), t))
()_ _4(o (o(, )) (o()

{ 4

(t)- 1
fa(t) -A* AO(O(t), t)"

1 dR (t) I o (t) 1

R(t) dt ; A* A(R(t), t)’

Notice that

0C 1(C)4 at (/:(t), t).Or Dc

Therefore, all the coefficients al, a2, b, c, f, f2, and f3 are Lipschitz continuous under
the assumptions (20) and (21).
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3. The linearized problem is unstable. In this section, we prove that the
linearized problem is unstable. More specifically, we show that for any given small
T > 0 and/3 > 0 and for any large positive integer rn, there exist initial data for h
and r whose first rn derivatives are bounded by 1 such that a smooth solution exists
for 0 < t < T but the CI’z norm of h becomes infinite at t T.

THEOREM 3.1. Consider the linearized problem (24)-(27), (30), and (31) under
and positive integer m,the assumptions (19)-(22). For any small T > O, 0 < < -,

there exists a Cm solution (A1, B1, C1, h, r]) for 0 < t < T such that

(40) DJorl(O, O)l <_ 1, IDJoh(O, O)l <_.1 for O <_ j <_ m,

(4)

but

(42)

A (r, O, O) t (r, O, O) C (’, O, O) 0 fo? " R(0),

Proof. Let

GT- {0_< 0_< 2r, O<_t<_T},
X {h(O,t); h andht belong toC(GT)

and are 2r-periodic in 0}.

Introduce the norm

For each h e X, we solve (24) with the boundary conditions (25)-(27), zero initial
conditions, and zero boundary conditions at r oo. Clearly,

IIAlllLoo Cllhllx + CTIIB IIL,

lIB [[L Cllhllx + CTllA111,
IICIIIL cllhl x / CT (I AIIIL q-IIBIIILC),

so that

(43) AIlIL + BIlIL + IIC IIL CIIhllx
if T is small enough.

Next, we use (43) and Hblder estimates for parabolic equations [7] to obtain

(44)
Alllc,/(a) + B IIc,/(a) + IIC IIc,/.(a)

<_ Cllhllx
for some 0 < c < 1, where

V/Xl + >_ 0 _<
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The constant C is independent of T.
In what follows, we assume without loss of generality that 1/2 <
Since AI, BI, and C have zero initial values, (44) implies that

(45)

We now pick up any periodic function k(O) such that

(46)

and denote by the solution to the elliptic problem

(47)
0

h f(t)C(R(t), 0, t)+ f2(t)Al(R(t), 0, t)+ - [f3(t)Al(R(t), 0, t)],

(48) is 2r-periodic in O,

(49) t(O, O) O, (0, T) k(O).

We define the map W by

(Wh)(O, t)= h(O, t).

We shall show that W has a fixed point, and this will give us the solution asserted in
Theorem 3.1 (with defined by (30)).

We first need to derive some estimates on h and its derivatives which will depend
on the small parameter T in an appropriate way. It is convenient to scale variables
by introducing

t (, )- #(0, t)=, =,
Setting

nh -s a (Ts)-s + a2(Ts). -2 Tb(Ts) + c(Ts),

we have

(50)
T2fI(Ts)C (R(Ts), T, Ts) + T2f2(Ts)A (R(Ts), T, Ts)

+ TO---Os [f3(Ts)A(R(Ts)’ T, Ts)]

and

(51)

o
0, t

Os
s--O s---1

2t(99, s) is ---periodic in .
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(52)

Then

where

To analyze the solution , we introduce the auxiliary problem

al(Ts)O2v 02v
+ a2(Ts)-2 Tf3(Ts)AI(R(Ts), Tp, Ts),

Ov
v =0, ss =

0,
s--0

2r
v is ---periodic in .

1

2r(= 0,-- x[0,1]

and II1" III denotes norms in the variable (s, ).
By Schauder’s interior-boundary estimates [5],

where C/2 denotes HSlder space with exponent in both space and time variables.
Differentiating (52) in s and subtracting from equation (50), we find that

Lo(- v.) Tfl(Ts)C (R(Ts), T, Ts)
+ Tf2(Ts)A (R(Ts), T, Ts)

(4) T(s) Oa(T) 0+ T Ot O
T(T)( ) T(T),

oo(-) o, (- ) k(T),
s=0 s=l

where

By the maximum principle,

o L T2c(Ts).

II1- vlllL<) C(IIIIIIL + Ill the right-hand side of (54)IllL).
Therefore, if we apply elliptic C+ estimates [9] to (54), we get

Recalling (53), we conclude that

IIllllcl+./=(o) c [llllllc+/= + T (lllAlllc./= + IIIcllllc./=)]



1222 AVNER FRIEDMAN AND BEI HU

provided T is small enough. The above estimate written in terms of the variable (t, 0)
reads

Using (44) and (45), we conclude that

This estimate shows that if

X0

then W maps X0 into itself provided T is small enough. It is also clear that WXo
is a precompact subset of X0 and that W is continuous. The Schuder fixed point
theorem can then be pplied to conclude that W has a fixed point h, and this gives
solution to the linerized problem with the same h.

Next, we show that h and are CTM smooth.
The estimate (56) implies that

(57) ]]h]c+/(a) C.

Recall by (49) that ht]t=o 0. Since we have assumed (22), the compatibility condi-
tion (for prbolic equations) is satisfied for A1, B, and C1. We cn therefore apply
to equations (24) with boundary conditions (25)-(27), C+ parabolic estimates [8,
Thm. 1.2], and Schauder estimates [7] to get

A1]]C+/, /+/4(a) C,

B IIc+/, l+/4(aT) + IIC Ilc+/, l+/4(aT) C.

We now differential (32) in 0 and obtain the same equation for ho but with A
and C replaced by A and C. If we use interior-boundary Schauder estimates (away
from t= T), the procedure that led to (55)-(57) gives

(59) Ilhollc+/(a_) C

for any e > 0. By iterating this process m times, we arrive at the estimate

0jh
Ce,j (Ojm).

c+-;-(a_;)

Since is given by (31), we get similar estimates for . Noting that e is arbitrary,
it follows that the solution has m derivatives (which are actually continuous) in 0.
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Next, using (58) and interior-boundary Schauder estimates for h (away from t T),
we obtain

(60) Ilhllc+(/.+14)(_) < C.

The estimates (59) and (60)imply that

where C1+c/2’1/2+a/4 means C1+c/2 in 0 and C1/2+/4 in t.
Schauder estimates,

Thus, by parabolic

A IIc+/, +/(a_:) <_ C.

Notice that the coemcients in (aa)-(a9) are C for t > 0 (see [4]). Therefore, we
can iterate the above process to conclude that h is C" in (0, t) away from t 0 and
t=T.

Finally, by multiplying the solution by a small enough constant , we find that
5h and 5r have all their first m derivatives (in 0) bounded by 1 at t 0 and that the
solution of the linearized problem has (continuous) m derivatives for all 0 < t < T
since (by (49)) h(O, T-O) 5k(O) and IIllc/ o; this completes the proof of the
theorem. 1

4. Uniqueness for the linearized problem.
THEOREM 4.1. Suppose that (A1, B1, C, h, r) is a solution of the linearized

problem for 0 <_ t < To such that

(61) A B C 0 at t O,
(62) h=r=0 at t=0,

and

(63)

Then

and C belong tO C1+c’(1+c)/2(-To),
c+",+(GVo), C’"(GTo).

and

A=-BI--C-0 in fTo

h-= r =_ O in GTo.

Proof. From (61), (62), and (30), it follows that

(64) ht(O, O) O.

Let (0) be any 2r-periodic function such that

"(0) -(0),
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where k is a nonnegative integer. Let

2

(, )= /()A(, , )d
o

and define/(r, t), (r, t), and (t) in a similar way. Then ,/, (, and satisfy the
same boundary conditions (25)-(27) as A, B, C, and h. Multiplying the equations
for A, B, and C by () and integrating with respect to , we find that

=a +__ _(o+o)

( 1= +__ _(o+o)
r

( 1 k2 )Q=Dc +-- +(0+A0)

if r > R(t). The same argument as in (43)-(45) shows that

(65) [[[[L + [[[[L + [[[[L CT/2 ([[[[L + [[t]]L) n L(T)

Next, multiplying (32) by () and integrating with respect to , we obtain the
differential equation

d (d)_k2a2+b+cd a
() (n(), ) + f:() (n(), ) +

t=t=0 and =0 at t=0,

Since

we get by integration that

(66)

Clearly,

Substituting (67) and (65)into (66) we find that if T is small enough (depending
on k), then

It then also follows that . --/) 0 0 and r] 0 if t < T. We can continue the
process step by step to deduce that 0 if 0 _< t < To (To is independent of k).

Taking in particular (0) sin kx or cos kx for any integers k, we see that
the Fourier series of the continuously differentiable function 0 - h(O, t) vanishes
identically. Therefore, h 0 .and then also A B C 0 and
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5. The nonlinear problem is unstable. Theorem 3.1 can be extended to the
full nonlinear problem. To be more precise, we say that a radial solution (A, B,
Co, 0, R0) satisfying (19)-(22) is locally Lipschitz stable if there exist T > 0 and
a positive integer m _> 3 such that for any solution (A, B, C, , g) of the nonlinear
problem, if

(68)
I1( )=ollc / II(g R)=ollc -< o

and if the compatibility conditions hold (at r g(O, 0)), then

(69)
(7o) I1 llCl,l -< c’e, I[g Rllc-, -< C*
for some constant C* independent of

In (69), A, B, and Co have been extended as Ce+’ +/e functions in the domain

T,O {/x + x >_ Ro(t) 50, O <_ t <_ T}
for some 5o > 0, and C2,1 means C2,1(FtT), where

{r >_ g(O, t), O <_ t <_ T}.

For T small enough, ftT is contained in ftT,0. In (70), Cj’ means CJ,I(GT).
THEOREM 5.1. Each radial solution is not locally Lipschitz stable.
Proof. Suppose the assertion is not true for a particular radial solution (A, B,

C0, o, RO), that is, this solution is Lipschitz stable up to some fixed time T > 0.
Take any solution of the nonlinear problem with

A A +
(71)

g R + eh,

where

(72)
IIAlt--ollc + I[Blt=ollc + IICllt=ollc 1,

IIhl-ollc + IIl-ollc _< 1.

The Lipschitz stability implies that

(73) IIA[Ic.,(a:r) + IIBllc,(a) + IICllc,(a) C,

(75) lhllC,l(a) C,

where C is a constant independent of e.
Differentiating the equation

1
(76) gt ]g2 + gg (_ 1)(A* A)

/

g

in 0 and applying the estimates (73)-(75), we derive the bound

(77) II(h),OIIL C.
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Next, we differentiate (76) in t and use (73)-(75) and (77). We obtain

II(h ).lt  _< C.

The estimates (75), (77), and (78) combined mean that

We now take a sequence of initial values as above with - 0. For a subsequence
j 0,

Be
__
B1, Gel

__
C in cl+a, (l+a)/2,

r&-r/ in Ca’a

he --* h in Cl+a’ l+a

for any 0 < a < 1, and

(80)

We can then proceed as in 2 (but rigorously!) to prove that (A, B, Ce1,
satisfies the linearized equations and boundary conditions (on r R + ehe) with an
error term of order O(). Letting ej 0, we deduce that (A B1, C1, r], h) is a
solution to the linearized problem. Choose the initial values for the linearized problem
to be as in Theorem 3.1. By uniqueness (Theorem 4.1), (A1, B1, C1, r/, h) must
coincide with the linearized solution established in Theorem 3.1 and, consequently,

lib(., )]lCl+ cxD,

which is a contradiction to (80).
6. A model with accelerated dissolution. In this section, we consider the

case where the adsorbed C increases the dissolution of the grain:

OA
(81) DA+P()(A-A*)=O on Ft,

where P(s) is a smooth function and

(82) P(s) >0, P’(s) >0 for s>_O.

Setting

(83) F A* -A (g(O, t), 0, t)

we then have, by (6),

V

and, by (13)-(15),

t=_
k P()F (k)P()F C4

g v/g, + k
P(()F@ + +

g v/g + v/g +0
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or

(84)

(85)

k
t P()Fo

g v/g2 + k,

P()F+ ( +

Differentiating equation (5), written in the form

v/g2 + k2
gt----

in 0, we obtain

(86)

( + )/

1 ]+ v/:+,: +

P(4)F,

kt
k

P()Fko V/9 + k2
P’()Fo

g V/92 -k- k2 g

V/92 + k2 k3
P()Fo + P()F

g 92 v/g2 + k2

The system (84)-(86) is a nonlinear hyperbolic system. To transform it into a

diagonalized form, introduce

(87)

k(o,t) (o,t)

f g(O,t,) f (St(8)) 1/2
e(0. t) (0. t)+

d + p() d.
0 co

Then

g (p,())1/2 k(O,t) 82--g2(0, )e + + p() + 9(o, t) (( t) + ). d,
o

eo 9’ + ’ o + p() 0 + (0. t) ((0: t)+ ,’)’
d,.

o

and similar formulas hold for mt and mo.
A direct computation shows that

/

h-- { k
(88)

g V/92 + k2 /P’()P(() )P(()F + 92 + k2
F go

g @92 + k2

/P’(()P() ) ] s2-g2

P()F+v )7 F k
(s2+g9.)2

o
k

+ 9t ,32 _[_ 92)2

o

P() P()Fk
ds Fo +

v/g2 + k2 9(92 nt- k2)3/2
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+ v/P’()P()F
(g2 + v/: + a: +

(89)
k

fftt
g v/g2 + k2

/( g v/g2 + k.

P(()F- g2 + k2
F mo

’()()

o

d8

k
s2 g2 p() p()Fk3

+ gt
(s2 + g2)2

ds
v/g2 + k2

Fe + g(g2 + k.)3/2
o

k2v/P’(()(P(()F (g. + k2)/2 v/. + (P(()

Substituting (85) into (88) and (89), we get

(90)

(91)

gt + age 99(g, h, (, F, F0, E),

mt + bmo (g, h, (, F, Fo, E),

where

E c ((o, t), o, t),

99 and are smooth functions as long as g >_ co > O, (

_
co, and

(92) a

(93) b

k ( P’(()(P(() ) 1/2

g v/g2 + k2
P(()F + 92 + k2

F,

k ( P’()P() )g v/g2 + k2
P(()F- 92 + k2

F.

We impose initial conditions

(94) 1=o o(O), (1=o o(O),

where go(O) and (o(0) are periodic functions such that

(95)
go(O) 2co, (o(0) >_ 2co (co > 0),

Ilgollc=+ M, II(ollc+ M,

where M <
The system (85), (90), (91) is hyperbolic with given initial data

(96) g 9o(0), elt=o Co(O), mlt=o too(O)

go(O) >_ 2co > 0,
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(97)

In what follows, we denote by

the C"+a H61der norm in 0, taken uniformly in t as (0, t) varies in GT, and by

the Ca norm in t, uniformly in 0 as (0, t) varies in GT. Finally, by

we denote the sum of the Ca Hhlder norms (in (0, t) E GT) of all the derivatives

ooJtu with 0 _< + j <: k.

LEMMA 6.1. Given F and E continuous in GT and 2r-periodic in 0 such that

(98) IIFll.+(CT) < M1, IlEIICo0

there ezists a unique solution (, g, k) of the system (84)-(86) with initial conditions
(94) and with 9o k for 0 <_ t <_ T provided T is small enough, and

(99) IlClll+(aT) / Ilgll.+(a) C(M, co),.
0

(100) II(IICI+,I+(aT) + IIgIIc+,+(GT) C(M, M1, co),
(lOl) g(O, t)

here T depends on M, M1, and co.
LEMMA 6.2. If (, ) is another pair satisfying (98), then the corresponding

solution , satisfies

(102)

forO<_t<_T.
Proof of Lemma 6.1. From (87), we see that

k-gtan/{g+m]\ if Ig+mI<(103)
2\ /

and

j ( P’(s) ) 1/2 g- m
if g- m > O.(o) ,p() d=

co
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Since we are interested only in solutions for small time, without loss of generality,
we may take P(s) s for s large. Then (104) uniquely defines ( as a function of
(e- n)/,

(105)

and Y(s) is smooth for s >_ Cl, cl as in (97).
Substituting (103), (105) into the right-hand sides of (90)-(93) and (85), we find

that (85) and (90), (91) form a quasilinear hyperbolic system for (g, g, m). By stan-
dard results [1], [6], this system with the initial conditions (96) has a unique solution
such that

]]gllCl+c, l+c(lT) --Ilgl]Cl+c, 1-t-(aT) --IITnllCl-t-c, l+a(CT) C(M, M1, co)

provided T is small enough; the smallness of T is required also to ensure that

in aT (so that (103) and (105) determine k and as smooth functions of g and rn);
(101) is then also satisfied.

We next show that k go. Differentiating (85) formally in 0 and comparing with
(86), we easily get

(9o k)t P()F g v/g +
(go )

and, since (go k) 0 at t 0, we conclude that 9o k. The differentiation in 0 in

(85) can be justified by first integrating in t and then differentiating in 0.
Since go k, the estimates (106) imply (100). To prove (99), we consider the

characteristics for g given by

(107) d(O, t)
dt

a(, t), (0, t) O.

It follows that

and therefore

dt a(C, t)Co, o(0, O)= 1,

and so

exp [-C(M, MI, co)t] _< o _< exp [C(M, M1, co)t],

1 < o(0, t) < e(os)
2

if T is small enough. This allows us to establish the Ca estimate of g0"

Ilgll.l+(T) C(M, c0);

the constant C(M, co) is independent of M. A similar estimate can be established
for rn, and together they yield the assertion (99).
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Remark 6.1. The fact that the constant 0(M, Co) is independent of M1 is crucial
for establishing existence for the full nonlinear problem.

Proof ofLemma 6.2. The proof follows by standard arguments (cf. [1]), integrating
along characteristics and applying the Gronwall inequality.

Remark 6.2. From (100), we have

[gt]c$/.(a) + [D9]cg/(a.) + [(t]c2/.(a) + [Do(]c2/.(a.(109)
<_ C(M, MI, co)Ta/2 <_ 1

if T is small enough.
Since 0 < F _< A*, (84), (85), and (99) imply that

(110) 119tllc(ar) + IItllc(a) <- C(M, co, A’),
(111) 119tllc$(c;) <- C(M, co) (1 +

Combining estimates (109)-(111), we then have

(112) IIllc+,(l+)/(a) < d’(M, co, A*),
(113) Ilgllc.+,l+/.(c;.) <_ d(M, co)[1 + Ilfllc(a)]

We now consider the full nonlinear problem with initial conditions (94) satisfying
(95) and with

(114) Alt=o Ao(r, 0), Blt=o Bo(r, 0), CIt=o Co(r, O)
for r >_ go(O), where

(115) Ao-0, B-B*, Co-0 for r>

for some large R* > Ro. We further assume that

(116) 0 < Ao < A*, 0 < Bo < B*, Co > 0,
(117) IlAollc=+ / IIBollc=+ / IIColl.+ _< M

in the region V/z + x _> g0(0), and

OAoDA / P((o)(Ao A*) O,
(118)

OBo OCo
On

O, Dc On C4o on r go(O)

For simplicity, we have taken the M in (117) to be the same as (95).
THEOREM 6.3. The full nonlinear problem with initial data satisfying (95), (97),

and (115)-(118) has a unique classical solution for 0 <_ t < T for some small enough
T > 0; T depends only on the constants appearing in conditions (95) and (97)..l+cThe solution is such that g and belong to "0 (GT).

Proof. We shall prove existence by a fixed-point argument for a mapping W
defined in the class

K {(9, () [1911"+(ar)o <- 0(M, co), IICIIc+,(+)/-(aT) -< 0(M, co, A*),

Ilgllc./, //(T) <-- O(M, co)2 [1 + A* + (1 + M)(1 + O(M, co))],
1=o o(O)., 1=o- o(O), (o, t) _> o, (o, t) _> o},
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where the constants ( and (7 are taken from (112), (113), and (99).
Given (g, () E K, we substitute it into the boundary condition for A and then

solve for A, B, and C. By the maximum principle,

0 <_ A(r, O, t) <_ A*, 0.<_ B(r, 0, t) <_ B*

and hence

0 <_ C(r, O, t)

_
C(M, co),

where the constant is independent of T.
By the Schauder estimates [7]

(119) IIAIIc.+,+/(a) + [IBIIc+,+/(a)+ [[CIIc+,+/.(a) C(M, co)

with another constant C(M, co) independent of T.
Consider the functions

F(O, t)= A* -A(9(O, t), O, t), E(0, t)--C4(g(0, t), 0, t).

Then0<F<A* and

[F]c$(ar) <_ 2r]lFollc(c;r)

and, by (119), (117), and the definition of K, we easily get

(120) [F]c$(GT) <_ 2(M + 1)(1 + ((M, co)).

It is also clear that

(121) 1+.(aT) < C1 (M, co) M1.[[F[[cg+-(c) + [IEllc

We now solve (84) and (85) with (F, E) as above and denote the solution by
(, ), and we then define a mapping W by

w(g, 4)= (, 4).

By Lemma 6.1 and the estimates (112), (113), and (120), W maps K into itself.
Introduce a topology on K by the norm

+ [[CllC(G) +

Then K is a closed convex set and, by (100), W K --, K is compact. Since the
mapping W is uniquely defined, it is then also continuous, and so, by Schauder’s
fixed-point theorem, W has d fixed point. This gives a solution to the full nonlinear
problem.

To prove uniqueness suppose (, /, , O, ).is another solution. Then

(122) IIollc$(a) c, IIr011c(a) c.
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Using the differential equations for g, g, and rn, (122), and (108), we easily find
that

Hence

I1( IIc/(T> + Ilgo qoltc/.(> CTa/2J"

Using also Lemma 6.2, we get

(124) -It- IIg OllC1-t-, (I+c)/2(GT) CTa/J.

We now proceed as in [3, 8]. Let

and consider A and ) in the common domain

a {< > 0(<, 0)+ V(T)}.

As in [3],

DA On + P()(A- A)
r=(0, t)+V(T) Ca, a/2(GT)

<_ C { IIg Ollcl+, (l+c>/2(CT) -- [[ [[C a/2(GT)}.
Similar estimates hold for B and C. By parabolic Cl+a’ (1+a)/2 estimates [8], we then
have

IIA- All.+(T) + lib- lIco"0 1+c(T) + )[c dlIc+(T)

Using this and the C+ regularity of A and ), we find that

A similar estimate holds for E-/). Substituting these two estimates into (124) (recall
the definition of J in (123)), we see that

L(T) <_ CT/2L(T)

and, therefore, L(T) 0 if T is small enough. Similarly, L(t) 0 if 0 _< t _< T and
then alsoA=.A, B=/),andC=if0_<t_<T.

The uniqueness proof can be extended to any time interval for which the solutions
exist. VI
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ON THE EXISTENCE OF SOLUTIONS OF THE CAUCHY
PROBLEM FOR A DOUBLY NONLINEAR PARABOLIC EQUATION*

KAZUHIRO ISHIGEt

Abstract. For the existence of weak solutions of

0
cg--(lulZ-lu) div(IVulp-2vu) with u f-lu(., 0) #(.),

we give a sufficient condition for the growth order of the initial data it(x) as Ix oc

Key words. Cauchy problem, doubly nonlinear parabolic equation

AMS subject classifications. 35K55, 35K57

1. Introduction. We investigate the Cauchy problem for the following nonlin-
ear diffusion equation:

0
(1.1) Ot (ltlfi-lt) div(lVulP-2Vu) in ST, > 0, p > 1,

(1.2) I1-(., 0) It(’) in Rg.

Here ST RN x (0, T), 0 < T < oc, and # is an Loc(RN function or a a-finite Borel
measure.

Equation (1.1) is called a doubly nonlinear parabolic equation, which contains the
heat equation (i.e., /? 1, p 2), the porous-medium equation (i.e., / > 0, p 2),
and the p-Laplacian equation (i.e., 1, p > 1). Equation (1.1) has been studied by
several authors; for example, see [9], [11]-[13], [15], [16], [18], and [19]. We divide the
Cauchy problem (1.1) with (1.2) into three cases,

(I) (p-1)//> 1, (II) (p-1)/3=l, (III) 0< (p-1)//< 1,

and study the existence of the solution, respectively. For cases (I), (II), and (III), the
behavior of solutions of (1.1) is completely different, and so we need this separation.
Case (I) contains the so-called degenerate cases of the porous-medium and p-Laplacian
equations, and case (III) contains the singular cases of these. In what follows, we call
(I) the degenerate case and (III) the singular case, respectively.

A classical result of A. N. Tychonov [17] states that the Cauchy problem for the
heat equation, ut Au, has a unique classical solution in the strip ST for continuous
initial data it(x) satisfying

(1.3)

Moreover, D. G. Aronson [1] generalized the result of A. N. Tychonov for a parabolic
operator with variable coefficients:--u 0 { cx }(1.4) u Aij(x, t)=-_ u + Aj(x, t)u

*Received by the editors June 29, 1994; accepted for publication (in.revised form) May 2, 1995..

Department of Mathematics, Faculty of Science, Tokyo Institute of Technology, Oh-Okayama,
Meguro-ku, Tokyo 152, Japan. Current address: Graduate School of Information Sciences, Tohoku
University, Aoba-ku, Sendai 980-77, Japan.
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with suitable conditions imposed on coefScients Aij (x, t) and Aj (x, t). For the Cauchy
problem for the equation u 0 with initial data it(x) satisfying

< oo, > o,

he proved that it has a unique classical solution in some strip ST,, where T’ is a
constant dependent on A. Furthermore, he proved that the solution u is written in
the strip ST, in the form

t) r(x, t; 0) 0

where F is the fundamental solution of u 0. See also [2], [14], and [20].
For the degenerate case of the porous-medium equation,

(1.6) ut A(um), m > 1,

P. Benilan, M. G. Crandall, and M. Pierre [4] proved that the Cauchy problem is
uniquely solvable in the sense of weak solutions for initial data satisfying

(1.7) limsupp-N-2/(m-1) y dll < ,
where Bp is a ball of radius p > 0 with center 0. On the other hand, for the degenerate
case of the p-Laplacian equation,

(1.8) ut div(IVulp-2Vu), V > 2,

E. DiBenedetto and M. A. Herrero [6] proved similar results for initial data satisfying

f
(1.9) limsup p-N-p/(p-2) ] dlitl <

p--oo J B

Furthermore, E. DiBenedetto and M. A. Herrero [7] and E. DiBenedetto and T. C.
Kwong [8] studied the Cauchy problem for singular cases of the porous-medium equa-
tion ((N- 2)+/2 < rn < 1) and the p-Laplacian equation (2N/(N + 1) < V < 2),
respectively, and obtained Llo(RN) estimates of the solution for Loc(RN initial
data.

Our purpose in this paper is to extend earlier results on the existence of solu-
tions of the heat, porous-medium, and p-Laplacian equations to the doubly nonlinear
parabolic equation (1.1). The main point of this paper is to treat case (II).

For case (II), if the initial data satisfies

(1.10) /pN exp(-AlxlP/(p-x))dll < c

for some constant A > 0, then we prove that there exists a weak solution of (i.I)
with (1.2) in the strip ST(A), where T(A) (p- l)2(p-1)A-p/pp. Here we remark
that there exists a solution of (I.I) with initial data satisfying (I.I0) which cannot be
extended to a strip larger than ST(A). Case (II) contains the heat equation, but our

proof is completely different from that of [I] and [17]. In fact, in the proof of case (II),
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we do not use the fundamental solution of the heat equation, and the proof depends
only on the structure conditions of the equation. Therefore our proof is applicable to
more general equations than that of [I].

For the proof of case (II), we essentially use the techniques given in [5]-[8]. How-
ever, it seems difficult to apply them directly to case (II). To overcome this difculty,
we introduce a new function with weight CA (see equation (2.8) below) and obtain an
LI(RN) estimate of CA (see (2.10)). By the estimate of fleA(’, t)llL1(aN), we can esti-
mate Ilu(., t)llLo(Bp) and 117u(., t)IILp-I(Bp) and prove that the optimal growth order
of the initial data for this case is exponential.

For case (I), we will prove that there exists a weak solution of (1.1) under initial
data satisfying

(1.11) limsup p-N--p/d /B dl# <

with d (p- 1)//3- 1. Furthermore, for case (III) with Nd + p > 0, we will give

Llo (RN) estimates of the solution for Lo (RN) initial data. For cases (I) and (III),
our proof depends heavily on an approach used in [5]-[8]. Recently, for case (III). of
equation (1.1), V. Vespri [19] proved several inequalities through which the existence
of solutions is proved.

Finally, we remark that---to our knowledge--there are no results for the unique-
ness of weak solutions of (1.1), though the uniqueness of strong solutions of (1.1) is
given in [9] and [16].

2. The main results. In this section, we give the definition of a weak solution
of (1.1) with (1.2) and state our results.

DEFINITION 1.1. A measurable function u(x, t) defined in RN x (0, T) is a weak
solution of (1.1) and (1.2) if for any E (0, T) and any bounded open set 2 C RN,
]7U[p-1 E LI( (0, Te)), ]u[#-lu C(O,T;LI()), and

(2.1) [ulZ-u(x, t)dx + {-I1-

+ IVulp-2u. 7}dxd- f (x, O)d#

for all 0 < t < T and all testing functions

W,(O,T;L(a))L(O,T;W’()).

Here T T- .
Throughout this paper, we set

d=(p-1)/#-l=m(p-1)-l, Nd + rp.

In particular, we set

I’ tl Nd + p, t* I’mp Nd +mp

for simplicity. Furthermore, by C C(A1,A,...) we denote a positive constant
which depends only/3, p, A1, A2,
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Case (I): The degenerate case (d > 0). In order to represent the growth order of
the initial data #(x), we define IIIflllr by

(2.3)
f

supp-/d / Ifldx
p_r JBp

for f e Loc (RN). This norm is a modification of the one introduced in [6].
THEOREM 1.2. Let d > 0 and # be a a-finite Borel measure in RN satisfying

Then there exists a weak solution u of (1.1) and (1.2) in the strip ST(), where

Cl[limr--.c II11111 -d if limr--,oo II1111 > o,
(2.4) T(it)

+c if limr--.oo II1111 0,

and C1 C1 (N, , p).
Let %(it) Cllllitlll; d. Then for any t E (0, Tr (it)) and p > O,

(2.6)

and

(e.7) t /B IVulp-ldxdr
_
C4t/p+/nllltlll+/,

P

where Ci Ci (N, , p), 2, 3, 4.
Case (II): The critical case (d 0). For any > 0 and 5 > 0, let (t) be a

function defined by

(e.8) (t)
f

sup
(0,t) JaN

where

/ 1811+5/(1 nt- (5) if

I,I- ,:5/(1 + 5) it
Isl _< 1, { 1 if s _< 1,

Isl >_ 1,
rl(s) s(N+p)/(p_l) if s >_ 1,

and

1/(P-1)(1 + tz 0 < < 1/2.(2.9) 9a(x,t)=-A i-t

Then our result for Case (II) is as follows.
THEOREM 1.3. Let d 0 and it be a a-finite Borel measure satisfying

(2.10) exp(-AIzIP/(P-*))dIlz(z)[ <
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for some A > O. Then there exists a weak solution u of (1.1) and (1.2) in the strip

ST(A), where T(A) is a constant such that

(2.11) T(A)
(p 1)2(P-1)n1-p.

pp

Furthermore, let (5 > 0 be a sufficiently small constant. Then for any A > A, there
exists a constant To > 0 such that u satisfies the following inequalities:

(2.12)

(2.13)

(A(t)

_
CIA(0)

_
C./nN

Ilegx("t) lulP--lllL(RN C9.(1 + t-N/P)),(t)

for all t E (0, T0), where C C(p,N,A,A, 5) and Ci Ci(p,N, 5), 1,2.
The estimate of T(A) in (2.11) is optimal in the sense that there exists a solution

blowing up at T(A). In fact, let u(x, t) be a function such that

u(x, t) (1 crt)-N/P(P-1) exp 3’ 1 at 1/(p-1)], -- p_l(cr)l/(p-1)p-where cr is any positive constant. Then u(x, t) is a solution of (1.1) in the strip Sl/,
and

up-l(x, 0) exp((p 1)/Ixlp/(p-1)).

Then T((V- 1)A)= 1/(r and u(x,t) blows up at t= l/or.
Case (III): The singular case (d < 0). We treat only the result for the case where

>0.
THEOREM 1.4. Let d < 0 such that > 0 and let # be a a-finite Borel mea-

sure in RN. Then there exists a weak solution u of (1.1) and (1.2) in RN x (0, oc).
Furthermore, the solution u(x, t) satisfies the following inequalities:

lull( ., t)IIL(Bo) <_ Ct-u/ sup ul(x T)dx
0<T<t 20

and

sup fB ’ulZ(x’  )dx < Ca /B dl#(x)’ / C4 ( t---) 1/-d0<r<t
0 fl

for any t > 0 and p > 1, where Ci Ci(N, rn, p), 1,2,3,4.
The essential part of Theorem 1.4 was proved by V. Vespri. See Theorems 2-1

and 2-2 in [19].
We remark that the estimates of solutions given in Theorems 1.2-1.4 may be

extended to nonnegative strong subsolutions of

(2.14)
0
O-([ulZ-u divA(x, t, u, Vu) < B(x, t, u, Vu).

Here the structure conditions below are satisfied:

(2.15)
Clqlp-g(x,t) < A(x,t,u,q).q <_ Clqlp +99.(x,t),
[A(x, t, u, q) A(x, t, u, 0)]" (q 0) > 0,

IB(x, t, u, q)l < C3lqlp-1 / g3(x, t)
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for any (x,t, u) E RN R+ R and q, E RN, where Ci, 1, 2, 3, are given
constants and gi, 1, 2, are given bounded functions in Rg+l.

Furthermore, we remark that it is not restrictive to treat nonnegative continuous
strong solutions of (1..1). In fact, by the results of [12] and [18] and the nethod of
construction of the solutions in this paper, we can take a solution u as a continu-
ous function. Moreover, the solution u is approximated by solutions u of suitable
approximate equations (see (3.4)), which satisfy the structure conditions in (2.15).
Then by Lemma 1-2 in [5], u+ max{un, 0} and u_ -min{u, 0} are continu-
ous nonnegative strong subsolutions of the approximate equations, and the estimates
of Theorems 1.2-1.4 hold for nonnegative strong subsolutions of (2.14). Therefore,
throughout this paper, we treat only nonnegative continuous solutions of (1.1). See
3.

The organization of this paper is as follows. In 3 and 4, we prove Theorem 1.3.
In 3, we prove (2.11) for the Loc(RN initial data satisfying (2.10). In 4, we study
the behavior of (t) and complete the proof of Theorem 1.3. In 5, we prove Theorem
1.2 by arguments similar to those of [5]-[8]. In 6, via [7] and [19], we present some
lemmas to prove Theorem 1.4.

3. Existence of solutions for Case (II). In this section, we consider the
Cauchy problem of

(

tt(lulp-2u div(lVulp-2Vu) in RN x (0, T),(3.1)
lulP-2u(x,O) #(x) e noc(Rg in Ry

p>l,

under the condition in (2.10) and prove the following proposition. To prove Proposition
3.1, we need several lemmas.

PROPOSITION 3.1. Let # be a Loc(RN function such that

#(x) exp(-Alxlp/(p-)) e L(RN).

Then there exists a weak solution u(x, t) of (3.1) in ST(h), where T(A) is a constant
given in (2.11). Furthermore, for any (0, T(A)), there exist constants C and C
such that the solution u(x, t) satisfies

exp(-C[]xlp/(p-) )up(x, -)dx + --]]STc
__< C Ilttexp(-A[. ]P/(P-1))IIL(RN ),

exp(-C Ixlp/(P- VuIpdxdT

where .T T(A) .
To simplify notation, we introduce a functional space with weight L(RN). For
q N [1, ], definefLo(R )withqE we

and we say that f e L(RN) if
We begin by proving the existence of solutions of (3.1) for # C(RN). The

following lemma is an extension of Theorem 3 in [1].
LEMMA 3.2. Let # e C(RN). Then there exists a solution u(x,t) of (3.1) in

the strip S which satisfies 0
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Let

Ixlp I1/(p--1)(a.) h,(, t) - T -:t > 0.

Then for any A > O, there exist constants 7o and C dependent only on p such that

(3.3) sup irt ePh’T("t)/(P--1)uPdx

+ iL leh’T (x’r)/(P-1)VulpdxdT <-
TX

where T A-pT-.
Proof. By On(S) we denote a sequence of CI(R) functions such that 0(s) --, IslZ-s

and O(s) /lslZ- uniformly on any compact set of R \ {0}, where/ p- 1. Then
we consider the Cauchy-Dirichlet problem,

(3.4)

0
-O(u) div{(IVul e + lln)(p-2)/2Vu} in

u(x,t) =0 on

On(u)(x, 0) it(x) in

Bn(O) (0, T),

OB(O) (0, T),
B(0),

where p > 1 and it E CX(RN). Let n be a sufficiently large integer n such that
supp(it) c Bn. By [12], [16], and [18], there exists a classical solution un of (3.4)
in B (0,) such that 0 < lun(x,t)l < I]itllL(rtN) and lun(x,t)- un(y,s)l <_
M(Ix_ y]a + It_ siC for all (x,t), (y,s) e Bn(O) (0, oc). Here M and a are
constants which are independent of n and depend only on IlUnllLo(rtN (0,)).

Let h hTo,T for simplicity, and set

fln(X, t) eXp(p,p lh(X,t))u(x,t)
Then we have the following two inequalities"

0LT it3n. -O,(u)qndxdT

>- fB ePh/(p-1)On(un)dX
P ePh/(p-1)O’(Un)- hdxdT

and
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where On(s) f:n(S)ol(t)dt. We multiply n by (3.4) and integrate over Bn
(0, T). Since limn-_. On(s) (p- 1)lslp/p and the function ho,T has the relation

0 (p,- 1)p-,,_P]Vho,T ip(3.5) 0--- h’’T pP

we take a sufficiently small 70 such that

and have

(p- 1)p-,T-P/pp > 2p-1/(p- 1)

(3.6) sup ePh/(p-1)On(Un)dX + en/(P-)IX7uIdxd-
0<T<T,

<_ C(p) / e_.Ph(x,O)/(P-1)(n(].tn)dX

for sufficiently large integers n.
Taking the limit as n - oc, by inequality (3.6) and the definition of On, there

exists a function u E Loc(0, T’Wo’(RN)) such that

u u in Loc(0, Tx" WIo’(RN)) weakly,

and u satisfies inequality (3.3) and 0 llu IL(R x(0,T)) llPllL(R) Furthermore,
by the Minty lemma (see [3]), u is a weak solution of (3.1) in STy. By lim0T ,
the solution u(x, t) exists in S.

By Lemma 3.2, for any L(RN), there exists a solution of (3.1) in the strip

STo. In order to expand the strip STo to a larger strip, we need two lemmas.
LEMMA 3.3. Let be a function in C(RN) and u(x, t) be a solution of (3.1)

constructed in Lemma 3.2. For any 5 > 0, let be a constant such that

(3.7) 5 (P- 1)5/(1 + )p/(p-1).

Then for any T > 0, there exists a constant C C(p, ) independent of T such that

(a.s) su IIll-(.,t),(,)ll+( CIl,(.),(,)lll+(a).
O<t<T

Furthermore, we have maxs>075 7p-.

Proof. Let u be a solution of the Cauchy-Dirichlet problem (3.5). For any e > 0,
set

n(X,?) (h’T(tn -- ()p--1)Sgh,T(X,t) (5(p--1)exp (1 + 5)7 T -t
Then for any 0 < t < T, we have

t (lVnl2 + 1/)(P--2)/2Vn"

k 5(p- 1) e(l+5)h,T(Un + e)e(P-1)-l(lVu12 + 1/n)(p-e)/elVuledxd

g(l+e)h,T(n + ff)5(P--1)(IVnl2 + 1/n)(P-)/]VunllVho,TIdxd

1/(p--l)/,
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Here we use the Young inequality abp-1 <_ (gl-p/p)aP + ((p- 1)/p)bp with g
@/(1 + ). Thus we obtain the following inequalities"

liminf4_.0 -On(u)dxdr >_

(1 + 6)

T=t

T=0

where n(s) f:n(S)[o-l(t)]5(P-1)dt. Taking the limit as n -- oc, by (3.5) and (3.7),
we see that there exists a constant C(5) such that

T=t

< C(5) fB (ehe’T (X, O)#(x))+5dx,

and so the proof of Lemma 3.3 is complete. 0
The following lemma is proved by the arguments similar to those of [5]-[8].
LEMMA 3.4. Let u be a solution of (3.1) constructed in Lernma 3.2. For any

/ > 0 and r > 1, there exist constants C- C(r, ) and T, < 1 such that

for any R1 and R2 with 0 < t1 < I2 and any t, t, and t with 0 < t2 < tl < t <_ T,
where

M t) + -p 2c- (tl t2) -1.

Here r and gx are functions in (2.8).
Pro@ We first assume that u is a nonnegative strong solution of (3.1). Let

t (0, 1), cr (0, 1], and R1 and R with 0 < R < R be fixed and consider the
sequences

rn /:1 -- Cr(.-2 /1)2-n, 8n tl or(t1 t)2-.
Set B. B. and Qn B x (s., t), n 0, 1, 2,..., and denote by a nonnegative
piecewise-smooth function in Q such that 1 on Q+l, supp c Q.,

and
0

0 <_ -n <_ 2n+l/cr(tl -t2).

Moreover, for any k > 0, set k k(1 2-(+1)).
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Set v(Ixl)eU% and Uk [((Ixl)g)l/(p-1)t-k]+, where q is a constant
to be chosen later. Then we have

(3.11)

and

(3.12)

where

An(x, (sl/(P-1) k)ds.

We divide the proof into two cases--(A) p >_ 2 and (B) 1 < p < 2and proceed
the proof of (3.9), respectively.

Case (A)" (p >_ 2). Since the function g has the relation

0
(3.13) atg(x, t)

_
C)l-ptl-lIVgx(x,

by (3.11) and (3.12), there exists a constant T) dependent only on A such that for any
t e (0, T)),

kPn-2 sup Uq+ dx +

where

IIUoII L (QO) M
o’p

IlVoll(Qo)
(IVg(R,t)lP + (R2 R)-p + (t t)-).

]I’(P+q-1)/PNow we set w vk s p(q+ 1)/(p+q-- 1), and s’ p(q- 1)/(p+q- 1)
and obtain the following inequality:

(3.14) kPn-2 sup /B wdx + //c21Vw"IPdxdT <- K J]L w’dxd’"
r(O,tn+l) --I

By (3.14), the Gagliardo-Nirenberg inequality yields

(fro,Wn+ dxdr <_ CkPn(2-p)/NK(N+p)/N Wn dxdr
n+l

where q’= p(1 + s/N).
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On the other hand by s < ql and the HSlder inequality, we have

Wn+ldxd- < c%+ dxd-
n-p n-p

(meas An+l)l-s’/q’

where An {(x,t) e Qn e"/(-)u > k}. Since

/Q s’ ]gq-1
Wn dxd" >_ Ikn+l knlq-lmeasAn+l 2(n+l)(q_l

meas An+l,

we set

and have

Yn //Q, U- dxd7"

(3.16) (2(n+l)(p-1))/p-1Yn
(8’/q’)-1

yn+l <__ Wn+ dxdz-
n-F1

s’/q’

By (3.15) and (3.16), we obtain

(3.17) ’ 1+Yn+

_
CbnkcK --+ Yn

where

C (q- I)N q q
By Lemma 5-6 in [10, p. 95], it follows that IIUoIIL <Q ) provided

ffQ ug-ldxd <_ CkN+p+q-II-(N+p)/P.

Therefore, we have

(3.19) IIUoIIL (Q ) < cIIgoll

X o.N+p
1/(NWpWq-1)

Here Qg _= Qo BR:+a(R2-R1) (tl- or(t1- t2),t) and Q BR: x (tl,t).
Next, we use the method of iteration with respect to r. Set Q8 Qg with

cr Y’i=l 2-i-1, and define X -IIleguP-ll[L(Qs). Applying (3.19) to the pair of
cylinders Qs c Qs+l, we obtain

//Q ]I/(N-Fp-Fq-1)f’(N+P)/(NH-pnaq-1) 2s(g+p)M(N+p)/p u-ldxd7Xs <_ tAs+l

By the Young inequality, for any u > 0, there exists a constant C() such that

Xs

_
’Xs+l + C()(2 q---- M(N+p)/p u-ldxdz

1/(q--1)
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Iteration of these inequalities yields

N+p

)iXo <_ vsXoc + C M(N+P)/p u-ldxdT u2--c-
\i=1

N+p --1Choosing u 2- ---- and taking the limit as s oc, we obtain

(3.20) (t’ifB)
1/(q-l)

IIUolIL<Q <_ CM(N+p)/p(q-1) Ug-Idxd7
R2

Therefore, we set q- 1 r(p- 1) and obtain inequality (3.9) for Case (A).
Case (B): (1 < p < 2). By (3.)--(3.13), instead of (3.14), we have

p-2 sup cvgdx + IVconlpdxdT < kp-22 co dxd7UOII L(Q)Te(O,t) n+l

where

-Iu011 M.L (Q0)

By an argument similar to that of Case (A), instead of (3.17), we obtain

p(2--p)s qt _sl

Yn+ -< CdIIUllL(Qo)Nq’ k_(q_)___+(p_2 (N+p)8’Nq, 2 (+P)8’q’ stp

Yn

Then by Lemma 5-6 in [8], it follows that IIUolIL<Q) provided

/Q p-2 kq-p+l+(N+’) N+U-ldxdT - CIIUolIL(o> [ P

Thus we obtain

q-p+l-t 2(N+v) 2_p+2(N+p) M(N+p)/p /fQ Ug-dzdT"IIUolIL<Q> <_ CIIUolIL<Qo> crN+p

We can obtain (3.20) for Case (B) by the calculations similar to those of (3.19), and
therefore we complete the proof of Lemma 3.4 for nonnegative strong solutions.

Let u be a solution of (3.1) constructed in Lemma 3.2. Then we can approximate
the solution u by u, where u is a solution of (3.4). By Lemma 1-2 in [5], the functions
max{un,0} and -rain{u, 0} are strong subsolutions of (3.4). Since the argument
above holds for not only nonnegative strong solution of (3.1) but also subsolution,
max{u, 0} and min{u, 0} satisfy the inequality (3.9). Consequently, by the HSlder
inequality of un and the Ascoli-Arzel theorem, the function u satisfies the inequality
(3.4). D

Using Lemmas 3.2-3.4, we shall prove Proposition 3.1.

Proof of Proposition 3.1. Let # E C(RN). By Lemma 3.2, there exists a contin-
uous solution u(x, t) in So, which satisfies (3.3). To simplify the following arguments,
we assume TA 7-Ap-1 > 1. Then for any A > A with Ta > 1, by Lemma 3.2, we
have

(3.2) sup I1(, t) pP,ixl
0<t<l

+ vu(., t) ,aidt <_ CIlll,,
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where A1 (V- 1)-17o(T- 1) -1/(p-1) --h-yo,Ta (5, 1) with [51 1.
Set T(A) (p- 1)2(P-1)AI-p/pp. Then by Lemma 3.3, we obtain the following

inequality"

sup IIp-( ., t)ehp-*’><")llLP<N> Cllehp-’<><’> IILP<N> CIlll,

for any A > A. In particular, for any e > 0, we have

sup I1-(.,t)ll, c I11,,

where T(A)- T(A)- e and )- /p_lel/(p-) =-hp_I,T(a)(5, T(A))with 151 1.
For any fixed to E (0, T(A)), we apply Lemma 3.4 to the function u(x, t + to).

Then by (3.22), there exists a constant T*x(< 1) independent of to such that

for any t E (0 min{t0 + T*x Te (,X) }) Taking t T* /2, we have,X

sup IIgx("t)P-l(",) IL<o> C(p)IIII,.
<-<T(X)

Since C(p) has at most polynomial growth order in p, we get

sup

for any ,X’ > -9a (5, t)> 0 with 151 1. Therefore, by Lemma 3.2, there exists
constant )2 > ) such that

(3.23) sup
I<T<T(A)

By (3.21) and (3.23), for any e > 0 and any ,X > A, there exist constants C and

C such that

()
(3.24) sup I1(, )ll,c + IIW(., ) "II,cd

0<’r<T (A)

By the arbitrariness A > A, we get the inequality in Proposition 3.1.
For any # L(RN), there exists a sequence {#}=1 C C(RN) such that

lim_ [Itt- ttll,h 0. Let un(x, t) be a solution of (3.1) for initial condition tt.
Then by (3.24) and an argument similar to that of Lemma 3.2, there exists a solution
of (3.1) for the initial condition tt in the strip ST(). By the arbitrariness of e and
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A and the results of [12] and [18], there exists a solution u in the strip ST(A) and
therefore we complete the proof of Proposition 3.1. C]

4. Loc(RN estimate for Case (II). In this section, we give Loc(RN esti-
mates of the solution of (1.1) for Case (II) and complete the proof of Theorem 1.3.
By the arguments in 3, we have only to treat continuous nonnegative strong solution
of (1.1).

By Lemma 3.4, we have the following lemma.
LEMMA 4.1. Letu be a solution of(3.1) constructed in 3. Then forO < To < T,,

there exists a constant C C(N,p, 5, To) such that

(4.1) ]legxup-lllc(Bo)(t) <_ C + Ct-N/Px(t)

forO< t <To.
(2-i-1Proof. For anyp>0andt>0,1etQ =Bos x(ts,t) whereps=

and t (1 E(2--))t. Applying Lemma 3.4 to the pair of cylinders Q c Q+I,
we have

(4.2) []negxup-lllL(Qs) <_ C
bs/(l+5) [rlegxuP-]+Sdxd

sA-1

where M -IVgxlP(2p, t)+ p-P + t-1 and b 2-N-P.
For any measurable set E in RN, let XE be the characteristic function of E. Set

(4.3) (1 (X) )({eg, up-l_l} (X),

By (2.8),

By (4.2), we have

Then by the Young inequality, for any u > 0, there exists a constant C C(u, 5) such
that
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Iteration of these inequalities yields

+ C(u, 5)[r/(2p) + M(N+P)/Pt;(t)] (122Nd-P)
i=1

Setting u 2-(N+p+I) and taking the limit as s -+ oc, we obtain

(4.4) II-IIL(B> c()(2p) + c()[IVxl + t-1](N+P)/PtOx(t).

Therefore, by (4.4), we have inequality (4.1) for the case where p _< 1.
For any 0 < To < 1, there exists a constant C C(To) such that

<_ clzlp/(p-). For the case where p >_ 1, by (4.4) and the definition of r, we obtain

IIp-[[L<oB,/) C + Ct-N/PX (t),

where C C(p,N, 6, To). Therefore, we obtain inequality (4.1) for the case where
p _> 1, and thus the proof of Lemma 4.1 is complete.

LEMMA 4.2. Let {(x) be a piecewise-smooth cutoff function such that 1 on

Bp, IV{I <_ I/p, and supp{ C Bep. For any > O, there ezists a constant To (0, 1)
dependent only on p such that

(4.5) lira sup 7zrl(lxl)eg IVulP [egx(u + e)p-1]5p(x)dxd
--0 p

<_ c ’-x() + -lFe()

for O < t < To and p > 1, where C C(N, p, 5) and a SN/p.
Proof. Let

(X, t) t?](lXl)egx [eg>, ( nt- )P--1]5P(x).
Then we have

lim inf (up-1)dxd >
20

and
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Taking a sufficiently small To, by (3.13), we obtain

fot/B IVup
(4.6) limsup 7Z](Ixl)e [e(u + e)p-]pdxd7u-’--+0

C -l(Ixl)(exup-1)+dxd.

Here we used the relation tZ/pp tZ- for 0 < t < To. Thus we have

(4.7) -(Iml)(-l)e+dmd -x()d
2p

+ 7Z-l(Ixl)egxup-a

rthermore, by Lemma 4.1, we have

(4.8) zZ-( xl)egxup-lx2llEgxuP-lll(B2o (T)dxdT
2p

z-lw(lxl)egx up-[1 + r-5/p(r)]dxd7
2p

for any 0 < t < To. Therefore, by (4.6)-(4.8), we obtain inequality (4.5).
PROPOSITION 4.3. For a suciently small constant > O, there exists a constant

To To (p. . . II. I1.) ch that

(4.9) (t) c(o)
for 0 < t < To, where C C(p, ). Furthermore,

(4.1o) IIg<">uP-ll c(o) c( +
for any p > O and O < t < To.

Pro@ Set

where ( is a function given in Lemma 4.2. Then we have

lim (up-N  (Ixl)f(e   p-1)Cpdx
2p 2p T:O

(Ixl)[(egxup-1)l+Sx1 + egxup-lx2]CPgxdxd7
2p

and

2p

> e(p- ) [( +
2p

2p

egxlVu]p-I(IVgx[P +
2p



DOUBLY NONLINEAR PARABOLIC EQUATION 1251

where Xi, 1, 2, is given in (4.3). The Young inequality yields

and

Therefore, by (3.13) and the Young inequality, there exists a constant C C(N, p, 5, l)
such that

(4.11)

Taking the limit as p oc, by Lemma 4.2, we have

qA(t)

_
A(0) + C [(7-1/2 na TCt-1)(A(T) + Ta-ld/)l_x+6(T)]dT

<_ Ox(O) + C(t1/2 + t)Ox(t) + C 7- (r)dT,

where cr is a constant given in Lemma 4.2. Here we take a sufficiently small 5 > 0
such that a > 0 and fix . Taking a sufficiently small t such that C(tl/ + tZ) <_ 1/2,
we have

(t)

__
2d/), (0) nt- C 7a-1 (T)d7.

It follows by (4.12) that Ca (t) is maximized by the solution of

H’(t) Ct"-iH+5(t), H(0) 2x(0),

and so we have

--1/
Cx(t) < H(t)

1- C52t.(0)5, Cx(0)
2 cr
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provided the bracket is positive for any 0 < t < To. In view of (0) _< I1#111,, there
exist constants To > 0 and C > 0 such that (t) _< C(0) for all t E (0, To), and so
we obtain inequality (4.9). Furthermore, by (4.1) and (4.9), we have inequality (4.10),
and the proof of Proposition 4.3 is complete. [:]

PROPOSITION 4.4. By Proposition 4.3, it holds that

(4.13) l([x[)eg[Vulp-ldxd" <_ Ct(rl(p)pN + (0) + (0))
p

for any p >_ 1 and O < t < To <_ 1.

Proof. By the Young inequality,

rl(]x[)eg]Vu]p-dxd < -cZeg [Vulp [eg(u + e)p-1]edxd

where 1/2(/)- 1). By Lemma 4.2 and Proposition

or the second term h(e), we have

0

ct/(() + (0)),

nd so we have (4.13).
We now cn prove Theorem 1.3.
Proof of Theorem 1.3. By the definition of

(0) ] (x) ,(_x,/(-l)),(x)dx.

Therefore, by Proposition 4.3 nd A > A, we obtain inequalities (2.12) and (2.13) for
initial data p C(RN).

Let p be a function in C(RN) such that

lim f ,n exp(-A[x[/(p-x))dx f exp(-A]x[/(P-))d.(x).
RN N

By Lemm 3.2, there exists a solution u of (3.1) for u(x,0) n(X) in S
RN z (0, ). By the rgument of 3 nd (4.10), we have

(4.14) IVlpdzdt C(p,

for any 0 < < T0 and p 1, .where C(p, ) is a constant independent of n. Conse-
quently, by (4.14), the Minty lemma, and the result of [18], there exists a continuous
function satisfying I1 oc(0, r0 oc(g)) such that
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as n -- oo, for all 0 < - < To and all e C(Bp (0, T0) with supp(9(., t)) C
0 < t < To. Furthermore, by Proposition 4.4, there exists a Radon measure
(V1, V.,... VN) such that

(4.16) lim IVunlp-2Vun Vdxdt-
.=

and limt-0 V(Bp (0, t)) 0, 1,2,...,N. By (4.15) and (4.16), we see U
IVulP-Vu, and so we have IVulp- e L(0, To’LocRg). Consequently, the function
u is a solution of (1.1) and (1.2)in STo.

On the other hand, by (4.10), we hve

exp(-A(t)lxlP/(P-))u(x, t)llL(a) <

for 0 < t < T0, where A(t) A(l+tl/2) -g(5, t) with 1 1. Therefore, by
Proposition 3.1, we can see that there exists a solution of (1.1) and (1.2) in ST(A), and
the proof of Theorem 1.3 is completed.

5. Lc(R estimate for Case (I). In this section, for Case (I), we give
L(RN) estimates of the solutions of (1.1). We set v [u]Z-u and d m(p-1)-I >
0 and consider the following problem:

0
div(iVvmlp_2Vvm)(5.1) -v

e

in RN (0, oc),

in RN,

where rn 1/. By arguments similar to those of 3, we have only to consider
nonnegative solutions, and so we assume that v _> 0 and # _> 0.

LEMMA 5.1. There exists a weak solution v of (5.1) in S. The solution v

satisfies the following inequalities:

and

p

for any 0 < T < t and p > O, where C C(p, rn, N).
Proof. By the results of [16] and [18], for any suliiciently large n, there exists a

weak solution Vn of the problem

(5.4)

0-v= div(lVv,[p-2Vv’) in Sn x (0, oo),

t)= o OB, (0,
v #(x) in Bn

such that IIVnIIL(Bn)
_

II[_tllL(Bn). For any p > 0 with 2p < n, let ( be a nonnegative
piecewise-smooth cutoff function such that 4 1 on Bp, supp() C B2, and IV4[ <_
1/p. Then we multiply (5.4) by (x, t) vp, integrate it over Bp (% t), and obtain



1254 KAZUHIRO ISHIGE

Taking the limit as n -- oe, we can prove Lemma 5.1 by the same argument as in
Lemma 3.2.

By an argument similar to that of Lemma 3.4, we obtain the following lemma,
which is an extension of Lemma 3-1 in [6].

LEMMA 5--2. Let r > 0 and v be a solution of (5.1) and

(t) sup
TE(0,t) p>_r flp/d

Then the solution v satisfies the following inequality:

(5.6) V(’,t)ll,Bo

_
C[K(t)](N+p)/* vrnpdxd

4 2p

for all p

_
r, where

K(t) t-Nd/d(t) + t-1.

Pro@ We set R1 p and R2 2p and define Bn, Qn, and n as in Lemma 3.4.
Furthermore we set

( kn)_-l(np
t)

if p_>2,

if 1 <p<2

and multiply n by (5.1) to obtain that if p _> 2,

and ifl <p<2,

(5.9)

where

An,l (X, t) fl
u (x,t)

Jk
(81/ kn)-ld,3 and An 2(x, t) (s/ k)+ds.

Here we divide the proof of (5.6) into three cases,

(A) m_>l, p_>2, (B) 0<m<l, p_>2, (C) rn>_l, l<p<2,

and treat each case respectively.
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Case (A)" rn >_ 1, p _> 2. By (5.8) and m _> 1,

Set wn (u- kn)+(P-1)/P and s- p:/2(p- 1), and we have

--(m--1)/m

Using the Gagliardo-Nirenberg inequality and the HSlder inequality as in Lemma 3.4,
we have

where q p(1 + s/N) and b is a constant independent of n. By Lemma 5-6 in [8], we
have the following inequality"

By u vm

iiP(m-1)+rp iP(m--1) _N_p [[IV[[ dc,Qo +t_1]
N+p

(5.1o) IIv,, ,Q <_ CIIv , ,Qo pp

where Qo B(l+)p x ((1 -a)t/2, t) and Q Bp x (t/2, t).
Setting Q, as in Lemma 3.4, and applying (5.10) to the pair of cylinders Qs c

Qs+l, we have

XPs(rn-1)"l"mp < yP(m-1)2s(N+p)
"as+

,Qo + t_l v.vdxdr
PP

The Young inequality yields

d

Xs < l]Xs+l + C(12)(2N+P) I1 ’11oo, o + t_
tip (N+P)/*(//QoVmpdxdT)P/*



1256 KAZUHIRO ISHIGE

where 2-(N+p)-I. Iterating these inequalities and taking the limit as s oc, we
obtain

(5.11) Ilvll,Q < C Ilvll,Q + t- vmpdxd.
PP 4 p

Therefore, by (5.5) and (5.11), we obtain inequality (5.6).
Case (B): O < m < l, p_> 2. By (5.8) and0<m<l,

Applying the Gagliardo-Nirenberg inequality, the Young inequality, and Lemma 5-6
in [10] as in Case (A), instead of (5.10), we have

(5.12)

By the Young inequality and the argument of iteration, we can obtain (5.6) as in Case
(A).

Case (C)’m >_ 1, 1 < p < 2. By (5.9) and m _> 1,

--(m-1)/m

and by 1 < p < 2,

By the Gagliardo-Nirenberg inequality and the HSlder inequality, we have

/Q (m-1)(1-p/q)/m(u- kn+l)P+dxd <_ Cbnllu ,Qo
k-P(1-p/q)+(’P-2)(1-p/q)

n-t-1

[ ;--(rn--l)/rn I (//Q )l+(q--p)/p’-P (u k)P+dxd’r(P)- + t I111,o

where q p(1 + p/N) and b is a constant independent of n.
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Bym>_ 1,

k-(m-i)/m
(P)-’ + o-t I111-oQo

(m--1)/m 2--p

Therefore, by Lemm 5-6 in [8], we obtain

-+(-)(+/)IIII,Q+(-)(I+/)
_

CIIII,Qo
,o + t_ -(p+N) vPdzd.

By the same argument as in ease (A), we obtain inequality (g.g) and complete the
proof of Lemma .2.

Let (t) be a function defined by

(.la) (t) sup II1(’,

Then we can prove the following lemma.
LEMMA .g. et p r > 0 and (z) be a nonnegative piecewise-smooth ctoff

fctio i Bo sch that 1 on Bp, supp C Bo, and Ivl < p-i, re for
t>0,

t IDmlP-lp-ldzdT

Cpl+/e (p+l)/-ld(p+l)/p()(r)d

(5.14)

/0+ /-/()()d

Proof. The HSlder inequality yields

t /B2p ’vm’p-lp-ldxdT

(P-1)/PIoot I lip

/-/()()d

(Ot/B
_

71/PlVvmlp(vm + )-(m+l)/mpPdxd7
2p

--(P-1)/p(vm + )(m+l)(P-)/mpdxd7
2p

for any e > 0. Multiplying the equation by g(v) t/P(vm + e)d/pmp and integrating
it over Bp, we have

(.1) /1(+)e/-aa

Cp-p /P(vm + e)(mP:--)/mpdxd + C -(P-)/PA()dxd,
2p 2p
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where

A() (s + )/ds.

Taking the limit as e -- 0, by (5.14) and (5.15), we have

it L IDvlp-lp-ldxdr < C(I + I2)(v-)/PI/p
2p

where

I p-p rl/pv(mpg-m-1)/Pdxd,l-,
2p

I. t-(P- 1)/pv(r+1)(p- 1)/Pdxdr.
2p

By (5.13),

11 Cplq-/d T(Pq-1)/--I(P-[-1)d/P(T))(T)dT

and

I2 <_ Cp+/d rl/-d/v(r)(r)dr.

Therefore, the proof of Lemma 5.3 is complete. D
By Lemmas 5.2 and 5.3, we can prove the following proposition by an argument

similar to that of 3 in [6].
PROPOSITION 5.4. Let u be a weak solution of (5.1). Then there exist constants

Ci, 0, 1, 2, such that

for all 0 < t < Collllll;d

for any p > r > O,
Furthermore, there exist constants Ci, 3, 4, such that

IIv(’, t)ll,Bo < C4t-N/pP/dlII#IIIP/,

foot fB IVv’lP-dx& < C5t/pl+/dlll# ]l+d/
P

for all 0 < t < Colll# I1d.
By Proposition 5.4, we can prove Theorem 1.2. In fact, for any a-finite non-

negative Borel measure # satisfying I1111 for some r > 0, there exists a sequence
{#}__ C C(RN) such that

N N

for any E C0(RN) and II1111 II1111 s for any r > 0. Let Un be
solution of (5.1) for initial condition #n. Then by (5.3), (5.17), and (5.18), taking the
limit as n oc, we can see that there exists a solution of (1.1) for initial condition
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by the same argument as in the proof of Theorem 1.3. Therefore, by Proposition 5.4,
we can complete the proof of Theorem 1.2.

6. Loc(RN estimate for Case (III). In order to prove Theorem 1.4, we need
some Lloc(RN estimates of the nonnegative solutions. By Theorems 2-1 and 2-2 in

[19], we have the following proposition.
PROPOSITION 6.1. Let v be a locally bounded nonnegative local weak solution of

0
(6.1) -v div(lVv’lp-2Vv") in S, d=m(p-1)-i <0.

If r > O, then there exist constants Ci Ci(N,m,p,r), 1,2,3,4, such that for
any t > O and p > O,

( i(6.2) sup v(x, t)

_
Clt-N/ sup vr(x, 7)dx + C2

xBp O<T<t 2p

and

(6.3) /B /B (t_r) 1/--d
sup vr (x, 7)dx <_ C3 v (x, O)dx + Ca
0Tt p 2p

We can also prove Proposition 6.1 in view of the arguments of the previous sections
and [7]. We remark that Lemma 5.1 holds for equation (6.1).

The following lemma is presented via the same arguments as in Lemma 1.4.1 and
Corollary III.3.1 of [7] with minor changes.

LEMMA 6.2. There exists a constant C C(N, m, p) such that for any 0 < s < t,
p>0,

(6.4)
l fst]2P

IVv,lp ldxdT<C
t s

p

-d}(m+l)(p-1)/p
Therefore, by (6.2)-(6.4), we can complete the proof of Theorem 1.4 in the same

way as in that of Theorem 1.2.
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GLOBAL STABILITY OF TRAVELING FRONTS AND
CONVERGENCE TOWARDS STACKED FAMILIES OF WAVES IN

MONOTONE PARABOLIC SYSTEMS*

JEAN-MICHEL ROQUEJOFFRE, DAVID TERMAN$, AND VITALY A. VOLPERT

Abstract. A class of parabolic systems for which the maximum principle is valid is investigated.
When two stable rest points can be connected by a traveling front, any solution of the Cauchy problem
which initially has these two rest points as spatial limits will become monotone in finite time on every
compact interval and converge to a traveling front. As an application, convergence to stacked waves
is discussed.

Key words, global stability, traveling waves, wave stacks

AMS subject classifications. 35B40, 35K45

1. Introduction. The problem under consideration is the long-time behaviour
of the solutions of the Cauchy problem for a class of semilinear parabolic systems of
the form

(1.1)
ut Duxx F(u),

(0, x) 0(x).

The unknown is the real-vector function u(t,x) -. (ul(t,x),...,un(t,x)), the nonlin-
earity F(u) (FI (u),..., Fn(u)) is smooth, say of class C in u, and D is a diagonal
matrix with positive diagonal coefficients (D,..., Dn). Such a system is called mono-
tone if the following additional condition holds:

(1.2) Vi E [1, n], j # i,
OFi > O.

It is well known [G], [VV1] that (1.2) implies a comparison principle: if ?-tl0

_
U20,

then u _< u2 as long as both solutions exist. The inequalities are meant to hold
componentwise.

Traveling-front solutions of (1.1) are solutions of the form u(t,x) w(x + ct); if
F(w_) F(w+) 0, then the front is said to connect the two rest points w_ and w+
if it goes to w_ (resp. w+) as x -+ -oo (resp. as x -+ +oo). Denoting w’ d

-3-7’ we
write the differential system satisfied by w(x):

-w" + cw’= F(w),
(1.3) lim w(x) w+.

The existence of a solution (c, u) for (1.3) has been investigated in a number of frame-
works. The scalar version is now understood. Systems of equations have also been
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UFR MIG, UMR CNRS 5640, Universit Paul Sabatier, 118 Route de Narbonne, 31062
Toulouse cedex, France.

:Department of Mathematics, Ohio State University, Columbus, OH 43210. The research of
this author was supported in part by NSF grant DMS-9203299LE.

Laboratoire d’Analyse Numrique, Universit de Lyon I, 43 Boulevard du 11 Novembre 1918,
69622 Villeurbanne cedex, France.

1261



1262 J.M. ROQUEJOFFRE, D. TERMAN, AND V. A. VOLPERT

extensively studied. For example, a model for competing species was considered in
[G], while a model for chemical activity on isothermal catalyst surfaces was studied in

[FT]. These are both systems with two equations; the more general case was consid-
ered in [VV1]. Nonmonotone systems also arise in many applications--in particular,
combustion theory. Systems with two equations are considered in [BNS] and IT1],
while models involving complex chemistry are studied in [B] and [T2]. This list is, of
course, by no means exhaustive.

Henceforth, system (1.1) will always be assumed to be monotone, and this will not
be mentioned again. Assume that F has two stable rest points w_ < w+. Also assume
that in the interval [w-, w+], the only rest points w are such that the matrix F’(w) has
at least one eigenvalue in the right half-plane. This assumptions is meant to disallow
waves that connect intermediate rest points, which could prevent the existence of a
wave connecting w_ and w+. Other stable rest points, not in the interval IT_, w+],
are allowed.

From [VV1], there indeed exists a unique c E and a unique--up to the
translations--profile w such that (1.3) holds; furthermore, w > 0. Henceforth, we
will always denote by w the unique solution of (1.3) such that

It is proved in [VV2] that if the initial datum is monotone in x and satisfies decay
conditions at +/-e, then u(t) converges exponentially to a front. It is the purpose of
this paper to remove the monotonicity assumption and to examine some consequences
of this result when F has multiple stable rest points.

Let us recall that global stability for the bistable scalar case was treated by
Fife and McLeod [FML]. The local stability of traveling fronts for monotone systems
with two equations was considered in [G] and [FT]. In several space dimensions with
nonhomogeneous convection, the problem has recently been solved by the first author
in [R1] (monotone initial data) and [R2] (nonmonotone initial data).

The paper is organized as follows. In 2, we state our main results, and 3 and
4 are devoted to their proofs.

2. Notations and main results. Let us denote by $(t)uo the solution of
(1.1)--which may, by the way, not exist globally. Let UC(,n) be the set of all
bounded, uniformly continuous functions from to n; for u E UC(,) and
h , define 7hu(x)"- u(x + h).

We will call wo fit a stable rest point of F if F(wo) 0 and the eigenvalues of
the matrix F(wo) have negative real parts.

THEOREM 2.1. Assume that w- < w+ are two stable rest points connected by a
monotone front w with speed c. Let uo UC(, :tn) satisfy w- < no(x) < w+, and
set

e(u) sup (lixmSup lu(x) limsup lu(x) w+l)
Then, if e(uo) is small enough, $(t)uo is defined for all time and there exist xo f
and w > 0 such that

IIS(t)uo

When multiple ordered stable rest points exist, the long-time behaviour of $(t)uo
can be a dicult problem. However, the following natural case can be treated.
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THEOREM 2.2 Assume that w- -w <... < w < < w -w+, 1 _< _< k,
are k rest points such that the eigenvalues of the matrices F(w) have negative real
parts. Assume that for all E [1, k], w andw are connected by a monotone front
w with speed c and that c+ < c.

Let no VC(,) .satisfy w- <_ no(x) <_ w+. Then if (uo) is small enough--
recall that (uo) is defined by (2.1)--(1.1) has a global solution $(t)uo and there exist

(x,...,xk) ffk and w > 0 such that

Remarks. 1. Theorem 2.2 implies nonexistence results for certain solutions of
(1.3); in particular, its assumptions preclude the existence of a single wave connecting
w- to w+.

2. In contrast with the preceding remark, we may consider the union of the mono-
tone fronts w as a stable wave train which connects w- with w+. The existence of
stacked waves for systems with two equations was considered in [FT]. It was demon-
strated there that if w- and w+ are any distinct, stable rest points and all of the rest
points are nondegenerate, then there must exist a wave train which connects w- with
w+. The stacked family may, of course, consist of a single traveling-wave solution.
Theorem 2.2 demonstrates that this wave train is globally, asymptotically stable. A
similar result concerning the existence of wave trains is proved in IT2], where a non-
monotone system is considered. The extension of this result to more general systems
will be addressed elsewhere.

3. Convergence to traveling fronts. Assume that the assumptions of Theo-
rem 2.1 are satisfied. In particular, w is a monotone front with speed c. The first task
in studying the stability of w is to rewrite (1.1) in the reference frame of the traveling
front. This yields

ut Du + cu F(u),

The solution will still be called S(t)uo. As is known, three ingredients are required in
the proof of convergence: local stability, precompactness of the orbits, and quasicon-
vergence. One cannot hope to prove quasiconvergence without precompactness, and
global stability is implied by local stability and quasiconvergence. Local stability is a
consequence of Theorem 4.1 in [VV2], and we state it in a more general form which
will be useful in 4.

THEOREM 3.1. For vo UC(ff, ffn) and h UC(ff+ l,ffn), let u(t,x) be the
solution of

ut Du + cu F(u) + h(t),
u(O) w + vo.

Assume that lh(t)ll < 5e-2t--the same w as in Theorem 2.1. There exist /(vo, h)
and C(vo, h) > 0 defined and bounded for small and [[voll such that
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We now turn to precompactness. The most common way to prove this is to trap
$(t)uo between two translates of the wave, as is stated below. Set p0 := (1,..., 1).

LEMMA 3.2. Let uo be as in Theorem 2.1. There exist q > O, w > O, and 1 < 2
such that for to large enough, it holds that

(3.3) Vt to, "[’1W qPOe-Odt S(t)U0 ’2w Jr- qpoe-O).

Proof. Choose s0 > 0 so small that for all v0 lying in the cube [-0, 0], the
matrices F’(w_ + v) and F’(w+ + v) have eigenvalues of negative real parts. As a
consequence, the solutions v+(t) of the two differential systems

dt
dv+
dt

F(v_), v_(O) w- + vo,

v+ (0) +

approach w+ exponentially as t --+ +oc. Therefore, if e(u0) <_ e0, the function
e(S(t)uo) goes exponentially to 0. In Theorem 3.1, we set h 0 and select to > 0
large enough so that Theorem 3.1 works with vo =- e(S(to)uo)po. Furthermore, there
exists M > 0 such that

T-M(W VO)

_
S(t0)t0

_
TM(W -[- VO).

From the comparison principle, we have, for all t _> to,

S(t to)(q-M(W vo))_ S(t)to

_
S(t- tO)(7"M(W -[- VO)).

Since the semigroup commutes with the translations, we get (3.3).
Lemma 3.2 implies global existence and precompactness. Therefore, it remains to

prove quasiconvergence, and we will use the method of [R2]. We first need a lemma to
replace the Harnack inequalities that were used in [R2], and in this scope we consider
the linear parabolic system

(3.4) ut Du + CUx A(t, x)u, x fit,

where A(t, x) := (aij(t, x)) l<i,j<_n
is bounded and continuous and satisfies aij(t, x) >_ 0

if :/: j. Henceforth, if u(t, x) is a bounded solution of (3.4), we will set supxeta u(t, x)
suPl_<i_<n, xe ui(t,x), and the same convention will be used for the infimum.
LEMMA 3.3. Let u(t, x) >_ 0 be a globally bounded solution of (3.4) for which there

exist #, > 0 such that

sup( inf u(t,x))= max (min u(t,x)) =#.
xi l<i<n x[--a,a] l<i<n

Choose M > c and t > 1. There exists ](M) > 0 such that infxe[-M,M] u(t,x) >
(M).

Proof. For t _> 1, let xt E [-c, (] such that u(t, xt) <_ #po. From the parabolic
estimates, u is globally bounded; therefore, there exists K > 0 such that

u(t, y)k (- Klxt- y[)po

for all y e//; as a consequence, we get, for Ixt yl, u(t, y) >_ 2po.
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Let us assume without loss of generality that N 2_g_K is a nonzero integer. For
j e [-N,N] set xj

2_ and /j [xj Xj+l] We choose j [-N,N] such that./

xt Ij; for y Ij, we may write--thanks once again to the parabolic estimates.--

(t + , ) >_ (t, ) K’po,

where K depends on neither t nor ---recall that t was taken > 1. Thus for 0 <_ I-I _<
4KK we have

#(3.5) u(t + % y) > po.

We now define by induction an increasing sequence (tp)p such that (tp+ -tp)p is
bounded away from 0. Set to 0 and for p >_ 1 assume that, for all k <_ p, we have
managed to define tk and an integer jk I-N, N] such that xtk Ijk; also, assume
that tk+ tk >_ 5 for k _< n- 1. The time tp+l will be chosen to be the first instant
when the inequality u(t, y) >_ po ceases to hold in Ijp; obviously, from (3.5), we have
tp+l tp _> 5; however, tp+ may be infinite, but this will not bother us too much.

Notice that for all n, the abscissa ztp can be chosen to remain in [-c, c]; this is
allowed by the assumption.

Now choose M > c; without loss of generality, we take M _> 1 + c. Set aid :=

inft_>0,xe aij(t,x) and A (fli)l_<i,j_<n. Setting Sp := tp-, we define the sequence
(up(t,x))p by

(3.6)

Otu Oxu + cOu Au
It(t, x) ,

u(s, x) O,

(t, ) e l, t+,] , x],

and we also define the sequence (vp(t,x))p by the same boundary problem as (3.6),
but replacing]-oc, xj] by [xj,+l, +oc[. As is well known, the functions Up and Vp
are time-increasing for every p; moreover, we have up(t, .) xj,-oUo(t- Sp) (resp.
Vp(t, .) Txjp+l_xoVO(t- 8p)). Furthermore, the comparison principle implies that for
every p and every t [Sp, tp+] and x /.p, sup(up(t), vp(t)) <_ u(t). This together
with (3.5) implies

//
inf u(t, x) > inf|(#, inf

xe[-M,M] \\ x[-M,M]
(o(to, x), o(t0, x))):= (M).

From (3.6) and the properties of Up and Vp, we have r/(M) > 0. El
We may now turn to the proof of Theorem 2.1. We will use the idea of JR2], with

minor modifications. Notice that by precompactness, w(uo) is nonempty and compact
in UC , lt:tn

LEMMA 3.4. Let uo satisfy the assumptions of Theorem 1.1. Then there exists an
x-increasing element in w(uo).

Proof. From Lemma 3.2, there exist two real numbers h _< he such that

(3.7)
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Denote by h the following application, defined on a(u0)"

VEa(uo), h()=Inf{h>0" Vk_>h, rk_>};

from (3.7), we see that h() is finite for e w(uo). Also, by compactness, h attains
its minimum h0 at some point 0 co(u0). Assume that h0 > 0. Notice that from the
definition of h0 and the maximum principle, we have h($(t)o)- ho.

Let us first notice that, because of (3.7), there exists # > 0 such that

For every 5 , let ve(t,x,y) be defined as v rho_$(t)o- $(t)o. The
function v solves

vt / Dvx / cv A(t, x)v in

with A(t,x) f2 F’(cr’ho_5$(t)o + (1- a)$(t)o dcr. The matrix A(t,x) satisfies
the assumptions of Lemma 3.3; therefore, for every large enough M > 0, there exist

5o(M) ]0, ho[ and #(M) > 0 such that

V5 [0,50(M)[, Vt > 1, Vx E [-M,M], ve(t,x) >_ #(M).

Let o be defined as in Lemma 3.2 and M > 0 be large enough so that for all
k e [0, hi all x I-M, M] and all t >_ 1, we have 7kS(t)2o(X) e [--o,0]. We are
now going to study the evolution of S(t)o. By compactness, there exist a sequence
(t) and e w(uo)such that

From the definition of ho, we know that for all x [-M,M] and k > h0- 50,
o(x + k) _> (x). Let us see what happens for x >_ M. From the definition of e0
and the maximum principle, we have

(a.9) x) > P0o

From the definition of e0, the right-hand side of (3.9) goes exponentially to 0. Fur-
thermore, a similar phenomenon occurs for x <_ -M.

To sum up, we have just constructed E a(u0) such that for every k > h0- 50,
the inequality -ko > o holds, which implies that h() < ho-5o. This contradicts
the definition of h0.

Proof of Theorem 2.1. Let o E w(u0) be increasing in x. From Theorem 5.1 of
[VV2]--convergence to traveling fronts for x-increasing initial data--S(t)0 converges
to some rxoW. From the closedness of w(u0), we infer that rxo0 a(u0), which is
exactly quasiconvergence.

4. Convergence to stacked waves. The first idea proceeds as in [FML]:
first, construct sub- and supersolutions to make sure that everything happens in the
right reference frames; we then use Theorem 3.1 to complete the proof. However, this
method cannot be carried along the whole way: to make it work, one would need an

additional assumption, namely, the existence of p > 0 such that every F(w)p > 0
for all 1.
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This assumption is not irrelevant, but we prefer another method which works
without it. Let us first remark that combining Theorem 2.1 with Theorem 3.1 yields
the following result.

THEOREM 4.1. Let no satisfy the assumptions of Theorem 2.1. For h E UC(I+
za, za), t (t, ) t oto of

ut Duxx + cux F(u) + h(t),
(0) w + o.

Assume that h(t) O(e-2t). There exists, co > 0 such that if c(UZo) <_ co is small
enough--see (2.1) for the definition--u(t) is defined for all time and there exists xo
Kt such that

Ilk(t) o/11 o(-).

The proof is standard and will not be given. The following consequence of The-
orem 4.1 will be needed.

LEMMA 4.2. Let a, k, and / be positive. With the notations of Theorem 2.1, let
(t, z) solve.

(4.2)
ut Duxx + CUx F(u), x_>-at,

u(t,-at) w_ kpoe-t,
u(t, +oc) w+.

There exists xo e 1 such that Ilu(t) -xo+ctWllLoO([_t,+c[) O(e-wt).
Proof. The proof requires two steps. Throughout the proof, the notation of 3

will be used.
Step 1" Estimates at x -at. Let T0 be x-increasing and such that

lim T0(x) w_, T0 _> u(0).

Clearly, u _< ; therefore, by Theorem 3.1, we have u(t, x) <_ -zlW + O(e-wt).
Now recall that F (w_)-i sends the nonpositive cone of/ln onto its interior. To

see this, we only have to write

F,(w_)-I lim e(t-s)F’(w-) ds,

which is obviously nonpositive by the comparison principle, and even negative. By
continuity and Frobenius-Perron theorem, there exists c0 > 0, # > 0 and a vector
p > 0 such that

(4.3) VV e I--CO, col n, Ft(w_ + v)q <_ -#q.

Choosing ")/1 < inf(q,, #), we see that the function u_(t) w_ -cqe-lt is a subsolution
to (4.2) as soon as c is small enough. As a consequence, we get _u(t) _< u(t, x) <_ g(t, x)
once all the parameters are conveniently chosen. This yields an estimate of the form
Ilu(t) w_ [IL([-t,-t+2[) O(e-t); from boundary estimates, we finally infer

(4.4) lUx(t,-at)l + Ix(t,-at)l + It(t,-t)l- O((-lt)
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Step 2: Convergence. Let F be a C real-valued, nonnegative, nondecreasing
function that is equal to 0 on

_
and to 1 on [1, +c[. Define componentwise the

function v(t, x) on the whole real line as

(t, ) (_) + ((t, )- (_))r(x + t- ).

From Step 1 above, the function v solves an equation of the type (4.1), and we may
apply Theorem 4.1 to obtain Lemma 4.2.

Let us now prove that, as we stated above, everything happens in the right ref-
erence frames.

LEMMA 4.3: Let uo fulfill the assumptions of Theorem 2.2. There exist 2k real
n1, <... < < , {1, }, a q, > 0 tat

Proof. Only the lower bound will be dealt with since the upper bound is similar.
By an easy induction on [1, k], it is possible to find k functions u(t, x),..., ut(t, x),...,
u(t, x) defined on some time interval of the form [to, +oc[, to > 0, large enough such
that

c+ct+for all is a solution of (4.2) with a and c d
tl(t, X) wloz+1" limx-+

Ut(t,J-J+lt)-ut+l(t, J-J+lt) forl<k2 2
(t,) <_ s(t)o,

el eut(t)<_-_dtS(t)uo, fort_>to, x_> 2 ,andl_>l.
Now define _u(t, x) as

c --c2
-cltUl(t, x) if x < --t,

2
e -t- cl- el

__
cl+

(4.5) u_(t, x) -dtu(t,x) if t_< x _< ---t,2
ck + ck-

’etuk (t, x) if x > t.
2

Obviously, _u(t, x)

_
$(t)u0; application of Lemma 4.2 yields Lemma 4.3.

Proof of Theorem 2.2. From Lemma 4.3, the vector function vt, defined as in (4.5)
with a ct, satisfies an equation of the type (4.1). Therefore, Theorem 4.1 yields
Theorem 2.2. V1
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TRAVELING-WAVE SOLUTIONS TO COMBUSTION MODELS FOR
A REVERSIBLE REACTION*
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Abstract. We prove the existence of traveling flames for a combustion model involving a

reversible chemical reaction --i=1 ’iAi i=1 #iAi. The proof of existence involves a degree
theory argument and refined a priori estimates.

Key words, combustion, traveling waves, system of ordinary differential equations
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1. Introduction. The study of planar flame is one of the fundamental problems
in combustion (see, for example, [ZFK], [CFN], [JN], [W]). The rigorous mathematical
treatment of this question was initiated by Berestycki, Nicolaenko, and Scheurer, who
proved the existence of traveling waves for a simple combustion model [BNS]. They
gave a complete analysis of the case of a one-step nonreversible reaction A - B (see
also [M] and [B3] for other qualitative properties and uniqueness results on this model).
Later, Terman IT] and Seinze [HI addressed the question of complex chemistry. In
their work, they considered only exothermic reactions. In [B1], we studied some
complex chemical networks with the help of graph theory. We obtained the existence
of traveling waves for complex chemical networks involving endothermic reactions.
However, purely reversible reactions are not covered by these works.

In this paper, we consider the defiagration-wave problem for a compressible re-
acting gas with two or more species involved in a reversible chemical reaction.

(1.1) A- B

or

i=1 i=1

In the limit of small Mach number, the one-dimensional traveling-wave problem
for the reversible chemical reaction (1.1) can be reduced to a system of two reaction-
diffusion equations (see 2 for a review of the model)

T" / cT’ -Ylfl(T) / (1 Y1) f2(T),
(1.2)

dY’ / cY -YI(T) / (1 Y) f2(T)

with boundary conditions

T(-oo) 0, T(+oc) T+

Y1 (-oo) YF, Y1 (too) Y.

*Received by the editors February 4, 1994; accepted for publication (in revised form) April
17, 1995. This work was partly done while the author was staying at the Courant Institute of
Mathematical Sciences, New York University, and was supported by a Bourse Lavoisier of Minist6re
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France and Departement de Mathmatiques et d’Informatique, tcole Normale Suprieure, 75230
Paris cedex 05, France.
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The real c is the unknown mass flux of the wave.
In (1.2)-(1.3), T denotes the renormalized temperature of the mixture, Y1 is the

concentration of species A, and 1 Y1 is the concentration of species B. Here we
assume that A and B have the same diffusion coefficient dl. For simplicity, dl is taken
constant.

In system (1.2), Ylfl(T) is the rate of the semireaction A B and (1 -YI)f2(T)
is the rate of the semireaction B A.

More precisely, we assume that the rates are of mass-action Arrhenius form

(1.4) fi Bi(T)exp -R(cT+to) 1,2,

where Ei is the activation energy of the semireaction, cT / to is the absolute temper-
ature of the mixture, and R a physical constant.

Notice that under conditions (1.3), the right-hand side of the equations in (1.2)
vanishes for (T 0, Y Y-) and for (T T+, Y Y+). Since we expect
a flame to propagate, the mixture is not in equilibrium in the fresh gas (T 0,
Y Y-). In other words, -Y1-f (0) + (1 Y-) is not zero. However, this term
is very small and the reaction is frozen because of the exponential dependance in
temperature of the Arrhenius term. Thus the right-hand side of (1.2) is very small
but not rigorously zero. This is what is refered as the cold-boundary difficulty (see
[JN], [W], and [ZBLM]). Commonly, we introduce an ignition temperature 0 > 0 such
that Bi(T) b(T)X[o,+) for some b > 0. Under this hypothesis, one may expect
system (1.2)-(1.3) to admit nontrivial solutions. A limit case is when 0 0 and is
a smooth function such that (0) 0 and (T) > 0 for T > 0. This hypothesis is
used in some biological models and is known to yield to different qualitative results:
the set of possible speed is no longer discrete (see [KPP]).

In (1.3), (T+, Y1+) is the only pair (T, Y1) withT > 0 satisfying

(1.5) { T= Y. Y-,
Ylfl (T) + (1 Y) f2(T) 0.

We will prove the existence of traveling waves for the problem (1.2)-(1.3) in the
cases d 1 (3) and dl 1 (4). If d 1, the problem is reduced to a form to
which the result of [BNS] in the scalar case applies.

The proof of existence given here for dl 7 1 involves degree theory. The a
priori estimates needed for the degree argument are obtained by mean of a backward-
shooting method.

In 5, we discuss the limit 0 0.
Finally, in 6, we extend our results to the more general chemical reaction (1.1) t.

There, we have to solve a system of n + 1 reaction-diffusion equations

T" + cT’ -wl (T, Y) + (T, Y),
(1.6)

diYi" + cYi’ (T, Y) / #i)w2(T, Y) for 1,...,n,

where di is the diffusion coefficient of species Ai and a and a2 are the rates of the
two semireactions. Our main theorem (Theorem 6.7 in 6) gives the existence of a
flame for general kinetic rate (M1 and co satisfying the monotonicity condition (6.7)
in 6. This condition is satisfied in particular by the kinetic rates given by the law
of mass action and the Arrhenius law. However, the result is not restricted to these
laws.
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2. The model for a reversible reaction A-- B.

2.1. The model. When the hydrodynamic effects are neglected, the propaga-
tion of a deflagration flame is described by a thermodiffusive model. We are interested
in the existence of traveling waves. These are flames propagating at a constant speed
c. In a frame of reference moving at the same speed as the flame, the problem is
written as a system of three reaction-diffusion equations of unknown (T, Y1, Y2, c),

(2.1)
T" + cT’ Q1Ylfl (T) + Q2Y2f2(T),
diYi" + cY{ -Ylfl (T) +
d2Y’ + cY Ylfl (T) Y2f(T),

with boundary conditions in the fresh gas at

(2.2) T(-cx) 0, YI(-) Y-, and Y2(-) Y2-,

where Y1 (resp. Y) is the concentration of species A (resp. B). In (2.1), Q and
Yf(T) (resp. Q2 and Y2f2(T)) are the heat release and the rate of the semireaction
A - B (resp. B --+ A). As specified in the introduction, we assume that the rates are
ruled by the mass-action law and the Arrhenius law:

(2.3) fi Bi(T)exp -R(aT + to)

To resolve the cold-boundary problem, we assume that

(2.4) B(T) b (T)X[0,+o),

where b > 0, 0 > 0 is the ignition temperature, and is some C function with
(0) 0 and (T) > 0 on (0, +).

2.2. The diffusion coefficients. If we assume that A and B have the same
diffusion coefficient, dl d2. Since Y1 and Y2 are bounded, an integration of the sum
of the equations in Y1 and Y2 of system (2.1) gives the relation

+ Y2 Y;- + Yi-.

Assume Y- +Y2- 1; system (2.1) is then reduced to two reaction-diffusion equations
as in (1.2):

(2.6)
T" + cT’ -Ylfl(T) + (1 Y1) f2(T),
dlY’ + cY{ -Ylfl (T) + (1 Y1) f2(T).

Remark 2.1. The coefficient dl is, in fact, the inverse of the Lewis number

(2.7) Le

where A is the thermal conductivity of the mixture, p is the density, Cp is the specific
heat at constant pressure, and D is the diffusion coefficient of species A and B.

2.3. The heat release. We remark that by the first principle of thermodynam-
ics, the heat release of the two semireactions are related:

Q +Q2 0.
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The situation of an athermic reaction (Q1 Q2 0) is not relevant in this model.
If Q1 Q2 0, the temperature will be a constant and system (1.2) reduces to
-dY{’ / cY -Ya + (1 Y)a2, where al and a2 are positive constants. This
equation has no bounded solution except the constant Y =_ a2/(a + a2).

Without loss of generality, we may assume that Q2 is positive and for a renor-
malized temperature, we may choose Q2 1 and Qi= -1.

2.4. The boundary condition and the curve of chemical equilibrium. The
boundary condition (2.2) prescribes only the concentrations and the temperature of
the fresh gas. The composition and the temperature of the burnt gas are the unknowns
of the problem. An integration of the difference of the two equations in (2.6) between
-x and +c gives (if the limits exists at

c(T(+oc) T(-oc)) c(Y (+oc) YI (-oc)) O.

Since T(-c) 0 and Yl(-c) Y-, we get the necessary condition T(+c)
Y(+c) Y-. Moreover, if the limits T+ and Y+ of T and Y exist at +c for
a solution of (1.2), then T+ and Y+ satisfy -Y+f(T+)+ (1- Y+)f2(T+) 0.
Therefore, Y+ and T+ are characterized by the set of equations

(2.9)
T+ yl+- yg,
Y+f(T+) + (1 Y+)f2(T+) 0.

We will now study the curve of chemical equilibrium defined by the second equa-
tion in (2.9). The approximation of activated states gives the relation between the
activation energies and the heat release: E1 E2 + Q2 E2 + 1. Then, on the curve
of chemical equilibrium, we define Y as a function Yc(T) of T on [tO, +):

(2.10) Yc(T)
b exp(-- )1 + R(aT+to)

By a straightforward calculation., Yc (T) is negative and the equation Yc(T) T +Y
defines a unique To and gives the existence and uniqueness of Y+, T+ > 0 satisfying
(2.9) provided that < To. In the following, the inequality < To will be a necessary
and sufficient condition of existence of a traveling flame.

3. Lewis number equal to 1. When the Lewis number is equal to 1 (or equiv-
alently d 1), system (1.2) reduces to a scalar equation. Indeed, the boundary
conditions in (1.3) and the difference of the two equations of (1.2) give the relation
T Y1 Y-. We are reduced to a scalar equation:

T" + cT’ -(T + Y[)f (T) + (1 T- f2(T),
0, T(0)

The condition T(0) 0 removes the translational invariance. We may denote k(T)
-(T+Y-)fl (T)+(1-T-Y{-). Then (3.1) is the scalar equation studied by Berestycki,
Nicolaenko, and Scheurer, but here k(T) is not positive everywhere:

(3.2)
k(T) 0 on [0, ],
k(T) > 0 on (, To),
k(T)<O on (To, I).
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g(t)

FIG. 1

The real To is the unique solution of Yc(T) T+Y- (see identity (2.10)). (See Figure
1.)

Since Y2 1 Y1 1 T- Y- is the concentration of species B, it makes no
physical sense to define g for T > 1 YI-. We have the following result.

THEOREM 3.1. Under assumptions (2.3) and (2.4), if To > O, then there exists a
unique solution T" ---, [0, 1] and c > 0 of problem (3.1). Moreover, T is of class C1,
it is of class C2 on- {0}, and T(+ec) To. The condition To > 0 is necessary for
the existence of a solution of (3.1).

Proof. We will reduce the problem to the scalar case of [BNS]. For this purpose,
let us prove the following lemma.

LEMMA 3.2. For any bounded solution of (3.1), we have T(x) <_ To on .
COROLLARY 3.3. If To <_ O, problem (3.1) has no .bounded solutions.

Proof. For T > To, the inequality -T" + cT < 0 and the maximum principle
imply that T cannot reach a local maximum at a point where T > To. Then if a
solution (T,c) of (3.1) is such that T is larger than To at some point x0 in , T
is increasing on (x0, +oe). We have assumed that T was bounded, and we just saw
that it was increasing on (x0, +oe); therefore, T has a limit at +oc: T+ > To. Then,
however, T+ satisfies k(T+) O, which implies T+ T0--a contradiction. This
completes the proof of Lemma 3.2.

A similar contradiction argument on a solution of (3.1) less than To on gives
that for any bounded solution of (3.1), T has a limit at +oc and T(+oc) To.

To complete the proof of Theorem 3.1, we remark that since g is positive on

(0, To) and vanishes for T To and T E [0, 0], the argument of Berestycki, Nicolaenko,
and Scheurer gives the existence and uniqueness of a solution (T, c) of (3.1) with T
increasing and T(+oc) To.

4. The reaction A- B for Lewis number 1.

4.1. Setting of the problem. When the Lewis number :/: 1 (or equivalently
dl :/: 1), the equations with unknown (T, Y, c) are

(4.1)
T" + cT’ -YIf(T) + (1 Y1)
dY(’ + cY -Yf(T) + (1 Y1) f2(T),

T(-oo) O, YI (-oo)
We assume that the rate functions fl and f. satisfy assumptions (2.3) and (2.4).

To prove the existence of some solution (T, Y, c) of problem (4.1), we follow the
same proof sketch as in [BNS]. On a truncated domain I-a, +a], we prove the existence
of solutions of the differential equations in (4.1) with adapted boundary condition (zero
flux at -a). The existence is obtained by a degree argument for a fixed-point problem.
The difficulty is to find some a priori bounds for T, Y, T, Y1, and c. Then by passing
to the limit a +oc, we prove the existence of a solution of (4.1).
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4.2. Truncated problem on Ia I-a, +a]. Let T+ and Y+ be the temper-
ature and concentration of the burnt gas as defined in (2.9). (We implicitly assume
that To > 0.) We study the problem on I-a, +a]"

T" + cT’ -Yf (T) + (1 Y) f2(T),
dlY’ + cY -Yf (T) + (1 Y) f.(T),
T’(-a) + cT(-a) O, T(+a) T+, T(O) O,

dlY/(-a) + cY (-a) cYF, Y (+a) Y+.

The condition T(0) 0 removes the translational invariance of the problem.
The proof of existence of a solution (T, YI, c) for problem (4.2) will involve degree

theory. Let X C(Ia) Cl(Ia) ; X is a Banach space equipped with the norm

lIT, Y, c Ix max (IITI Cl(-a) II]/rl IlCl(a), ICl),

For 0 _< - _< 1, we consider the mapping that sends (t, y, c) of X onto the unique
solution (T, Y) of the linear system

T" + cT’ -Tyf (t) + -(1 y) f2(t),
dY" + cY’ --yf (t) + -(1 y) f2(t),
T’(-a) + cT(-a) O, T(+a) T+,

dlY’(-a) / cY(-a) cY-, Y(+a) Y+

and define K" X X, (t, y, c) (T, Y, c T(0) + 0). Then (t, y, c) is a solution of
(4.2) if and only if (t, y, c) is a fixed point of

Remark 4.1. For the definition of fl and f2, we take a smooth approximation
of [0,+o) to ensure the existence and uniqueness of the solution of (4.3)"

(4.4) /X=0 on [0,0], (x-lEiOnfi(T) bix(T)exp -R(cT + to)
i= 1,2.

To prove the existence of a solution of (4.2), we will compute the degree of F
I- K at 0. For this purpose, let us consider an open subset ft of X’

(4.5)

If for every -, F(oqf) 0, then deg(F, f, 0) deg(F0, ft, 0) by the homotopy prop-
erty of the degree.

Step 1: Construction of f such that F(Of) O. The main result here is as
follows.

PROPOSITION 4.2. There exist positive constants M, c, and-d such that F(Oft)
0 for every - in [0, 1].

The existence of M is a consequence of the following proposition.
PROPOSITION 4.3. If (T, Y, c) is such that F (T, Y, c) O, then Y and T are

strictly increasing: yt > 0 and T > 0 on I-a, a].
The proof will involve the following lemmas.
LEMMA 4.4. Let (T, Y, c) satisfy F (T, Y, c) 0. If T(x) O, then x O.
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Proof. if the lemma is not true, there is at least one point x0 where T(xo) 0 and
T’(xo) <_ O. Then, however, by the uniqueness of the solution of differential equations,
we should have

(4.6)

T’(xo)T(x) 0 + ((x-o) ),
c

Y’(xo) (ec(x_xo) 1)and Y(x) Y(xo) + for x >_ x0,

which leads to a contradiction with the boundary condition at /a.

In conclusion, for x > 0, we must have T > 0.
COROLLARY 4.5. On I--a, 0], T and Y are explicitly given by

f T(x) 0 ecx,
(4.7)

Y(x) Y- + be;

moreover, Y O > O.
Indeed, if Y(0) _< 0, then Y’(0) _< 0. We remark that -Yfl(T)+(1-Y) f2(T) _< 0

for Y <_ 0. Therefore, the maximum principle implies that Y remains nonpositive on

I-a, a], which contradicts the boundary conditions at +a.
For simplicity of notation, we introduce the function

g(T, Y) -YfI(T) + (I Y)f2(T)

and the sets

(4.8)
U+ {(T,Y) e 52, T > 0, g(T,Y) > 0},
U- :{(T,Y) e/R2,T>0,g(T,Y)<0},
Fc U+ N U-.

The set Fc is the equilibrium curve for T > 0 of the chemical reaction A B. (See
Figure 2.)

Y

"+’r+)
u

u

r

FIG. 2

LEMMA 4.6. For T, Y, and c as in Proposition 4.3, we have

T’(+a) > 0 and Y’(+a) > 0.
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Proof. By integration of (4.3), we get T’(+a) Y’(+a). The discussion is then
as follows:

(i) If T’(+a) Y’(+a) 0, then T(x) T+ and Y(x) Y+ is a solution of
the two differential equations in (4.3). This is actually the only solution that satisfies
T(+a) T+, Y(+a) Y+, and T’(+a) Y’(+a)= O. This leads to a contradiction
with the boundary conditions at -a.

(ii) If T’(+a) < 0 and Y’(+a) < 0, the boundary conditions at -a imply that T’
and Y’ cannot remain negative on I-a, +a]. Let x0 be the largest x in [-a, +a] where
either T’ or Y’ is nonnegative (we have x0 < a). Take, for instance, T’(xo) >_ O. Since
T is C1, we get T’(xo) 0. Now notice that if (p, q) E V-, then

where ’- denotes the interior of U-. By the definition of x0, we have T(xo) > T(+a)
and Y(xo) > Y(+a); therefore, (T(x0), Y(xo)) e ]-, which leads to g(T(xo), Y(xo)) <
0. Then we remark that -T"(xo) + cT’(xo) g(T(xo), Y(xo)) < 0. Since T’(xo) O,
we get T"(xo) > 0 and consequently T’(x) > 0 on an interval (xo, xo + ) for some

> 0, which contradicts the maximality of x0.
A similar contradiction is achieved if we assume that Y1(xo) >_ O. This completes

the proof of Lemma 4.6.
We are now ready to prove Proposition 4.3 by contradiction. Indeed, if Proposi-

tion 4.3 is not true, there is a maximum x0 where either T’(xo) < 0 or Y’(xo) < O.
Corollary 4.5 implies that x0 > 0 and T(xo) > 0. Then the same argument as in
Lemma 4.6 with the set U+ in place.of U- gives a contradiction.

The proof of Proposition 4.3 is now complete.
Let us now go back to Proposition 4.2. Since T and Y are increasing and Yc(T)

is decreasing, (T, Y) remains in U+ on I-a, a] and, by integration of (4.3), we get

(4.9) -T + cT >_ 0 and -dlY + cY >_ O.

We have thus completed the proof of the following proposition.
PROPOSITION 4.7. If F(T,Y,c) 0, then 0 < T <_ T+, 0 < Y <_ Y+, and

O < T; < cT+, O < Y < cY+
cll

The bound M in the definition (4.5) of t2 will be found as soon as c is bounded
froIn above.

We get an upper bound for c independent of and a > a0. As in [BNS], we have
the following result.

PrtOPOSTION 4.8. Let M sup 0<,<+ -Yf (t) + (1 y)f(t) and let ao be fixed.
For every a a0, ifF (T, Y, c) 0, then c satisfies

(4.10) c <_ max ( lOga00
Let us now find a lower bound for c that is independent of -. The inequalities in

(4.9) and the fact that T(0) 0 and T’(0) c0 lead easily to T(x) <_ 0 e on [0, +a]
by Gronwall’s lemma. As T(+a) T+, this gives

(4.11) T+ <_ 0 eca

and the following proposition.
log T+PROPOSITION 4.9. If F(T, Y, c) 0, then c >_ - o



1278 ALEXIS BONNET

This lower bound of c is independent of r but dependent on a. For the passage
to the limit a +oc, we will need a lower bound on c independent of a, which will be
developed in 4.3.

Propositions 4.7, 4.8, and 4.9 give the bounds M, _c, and of Proposition 4.1. This
completes the construction of the open-bounded set ft with F(Of) 0 for r [0, 1].

y+Moreover, M max (Y+, Y+, -fly) since T+ Y+ Y-.
Step 2: Justification of the degree. As in [BNS], it is easy to verify that

(4.12) deg(F0, f, 0) -1.

Indeed, for T 0, we explicitly compute Ko(t, y, c) (T, Y, c T(O) + 0). We obtain

T(x) T+ co(x-a), Y(x) T+e(x-a) + Y-, and c- T(O) + 0 c- T+e-c + O.
Then Fo(t,y,c) 0 if and only if c -logT0 t(x) T+ e(x-) and y(x)a

T+ e(-) + y-. The mapping K0 is homotopic to X X, (t,y,c)
(T+ e(-), T+ e(-) + Y, c T+e-a + 0). The multiplicative property of the
degree gives deg(Id- ) -1 (notice that c T+e- is decreasing).

In conclusion, we have proved the following theorem.
THEOREM 4.10. Under assumption (4.4), problem (4.2) on [-a,a] has at least

one solution (T, Y, c) in X. Moreover, there ezist , (0 < < ), and M(e) such that

lIT Cl( < M() and Ilgllcl() < M().
Let e 0 in (4.4). The existence theorem and the bounds above remain true for

f(T) bix[o,+) exp (- ’ ’R(T+,o)) and fi(T) bi(x) X[0,+) exp (T+to))"
4.3. The passage to the limit a +oc. For the passage to the limit, we

need estimates independent of a. Proposition 4.8 gives an upper bound of c that is
independent of a > a0. Let us now find a lower bound of c that is independent of a.

Step 1: Lower bound of c independent of a. An integration of the equation in T
of system (4.2) gives

(.4.13) -T’ (+a) + cT(+a) g(T, Y) g(T, Y).
a

T+As 0 < T < %-, identity (4.13) gives

a

cT+ > g(T, Y) dx.

We estimate the integral

i ]i
T+

T,(T_I(t)
g(T, Y)dx

g(t, Y(T-I(t)))
dt

1 fo
T+

> g(t, Y(T-I(t))) dt
cT+

The two inequalities above give

(4.1.4) (cT+)2 > 9(t, Y(T-(t))) dt.

Since 9(t, Y(T-(t)) > 0, we only need to obtain a lower bound of this function on
T+-0a finite interval oft. Let us remark that for e < 2 we have g(Y,T) > 0 on
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[0 + e, T+ -e] x [0 <_ Y <_ Y+] C -. Then, by compactness, there exists 5 > 0 such
that

g(T,Y)>5 on [0+e,T+-e] x [0<Y_<Y+].
For a solution (T, Y, c) of (4.2), we know that 0 < Y <_ Y+. Then for e0 (T+- 0)/4,
we have

(4.15) (cT+)2 > eoSo and c > co T+

The real co V/eOSo/T+ > 0 is a lower bound of c independent of a.

Step 2: Passage to the limit a +oo. Using the a priori estimate of 4.1 and
the lower bound co of c obtained above, we will prove the existence of a solution of
problem (4.1).

THEOREM 4.11. Assume that 0 < To. Assume that one of the conditions (4.4)
or (2.4) on fl and f. is satisfied. Then there exists an increasing sequence {an}nEar
with lim an +oo such that (Tan, Yah, Can) is a solution of (4.2) on (-an, +an) and
converges in Cloc(ri) x Cloc() x/R to a solution (T, Y, c) of (4.1). Moreover, (T, Y, c)
satisfies

T(+oo)-T+, Y(+oo)-Y+,
O<T<T+ O<Y<Y+

cY+
0 < T’ < cT+, 0 < Y’ <

0 < co < c<-d < +oc.

The condition To > 0 is necessary for the existence of a nontrivial bounded solution

of (4.1).
Proof. The arguments are the same as in [BNS]. We use the bounds of T, Y, c, T,

Y, and g to get abound for T" and Y" and to prove the local convergence to a. solution
of the differential system in (4.1). The boundary conditions at -cx are obviously
satisfied. For the limit at +, we notice that T and Y are increasing and bounded.
Their limits exist and we have Y’(+oo) V"(+oo) T’(+cxD) T"(+oo) 0
and consequently g(T(+oo), Y(+oo)) 0 with T(+oo) > 0. By integration of (4.1),
T(+oo) Y(+oo)-Y- and thus T(+oo)= T+ and Y(+oo)= Y+. The inequalities
in (4.16) are straightforward.

Finally, we prove the following lemma.
LEMMA 4.12. If To <_ 0 then (4.1) has no bounded nontrivial solutions.

Proof. By contradiction, assume that To < 0 and let (T, Y1, c) be a nontrivial
bounded solution of (4.1). In other words, we assume that T and Y1 are not constant.
Then c > 0 and there is a point x0 where T(xo) 0. We may assume that x0 0
and that T < 0 on (-, 0). Therefore, on (-oo, 0) we explicitly have T 0 eoz.

(i) If T is increasing on/R, then it has a limit T+ > 0 at +oo since we assumed that
T is bounded. Consequently, -T’ + cT, which is also increasing, converges to cT+ at
+oo. However, we know that -T’+cT -dlY+c(Y1-Y-). Thus -dlY+c(YI-Y-)
converges to cT+ at +oo. This implies that Y --+ Y+ T+ + Y- as x + +oo. Then
g(T+, y+) 0, and this gives T+ T0--a contradiction since To < 0 < T+

(ii) If T is not increasing on , it has a local maximum xo, T(xo) > 0. At x0, we
have -T"(xo)+cT’(xo) > 0, that is, (T(xo),Y(xo)) E U+ (or, equivalently, Y(xo) <
Yc(T(xo))). Since To < 0 and Yc(T) is decreasing, we have T(xo) > Y(T(xo))- Y-
and we deduce that dY((xo) c(Y (xo) Y- T(xo)) < 0. Therefore, in a right
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neighborhood (x0, x0 + e) of x0, we have (T(x), Y1 (x)) E U+. However, we know that
in U+, -T" + cT’ > 0 and -dlY’ + cY > O. Moreover, we know that if (t, y) E U+,
then for all T and Y such that T _< t and Y < y, g(T, Y) > O. The same contradiction
argument as in Lemma 4.6 gives that if at a point Xl we have T’(xl) < 0, YI(Xl) < 0
and (T(xl),YI(Xl)) e U+, then T’(x) < O, Y(x) < 0, and g(T(x),YI(x)) > 0 for all
x_> xl. Moreover, we haveT" < cT < 0 and thenT -oc as x--* +oc, which
contradicts the assumption: T and Y1 are bounded. This completes the proof of the
lemma and of Theorem 4.11.

5. The limit 0 -- 0. In 3 and 4, we proved the existence of traveling waves
for the problem with ignition temperature. Here we will study the limit 0 --, 0. This
section uses the ideas of Marion [M], who studied the case of a direct reaction A B.

EWe assume here that fl and f2 are given by fi(T) bi (T)exp(- R(cT+to)),
where (T) is chosen such that (0) 0, (T) > 0 on (0, +oc) and is locally
Lipschitz.

We consider the rate functions fl and f0 defined as f0 (T) X[0,+)(T)fl(T).
We will first prove that for 0 ---, 0, translates of solutions of (4.1) for the rate

functions f/0 converge to a solution (T, Y1, c) of

T" + cT’ -Ylfl(T) + (1 Y1) f2(T),
dlY’ q- cY11 -YlfI(T) + (1 Y1) f2(T),

T(-oc) O, T(+oc) T+,
Y1 (x) Y- Y1 ---oo Y+

In 4, we found a lower bound co of c that is independent of 0 for 0 < 00 for some
fixed 00 < T+. However, the upper bound of c and thus the bounds for Y and T
found in 4 are not independent of 0 (see (4.10)).

Let (To, Yo, co) be a solution of (4.1); since To is increasing, we may define ho(s)
T[(T-I(s)) in the same way as in [M]. We have

ho(T+) ho(O) O,

ho(s)

For x 0, notice that T 0 and T c0--that is to say, ho(O) coO. Then, since
ho(T+) O, there exists 01 (0, T+) such that

co co(5.3) V8 e [0,01], ho(8) >_ - 8 and ho(01) -01.
Then h(01) - and

,(5.4) co > ho(01 > co-
2

g(O1, Y(TI(o))

which gives

g(01, Y,(TI(o1)) < f2(01)
O1 01
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f (01) b2 (01) EHowever, 01 exp (- R(01+to)) is bounded on (0, T+] since 0(0) 0 and
since is locally Lipschitz. We have an upper bound of c independent of "

_< e sup
Vs(0,T+] s

By the same argument as in [M], it is easy to prove the following theorem.

THEOREM 5.1. For each 0 < 2_, let zo be such that T(zo) T+2 There is a
T+sequence {0}nev, 0 < 0n < -, lim0n 0 such that (Ton(x-zon), Yon(X--Zon), COn)

converges to a solution (T, Y, c) of (5.1).
Moreover, we can prove the following result easily as in [M].
THEOREM 5.2. There exist 0 < c_ < -d such that (5.1) has no solution (T, Y1) for

c in [0,_c] and (5.1) has a solution for c in I-d, +oc). If dl <_ 1, then c_--d.

6. General case of reversible reaction.

6.1. Setting of the problem. In 4, we made some special assumptions to
reduce the problem to the study of a system of two reaction-diffusion equations. In
this section, we address the general case of a reversible reaction involving n species
Ai:

n

(6.1) E .A,/-- E ,u:A:.
i=1 i=1

The nonnegative constants ui and #i are the stoichiometric coefficients of the reaction.
We may have ui > 0 and #i > 0 at the same time since that is the case in the branching
step of chemical-reaction networks. For reasons explained in Remark 6.1 below, we
will assume that ui =/= #i.

nWe will call the forward reaction -]=1 ,iAi --=1 #iAi semireaction 1 and the
n nbackward reaction i=1 #iAi - i= uiAi semireaction 2. Without loss of generality,

we assume that semireaction 2 is exothermic with Q 1 the heat released. The
equations with unknown (T, Y, c) for the propagation of a planar traveling wave are

(6.2)
T" + cT’ -w (T, Y) + wz(T, Y),
,4.’./ + cY( (# ui)Wl (T, Y) + (’ #i)w2(T, Y) for 1,.. n,

where Y denotes the vector (Y,..., Y). This system can be written as

(6.3)
T" + cT’ -(21(T, Y) / w2(T, Y),
diY(’+ cYi’ ( #)( w (T, Y) + w2(T, Y)) for 1,..., n.

We prescribe the concentrations of the species in the fresh gas at -oc:

(6.4) T oc -O, Y oc Y- Yn Oc Y-

In (6.3), the constants di are the diffusion coefficients of the chemical species Ai. Since
they are not supposed to be equal to 1, we cannot reduce (6.3) to one equation as in

3. Moreover, we do not assume that the di’s are equal to each other. This situation
occurs, for example, in diluted reacting gases.
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The usual expression of the rates of the semireactions, wl and w2, is given by the
mass-action and Arrhenius laws:

a)l (T, Y) H Y"B1 (T) exp R((T + to)

II + to)

where E is the activation energy of each semireaction and aT + 0 is the absolute
Cemperature of Che mixture. As we explained in 2, the activation energies and the
heats released, Q1 and Q, are related to each other: Q1 +Q 0 and E E + Q.
Above, we assume that semireaction 2 is exothermic (Q 1), and, consequently, we
have E1 > E. The cutoff function B is introduced to resolve the cold-boundary
difficulCy:

where is a posiive constant and > 0 is Che ignition CemperaCure. In {6.6), the
indicaor funcion X[,+) can be replaced by a smooch approximaion X,+) as in

In face, Che proof of existence applies to some more general funcions and .
The only assumpion we need is the LipschiCz coninuity of and for T > and
Che following properCy:

w
(6.7)

s increasing with respect to the + 1 uplet

(T, (1 l)Yl, (P2 2)Y2,..., (n n)Yn).

This means that when T, (, )Y, (,2 p2)Y2,..., (- Pn)Y are simultaneously
increased, the value of (T, Y) is increased. Physically, this means that the rate
functions w 0 satisfy the following condition:

(6.8) forT>0, [(T,Y)=Oi, ,>0 and -0,

w(T,Y)=0i, >0 and -0.

This condition reads as follows: the rate of the reaction vanishes if the concentration of
one of the reactants vanishes; the rate of the reaction is positive if the concentrations
of all the reactants are positive.

Remark 6.1. Notice here that if for some io, P0 o, then the chemical species
Ao is globally neither consumed nor produced by the reversible reaction. Therefore,
0 is aconstant. Thenif: 0, no reaction occurs (1 = 0). If: > 0,
the concentration o appears as a constant in and and the equation in o can
be removed from system (6.3). Therefore, without loss of generality, we assume that
p for all i.

LEMMA 6.2. The rate functions w and w2 dCned by identities (6.5) and (6.6)
satisfy properties (6.7) and (6.8).

Proofl This is straightforward since E1 Ee + Qe E + 1.
We are now interested in the composition of the burnt gas. Formally, the burnt

gas should be in a state of chemical equilibrium. If the limits of and T at + exist,
then an integration between - and + of linear combinations of equations in (6.3)
gives the n relations

(+) (-) (. ,)(T(+) T(-)) or ,..., .
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Thus, with the boundary conditions (6.4), we get

(6.9) Y(+x) Y- + (i #i)T(+cx) for 1,..., n.

Denote by Y+ the right side of (6.9) and define T+ T(+x). The reals Y+ depend
linearly on T+. If the limit exists at +, then the right-hand side of equation (6.3)
is null, which gives a necessary condition on T+, Y+ (Y+,..., Y+).

(T+, Y+) 0.

Since Y+ is a function of T+, (6.10) gives a condition on T+ that we can write for
T+ >0as

(T+, Y+ (T+))(6.11)

Also, we remark here that (-#)Y+(T+)is an increasing function of T+. Therefore,
Lemma 6.2 (or condition (6.7)) gives that (T+ Y+(T+)) is an increasing function

-2
of T+. This gives the following proposition.

PROPOSITION 6.3. There is a real T+ > satisfying (6.11) if and only if

lim w--- (s, Y+(s)) < 1.

Moreover, T+ is unique.
To prove the existence of a traveling-wave solution of (6.3) and (6.4), we will

proceed as in 4.
6.2. Truncated problem on Ia I-a, +a]. We now study the problem on

(6.12)

T" + cT’ -dl (T, Y) + w2 (T, Y),

-dY’ + cY’ (- #)(-wl(T,Y)+w2(T,Y)) for i-- l,...,n

T’(-a) + cT(-a) O, T(+a) T+, T(O) O,

dY((-a) / c(-a) cY-, ](/a) Y+ for 1,..., n.

We now prove the following theorem.
THEOREM 6.4. System (6.2) admits a solution (Ta, ya, ca) on I--a, /a], and there

are positive constants c, -, and M independent of a > ao such that ITallcl(-) M,
IIY?IIc ( > < M, and c_ < c < -.

Proof. The proof of existence of a solution (T, Y, c) for problem (6.12) will involve
degree theory as in 3. Since the proof follows the same sketch, we will detail only the
specific results needed here.

6.2.1. A priori estimates and the monotonicity of T and Y. Some a priori
estimates are needed for degree theory (see 4.1). These a priori estimates are easily
derived as soon as T and Y are proved to be monotonic. The monotonicity of T and
Y is obtained by the same kind of argument as in the proof of Proposition 4.3. Indeed,
we first present the following lemma.

LEMMA 6.5. For (T, Y, c), a solution of (6.12), we have

(6.13) T’(+a) > 0 and ( -#)Y’(+a) > O.
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Proof. Indeed, by integration of (6.12), we get

(6.14) Y/’(+a) (u{ #{)T’(+a).

Then the argument is the same as in Lemma 4.6. We introduce the sets U+ and U-
associated with the function g(T, Y) -col(T, Y)+ co2(T, Y) as in (4.8). Identity
(6.14) associated with Lemma 6.2 allows us to argue by contradiction on T, Y1,..., Yn
exactly as we did in Lemma 4.6 with only T and Y.

With the same assumptions as in Proposition 4.3, we prove the following.
PROPOSITION 6.6. T is increasing; Yi is increasing if - # is positive and

decreasing if ui # is negative.
With Proposition 6.6, we are able to derive the a priori estimates on T, Y, and c

and get the existence of a traveling wave on a bounded domain.

6.3. Conclusion. The passage to the limit a +oc is the same as in 4, and
we can state the following theorem.

THEOREM 6.7. Assume that Q2 > 0 and that conditions (6.7) and (6.8) on a
and w2 hold. If

lim
CO1 (8 Y-t-(8)) < 1(6.15)

8\0 CO.

then problem (6.3)-(6.4) has at least a nontrivial solution (T, Y, c) in (W:,())n+x. Moreover, T and Yi are monotonic and satisfy

T(+oo)-T+,
Y{(+oo) Y{+(T+) Y{- + ({- #{)T+.
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Abstract. Hyperbolic systems in nonconservation form are found in several domains of mathe-
matical physics,, but the definitions of their shockwave solutions rely on the definition of the product
of a Heavyside-type function with Dirac-type distribution. For systems in nonconservation form ex-
tracted from a convection-diffusion system, we prove a conjecture of Le Floch. This relies on the
construction of traveling-wave solutions of a second-order system.
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1. Introduction. Many models used in fluid mechanics are written in the fol-
lowing form (in one-dimensional slab geometry)"

0u 0u
(1.1) (9-- + A(u)Ox Ox D(U)xx -0,

where A and D are two p x p C2 matrix-valued functions defined on a subset of
Np. (See, for instance, [1].) When the matrix-valued function A is written in the form
A(u) df(u) for some flux function f, we say that system (1.1) is in conservation
form. However, it is now well established that some systems modeling two-phase fluid
flows (see, for instance, [2]-[4]) or nonlinear elasticity (see [5]) are written in the form
of a hyperbolic system in nonconservation form.

In order to avoid considering the small-scale effects connected with the diffusion
phenomena or as the first step of a numerical method, consider the following first-order
system extracted from (1.1):

(1.2)
0u 0u
---Ot- A(u) xx 0.

Usually, the matrix A(u) has real eigenvalues so that system (1.2) is hyperbolic.
However, systems in nonconservation form present a number of unconventional math-
ematical features, and this leads to interesting new mathematical problems. Indeed, in
the same manner as for hyperbolic systems in conservation form, we expect the forma-
tion of shockwaves in the solutions of (1.2), even with smooth initial data. But when
u N+ x - gt is a discontinuous function, the following product in nonconservation
form,

0u
(1.3) A(u) Ox’

lacks meaning as a distribution and the usual theory of hyperbolic systems of con-
servation laws does not apply. In fact, many authors consider hyperbolic systems in

*Received by the editors March 4, 1994; accepted for publication (in revised form) May 5, 1995.

[CERMICS, Icole Nationale des Ponts et Chaussees, Central 2, La Courtine, 93167 Noisy-le-
Grand cedex, France.
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nonconservation form to be valuable models, which explains the great amount of work
recently performed to give meaning to the product (1.3) when u is a discontinuous
function.

The first author who gave meaning to (1.3) when u is the step function

(1.4) f uC, x < at,
u(x, t)

UR, X > crt,

was probably Volpert (see [6]). His definition is, to some extent, the simplest one:

A(u)
0u 1

(A(uL)+ A(uR))(uR uL)Sx=tx
where 5 denotes Dirac’s delta function. The authors of [7] noticed that this definition
is not satisfactory since it depends on the system of dependent variables u. They gem
eralized Volpert’s definition by replacing the right-hand side of (1.5) with an average
along some given path, namely,

(1.6) A(u) 0u-x (f01 0( uC )A((; u, u-))N u’) 5x=,

where the function :[0, 1] x ftx f -- ft is Lipschitz continuous and satisfies

(1.7) (0;uL,uR)=uL, (1;uL,u/t)=uR.

This definition is independent of the system of dependent variables, but it relies on
the choice of the function . When the matrix A is the derivative of a flux function
f, the definition (1.6) is consistent with the theory of distributions. The right-hand
side of (1.6) is independent of the choice of . On the contrary, when there is no flux
function f such that A df, the definition (1.6) indeed depends on b. Given a family
of paths , the authors give a solution of the Riemann problem

0U 0U { UL

ot A(u) o, u(x, o)
< o,

x uR, x > 0

provided that luR uLI is small enough.
In [8]-[9], the authors describe their own mathematical definition of the product

in (1.3). This definition relies only on the matrix A: some .equations in (1.2) are
considered in a strong sense and others in a weak sense (see [8] or [9] for more details).

In our opinion, the definition of a shockwave solution of a system in nonconser-
vation form should depend on the dissipation mechanisms. Following [10], we define
a shockwave solution of system (1.2) extracted from the second-order system (1.1) as
the limit, when diffusion is neglected, of a traveling-wave solution of (1.1). It is im-
portant to notice that the points of view in [7] and [8] are very close to this definition.
Indeed, compare the "microscopic structure" of a shockwave in the work of Colombeau
with the path that connects the left and right states of a shockwave in the work of
Dal Maso, Le Floch, and Murat, or a shockwave solution of (1.2) viewed as the limit,
when diffusion is neglected, of a solution of (1.1). In each case, some extra information
is added to the shockwave in the form of a continuous profile that connects the left
and right states of the shock. When a second-order system in the form of (1.1) is a
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relevent model, our approach offers a simple definition of the shockwave solution of
(1.2). However, a convenient choice of the function 45 in the framework of Dal Maso,
Le Floch, and Murat or a convenient treatment of system (1.2) using Colombeau’s
calculus gives the same shockwaves.

A continuous traveling wave u with speed a that connects states uL and uR is a
continuous bounded function in the form

(1.8) t) t) x+,

with the following limits:

(1.9) lim u(x, t) uL, lim u(x, t) uR.
X---+-- OD X---+-- O0

The function u is a solution of (1.1) if fi is a solution of the following system of
differential equations:

(1.10) -aft’ + A(fi)fi’ (D(fi)fi’)’ O,

where denotes derivation with respect to x. Next, set

x e x.

Then the function ft. is a solution of the differential system

(1.11), -aft. + A(a.)a; v (D(O,)ff,) 0

and has the same limits as fi as tends to +oc. Furthermore, the family (u,),>0 is
bounded in LI() and, as tends to zero, tends almost everywhere to the following
discontinuous function:

uR if x > 0,
(1.12) g0(x)-

uL if x<0.

Following [10] and [11], we say that the function (1.12) is a shockwave solution of
(1.2) compatible with the diffusion matrix D. Unlike the case of hyperbolic systems
of conservation laws, the function fi0 indeed depends on the shape of the diffusion
matrix.

The mathematical justification of this definition relies on the existence of traveling-
wave solutions of (1.1). A particular case is considered in [11]. A general existence
result was conjectured in [10]. This paper is devoted to its rigorous proof for a general
class of systems of the form of (1.1).

There are several papers dealing with traveling-wave solutions of second-order
systems in conservation form. First, a general result may be found in [12]. The
authors assume that the diffusion matrix is regular, but this assumption is usually
not satisfied by fluid-flow models. To our knowledge, no general result concerning
second-order systems with a singular diffusion matrix has yet been published. Several
systems arising from fluid mechanics have been considered. In [13], the author proves
the existence of traveling-wave solutions of the ZND detonation model. Setting the
chemical reaction terms to zero then gives the existence of traveling-wave solutions
of the system of Navier-Stokes equations. Two-dimensional viscous isentropic flow
equations are considered in [14].
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To study the traveling-wave solutions of a second-order system in conservation
form, one integrates (1.10) (recall that, by assumption, A(u) df(u)). In [12] and
[15], the authors write (1.10) in the form of a dynamical system. The traveling-wave
solutions of (1.1) are then obtained using the powerful tools of dynamical-systems
theory. Here system (1.1) is in nonconservation form and this method does not apply.
In fact, we prove that a solution of (1.1) is in the form u(x) uL -+- U(X)f0 + O(e2),
where f0 is a constant vector and the function u is solution of the following model
equation:

The function u is written

" 0, (-) 0, (+oo) < 0.

1 + exp (e)
Section 2 gives our hypotheses and summarizes the results obtained in this paper.

In 3, we prove the existence of traveling-wave solutions of (1.1) when the diffusion
matrix D is the identity matrix. Using the results of 3, we deduce in 4 the existence
of traveling-wave solutions of (1.1) for a wide class of diffusion matrices. Section 5
is devoted to the proof of a priori estimates of the solutions of (1.1), from which
we deduce the uniqueness of the solutions constructed in 4. Finally some technical
results concerning a nonlinear differential equation are given in the appendix.

2. Hypotheses and main results. We suppose that system (1.2) is strictly
hyperbolic. For any u t, the matrix A(u) has p distinct real eigenvalues

/I(U) < < /p(U).

We denote by {rk(u)}l<<p (resp., {lk(U)}l<<p) the right (resp., left) eigenvectors
of the matrix A(u).

Recall that a characteristic field ri is genuinely nonlinear (GNL) if

Vu e a, v(u), r(u) 0

and linearly degenerate (LD) if

gu VAi(u)" ri(u) 0.

(The theory of hyperbolic systems of conservation laws is examined in [15] and [16].)
We suppose that each field rk, 1 <_ k _< p, is either LD or GNL. We normalize the
GNL fields by

(2.1) Vu c , v(u), r(u): ,.
The vectors lk, 1 <_ k <_ p, are normalized by

l(u), r,(u) &,.

We assume that the first r equations in (1.1) contain no diffusion terms and that
only the last q p- r equations contain diffusion terms. This means that the matrix
D(u) is of the form

(0 0)(2.2) D(u) Dl(u) D2(u)
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where D1 (u) is a q r matrix and D2(u) is a q .q matrix. Note that the diffusion
matrix in a one-dimensional model of fluid flow is usually of the form of (2.2). For
instance, the total-mas,-conservation equation does not contain any diffusion term.
Then we write the matrix A(u) in the following form:

h (u) )(2.3) A(u)- A3(u)A4(u)

Here A1 (u) is a r r matrix, A2(u) is a r q matrix, A3(u) is a q r matrix, and
A4 (u) is a q q matrix.

For uL given in ft and an index such that ri is GNL, we obtain below a half-
curve of states that can be connected to un by a traveling-wave solution of (1.1). This
half-curve is tangent in un to ri(uL). However, we need the following two conditions
to be satisfied:

(2.4) The matrix A (u) alr is regular.

ker D(u)N (A(u) alp)-rangeD(u) {0}.

In fact, when one of these conditions is not satisfied, the only possible traveling-
wave solutions of (1.1) have some discontinuous components (cf. [17]).

When (,i(uL), uL) satisfies (2.4) and (2.5), we can find a positive number such
that for any u E ft and a E ]1{ with

(2.6)

the matrix A(u)- (71r is regular and ker D(u)N (A(u)- (71p)-rangeD(u)= {0}.
Next, we assume that for any GNL field ri,

(2.7) li(u). D(u)ri(u) # 0 Vu e Ft.

This assumption may be found in [12] and is essential with regard to the stability of
the wave.

A natural function space for studying (1.1) is the following:

W {u 6 L(R), u’ 6 Ll(If(), u(-oc)= 0}.

With the norm

W is a Banach space.
The existence result is stated as follows.
THEOREM 2.1. Consider a second-order system (1.1) whose diffusion matrix is

of the form of (2.2). Let uL belong to Ft and let e {1,...,p} such that r{ is GNL.
Assume that the pair (,{(uL), uL) satisfies (2.4) and (2.5). Then we can find a positive
number eo such that for any (7 e ]/i(uL) e0/2, Ai(uL) [, system (1.1) has a traveling-
wave solution u (x, t) 6 + x u(x- at) with speed a and u(-) un.
Furthermore,

ua(+cx) ui + 2(a Ai(u/))ri(u5) + O ((a Ai(uL))2).
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These solutions are unique up to a translation. Indeed, we prove the following.
THEOREM 2.2. Assume that all the characteristic fields r, 1

_
<_ p, are GNL.

Let uL e and a e 1 such that the pair (a, uL) satisfies (2.4) and (2.5). We can find
two positive numbers and el such that if v "(x, t) v(x- at) is a traveling-wave
solution of (1.1) with speed and v(-c) uL that satisfies

(2.9) <

IIv- uLIIw _<

then A(uL) -e0/2 < a < )(uL) and

v(x) u (x + a), x e

for some real number a.

3. Existence in the case of the identity-diffusion matrix. To begin, we
prove Theorem 2.1 when the matrix D is the identity matrix. The proof is much
simpler in this case, and the general case can be reduced to this simpler case, which
is done in 4 below.

We are thus concerned with the construction of traveling-wave solutions of the
following system:

(3.1) 0u 0u 02u
0- + A(U)xx Ox

O.

We assume that the first-order system extracted from (3.1),

0u 0u
(3.2) --0t + A(u) xx O,

is strictly hyperbolic. Conditions (2.4) and (2.5) are obviously satisfied by any pair
(a, u) E t since r 0 and ker D(u) {0}. Then let uL E be fixed and choose
an index such that the field ri is GNL.

As proved in 1, finding traveling-wave solutions of (3.1) amounts to finding
bounded solutions of the following system of differential equations:

(3.3) -au’ + A(u)u’ u" 0,

where a denotes the speed of the traveling wave. A function u with u(-c) uL is
a solution of (3.3) if

(3.4) (A(uL)-aId)(u(x)-uL)-u’(x) (I)(u)(x) =/ (A(u5) A(u(s))) u’(s)s.

We expect that the states that can be connected to a given left state UL by a
traveling-wave solution of (3.3) belong to some half-curves tangent in ui to one of the
right eigenvectors of A(u/). Next, we expect that the velocity of the traveling wave
is close to the corresponding eigenvalue. For a given e < 0, we are thus led to look for
solutions of (3.3) in the set E defined by



1292 LIONEL SAINSAULIEU

(3.6)
-{u uL + W; Ilu- uLIIw 21IIr(uL)I, IIla(uL)" (u- uL) IIw # i},

where co is chosen a priori.
The function (u) has the following behavior in/.
LEMMA 3.1. Let u andu2 belong to 1. Then (I)(uJ), j 1, 2, belongs to W and

(3,7) II(uJ)llw c2, j 1, 2,

where cl is independent of co.
Here and below, C denotes a generic a priori constant which varies from relation

to relation. We use C whenever the constants have no special significance in the proof.
(x) (u). (u(x)- u)LEMMA 3.2. Let u and u2 belong to 1C. Set u

j= l, 2. Then

(3.8) li(uL) (I)(uJ)(x) (u (x)’):
e + 0,(u)(x)

for some function Oi that satisfies

(3.9b)

Proof. The proof of Lemma 3.1 is straightforward. Let us prove Lemma 3.2. Let
be given u in K;. Set

ui(z) -li(uL) (u(x)- uL).
Since A is a C2 matrix-valued function, Taylor’s formula gives

(3.10a) li(uL) ((A(uL)-A(u))u’(x)) li(uL) [(A(uL).(uL--u(x)))U’(X)]

where the function i satisfies

(3.10b) t(x)l

_
Clu(x)- uLllu’(x)l.

However, the function u belongs to h:, and we write

(3.11a) li(uL) ((A(uL) A(u))u’(x))
=--l(uL) (A(un) (r(uL),r(uL)))u(x)u’i(x)+ (x),

where the function 4i is given by

(3.11b) i(uJ)(x)=/i(uJ)(x)+ li(uL) {A(uL) [uL u + Ui(x)ri(uL)])U’(X)}
+ U(X)I(uL) { [A(uL) ri(uL)] [U’(X) u’(x)r(uL)] }.

Since the function u belongs to/C, we have the following estimate:

(3.11c) II(llc() -< Cll3.
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On the other hand, for v eft, (Ai(v), ri(v)) is an eigenpair of A(v):

A(v)r(v) Ai(v)ri(v).

Derive this identity with respect to v in the direction r(v) to obtain

A(v). (ri(v), r(v)) + A(v)(r(v). r(v)) (VA(v). ri(v))r(v)+ A(v)(r(v). r(v)).

Next, apply the left eigenvector li(v) of A(v) on the left to this identity. Recalling
that l(v), r(v)= 1, we get

l(v) (A(v) (r(v), ri(v))) + A(v)(r(v) r(v))
(V(v). ri(v))ri(v)+ A(v)(r(v). r(v)).

But the field ri is GNL and normalized by (2.1). Hence

l(v). (A(v). (r(v),r(v))) 1.

Finally, we have

(3.12) I(uL) ((A(uL) A(u))u’(x)) -ui(x)u(x) + (x),

where the function i satisfies the estimate (3.11c). By integration of the formula
(3.11c), we obtain that the function li(uL) (I)(u) is written in the form of (3.8), where
the function 0i(u) is given by

The estimate (3.9a) follows from (3.11c).
Next, let be given u and u2 in ]. Set

Oi(uJ)(x) li(uL) (uJ)(x) +, j 1, 2.

The function i is of the third order in uJ, and since uJ belongs to K:, the estimate
in (3.9) follows from (3.10b)and (3.12). [:]

The system of differential equations (3.3) has been replaced by the fixed-point
problem (3.4). More generally, we consider the following fixed-point problem:

(3.13) u),

where k is a C p p matrix-valued function and ( is a continuous mapping from
(uL / W) to W. The main result of this section is the existence of fixed-point

solutions of (3.13). Of course, as a consequence, this gives the existence of traveling-
wave solutions of (3.1). The main reason we introduce this generality is that it allows
us to handle the case of degenerate D without repeating the proof of Theorem 3.3
below.

We suppose that and ) satisfy the following:
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[H1] Let uL be fixed. There exist p distinct numbers ,k(uL), 1 < k _< p, a subset
Z of {1,...,p} and a positive number e2 such that if

(3.14)

for some index k E Z, the matrix (a, uL) has a simple eigenvalue -k(a). Furthermore,

(3.15)

Let fk(a) (resp., gk(a)) denote the right (resp., left) eigenvector of h(a, uL) associated
with -k(a). The vector gk(a) is normalized by

g(a), f(a) 1

and the functions a --+ -k(a), fk(a), and gk(a) are C1.
Rp; g(cr), f 0}, we have that

Setting F(a) {f e

(3.16) I,-(a, uL)fl >_ clfl Vf Fk(a)

for some positive number c2.
Assumption [H1] is obviously satisfied when /it(a, uL) A(uL) aid. The

numbers k, 1 < k < p, are indeed the eigenvalues of A(uL); Z {1,... ,p} and the
eigenpair (’?k(a), ’k(a))is (Ak(uL) a, rk(uL)). Next, the vector space ]’k(a)is given
by

k(a) (rt(uL).
lk

Then, taking into account that the matrix A(uL) has p distinct eigenvalues and setting
c. infla IAl- 1 > 0, condition (3.16) is met.

Note that when satisfies [H1], by virtue of (3.15), the pair (k(uL), fk(k(uL)))
is an eigenpair of the matrix ,/t(k(uL), uL). For simplicity, we write

k(uL) ., fk(k(uL)) f, gh;(.k(uL)) g.
Next, denote by Qa(a) the projector defined by the expression

(3.17) Qk(a)f f- (gk(a). f)fk(a), f

and set q q(a(uL)). The range of qk(a) is the vector space Fk(a). The two
sets K; and E are naturally replaced by the following two sets"

(3.18)

(3.19)

where C3 is chosen a priori. Next, the function is assumed to satisfy the following
two hypotheses:
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[H2] For any pair (u1, u2) that belongs to/, we have

(3.20) II(a, uJ)llw _< c4e, j 1, 2, II(cr, u) -(a,u)llw _< c41eIlIu -u.llw
where C4 is independent of c3 in (3.18) and (3.19).

[H3] Let u and u2 belong to/. Set

(3.21) Ju--g(cr).(uJ(x)--uL), j--l, 2.

Then

(3.22) gi(cr) ((a, uJ) (u (x)) 2

+ (, u)(x),

where the function satisfies

(3.23)

We can solve the fixed-point problem (3.13).
THEOREM 3.3. Let (a, u) --+

_
be a C p x p matrix-valued function and let

a otio nai fo,n (u + W) to W. n that [H], [H], ae
[H3] hold. Then we can find a positive number eo such that for any index i E 27,
e e (-eo, 0), and cr e , the fixed-point problem (3.13) has a unique solution u in fC.

Proof. Let be given e (-e0, 0), where e0 is chosen below, 27, and a . We
decompose a function u that belongs to/ into

(3.24) u(x) u + (x)r() + o() (u(x) u).

The fixed-point problem (3.13) is then equivalent to the following problem:

(3.25)

(3.26)

We solve (3.25)-(3.26) by using Banach’s fixed-point theorem. For v that belongs to
/C, we consider the following system of differential equations:

(3.27)

(3.28)

Note that the matrices q(a) and h(a, uL) commute so that system (3.27) is a system
of p- 1 linear differential equations with constant coefficients in F(a). Its solution
relies on the following.

LEMMA 3.4. Let B0 be a given p x p matrix and F0 be a subspace of Rp with
BoF0 C Fo. Assume that

(3.29) IB0fl _> elfl vf E F0.
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Let Q0 denote a projector onto Fo. Then for z E W, the system of differential
equations

Bow w’ Q0z

has a unique bounded solution w : -- F0 with w(-x) 0. Furthermore,

(3.30) Ilwllw c Ilzllw,

where C only depends on and Ilqol].
Proof. Denote by Fo+ (resp., F-) the subspace of Fo, invariant by Bo, associated

with the positive (resp., negative) eigenvalues of BolFo. Denote by Qo+ (resp., Q-)
the restriction of Qo to the subspace Fo+ (resp., Fff). The unique bounded solution
w: 1 -+ Fo with w(-x) 0 of (3.29) is given by

(3.31) Q0+w(x) exp (Qo+Bo(z s)) Qoz(s)s

n-w(/= p(o( /) no(/.

Finally, by (3.29), the mapping QoBo F0 -- F0 is regular, and a straightforward
computation allows us to conclude the proof of Lemma 3.4. [:1

Next, we solve the differential equation (3.28) thanks to the following
LEMMA 3.5. Let W and c5 be a positive number. We can find 5o > 0 such

that for any 5 (-5o, 5o), if

(3.32) IIllw c5][ 3,

the unique solution of the following Cauchy problem

6.. (w(x))(3.33) -w(x),+ w’(x) (x) w(O)
2 2 2

is bounded: w LI(). Furthermore, w satisfies the following estimate:

-6
(3.34) w(x)

1 + exp(-hx/2) + z with z W and Ilzllw c2,

The proof of Lemma 3.5 is technical and is given in the appendix.
Let us return to the solution of (3.27)-(3.28). Let v belong to/(:. According to

Lemma 3.4, there exists a unique bounded solution w --. Fi(a) of the following
system of p- 1 differential equations:

(,)(w Q,()u) w,= Q,()$(v).

On the other hand, by virtue of (3.15) and (3.18), -i(cr) satisfies

But the function (v) satisfies the estimate (3.23) and, provided that e0 is chosen
small enough, we can apply Lemma 3.5. The differential equation (3.28) has a unique
solution u that belongs to W. (Note that u(-)= 0 since -(a) > 0.)
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Let u denote the unique function in uL + W such that Qi(a)(u- uL) w
and gi(cr). (u(x)- uL) ui(x). The function u is by construction a solution of
(3.27)-(3.28). Purthermore,

qO(u- u) q()(u- u) + (qo q())(u- u)

and we deduce from (3.30) and (3.18) that

(3.36) IIQ(u uL)ll c6 + Cl13m,

where C6 is independent of C3 and C depends continuously on C3 and other constants.
On the other hand, by virtue of (3.18), (3.34), and (3.35), w obviously have.

3
u- uLII lllf()l + C.

Hence we can choose e0 small enough so that the function u belongs to/(;. Setting
u 9c(a, v), we have thus constructed a mapping from/ to itself. Next, we prove
the following lemma.

LEMMA 3.6. We can choose eo such that for fixed e E (-co, O) and a , the
mapping 2 defined by

(, v) (,(, v))
is a contraction.

Proof. We first obtain some estimates of 9c.
LEMMA 3.7. Let v and v2 belong to 1. Then

(3.37) II’(cr, v) (, v)llw c (1111g(). (v v)llw + IIQ(r)(v v)llw),
[IQ(r) ($’(r, v1) $’(r, v)) l[ w _< cll IIv vllw.

Assume that (3.37) holds. We obtain that the mapping v /C $-2(r, v) is a
contraction by iterating (3.37). The proof of Lemma 3.6 is then complete. 13

Proof of Lemma 3.7. Let v and v2 belong to/.. Set uJ 9r(cr, vJ), j 1, 2.
The function w Q(cr)(u u2) is a solution of the following system of differential
equations:

h(a, uL)w W Oi(o-)((o-, v1) ()(o-, v2)).
Then, taking into account the estimate (3.20), Lemma 3.4 gives

(3.38) [IQ() (u ue)[[w <- c11 IIv v.llw
Next, we have the following lemma.

LEMMA 3.8. Let 5 (-50,50). and 1, . W satisfy (3.32). Denote by wJ,
j 1, 2, the solution of (3.33) when is replaced by J. Then

C
1 llw T I1 ff=llw.

IVl

JThe proof of Lemma 3.8 can be found in the appendix. Denoting by ui, j 1, 2,
the solution of the differential equation

(u)2 (u)’ t}(vJ) ui (0)-7-(o)J j 1,2,-,,,(
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and taking into account the estimate (3.23), we deduce from Lemma 3.8 that

where vij(x) gi(a)" (v(x)- uL), j 1, 2. By the definition of 9, (3.38) and (3.39)
yield (3.37).

For e e (-e0, 0) and a e ., the mapping v - $-2(a, v) is a contraction defined
in 1. There exists a unique u E ]C. such that u (a, u). The function u is a
solution of (3.13) and the proof of Theorem 3.3 is complete. E]

4. Existence for general diffusion matrices. In 3, we proved the existence
of traveling-wave solutions of (3.1). This system is simple to handle because here
the diffusion matrix is the identity matrix. Here we consider more general diffusion
matrices of the form of (2.3). We prove that a traveling-wave solution of (1.1) is a
solution of a fixed-point problem of the form of (3.13). Indeed, let u (Ul, u2) be a

traveling wave with speed a solution of (1.1) such that u(-x) uL and Ilu--uLIIw <_
e2 for some number e2 chosen below. Assume that the pair (a, uL) satisfies (2.4) and
(2.5). Inserting the expressions (2.3) and (2.2) of the matrices A(u) and D(u) in
(1.1), we obtain that u is a solution of the following system:

(4.1)
(4.2)

(Al(u) aIdr)u + A2(u)u2 O,

A3(u)u + (A4(u) aldq)u2 (D1 (u)u + D2(u)u2) 0.

By virtue of (2.4), we obtain that for small enough , for any x E N, the matrix

(A1(u(x))- crIdr)is regular. Hence

(4.3) u -(A1 (u) aIdr)-A(u)u..
This differential equation defines a mapping u2 - Ul.

LEMMA 4.1. Let uL (uL, u2L) ff fl and cr I satisfy (2.4) and (2.5); we can

find a positive 2 such that for any function u2 u + W with

(4.4) Ilu u llw <

the system of differential equations (4.3) has a unique solution Ul (U2) e Ul
L + W.

Furthermore, the mapping is continuous:

(4.5) II (u )  (u )llw <_ c Ilu u llw.

Proof. A fixed-point method is convenient. Let v (vl,v,) E UL + W with

IIv- uLIIw <_ e2 and a e R such that (a, uL) satisfies (2.4) and (2.5). The unique
bounded solution Ul of the system of differential equations

u (AI(v) rIdr)-A2(v)v2, u (-oc) uf

is given by

(4.6) u (x) uL (A1 (v) aId)-A2(v)v s.
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For v v[n, rn 1, 2, as above, let u, rn- 1, 2, denote the functions defined by
(4.6). A straightforward computation allows us to estimate the norm Ilul u2111w"

For (or, u2) satisfying (4.4), using Banach’s fixed-point theorem, it is now a simple
matter to obtain the existence and the uniqueness of the function Ul E Ul / W such
that.the pair u (Ul, ug.) is a solution of (4.3). The mapping defined by Ul (u2)
then obviously satisfies (4.5). rl

Next, let us insert the expression (4.3) in (4.2). We obtain that u2 is a solution
of the following system:

(4.7) B(a, u)u2 b(cr, u)u2 0,

where

(4.8)

(4.9)

B(cr, u) A4(u) aldq A3(u) (Al(u) aldr)-lA2(u),
I(o-, u) D2(u) Dl(u) (Al(u) o’Idr)-lA2(u).

LEMMA 4.2. Assume that (a, uL) satisfies (2.4) and (2.5). We can choose e2 such
that for any state u ft with lu- uLI < e, the matriz f)(a, u) is regular.

Proof. Let h2 belong to the kernel of I(a, u). Then the vector h defined by

h ((A1 (u) aIdr)--1
h A2(u)h2)

belongs to the vector space ker D(u)N (A(u)- crlp)-lrangeD(u). By virtue of as-
sumption (2.5), this is impossible when 2 is small enough. [1

In fact, to write system (4.7) in the form of (3.13), we formally set

(4.10) v i5(; ((u), u2))u, v(-) u,
and we wish to write a system whose solution is v2. These considerations are made
rigorous with the following lemma.

LEMMA 4.3. Let (or, uL) satisfy (2.4) and (2.5). Let u belong to u2 + W that
satisfies (4.4). The function v u + W, whose derivative is given by (4.10), belongs
to the set uC2 + W and satisfies

(4.11) IIv2- u2LII w <_ Ce2.

Conversely, we can choose e2 such that for v2 that belongs to uC2 + W and satisfies
(4.4), there exists a unique solution u 7-tg.(v) u + W of (4.10) with

The mapping 7-12 is continuous:

(4.13) ll2(v)- 2(v)llw <_ c IIv- vttw Vv, v u + w.
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Proof. The derivation of the estimate (4.11) is straightforward. Conversely, let
v2 in uL + W satisfy (4.4). We solve (4.10) with a fixed-point method. The proof
relies on Lemma 4.2 and is similar to the proof of Lemma 4.1. D

Next, we define the mapping f by

(4.14) n(.) (o(n(.)), n()).

The mapping is, of course, continuous. Furthermore, if v2 is a solution of the system
of differential equations

(4.15) (,(v))v. v,. 0,

where the matrix-valued function/ is given by

(4.16) i((r, u) B(a, u)(I)(a, U)) -1

the function u (v2) is a solution of (1.1).
Finally, system (1.1) has been replaced by system (4.15), where the matrix in

front of the second-order derivative is the identity matrix. Next, if v2 is a solution of
(4.15), then

(4.17)

where

X(,, u)(v ,4) v ,(, v), v(-) u,

(4.18) f ( ( )’)4(, v)() A(, u )v n(, (v)) (I5(, (v,))) -v’ .
To apply Theorem 3.3, we check that the matrix-valued function i and the

function satisfy hypotheses [H1], [H2], and [H3] from 3. We first prove the following
proposition.

PROPOSITION 4.4. The matrix-valued function . satisfies assumption [H1].
Proof. First, a straightforward computation gives the following lemma.
LEMMA 4.5. For u E f and I, the pair (w, f) E I x Iq is an eigenpair of

the matrix fk(a, u) if the vector h, given by

(4.19)

satisfies

h ( (A1 (u) oId)-lA2 (u) (I(o, u)) -if )(I(g, u))-lf

(A(u) (rIdp)h TD(u)h.
Next, we have the following lemma.
LEMMA 4.6. Assume that the field ri is GNL. Choose u f. There exists a C

curve r e (Ai(uL) , Ai(uL) + ) (-i(r), hi(a)) such that

(4.20) (A(u) aldp)h(a) T(a)D(u)h()

and

(4.21) (li(u), hi(r)) 1,

Ih()- ri(uL)] _< CIAi(u)- (rl,
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Proof. First, when r =/(u), system (4.20) has the solution (-0, h0) (0, r(u)).
Next, we decompose a vector h on the eigenbasis {rk(u)}l_<k_<p of the matrix A(u):
h P-k=l hrk(u). We set hi 1 and define the mapping from p+ to p by

The mapping is C, and a straightforward computation gives

0

Ohk

--(hi(u), 0, 0) -D(u)ri(u),

--(,i(u), 0, 0) (A(u) Ai(u)Id)rk(u),

The vector space spanned by the p-1 vectors (A(u)-/i(u).Id)ra(u), k - i, is (li(u)) +/-

because the matrix A(u) has distinct eigenvalues. On the other hand, since the field ri

is GNL, we have by virtue of (2.7) that li(u). D(u)ri(u) : 0, and we deduce that the
p vectors (A(u)-/i(u)Id)rk(u), k :/: i, and D(u)ri(u) span p. Thus we may apply
the implicit-function theorem and obtain a C curve a (-i(a), hi(a)) of solutions
of (4.20). The derivation of (4.21) is then straightforward. V1

We deduce from Lemmas 4.5 and 4.6 that given a GNL field ri, for e2 chosen small
enough and a such that la- Ai(uL)l <_ e2, the matrix h(a, u5) has a right eigenvector
fi(a) associated with the eigenvalue -i(a). By virtue of (4.21), the flmction a -- -i(a)
satisfies (3.15). We denote by g(a) the associated left eigenvector, normalized by
gi(cr), fi(a) 1. The set 2- of hypothesis [H1] is thus the set of indices for which the
field ri is genuinely nonlinear.

LEMMA 4.7. Let a and UL such that (a, uL) satisfies (2.4) and (2.5).
Assume that the matrix (a,uL) has an eigenpair (-o, fo). Denote by go the left
eigenvector of (a, uL) associated with -o normalized by go" fo 1. Denote by Fo the
vector space Fo {f, go" f 0}. We can find a positive number & that depends only
on and un such that if I-ol <_ &, then

I/(a,uL)fl->Sfl VfGFo

for some number independent of &.
Proof. Let f E ]q with Ifl 1. Set

a--I/(o’, uL)f
Next, define next the vector h by (4.19). By Lemma 4.5,

( o )(A(uL) aId)h h(a, uL)f

so that
I(A(uL) aId)h _< a.

But the matrix A(uL) has p distinct eigenvalues, and we deduce that

Ih- ar(uL)] < Ca
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for some real number a. On the other hand, the same computation applied to the
vector f0 gives

Ih0- a0r()l _<

where h0 is obtained from f0 according to (4.19). We deduce that

Ih- ho] <_ C(oz + ]"to]).

However, the matrix I(cr, UL) is regular, and we obtain

f-fol <_C(a+

Next, assume that the vector f belongs to the vector space F0. Then

1 [go" (f-

so that

This concludes the proof of Lemma 4.7.
Setting Fi(a) {f E Np, gi(a), f 0}, the estimate (3.16) follows from Lemma

4.7. The proof of Proposition 4.4 is complete.
The function obviously satisfies assumption [H2] since it is quadratic in v2.

Finally, we check [H3].
PROPOSITION 4.8. Let be an index such that the field ri is genuinely nonlinear.

Choose uc ft such that (i(uC), uc) satisfies (2.4) and (2.5). Then the mapping
satisfies the assumption [H3].

Proof. Let ri be a GNL field of A and assume that (/i(uC), uc) satisfies (2.4)
and (2.5). Let v2 u2

L + W. Set u 7-/(v.). Then a straightforward computation
gives

( o )(4.22) ((cr, v)(x) (I)(u)(x) (A(uL) A(u(s)))u’(s)ds.

Recalling that the properties of the mapping (I) are given by Lemmas 3.1 and 3.2, we
must connect the functions ui Ii(uL) (u- uL) and vi g. (v2- u2L), where
gO gi(Ai(uL)), to conclude the proof of Proposition 4.8.

LEMMA 4.9. Assume that the field r is GNL and that (/i(ug), uL) satisfies (2.4)
and (2.5). Let (a, v2) R x (uL + W) such that

(4.23)

Let u2 7-/2(v2) denote the solution of (4.10), set u (G(u2), u2), and let

(4.24a)
(4.24b)

u(z)- li(uL) (u(x)- uL),
V(X)- gO. (v2(z)- uL).

Then, provided that e2 is small enough,

(4.25a) +
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where the function v satisfies

(.eb)
(4.25c)

Furthermore,

(4.26) IIu uL r(uL)l < C (2 + IlOO(v2 u2L)II),

Proof. Let (or, v2) satisfy (4.23) and u2 denote the solution of (4.10). Then

v.(x)- u 13(u(x)- u)+ (I)(u())- 130)u(),

where o (i(uL), uL). Next, set 111 (112). By the definition of ul, a straight-
forward computation gives

Ilu (x)- Ul
L + (AI(uL) Ai(uL)Idr)A2(uL)(u2(x) u L) IIw -<

and we deduce that

(4.27) Ilu- co(v2 u )ll
where the matrix Co is given by

CO (-(AI (uL) /i(uL)Idr)-IA2(uL)(f)O)- )
On the other hand, apply Lemma 4.5 with a i(uL). We obtain the following

expression of the eigenvector ri(uL) of A(uL) in function of f/0 fi (/i(uL)).

ri(uC)

However, the function v2 is written

v:(x)u v(x)r? + q0(v:(x) v#)

so that

(4.29) C0 (vg.(x) u2L) v(x)r(uL) + CQ(v2(x) u2L).

Inserting (4.27) in this expression gives

(4.30) Ilu- HL r(uL)IIw < C(2 + IIqO(v2 u2L)llw),

By the definition of the functions u and w(v2), we deduce (4.25b) from this estimate.
On the other hand, the derivation of (4.24c) is straightforward and the estimate (4.26)
follows from (4.30)and (4.25b).

Lemma 4.9 shows that we can choose the constants in the definitions of the two
sets K: and / such that if v2 belongs to , the function u 7-/(v2) belongs to

KT.. However, for u ’belonging to/C., Lemmas 3.1 and 3.2 apply and--thanks to the
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identity (4.22)--it is a simple matter to check that the function ) satisfies assumption
[H3]. This completes the proof of Proposition 4.8. rl

We can now conclude the proof of Theorem 2.1. Assume that the field ri is GNL
and choose uL Eft such that (Ai(uL), uL) satisfies (2.4) and (2.5). Then we can find
a positive 0 such that for cr E IR and u uL -- W that satisfy Icr- ,i(uL)]

_
0 and

lit- uLIIw <_ e0, the pair (or, u) is a solution of (1.1) when the pair (a, v2) is a solution
of (4.17). Next, since hypotheses [H1], [H2], and [H3] hold, we may apply Theorem
3.3. When cr belongs to E, we obtain a solution of (4.17), from which we deduce
the existence of a traveling wave ua with speed a and u(-oc) u5, a solution of
(1.1). We obtain next the estimate (2.8) from (4.25), and the proof of Theorem 2.1 is
complete. D

5. Uniqueness. This section is devoted to the proof of Theorem 2.2. We assume
in this section that every characteristic field r is GNL. Let (or, uL) R ft satisfy
(2.4) and (2.5). Let u be a traveling wave with speed cr and u(-oc) uL, a solution
of (1.1). Set lu(+oc)- uLI and assume that

(5.1) ]]u- uLI]w < .
The transformation of system (1.1) into .the fixed-point problem (4.17) relies only on
(2.4) and (2.5). Provided that 5 is small enough, the function u is written u (Ul, u.)
with ul G(u.). Next, the system of differential equations (4.10) has a unique
bounded solution v2 that is a solution of (4.17). Note that only [H2] holds a priori,
i.e.,

The function ( is indeed quadratic in v2. On the contrary, the proofs of [H1] and [H3]
rely on the fact that cr is close to one of the eigenvalues of A(uL), which-we do not
suppose.

To begin, we estimate
LEMMA 5.1. We can find two positive numbers c7 and 1 such that if 5 <_ 51, the

matrix (cr, uL) has a small eigenvalue o"

Pro@ Assume to the contrary that

(5.4) (.(cr, uL)) -1 _< C

for some positive number C. Denote by E+ (resp., E-) the sum of the eigenspaces
associated with the positive (resp., negative) eigenvalues of .(cr, uL). Next, denote
by R+ (resp., R-) the projector on E+ (resp., E-) with kernel E- (resp. E+). The
unique bounded solution of (4.17) is given by

R+v2(x) R+u exp(R+.(o-, uL)(x s))((a, v)(s)s,

R-v2(x) R-u2L + exp(R-,,.(o-, uL)(x s)))(cr, v2)(s)s.
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By virtue of (5.4), we deduce that

live.- u ll <_

and, taking into account (5.2), we deduce that

For 5 small enough, this contradicts (5.1), and we deduce that the matrix _(a, uz)
has a small eigenvalue -o that satisfies (5.3) for some positive number c7. D

Henceforth, we assume that 5 _< 51 so that the matrix i(a, uL) has an eigenvalue
-o that satisfies (5.3). Denote by fo (resp., go) the right (resp., left) eigenvector of
/(cr, uL) associated with -o. We normalize go by go" fo 1.

LEMMA 5.2. We can choose 1 such that if

_
1,

Proof. Let h0 denote the vector defined by (4.19) with f f0.
Lemma 4.5, the pair (o, ho) satisfies

According to

(A(uL) aldp)ho TD(u)ho,

and we deduce that
I(A(u ) aIdp)ho _< C6.

However, the matrix A(uL) has p distinct eigenvalues, and if 5 _< 51 with 51 chosen
small enough, we get (5.5) for some index

Since (or, uL) satisfies (2.4) and (2.5), we obtain that provided that 5 is small
enough, the pair (Ai(uL), uL) also satisfies (2.4) and (2.5). The field ri is by assump-
tion GNL and we may apply Lemma 4.6. We obtain a C curve a --, (’i(cr), fi(a))
defined in a neighborhood of a =/i(uL) such that for any a, the pair (Ti(a), fi(a)) is

an eigenpair of (a, uL). Then, obviously, the eigenvector f0 of/i-(r, uL) is fo fi(a).
In the same manner, go gi(a) and -0

Let Fi(a) denote the vector space defined by Fi(a) {f, gi(cr), f 0}. The
assumptions of Lemma 4.7 are satisfied and provided that 51 is chosen small enough,
we deduce that

IA(c uL)fl _> cslfl Vf e Fi(o)

for some number cs independent of 5. The behavior of a is precisely described with
the following lemma.

LEMMA 5.3. The number a satisfies

where

(a.s) e li(uL) (u(+c)- uL).

Proof. The function u is a solution of (1.1). We integrate this system over R to
obtain

(A(uL) aid) (u(+c) uL)
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where (I)(u) is defined by (3.4). Next, we multiply this system on the left by the
eigenvector li(uL):

((u) )(u). (u(+) u) (u). (u)(+).
We have assumed that every characteristic field of A is GNL, and we may apply
Lemma 3.2. We obtain

(5.9) (,i (UL O’)Ui(’"CK)) (Ui(O)))2 __<

where ui(x) li(uL) (U(X)- uL).
On the other hand, define e by (5.8). Then

Indeed, since the function Qi(a)(v2 u2L) is a solution of (3.25), we obtain by virtue
of Lemma 3.4 and the estimate (5.6) the following estimate:

Next, by the continuity of the mapping a Qi(a), we deduce that

(5.11) lIQ(v- u)]lw -< c5,
where Q Qi(Ai(u/)). Finally, we apply Lemma 4.9. The estimates (5.11) and
(4.25) give

(5.2) jju uL ur(uL)lIw <. C5.,
from which we deduce (5.10).

We insert (5.10)in (5.9) to obtain (5.7).
Thus far, we have proved that all the properties listed in sumptions [H1] and

[H2] in 3 hold true. Furthermore, the properties of the function (I) listed in assumption
[H3] rely on the algebraic computation (4.22) and on Lemma 4.9 so that [H3] is valid.
Next, by virtue of the estimates (5.7) and (5.12), a belongs to E defined by (3.5) and
the function u belongs to K: defined by (3.6) provided that co is chosen large.enough,
In the same manner, since the function v2 satisfies (5.11), the pair (a, v2) belongs to. x defined by (3.18) and (3.19) provided that c2 is chosen large enough.

Next, we prove that e defined by (5.8) is negative. By virtue of [H3], the function
v g(cr). (v2 u2L) isa solution of the differential equation

where satisfies (3.23) and

(-o) 0, Iv(+) 1 < c:.
However, since r satisfies (5.7), Ti(Cr) satisfies (3.35) so that vi(a) --Ti(a)/2 for some
real number a. The function wi gi(a). (w2- u2L), where w2(x) v2(x- a), x
is thus a solution of

() (,w (o) ()
Ti (.a)Wi - 2

W ), Wi
2
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We can then apply Lemma 3.5:

(5.13) wi + 1’%’exp(--Ti(a)x/2) < Ce.
w

By virtue of (3.35), T(a) has the opposite sign of e. If e is positive, ’(a) is negative,
and we deduce from (5.13) that in this case

which contradicts the fact that w(-oc) 0. Hence e is negative.
We can now conclude the proof of Theorem 2.2. The functions w2 and v2 are

solutions of (4.17). By construction of the mapping 9r, we have

 r(a,

However, we proved that a belongs to and w2 belongs to/ for some index E
{1,..., p} provided that c3 in the definitions (3.18) and (3.19) is chosen large enough.
On the other hand, we proved that e is negative, and we proved in 3 that if lel^is
small enough, for a E , the mapping v2 --* 9r(cr, v2) has a unique fixed point in K:.
We deduce that if 50 is chosen small enough and if the function u satisfies (2.9), then
u(x- a) ua(x), where ua is given by Theorem 2.1. This concludes the proof of
Theorem 2.2. rl

Appendix. A nonlinear differential equation. This appendix is devoted to
the proof of Lemmas 3.5 and 3.8.

PROPOSITION A,1. Let W and do be a positive number. We can find a
positive o such that for any 5 e (-50, 5o), if

(A.1) 1141lw <- d01l3,

the unique solution of the Cauchy problem

(A.2) --w(x) / (w(x))22 w’(x) (x), w(O) -is bounded, w LI() and satisfies the estimate

(A.3) w(x) l+exp(x/2) + z with z W and [[zliw <_ dl52.

Next, let m, m 1, 2, satisfy (A.1). Denote by wm, m 1, 2, the solution of the

differential equation (A.2), where is replaced by m, m 1 2. We have the estimate

(A.4)
d2

Proof. When 0, the unique solution of the Cauchy problem (A.2) is

1 + exp(Sx/2)"
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(x) (sh(2x)4z(x) ch2(x)
We deduce that

Next, a function w in the form of (A.3) is a solution of (A.2) if the function z is a
solution of the following differential equation:

5 () (z(x))2 z(0) 0.(A.5) th z(x) + z’(x) -(x) + ----,
We need the following lemma.

LEMMA A.2. Let 1 E W. Then the unique solution of the linear Cauchy problem,

(A.6) -hth(5-)z(x)+z’(x)2 (x), z(0)=0,

lies in W. Furthermore,

d3(A.7) Ilzllw <_  ll llw.
Proof. Set (x) z(4x/5) and (x) ((4x/5). Then z i8 a solution of (A.6) if

satisfies
4

2th(x}(x) + ’(x) g(x).
However, IIllw IIllw and it suffices to prove Lemma A.2 when 5 4. The solution
of (A.6) is then

z(x)=
-1 Ji

x

ch2 (x)
(s)ch2(s)ds’

and a straightforward integration by parts gives

) j0
x

(sh(2s) )x 1 ’ (s) + ds.+ ch:(x) 4

Ilzllw 711 llw,
This concludes the proof of Lemma A.2. D

We solve equation (A.5) by using a fixed-point method. Choose d4 4d3d0.
Next, let K denote the following closed convex subset of l/V:

K {z W, z(O)= O, Ilzllw <_ d4(2 }.
Choose 50 1/2d3d4. By Lemma A.2, for 77 (-770, 50) and y K, the unique
solution of the Cauchy problem

(A.8) th z(x) + z’(x) -(x) + z(O) 0
2

lies in K. This defines a mapping G from K into itself. The mapping G is contracting.
Indeed, let 5 belong to (-50, 50), (m, m 1, 2, satisfy (A.1), and y’, m 1, 2, belong
to K. For m 1, 2, denote by z" the unique solution of the Cauchy problem (A.8),
where the functions and y are replaced by ’ and y’, respectively. A straightforward
computation gives

5-thfhX(zl-z2)(x)+(z-z2)(x)=(2-)(x)+(yl- y2)(x)(Y + y2)(x)
2 \4] 2
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Applying Lemma A.2 again gives

(1 )
However, d3d4151 <_ 1/2 and the mapping is thus a contraction. It has a unique
fixed point in K, which means that the Cauchy problem (A.5) has a unique solution
z. Then the function w defined by (A.3) is a solution of (A.2).

Finally, it remains to prove the estimate (A.4). Let (’, rn 1, 2, satisfy (A.1)
and denote by w", rn 1, 2, the solution of the Cauchy problem (A.3) when the
function 4 is (’. The estimate (A.9) is written

1
Ilz z llw d3

However, by construction, d3d4151 < 1/2 and

2d3 2IIz zillw <_ -11 IIw,

This concludes the proof of Proposition A.1. [3
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est in nonconservative hyperbolic systems and maintained a constant interest in my.
work. I also wish to thank D. Serre for many interesting discussions about systems in
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THE STABILITY OF ROLL SOLUTIONS OF THE
TWO-DIMENSIONAL SWIFT-HOHENBERG EQUATION AND THE

PHASE-DIFFUSION EQUATION*

MASATAKA KUWAMURAt
Abstract. A stability criterion of roll solutions of the two-dimensional Swift-Hohenberg equa-

tion is presented. It clarifies the effect of the system size on the primary instabilty of rolls. An
interpretation of the phase-diffusion equation is also given from the viewpoint of spectral analysis.
The key to carrying out the spectral analysis is that the infinite-dimensional system of linear equa-
tions naturally induced by the Fourier decomposition for the linearized eigenvalue problem of the
roll solution can be reduced to the three-dimensional system.

Key words, phase-diffusion equation, Eckhauss instability, zigzag instability, Swift-Hohenberg
equation

AMS subject classifications. 35B35, 35Q35, 76E15

1. Introduction. Let us consider a fluid contained in a rectangular cell whose
aspect ratio of the depth of the fluid to the horizontal width is sufficiently small.
For a critical temperature gradient between the upper and lower plates, buoyancy
forces overcome the dissipative effects of viscous shear and thermal conduction, and
the motionless fluid spontaneously breaks up into convective rolls of upward- and
downward-moving regions of fluid as in Figure 1. In order to study this phenomena,
the following simple model equation, which was first derived by Swift and Hohen-
berg [14], is proposed:

FIG. 1.

ut (a (1 + 02 + CO2y)2)u u3,

where u(x, y, t) represents the rescaled fluid field in a given horizontal plane, e.g.,
the vertical velocity component in the midplane of the convective rolls, and a is the
reduced Rayleigh number, i.e.,

R
a-- 1,

Rc
where Rc is the critical Rayleigh number.

One can heuristically argue that the Swift-Hohenberg equation describes the onset
of thermal convection, which forms roll patterns. Let u 0 be the trivial stationary
solution of (1), which represents the rest state of the fluid. We immediately find
that the eigenvalue of the linearized operator of the right-hand side of (1) at u 0
associated to the Fourier mode exp (i(kx + ly)) is given by
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Ifa < 0, then we see that #k, < 0holds for all k and l, sou-- 0isstable. This
shows that convection does not occur provided R < Rc. If c > 0, then we see
that the largest eigenvalues are #k,t > 0 (k2 + 1), so u 0 is unstable. The
instability in,. the direction of the Fourier mode exp (-t-ix) (k :i:1, 0) grows up,
and another equilibrium appears which has a spatially periodic structure in the x-
direction and uniform in the y-direction. This shows that the convective rolls occur
provided R >

The reader should consult Cross and Hohenberg [2], Greenside and Coughran,
Jr. [3], Manneville [9], and Newell [10] for the physical background of the Swift-
Hohenberg equation.

The above discussion suggests the possibility that there exist stationary solutions
of (1) with c > 0 which have a spatially periodic structure in the x-direction and are
uniform in the y-direction. In fact, Collet and Eckmann [1] showed the following.

EXISTENCE OF ROLL SOLUTIONS. Suppose that w satisfies

2/5 < cz2 < 2.

Then there exists a positive constant eo independent of such that for 0 < e < co,
the equation

(a (1 + C0x + Oy)2)u u3 0

has a unique solution of the form

ct 3e2 + (1 w 2

and

(a)  o(x)

where

(4) (z) c2 cos(z)+ E
n_3, n:odd

r/2 cos(nz)

with

(5) ]n I_ Cc1+2n/3,

where n depends only on and .
Notice that that the roll solutions (3) are also stationary solutions of the one-

dimensional Swift-Hohenberg equation

(6) ut ( (1 + O)2)u ua.
The linear stability criterion of the roll solutions (3) of the one-dimensional Swift-
Hohenberg equation (6) was also given in [1] as follows.

LINEAR STABILITY CRITERION. Let A L2(R) L2(R) be the linearized oper-
ator of the right-hand side of the above equation at uo defined by
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Av (c (1 + O)2)v 3uv, v E Ha(R).

Let

(7) w w2 1

If IWI < 1/xfl, then for sufficiently small c > O, the spectrum of A lies in the closed
left half-plane in C. On the other hand, if IWI > 1/x/, then for sufficiently small
> O, the spectrum of A intersects the right half-plane.
On the other hand, Kuramoto [7] and Pomeau and Manneville [12] studied the

slow dynamics of (1) near the stationary solutions u0 from the viewpoint of physics.
When one observes a roll pattern in large-aspect-ratio Rayleigh-B6nard convection,
the pattern may look almost regular everywhere locally in space, whereas globally, the
contours of equal phase may deviate largely from straight lines. Based upon the above
observation, they proposed (A) to study the effect of perturbations to the stationary
solutions u0 as the phase modulation of in terms of a longer space scale and a
slower time scale than the original one, and (B) to regard as virtually negligible the
deformations which are not absorbed in the phase modulation when the new scales
are used. They studied the dynamics of the phase modulation of by using the formal
perturbation method. They succeeded to show at a formal level that the dynamics
near u0 is given by

+ (x, T)),(8) T D//xx + D+/-Oyy, X px, Y y, T- t,

where

(9) D//- 4 8W2 + 0(),

(10) D+/- 2/W,

and W is given by (7). Here u is an artificial parameter for performing a formal
perturbation method. This parameter determines the new scales X, Y, and T. The
diffusion equation in (8) is called the phase-diffusion equation which describes the
dynamics near the roll solutions.

Thus u0 is stable if D// > 0 and D+/- > 0. On the other hand, u0 is unstable
if either D// < 0 (the Eckhauss instability) or D+/- < 0 (the zigzag instability). See
Figure 2.

According to the results of [7] and [12], we know that when the system size is
sufficiently large, there are only two types of instabilities, Eckhauss and zigzag. Our
question is now as follows: What happens when the system size is not large? For
example, fluid mechanics tells us that the zigzag instability is not observed when the
length of the axis of rolls is small. Hence the stability of rolls must decrease as the
length of rolls increases. What is the critical length where the stability changes? How
does the instability of rolls depend on the system size? The aim of this paper is to
answer these questions and give a mathematical justification for the physicist’s ideas.
Before presenting our main results, we formulate our problem precisely.



1314 MASATAKA KUWAMURA

regular pattern

Eckhauss instability

zigzag instability

FIG. 2.

We restrict (1), which is originally defined on the infinite spatial domain R2, to
the rectangle domain

ft=(-L/2, L/2) x(-M/2, M/2), 0<L<, 0<M<

with periodic boundary conditions, i.e.,

2(11) ut (a (1 + c92 + 0u)2)u u3 for (x, y, t) Eft (0, )

with

and

OJxu(-L/2, y, t) Ou(L/2, y, t) (j 0, 1, 2, 3)
for (y, t)e (-M/2, M/2) (0, x)

OJyu(X,-M/2, t) Ou(x, M/2, t) (j 0, 1, 2, 3)
for (x,t)e (-L/2, L/2) (0, c).

This domain ft serves as a window through which we can practically observe objects
of infinite size. Here we assume

L (2N),

where/ 2/ is the wavelength of uo(x) and N is a positive integer which corre-

sponds to the number of rolls. In other words, the length of the side in the x-direction
is an integer multiple of the basic wavelength of the roll pattern. Notice that M is
the length of the axis of rolls.

We know that (i I) generates a semiflow on Hp4er (ft) for 0 _< < I, where

Haper(a u(x, y) E u,,n exp(2inx/L) exp.(2imy/M);

(1 + I1 + 112) ,1 <

For more details, see Henry [4] and Temam [115].
Notice that 0(x) is also a stationary solution of (11).
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By (2) and (3), u0 is determined by two parameters and v, which represent the
amplitude and wavenumber, respectively. Therefore, the stability of u0 is determined
by these parameters. However, we use a new parameter W instead of w to investigate
the stability of the equilibrium u0, which is defined by (7). In what follows, we regard
and W as independent parameters and consider that v is determined by and W

in terms of

(12) w2 1 + -W.
The linear stability criterion of roll solutions is as follows.

THEOREM 1.1. Let A L2() --, L2(t) be the linearized operator of the right-
hand side of (1) at uo defined by

2 2(13) dv ( (1 + O + Oy) )v 3uv,

with periodic boundary conditions

OJv(-L/2, y) Ov(L/2, y)
(14) OJv(x, -M/2) OJv(x, M/2)

Then we have the following:

v e H4()

for y E (-M/2, M/2),
for x (-L/2, L/2)
(j =0,1,2,3).

(A) If 0 <_ W < 1//, then for sufficiently small > O, the spectrum of A lies in
the closed left half-plane in C. This is independent of L and M.

(B) If-1/x < W < O, then for sufficiently small > O,

(i) the spectrum of A lies in the closed left half-plane in C provided

2-2

(ii) the spectrum of A intersects the right half-plane in C provided

2-2

where M2=O(1) as $ O and M
(c) IwI > > 0 and L. of

A intersects the right half-plane in C.
When the rectangle domain is sufficiently large and the roll pattern is stable,

we can give an accurate characterization of the critical eigenvalues and the associated
eigenfunctions.

THEOREM 1.2. When L and M are sufficiently large, for 0 <_ W < 1/v/ and
sufficiently small > 0, there exist 5 > 0 which depend only on and W (independent
of L and M) such that the following hold:

(i) lim$0 5(, W) 0.
(ii) The eigenvalues of A which belong to the interval [-, 0] are given by

2 2
t, -D+/-vm Vm D//n + O((nn + "m)3)

for 0 <_ m < xflsp and I1
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where D// and D+/- are given by (9) and (10), respectively, and

2rrn)
2

l/m M
27rn

i,n L

and p > 0 is a constant independent of, W, L, and M. The associated eigenfunctions
are given by

Cmn OxUo exp(27rimy/M)exp(27rinx/L) + 0() + 0(,).

(iii) The other eigenvalues belong to the interval (-,-5).
Theorem 1.2 says that there are many eigenvalues near zero when the system size

is sufficiently large. However, these eigenvalues are discrete because L and M are
finite. Therefore, we can take an eigenspace whose dimension is finite but sufficiently
large as follows.

THEOREM 1.3. When 0 < W < 1/v and is sufficiently small, for sufficiently
large L and M, we can choose > 0 and 7 > 0 which depend on , W, L, and M such
that the following hold:

(i)/ and 7 satisfy

limL,M/(, W, L, M) O,
limL,M(7(, W, L, M) (, W, L, M)) O.

(ii) The eigenvalues of A which belong to the interval [-fl, 0] are given by

-D//(-) o
1 1 2

for Iml < px (M) and Inl < p2(L), where Pl(M) and p2(L) are integers such that

lim Pl (M) (:X2 lira
pl (M)

0,
M--oo M---oo

lira p2(g)= oe lira
p2(g)

0
L--oo L--oo

and the associated eigenfunctions are given by

Cmn Oxuo exp(27rimy/M)exp(27rinx/L) + O(1/M) + O(1/L).

(iii) The eigenvalues # which belong to the interval (-,-/3) satisfy

It < -7.

The choice of the eigenspace in Theorem 1.3 is not unique because it depends
on the choice of and 7. Using an argument in the same spirit as that of inertial-
manifold theory, the dynamics near the roll solutions can be well approximated by
the dynamics projected on this space [8].

When the domain is square (i.e., L M), we determine a scaling parameter by
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(1) Z
where A is the basic wavelength of roll patterns. Recalling the Fourier series ex-
pansion of the solutions of the phase-diffusion equation in (8), we find that under
the scaling (15), the dynamics given by (8) are the same as the dynamics on the
above eigenspace, i.e., the dynamics defined by the following system of the ordinary
differential equations:

damn
dT

-(D_ (n) +

where amn is the coefficient of the eigenfunction

,n OxUo exp(imY)exp(inwX) + O(1/M) + O(1/L)

and X ux, Y uy, and T 2t. Thus we know that the phase-diffusion equation
describes the dynamics near the roll solutions and that Theorem 1.3 gives an inter-
pretation of the phase-diffusion equation (8) from the viewpoint of spectral analysis.

The organization of this paper is as follows. Section 2 is devoted to the proof
of Theorems 1.1 and 1.2. Our strategy for the proof is as follows. We apply the
separation of the variables to the eigenvalue problem corresponding to (13). The
y-component of the eigenvalue problem is easily solved. In order to solve the x-
component, we apply the Bloch transformation introduced by Collet and Eckmann [1]
to study the one-dimensional case. This technique converts the eigenvalue problem
in L2(-L/2, L/2) into the one in L2(0,/). Next, we deal with the system of linear
equations naturally induced by the Fourier decomposition of the eigenvalue problem
in the same line of arguments as in [1]. At first glance, it seems to be difficult to solve
our problem since the dimension of the system is infinite. However, our system, can
be reduced to the three-dimensional system which consists of the Fourier components
with wavenumbers w and 0. This is the most outstanding property of our system;
it enables us to carry out the spectral analysis precisely. Section 3 contains several
concluding remarks.

2. Proof of Theorems 1.1 and 1.2. We consider the following eigenvalue prob-
lem:

(16) Aw #w in L2(),

2 2 --Oy4W-- in L2(17) aw (1 + O)2w 3uw 2(1 + Ox)Ow #w ()

with the periodic boundary conditions in (14). We apply the separation of variables
to (17). Let

(x, )= (x)().

Then it follows from (17) that

2 2 vO4yp.( ( + o) ag ,) ( +o)o +
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Now we consider the following eigenvalue problem:

(19) -0y2= in L2(-M/2, M/2)

with periodic boundary conditions

(20) OJy(-M/2) OJy(M/2) (j 0, 1).

Noting -04 u02 by (19), it follows from (18) that

av (1 + 02)2v 3uv + 2p(1 + 02x)V ,2v #v.

For

_
0, let A, be the linear operator which maps L2(-L/2, L/2) into itself

defined by

(2) Av av (1 + 02)2v 3uv + 2u(1 + 02)v

with periodic boundary conditions

(22) Ov(-L/2) OJv(L/2) (j 0, 1, 2, 3).

Then we obtain the following eigenvalue problem:

(23) A,v #v in L2(-L/2, L/2)

with the periodic boundary conditions in (22). Since (21) is a self-adjoint operator
which has a compact resolvent, we denote the eigenvalues of (23) by

#n(/]) for n 0, +/-1, +/-2,...

and the associated eigenfunctions by

vn(u) for n 0, +/-1, +/-2,

On the other hand, the eigenvalue problem (19) is easily solved. We denote the
eigenvalues of (19) by

(24) t- for 0,+/-1,+/-2,...

and the associated eigenfunctions by

(25) exp(27dly/M) for 0, +/-1, +/-2,

Hence the eigenvalues of (16) are given by

#n(Ut) for 1, n 0,+/-1,+/-2,...

and the associated eigenfunctions by

vn(t)t for l, n 0, +/-1, +/-2,
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Since {vn()}nez and {l}tz are complete in L2(-L/2, L/2) and L2(-M/2, M/2),
respectively, we know that {vn(l)99t}t,nez is complete in L(ft), namely, all the eigen-
values of (16) are given by # #n(’t). Therefore, we consider the eigenvalue problem

In order to study the eigenvalue problem (23), we use the Bloch technique, which
is available for the analysis of Schrhdinger operators with periodic potentials. For
more details, see Reed and Simon [13].

First, we consider a direct decomposition of the space L2(-L/2, L/2). For each
N-1n E [-N,N- 1], let Xn La(0, A). We denote by X the direct sum n=-N Xn

equipped with the inner product

N-1

(x,
n---N

for x- and x’-(x)X, xn Xn,

and the norm x IIx= (x, x}x. The follwing lemma shows that X ( Xn can be
identified with L2(-L/2, L/2).

LEMMA 2.1 (Kuwamura IS, Lem. 1]). Let U be the linear operator which maps
L(-L/2, L/2) into X defined by

(Uf)n(x)

Uf ((Uf)n), (Uf)n e Xn,
N--1

E f(x + Am)e-i(x+’) for f e L2(-L/2, L/2)
m=-N

and U* be the linear operator which maps X into L2(-L/2, L/2) defined by

N-1

(U*g)(x + Am)
1

-N <_ <_ N-
n--N

for g- (gn) e X, gn Xn L2(0,/),
where x [0, A] and an wn/2N- (2rn/L)(-N < n < N- 1). Then we have

(Uf, g}x (f U’g} L2(_L/2,L/2),

U*U idL.(_L/2,L/2)

UU* idx.

The operator A X -- X is called decomposable if and only if there exists
family of operators An Xn ---* Xn such that for each x (xn) X,

(Ax)n Anxn
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holds. Then we write

The following theorem shows that the linear operator (21) is decomposable.
THEOREM 2.2. The operator A L2(-L/2, L/2) L2(-L/2, L/2) defined by

(21) with the periodic boundary conditions in (22) is decomposable. More precisely,
let A,. L2(0, ) ---. L2(0, A) be the family of operators defined by

(26)

with periodic boundary conditions

0X(A) (j =0,1,2,3),

where

wn 27rn
(28) = 2N L ne[-N,N-1].

Then

holds, where U* X L2(-L/2, L/2) and U L2(-L/2, L/2) X are given in
Lemma 2.1.

Remark. We.can obtain (26) as follows" for each e n2(0,/), let

(30)

where an is given by (28). Notice that v satisfies the periodic boundary conditions in

(22) if and only if satisfies the periodic boundary conditions in (27). Substituting
(30) into (23), we have the following eigenvalue problem:

(31) A,n=# in L2(0,A)

with the periodic boundary conditions (27), where A,n is defined by (26). Notice
that A, is self-adjoint. The technique which transforms the eigenvalue problem (23)
into (31) is called the Bloch technique. The relation (29) is essential for understanding
the mathematical background of this technique.

We find that v is an eigenvector of A associated to an eigenvalue it if and only if
there exists some such that v(x) ei(x) holds, where is an eigenvector of
A., associated to the eigenvalue it. Therefore, we consider the eigenvalue problem
(31) instead of (23).

Theorem 2.2 can be proved by similar argument to [8, Thin. 2]. Theorems 1.1
and 1.2 are the direct consequences of the following.

THEOREM 2.3. (A) When 0 < W < 1/v/, for sufficiently small and each
n E I-N, N- 1] and m >_ O, all the eigenvalues of A,, are negative except
for the simple zero eigenvalue of Ao,

(B) When -1/ < W < O, for sufficiently small , we have the following:
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(i) If 0 < < 27r2/x/-lWIM2, then for each n e [-N,N- 1] and , > O, all
the eigenvalues of A,, are negative except for the simple zero eigenvalue of Ao,
Here M2=O(1) as $ O and M --(ii) If > 2r2/x/-lWlM2, then A+I, has a positive eigenvalue. Here, M2

O(1) as 0 and M --(C) When IWl > 1/v/, for sufficiently small > 0 and large L, there exists some
n E I-N, N- 1] such that A,o, has a positive eigenvalue.

THEOREM 2.4. When L and M are sufficiently large, under the conditions of
Theorem 2.3(A), there exists p > 0 independent of , W, L, and M such that the
following hold:

(i) For each n e [-x/p/2, x/p/2] and "m e [0, x/p], the principal eigenvalue
of A.,--say #.--satisfies

2
#m, -D+/-, D//nn + O((nn +//m)3),

where

and

D// 4 8W2 + 0(),
D+/- 2veW,

2rn
n L

and the eigenfunction associated to the eigenvalue #.n--say .--satisfies

)mn OxO nt- O(tn) nk- O(l/m).

The other eigenvalues of A..,, satisfy

where 51 > 0 depends only on and W.
(ii) For each [-x/-p/2, x/-p/2] or n [0, x/-p], all the eigenvalues of

A.., satisfy

where (2 > 0 depends only on and W.
Proof of Theorems 2.3 and 2.4. We consider the eigenvalue problem (31), i.e.,

A,,-# in L2(0,A)

with the periodic boundary conditions in (27), where

A,n a (1 ( i0)2)2 3u + 2u(1 ( i0z)2) 2.



1322 MASATAKA KUWAMURA

We decompose and u0 into their Fourier components

(x) E ameimx
m

and

uo(x) E bneimx’
m

respectively. By (4) and (5), we know that

(32)
for

bm--- O(elq-21ml/3) for
0 for

1,
>__ 3, m odd,
even.

Since e L2(0, A) is naturally identfied with (am)meZ e/, (31) is equivalent to the
following system of equations:

(33) a -( -( + n)=)a + e.( ( +-))
2am #am Toam E Tm-rar for mEZ,

where

Tr=3 E bpbq.
p+q=r

By (32), we have

(34)

6e2 -+- 0(66) for m 0,
36 + 0(64) for I.1- 2,T. O(Imle("l+)/a) for Iml 4, m "even,
0 for m" odd.

Let

(35) Sm c (1 (tn + row)2)2 + 2z(1 (n + row)2) z2 To #
{ (( +-) + -)} To ,

and

Bm,y()= E Tm-ra.

The system of equations (33) is rewritten as follows:

(36) S,am Bm,l() for m E Z.

Notice that (36) has a trivial solution 0. We will study (36) as follows. We solve
the system of equations

(37) Smam--Bm,() for Iml 2.
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for (..., a-3, a-2, a2, a3,...) E 12 as a function of a-l, ao and al. (37) is solved by
using the contraction-mapping theorem. We denote the solution of (37) by

(38) am am(a-l, a0, al), for Iml 2.

Substituting (38) into

(39)
S-1a-1--B-1,1

S0a0 B0,i (),
Sial

we solve (39) for (a_, a0, al). Now, we start to solve (37).
The following lemma is the key to reduce the infinite-dimensional system of linear

equations (36) to the three-dimensional system (39).
LEMMA 2.5. For it

_
-1/4 and sufficiently small e > O, the system of equations

(37) has a unique solution of the following form:

(40) am snlRmao for m: even

and

(41) am n T’IIRma- Jr- m mal for m" odd,

where

for
for
for

m _> 4, m even,
m >_ 4, m odd,
m >_ 4, m odd,

Proof. Let (..., a-3, a-2, a2, a3,...) E 12. Then the system of equations (37)
is rewritten as follows:

(42) am zlqm + npm() for Inl 2,

where qm is an inhomogeneous term, i.e.,

qm Tm+la-1 + Tmao + Tm-az,

and pro(C) is a linear operator with respect to , i.e.,

Noting (2), (12), and
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we find

(43) Sm =a (1 (an + row)2) 2 + 2(1 (tn + row)2) 2 To #
-Cm4

for tt _> -1/4 and Iml _> 2. Moreover, by (34), we have

where

<_

Therefore, (42) is solved by using the contraction-mapping theorem. In fact, the
successive approximation starting from 0 can be applied to (42). Then we have

a, S,,lR.a0 for m" even(44)

and

(45)

where

am Sn1Ra- + SRa for m" odd,

Rm =Tin
Ijl>_2,j#m

+ E Tm-jTj-kTkls’I
Ijl,lkl>_2,jCm,kj

- E rrn-jrj+l;
Ijl>_2,j’m

+ E Tm-jTj-kTk+IS-f1S’I

Ijl>_2,jCm

+ E Tm-jTj-kT’-IS-S;1

Therefore, (40)and (41)follow from (34)and (43)-(45).
Now we substitute (40) and (41)into (39). By (34) and (45), we have

B-l,1 () Elf+it_> T-l-rat

=: P-la-1 + Plal,
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where

(46)
P-1 -[rI_>2,r:odd T-I-rS-IRr

T_2S-_3T2 + O(e6)

and

(47)
T_ + O().

Similarly, we have

Bo,1 () Voao

and

B-1,1() (-la-1 -}- (lal,

where

(48) Vo T-2S-T2 + T-2’-1T2 + O(6),

(49) --1 T2 --O(6),

and

(50) Q1 T-2SIT2 nt- O(6)

Thus we have the following equations"

(51) (So Vo )ao 0

and

(52) ( S-1 P-1
--(-1\

-P1 ) (a-)=0.S1 --Q1 al

First, we may ask whether equation (51) has a nontrivial solution. Suppose that
(51) has a nontrivial solution. Then it follows from (35), (48), and (51) that

a {1 (t2n + )}2 To tt T-2S-T2 T-2Sf1T2 + 0(6) O.

Noting (2), (12), and (34), we have

# -32(1 W) {1 (2 + )}2 +
Hence we see that when IWI < 1/fl, for sufficiently small

# < _2(1 W2)

holds. Thus when IWI < 1/x/, there exists 50 > 0 independent of such that for
# > -502, the equation (51) has no solution other than the trivial solution.
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Next, we may ask whether equation (52) has a nontrivial solution. Noting (2),
(12), (34), and (35), we have

P-1 -P1S-IQ-1 ql-01

_a( w) { (( -). +
--3S2

-u.r + o(P).

-3e2 )_a( w) { ((,, + ). +

Hence we consider the eigenvalues of

B
-3(1 W) {1 ((n -w) + u)}9

--3e2
--3e2

-3e(1 W) {1 (( +) + ,)}

In order to investigate B, it is useful to parametrize u and n as follows"

(53) u x/eu’ for u’ >_ 0

and

(54) V/-aK/2.
Notice that

by 1 <_ co/2. Moreover, we set

(55) x ’ + ,/5/4 >_ o

and

(56) y /.

Then, it follows from (53)-(56) and (12) that

{ (( ,,) + -)}: a(w v +)

and

{1 ((w + tn)z + u)} 3e(W + y + x).
Hence we have

3e2(1 W2) {1 ((n co)9. + u)}.
_3e(1 + y2 + x9. + 2Wx- 2Wy- 2yx)

and

3e(1 W2) {1 ((n + w)2 + u)}
_3e2(1 + y2 + x2 + 2Wx + 2Wy + 2yx).
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Therefore, the characteristic equation of the matrix (1/32)B is given by

2(1 + y + x + 2Wx)A
(1 + y2 + x2 + 2Wx): (2Wy + 2yx) 1 O.

We find that

(1 + y2 + x2 q_ 2Wx)
=-I+W2-y-(x+W)2<0

provided IWI < 1/xfl. Moreover, we know that

(1 +y + x + 2Wx) (2Wy + 2yx) 1
2y + 2x2 4W2(x + W)2 + 4Wx + {(x y2) + 2W(x + W)}2

> co2 + 2x. 4W2(x + W)2 + 4Wx

holds provided 1/x/. Let

F(x) co2 + 2x2 4W2 (x + W)2 + 4Wx.

It is easy to check that when IWl <

F(x) >_ co2 2W2

1 2W2 -+- x/-zW > 0

holds for sufficiently small > 0. Therefore, we find that when [Kn[ > 1/x/ and
IW <

(14-y2+x2+2Wx)2_(2Wy4_2yx)2-1 >0

holds for sufficiently small e > 0. Hence we know that the eigenvalues of (1/3e2)B are
negative. Thus there exists (1) 0 independent of e such that when IKnl _> 1// and

IwI < 1//, the matrix B-#I has no zero eigenvalue, i.e., I-Zl 0 for sufficiently
small e and # > -51e2. Thus we find that when >- and IwI <

S--1 -P-1

holds for # > --(1 e2 and sufficiently small , so equation (52) has no solution other
than the trivial solution.

Now we consider the case IKnl < 1/x/. In this case, it follows from (53), (54),
and (12) that

{1 ((w n)2 + u)}2 32(W Kn + u’) 2 + O(ff3)

and

{1 ((co + tn) + u)}2 32(W + Kn + v") 2 + 0(3).

Hence we have

W 1 (W Kn +//;)2B 3e2
--1 +o(P)W2-1-(W+Kn+ /2I) 2 /
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for sufficiently small . We consider the eigenvalues of

B’ (W2-1-(W-Kn+u’)2

-1
_1

W2 1 (W + Kn + u’)2

We find that the characteristic equation of B is

+ 2(1 + K + ’ + 2Wu’),X
+ (1 + K2 + u’2 + 2Wu’)2 -4Kn2 (W + ,)2

so the eigenvalues of B are given by

A_ -1 ’ K 2Wu’ V/1 + 4Ke(W + ’)

A+ -1 u’2 K 2Wu’ + V/1 + 4K2n(W + u’) 2.

We find that when IW[ < 1/x/,

A_ -I+W2-(’+w)2-Kn2-V/l+4K2n(W+’)2 < -1.

Using the inequality

v/i+x<_l+x/2 for x_>0,

we obtain

(57) _Kn2 (1 2W2) (u,2 + 2Wu’)(1 2Kn2).

First, we consider the case -1/v < W < 0. In this case, we know that

u2+2Wu’<O for O<u<-2W

u’2+2Wu>0 for u>-2W.

By (53) and (24), we recall that

Hence if

45
>-2w,

0<<
271-2
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then there exists 52 > 0 independent of e and M such that

A+ <-52

holds provided aM2 O(1) as e 0 and M oc.
On the other hand, if

v%
<-2,

>
27r2

then there exists 53 ) 0 independent of and M such that for Kn 0 and # Ul,

holds provided eM2 O(1) as e 0 and M --+ c.
Now we consider the case when 0 _< W < 1/x/. Noting (57), we can choose p > 0

independent of , which will be spcified later such that

+ < min(p2(1 2W2), (p2 + 2Wp)/2)

holds for IKn] _> p or u’ >_ p. Hence there exists 54 > 0 independent of e such that
when ]K, _> p or u’ _> p, the matrix B- #I has no zero eigenvalue, i.e., ]B- #I # 0
for # > -542 and sufficiently small . Thus we find that when 0 _<_ W < 1/xfl and
max(lKl, #) _> p,

S-1 -P-1 -P1
-Q-1 1 -Q1

holds for # > -54e2 and sufficiently small e, so the equation (52) has no solution
other than the trivial solution.

Finally, we consider the case where 0 <_ W < 1/x/, K] _< p, and 0 _< u’ _< p.
By (35), (46), (47), (49), and (50), we have

S-1 P-- -P )-Q_ S -Q

a-T0-#-{1-((-w)2+u)}2
_3e.

+o(e4)
a- To #- {1 ((n + w)2 + u)}2

Bit -+- O(4)

for sufficiently small e > 0. Noting

(58)

and

(59)
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it follows from (2) and (34) that the eigenvalue of B" is given by

+/- -he + 3 + o((. + )) + o()

for sufficiently small 6. Hence we can choose an appropriate p > 0 independent of 6

such that

and

for l# + 6el > e/2.

Therefore, we find that for I1 > /, and I# + 6eul > eu/2,

S_ -P-1 -P
-Q- & -Qi

holds, so equation (52) has no solution other than the trivial solution.
Finally, we consider the case I#1 < 62/2 by using analytic-perturbation theory

(Kato [5]). Noting (58) and (59), we expand the operator

a (1 (an i0x)2)2 3%2 + 2u,(1 (an iOx)2)
in L2 (0,/)

with the periodic boundary conditions in (27) with respect to um and an near u,
0. In what follows, for simplicity, we suppress the subscripts m and n of Um and

Kn, respectively. A, is expanded in powers of u and a as follows:

4

A,,, E A(m’n) pmnn,
’m,--O

where

A(’) c (1 + c92) 2 3u,

A(’1) --4i(Ox + c9), A(1,) 2(1 + 0x2),

A(’2) 2 + 602, A(1’1) 4iOx, A(9’) -1,

A(’3) 4i0:, A(1’) -2, A(9’1) A(3’) 0,

A(’4) -1, A(l’a) A(2’2) A(a’l) A(4’) 0.

Since A(m’) is relatively bounded with respect to A(’)--that is, IlA(’,)fll <
C(llA(’)fll + I]fll) holds for some C > 0we can apply analytic-perturbation theory
[5, Chap. 7, Thm. 2.6, and Remark 2.7].

We denote by #,, the pricipal eigenvalue of A., and by , the associated
eigenfunction of #,. Here we notice that #o,o is the simple zero eigenvalue of Ao,o,
and its associated eigenfunction is o,o Ouo -26czsinwx + 0(63). In fact, in
a manner similar to the previous argument, we see that Ao,0 0 has no solution
other than the trivial solution in (Oxuo) +/- {v e L2(0,/); (V, OxUo) 0}. Hence
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the geometric multiplicity of #o,o is equal to one. Moreover, noting that Ao,o is self-
adjoint, we find that

(o,o)- x(;,o) +/- X(o,o) +/- (Oo) +/-

by the closed-range theorem, where R and N denote the range space and null space,
respectively. Hence we see that Oxuo

_
R(Ao,o), so the algebraic multiplicity of #o,o

is also equal to one.
Let #, and , be expanded in powers of u and as follows:

fn,n--0

and

Substituting this into A,, tt.,, and comparing the coefficient of each power
of u and , we obtain

(60) A(O,O)(o,o) #(o,o)(o,o),

(61) A(o,o)(o,1) + A(O,)(o,o) #(o,o)(o,) + #(o,)(o,o),

(62) A(O,O)(,o) + A(,o)(o,o) #(o,o)(,o) + p(1,0))(0,0),

(63) A(’)(’2) + A(’1)(’) -t- A(’2)(’)
ft(0,0))(0,2) _.[_ ft(0,1))(0,1) nL (0,2)@(0,0)

(64) A(1’1)(0’0) + A(I’)(0’1) -+- A(’I)(1’0) -t- A(’)(’)

/t(0,0)@(1,1) _j_ p(0,1)(1,0) _+_ p(1,0)(0,1)
__

p(1,1)2(0,0

(65) A(,)(e,) + A(,)(,) + A(e,)(,)
#(o,o)(e,o) + #(,o)(,o) + #(,o)(o,o)

Since A(’) is the linearized operator of the right-hand side of (6) at uo, it follows
from (60) that

(66) #(o,o) 0

and

(67) (o,o) OxUo -2ew sinwx + O(e3).

Hence, by (61) and (66), we have

(68) A(’)(’1) -A(’)(’) + It(0,1) ) (0,0)
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By the solvability condition for 2(0,1), we have

#(o,1) (0(0,0), A(O,1)b(o,o)}
((o,o), (o,o))

where (, stands for the inner product in L2(0, ),). Noting (67) and the fact that
A(’1) is an odd-order differential operator, we see that

((o,o), A(O,1)(o,o)} 0,

which leads to

(69) p(0,1) =0.

Hence we can solve (68), i.e.,

(70) A(O,O) 2(0,1) _A(O,1) 0(o,o).

Using (12) and (67), we decompose 0(’1) and A(’1)0(’) into their Fourier compo-
nents as follows"

2(0’1) E Cmeimwx
m

and

A(O,1)b(o,o) 4i(w2 w4)(eiwx + e-uz) + O(e3)

=-4iv/-We2(e,x + e-x) + O(e3).

To solve equation (70), we must repeat the same line of arguments as applied to (33).
Here we calculate the essential part of equation (70). Recalling (4), we have

A(’)(’1) (c (1 + oqx2) 2 au)b(,1)

Comparing each coefficient of eix and e-ix in (70), we obtain the fbllowing equations
for cl and

(Oe (1 W2)2 62)Cl 3aUC_
--3eeCl + (c (1 co2) 2 62)c_1

Noting (2), we have

11 )( Clc_1 ) --4iWg’2( 1)1
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Recalling the condition gf -c-1, we obtain

Imcl Imc_l
2W

Therefore, we have

(71) )(0,1) 4iW
coswx + C sinwx + O().

Similarly, it follows from (62) and (12) that

(1,0) ((0,0), A(1,o)(o,o)
((o,o), (o,o)}

and

(1,0) (0,0) OxUO.

Next, we consider (63). By (66) and (69), we have

A(O,O)(o,2) _A(O,)(o,) A(O,2)p(o,o) + #(o,2)(o,o).

By the solvability condition for b(,9), we have

#(0,2) ((’), A(’)O(’)} + ((’), A(’)O(’)}
{(o,o), (o,o)}

By (12), (67), and (71), we obtain

((o,o), (o,o)) 4.7r + O(e3),

((o,o), A(O,)(o,1)} 32e2W27r + O(e3),

((o,o), A(O,2)(o,o)) _16e2rr + O(e3).

Therefore, we find that

#(0,2) -4 + 8W2 + O(e).

Similarly, it follows from (64) and (65) that

#(1,1) =0,
#(2,0) -1.

Thus the proof of Theorems 2.3 and 2.4 is complete. []
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3. Concluding remarks. We studied the linear stability of roll solutions of the
two-dimensional Swift-Hohenberg equation. We found that the system size affects
the stability of the roll solutions. Moreover, we gave an interpretation of the phase-
diffusion equation from the viewpoint of spectral analysis when the roll solutions are
stable.

A natural question is as follows: What happens when the roll solution is unstable,
namely, D+/- < 0 or D// < 0? From the viewpoint of spectral analysis, we expect that
the primary instability of the roll solutions can be determined by the behavior of
the principal eigenvalues. We proceed to perform a higher-order expansion for the
eigenvalue problem

in the proof of Theorems 1.1 and 1.2. We have that for sufficiently small 27rm/M and
27cn/L, the principal eigenvalues are given by

where o is with respect to 1/M and 1/L. E, F, and G are given by

E_lF=16W 32W4 (1)-/-----t-O(1), G=
3e----V- +O -e

where O is with respect to . It follows that the wavenumbers of fastest growth are

and

m- +- 2E
SMv/IWI

2

L v/-D// :t::Lv/3(2W2 1)
n + 2G 87rW2

provided D+/- < 0 and D// < 0, respectively. Unfortunately, we cannot rigorously
prove that there are no other eigenvalues in the right half-plane in C. However, we
suspect that the primary instability can be determined by the estimate above.

The phase-diffusion equation is ill posed when the roll solutions are unstable.
The dynamics near the roll solutions cannot be described by only the dynamics of
phase variables. In fact, various complex dynamics such as the wavenumber-changing
process, the nucleation of dislocation are observed. Although many researchers have
studied these phenomena, nothing has yet been proved by either mathematics or
physics. (for instance, see [11] and the references therein).
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UNIQUE DETERMINATION OF A COLLECTION OF A FINITE
NUMBER OF CRACKS FROM TWO BOUNDARY MEASUREMENTS*

HYUNSEOK KIMt AND JIN KEUN SEO

Abstract. We consider the problem of identification of a collection of a finite number of cracks
in a planar domain. It is proved that the location and shape of any finite number of cracks can be
determined from boundary-voltage measurements corresponding to two boundary-current fluxes.

Key words, cracks, boundary electric measurements, connected conponents, Jordan curve
theorem

AMS subject classifications. 35R30, 35J25

1. Introduction. In [1], A. Friedman and M. Vogelius proved that the loca-
tion and shape of a single crack (a curve) inside a planar domain can be uniquely
determined from boundary-voltage measurements (Dirchlet data) corresponding to
assigning two specific boundary-current fluxes (Neumann data). In [2], K. Bryan and
M. Vogelius extended the above result by showing that if one knows a priori that the
collection of cracks consists of at most n cracks, then it can be determined by voltage
measurements corresponding to n + 1 specific fluxes. In this paper, we prove that
only two measurements are sufficient to determine a collection of cracks (see the Main
Theorem below). Since it was proved in [1] that one flux is not sufficient to determine
even a single crack, our result may be regarded as an optimal extension of [1] and [2].
We introduce some notations and definitions to precisely describe our result.

Let ft be a simply connected bounded domain in R2 with a smooth boundary Oft
and /a positive real analytic function on . By a crack, we mean a C2 simple curve
a in ft, i.e., a one-to-one twice continuously differentiable map cr [0, 1] --. with
nonvanishing derivative, and by a collection of cracks, we mean a collection of cracks
consisting of a finite number of mutually disjoint cracks ak, k 1,..., n (possibly
n=0).

Given a function E L2 (0f) with average zero, i.e., foa ds 0 and collection
E of cracks in , let us denote by P(, E) the following minimization problem:

P(,r)

Find a function u in Hl(ft) that minimizes the functional

2E

in the class K- {v E Hl(ft) v is constant on each crk in E}.

This minimization problem physically corresponds to minimizing the total energy
required to sustain the specified boundary-current flux and the requirement that the
potential u is constant on the cracks means that the cracks are perfectly conducting.
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A solution u to the problem P(, E) is continuous on ft (see Lemma 2.1 in [1])
and satisfies the following boundary value problem:

V. (TVu) 0 in ft\E,
u constant on each

Ou-u - on Oft,

where 80-5 denotes the outward normal derivative on 0f.
Let us state our main result.
MAIN THEOREM. Let 1 and 2 be two nonvanishin9 piecewise-continuous func-

tions on Of with average zero such that for each real , the set {z Oft: el(Z)-
c2(z) >_ 0} is connected and is not identical to . Suppose that E and are
collections of cracks in and for each 1, 2, ui and are solutions to the problems
P(E) and P(, E), respectively. Then u for 1,2 on Oa implies that

Remarks. (1) It is easy to construct functions i satisfying the hypotheses of the
Main Theorem. For completeness, we give an example:

Imagine 0 as the interval [0, 8] with endpoints 0 and 8 identified.
Define i e C([0, 8]) as follows:

-1 for all x e [0, 11 U [7,8],
1(x)-

1 for allxe[3,5],

0 for all x [0, 1] U [3, 5] U [7,8],

2(x)= 1 forx=2,

-1 for x =6,

and

i’s are linear in the remaining domains.

Then the i’s satisfy the hypotheses of the Main Theorem.
(2) Our results extend Theorem 1.1 of [1] for a special case. Indeed, we could

remove the restriction e _< e0 of that theorem.
Our proof of the Main Theorem depends heavily on the maximum principle and

topological properties of/2.
In 2 we establish some preliminary lemmas, and in 3 we prove Main Theorem.

2. Preliminary lemmas. Throughout this section, we assume that u is a so-
lution to the minimization problem P(, E), where is a nonvanishing piecewise-
continuous function on Oft with foa ds 0 and E is a collection of cracks in t2.
Clearly, u is nonconstant.

LEMMA 2.1. Let a E, and let ft be a subdomain of ft with a C f. Then

inf u < ula < sup u.

Proof. Let c ul. To obtain a contradiction, assume that c supa, u.
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For s > 0, let Vs denote the open set

Vs {z ft’" dist (z, or) < s}.

Choose > 0 so small that V2 C f and (V2\cr)r E 0. If we set a supoy u;
then it follows from the strong-maximum principle that a < c.

Let b (a + c)/2, and define

a"- {z e V "u(z) > b}.

Then

Define

ft" C V, and Oft"= {z E V’u(z)= b}.

b for allzin
u-

u(z) for allzin

Then g belongs to the class K and J(g) _< J(u). Since u is a solution to the min-
imization problem P(,E), we obtain J(2) J(u) and, therefore, Vu 0 in
Hence u is constant in ft’, and by the analytic continuation, u is constant in
contradiction. The assumption that c- infa, u also leads to the same contradiction.
This completes the proof.

LEMMA 2.2. If f is a subdomain of f, then

infu<_u(z)<_supu for all z E
OFt’ OFt’

Pro@ By the maximum principle, u cannot have a local maximum in ft\E. The
result now follows from Lemma 2.1.

We now state the key lemma for our proof of the Main Theorem.
LEMMA 2.3. /f the set {z Oa (z) > 0} is connected, then we have Vu(z) - 0

for every z in f\E
Proof. To obtain a contradiction, assume that Vu(z0) 0 for some z0 in ft\E.

Assume for simplicity that z0 0 and u(0) 0. Let (r, 0) denote polar coordinates
near 0. Since Vu(0) 0 and u is analytic near 0, we know that u(0, 0) 0, and
by expanding in a Taylor series in r, we obtain

u(z) rn(asin(nO) + bcos(nO) + rA(r, 0))

for some a and b (not both zero) and some n _>. 2.
Here A(r, O) is a smooth function near 0.
Since asin(nO) + bcos(nO) v/a2 + b2 sin(n0 + c) for some c E [0, 2r], without

loss of generality, we may assume by a rotation about 0 that b 0. Since a 0, we
may also assume that a > 0.

Then we have

u(z) u(r, O) r(asin(nO) + rA(r, 0))

lim
r--0 }a sin(n0) 0 uniformly in 0.

.n
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Hence there exists an open disc B B(0, 5) in f\E with center 0 and radius
such that u is positive in S+ U $2+ and u is negative in Si- U S-, where

and

Set

S+={(r,O) EB. (2i-2)r+ r
<0< (2i-1)r r }n nn n 4n

Ft+={zfl:u(z)>O} and f- ={zef:u(z)<0}.
For each 1, 2, let ft+ (respectively, Ft-) denote the connected component of

+ (respectively, -) containing S (respectively, S). Then the sets fl and fl
are subdomains of ft.

Pro@ Suppose that 0. Then by the definition of connected compo-
nents, we see that fl fir. For ech 1, 2, choose a point z in S, nd let p
be a line segment in S {0} whose endpoints are 0 and z. Since is an open
connected subset of R2, there exists a simple closed curve p in fl {0} containing
pl W p2. Note that from the Jordan curve theorem, the interior of p contains either S
or Sf. Hence by Lemmn 2.2, u is nonnegative in either S orS contradiction.
The ssumption that fl fl 0 also leds to a similar contradiction.

Set

F=0n0 and F7=070.
Then all sets F and F; are nonempty (if F 0, then a c and from the
definition of connected components, u 0 on 0, which implies by Lemma 2.2 that
u 0 in fla contradiction).

Let z and z be points on 0fl such that

u(z+) maxu and u(z-) minu (i=1,2).

Then by Lemma 2.2,

u(zi+ sup u and u(z inf u (i=1,2).

CLAIM 2. (z/+) > 0 and (z-) < 0.
Proof. Since S- c ft-, u(z-) < 0 by Lemma 2.2 and since u is continuous on Ft,

there is an open disc B- centered at z- such that B- C Ft C f-, and B- 21 OFt is a
smooth portion of 0Ft-. Hopf’s lemma shows that (z-) (z-) < 0. The same

argument proves that (z+) > 0.
in S- and let p be a line segment in S- U {0} whoseFor each 1, 2, choose z

Then since each ft[ is open and connected and since someendpoints are 0 and zi.

open ball centered at each z- intersects ft- as in the proof of Claim 2, there exists a
simple curve p’ in ft- U ft U {0, z-, zf } containing p U p whose endpoints are zi-
and z-. By the Jordan curve theorem, we see that the curve pt divides Ft into two
subdomains -1 and ft2, where ftl+ C Ftl and Ft2+ C ft2.

Note that OFt C 0Ftl U 0Ft2, OFt I’ 0-1 n02 {Z-, Zf }, Zl+ 01, and z2+ 0Ft2.
Then it follows from Claim 2 that the set {z E OFt’(z) >_ 0} consists of at least two
disjoint curves, which is contrary to the hypothesis. This completes the proof.
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3. Proof of the Main Theorem. It follows from the analytic continuation and
continuity of u and 2 that u g in Ft; for details, see Bryan and Vogelius [2, 2].

Suppose that E . Then we may assume that there is an simple curve p in

ft\E such that each ui is constant on p. Furthermore, we may assume that p is an
analytic curve and (z0) = 0 for some z0 in p. Otherwise, u2 must be constant in ft
by the analytic continuation and 2 0, which is a contradiction. Set u ul cu.

CUl CU2and 1- a2 where a -SV(Zo)/ (z0) Then Vu(z0) 0, and using
a standard argument, we can easily show that u is a solution to the minimization
problem P(, E), which is contrary to Lemma 2.3. This completes the proof.

Remarks. (1) Our technique in this paper does not work in three-dimensional
case because we do not have a three-dimensional version of the Jordan curve theorem.
Indeed, we do not know how to solve the following interesting problem:

Let B be the unit ball in R3, cra curve in B, and a smooth nonzero function
on OB satisfying fOB ds 0. Suppose that the solution u to the Neumann problem

An=0 inB,

Ou
on OB

satisfies Vu 0 on or. Is the set {x E OB: (x) > 0} disconnected?
(2) A referee pointed out that the result in this paper works for the case E

(3) After this paper was accepted for publication, we learned that a similar
result was obtained independently by G. Alessandrini and A. Diaz Valenzuela [SIAM
J. Control. Optim., 34 (1996), pp. 913-921].

Acknowledgments. We would like to thank the referees for several valuable
comments.
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PHASE-FIELD THEORY FOR FITZHUGH-NAGUMO-TYPE
SYSTEMS*

PIERPAOLO SORAVIA AND PANAGIOTIS E. SOUGANIDIS:

Abstract. In this paper, we study the asymptotics of Fitzhugh-Nagumo-type systems of reaction-
diffusion equations with bistable nonlinearity. In the limit, we obtain an interface moving with normal
velocity determined by the dynamics and the scaling.

Key words. Fitzhugh-Nagumo-type systems, phase-field theory, front propagation, phase transi-

tion, reaction-diffusion systems
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Introduction. Several chemical and biological wave phenomena are modeled by
systems of reaction-diffusion equations which, in a simplified form, look like

(i) u aAu + af(u, v) 0,
(0.1) in

(ii) v 53,(bAy g(u, v)) 0

where the positive constants a,/, 7, and b are related to the particular physical deriva-
tion, the positive parameter 5 is a measure of the ratio of the rates of change of v and
u, and, finally, the vector field (u, v) - (f(u, v), g(u, v)) is of bistable type. i typical
bistable vector field is

(0.2)
f(u, v) (u- )(u2 1)+ v,

g(u, v) u
for # (-1, 1) and cr > O.

One of the best-known examples of (0.1) is the Fitzhugh-Nagumo model (see Fitzhugh
[FH] and Nagumo, Arimoto, and Yoshizawa [NAY]), which describes waves in neural ac-
tivity and the conduction of electric impulses in nerve axons. Other examples are the
Belousov-Zhabatinskii chemical reactions (see Tyson and Fife [TF]). For an expanded
list of references about physical problems modeled by (0.1) as well as a detailed discus-
sion on the qualitative properties of the solutions of (0.1), we refer to the monographs of
Fife IF1, F2], the papers of Hastings IS] and Chen [Chxy], and the references therein.

In this paper, we study the asymptotic behavior of the solutions of (0.1) in the limit
5 - 0 for either

(0.3) O/ 5-1 and /3 52

or
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Below we describe our results in a somewhat informal way and only in a special
case. The precise statements and assumptions in full generality are formulated in the
main body of the paper.

The behavior in the limit -+ 0 of the solutions of (0.1) with (f, g) given by (0.2)
when (0.3) holds is governed by the partial differential equation (PDE)

(0.5) vt bAv + g+(v) 0 in U(t+(t) x {t}),
t>0

where
g+ (v) av h+ (v),

h_(v) and h+(v) being the smallest and largest zeroes, respectively, of the map u

f(u, v). The set
r(t) u (t))

moves with normal velocity
v t)),

where c(v(x, t)) is the speed of the increasing traveling wave associated with u
f(u, v(x, t)) which connects h+(v(x, t)).

To study the asymptotic limit (0.4) as e - 0 of (0.1), we need to consider f(u, v)
f(u, ev), where (f, g) is given by (0.2) and tt 0. In this case, the asymptotics are again
governed by (0.5) but now the normal velocity V of the interface is

v t),

where denotes the mean curvature of the interface. Finally, in either case, the ue’s
converge uniformly to h+(v) in Ut>0 Ft+(t) x {t}. Notice that all the above statements
are global in time and not only up to the first time the geometric evolution develops
singularities!

Local-in-time existence of smooth solutions for the limit problem when the speed
of the interface is c(v) - was proved by Chen in [Chxy]. Giga, Goto, and Ishii in
[GGI] gave a definition of global solutions to the above limit problem and proved their
existence. Results equivalent to ours which, however, hold only as long as the evolution
is smooth were obtained by Chen (see [Chx]).

We proceed with a brief review of what it means for a surface Ft to move with a
prescribed normal velocity

(0.6) V V(Dn, n, x, t).

Surfaces in ]1N evolving according to this rule can start out smooth and yet develop
singularities at a later time. A great deal of work has been done recently in order to
interpret the evolution of surfaces past singularities. Here we will be using a combination
of the so-called level-set and distance-function approaches. For a detailed description of
all approaches and their relationship as well as their consequences, we refer to the papers
cited below and references therein.

The level-set approach was introduced for numerical calculations by Osher and
Sethian (see lOsS]). (See also Ohta, Jasnow, and Kawasaki [OhJK] in the physics lit-
erature and Barles [Ba] for a first-order model for flame propagation.) This approach
represents the evolving surface as the level set of an auxiliary function solving an appro-
priate nonlinear PDE. The level-set approach has been extensively developed by Evans
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and Spruck in [ESp] for motion by mean curvature and independently by Chen, Giga,
and Goto (see [ChGG]) for more general geometric motions. Then Giga, Goto, Ishii, and
Sato [GGIS] and later Goto [G] and Ishii and Souganidis [IS] used the level-set approach
to study motions, where the velocity depends on space and time and V may depend on
Dn in a superlinear way, respectively. All the above works are based on the theory of vis-
cosity solutions to fully nonlinear second-order parabolic (possibly degenerate) equations,
which were introduced by Crandall and Lions in [CrL] and Lions in ILl. (For a detailed
overview of the theory of viscosity solutions as well as a complete list of references (until
at least 1991), we refer the reader to Crandall, Ishii, and Lions [CrIL]).

The distance-function approach, which was initiated by Soner in [Sol] and later
extended to very general situations by Barles, Soner, and Souganidis (see [BASS]), is
more intrinsic. It describes the motion in terms of the properties of the distance function
to the evolving surface. For the precise relation between the two approaches as well as
their consequences, we refer to [BASS].

The generalized evolution {Ft }t>0 governed by (0.6), which starts with a given closed
surface F0 C ]RN, exists and is uniquely defined for all t > 0. Moreover, it agrees with
the classical differential-geometric flow as long as the latter exists. The geometric motion
may, on the other hand, develop singularities, change topological type, and exhibit various
other geometric pathologies.

In spite of these peculiarities, the generalized motion {Ft}t>_0 has been proven in
several occasions to be the right way to extend the classical motion past singularities.
Some of the most definitive results in this direction were obtained by Evans, Soner, and
Souganidis (see [ESoS]) and Barles, Soner, and Souganidis (see [BASS]), who proved that
the generalized evolution governs for all times the asymptotic behavior of the following
semilinear reaction-diffusion equation, which was proposed by Allen and Cahn in [AC]
to describe the time evolution of an "order parameter" u determining the phase of a

polycrystalline material:

+ 0 (0,

in the limit - 0+ for

c-e- and /-e or a-e- and =e.
Here F is a W-shaped potential and c and are related to the physical model yielding
the equation. The choice of the appropriate asymptotic limit is governed by the difference
of the depths of the wells of F. The results of [BASS] apply to more general situations
where F also depends on (x, t) (see also [BaBS]). It is exactly this general dependence
on the potential that will allow us to obtain in this paper the results mentioned above.

Formal asymptotic expansions suggesting the relation between generalized evolution
and the asymptotics of reaction-diffusion equations have been carried out by Caginalp
[Ca], Fife IF1, F2], Rubinstein, Sternberg, and Keller [RSK], and others. The radial
case was studied by Bronsard and Zohn in [BrZ]. In [DeMS], de Mottoni and Schatz-
mann gave a complete proof for the case of the classical geometric motion. Chen [Chxy]
generalized much of this work and gave simpler proofs but still for smooth geometric evo-

lutions, as has Korevaar in unpublished work. Ilmanen [I] and Soner [So2] refined [ESoS]
to overcome the possibility of interface fattenin9 and Katsoulakis, Kossioris, and Reitich

[KKR] studied the asymptotics in bounded domains. Using the asymptotics of reaction-
diffusion equations to build a generalized mean-curvature flow has been suggested by
Bronsard and Kohn in [BrK], DeGiorgi in [DeG], and others. This is what is called the
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phase-field approach to mean curvature. An immediate consequence of [BASS], [ESoS],
etc. is the equivalance of the level-set/distance-function and phase-field approaches. An-
other recent result related to the above was obtained by Katsoulakis and Souganidis (see
[KS1] and [KS2]), who proved that the hydrodynamic limit of certain interacting particle
systems yields (again for all times) generalized front evolution. Finally, for a general
theory about how moving fronts arise in the limit of appropriately scaled systems and/or
equations, we refer to Barles and Souganidis [BaS]; see also Souganidis [Sou].

The paper is organized as follows. In 1, we formulate the asymptotic problem,
state the assumptions, and recall some basic facts. In 2, we recall the precise definition
of the generalized evolution and introduce the necessary tools from [BASS]. Section 3 is
devoted to the statement and the proof of our main result. Finally, in 4, we discuss the
asymptotics of (0.1)in the limit (0.4).

1. The Fitzhugh-Nagumo model. As mentioned in the introduction, in this
paper, we consider the behavior of system (0.1) with initial conditions

(1.1) u--u) and ve=v on]Rgx{0}

in the asymptotic limits (0.3) or (0.4). For technical reasons which we will point out
later, we will work in a periodic domain II x [0, oc), where II is an N-dimensional torus.

Throughout the paper, we will assume that

(1.2) fe andg are smooth and fg>_0, gg_<0 for small

The sign conditions in (1.2), which are satisfied by (0.2), are not compatible with the
standard maximum principle for systems. Our results also hold with similar proofs if
instead of (1.2) we assume

(1.3) lye_>0, g0 or f0, gg0 or f0, g0_.

The next set of assumptions are about the fact that, for each v fixed, u - f(u, v) is
of bistable type, i.e., there exist

_
< + such that for all Iv_, v+]

_
(_, +), v E Iv_, v+],

and e and a sufficently small,

(1.4)

u H f(u, v) a vanishes at only three points

and
h

_
(v, a) < h(v, a) < h_ (v, a)

(i) f,(h_(v, a), v) _> k > 0 and f(h(v, a), v) < -k

(ii) g,h_,h) -- 9, h+,ho as e 0,

where k k(v_, v+) is independent of e and all the limits are uniform in v E Iv_, v+]
and a. In view of (1.4), for each e and a sufficiently small and v (_, g+), there exists
a unique c(v, a) and a unique-up-to-translations q(., v, a) (cf. Aronson and Weinberger
[AW], Fife and McLeod [FM], etc.) such that

qg(r, v, a) + c’(v, a)qg(r, v, a) f’(q’(r, v, a)) a
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and

(1.6) q(+ec, v, a) h: (v, a).

We continue by listing some technical assumptions we make on (q, c). We then verify
these assumptions for some special vector fields like the one given by (0.2). For more
general f’s, we refer to [BASS].

To this end, we assume that, as e -- 0,

(1.7) q and c depend smoothly on (v, a)

and either

(1.8) c(v, a) o(v, a)

or

(1.9) (-lee(V, ea) a(v, a) if c(v, ea) -- 0

with all the limits local uniform in (v, a). Moreover, we assume that there exists K > 0
(independent of v) such that

(1.10) la(v, a) o(’O, a)l < KI 1

for all sufficiently small a. In the case that (1.8) holds, we will also assume that there
exists K > 0 such that

(1.11)
(i) lim sup [e[lqgl + Iqgl + Iql] + lqglJ 0,

e--O (r,v,a)

(ii) Iqgl + Iqgl < Ke-Ke for all r > 6.

If (1.9) holds, then we assume that there exists K > 0 such that

(1.12)
(i)

(ii)

lim sup [e(Iqgl / Iqgl / Iql) / Iql] O,
e--*O (r,v,a)

Ke_KeIqgr + -Iqgl --< for all Irl > 5

Finally, for all v and e, a sufficiently small, we assume that there exists M > 0 such that

(1.13) qg _> 0 and Ilqgllo M.

Next, we present a couple of examples where the above hypotheses hold true. Indeed,
let # E (-1, 1) and consider either of the functions

(1.14) f*(u, v) (at p)(u2 1) + v

or

(1.15) f(u, v) (u #)(at2 1) + ev.

It is immediate that in either case (1.4) holds. Moreover, the pair (q, c) is given by



1346 PIERPAOLO SORAVIA AND PANAGIOTIS E. SOUGANIDIS

(1.16) and

q(r, v, a) h

_
(v, a) + rn(v, a)(1 + exp(-m(v, a)(r + r(v, a))/f)) -1

c(r, v, a) (2h(v, a) h (v, a) h

_
(v,

where
rn(v, a) h_ (v, a) ht (v, a)

and r(v, a) is appropriately chosen. If f is given by (1.15) and # -- 0, then (1.9) holds
and a(v, a) - (v + a). The rest of the conditions above can be easily checked to hold.

The next set of assumptions are about the initial conditions (1.1). We assume that
the periodic-in-II functions u, v E L(RN) are such that, as e 0,

(1.17) v vo uniformly,

and that there exist an open set 2o C IN and a closed, If-periodic, (N-1)-hypersurface
Fo such that

(1.18) RN fo t2 ) t_J Fo (disjoint union),

and the closed sets

(1.19) {x e

converge to F0 in the Hausdorff metric, where

h (v) h (v, 0) and h (v) h_ (v, 0).

For each 5 > 0, there exists r () > 0 such that

lira u >_ ho(vo) + ]

(1.20)
--,o

locally uniformly in
_< ho

0

a0 A {X: dist(x, F0) >_ 5},

) N {x" dist(x, Fo) 2 5},

where dist(x, F0) is the usual distance function from x to F0. Notice that no smoothness
is required on u, F, and F0!

Our last assumption is about the existence of L-bounds on the solution (u, v) of
(0.1) and (1.2) which are independent of e. We assume that

(1..21)
there exist M > 0, T > 0, and p > 0 such that for all e small,

v E (_ + p,+- p) and _< M in QT- RN x (O,T).

This assumption, which is essential to defining hfe and h in (1.4), can be verified for the
vector field (0.2) using the theory of invariant regions developed by Rauch and Smoller
(see [RS]) and Chueh, Conley, and Smoller (see [ChCS]). The following lemma gives
sufficient conditions so that (1.21) holds for any T > 0.

LEMMA 1.1. Assume that f(u, v) is given by (1.14) with # #, g(u, v) cry u,
and that {v(x) :x RN} C Iv_, v+] c (-,+), where + are as in (1.4). Set u+
max[v_,v+] h+(v) and u_ min[v_,+] h_(v) and assume cry+ > u+ and cry_ < u_.

Then
ve[v-,v+] and u
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and h+(v, a) and h)(v, a) are well defined for all e and a sufficiently small. Finally, if
Vc E (-, +) is the unique point such that

h+()

f(u, vc)du 0

and vc (v_, v+), then c(v, 0), given by (1.8), has constant sign. rl

The proof of this lemma is based on the results of [ChCS] and the observation that
for all suitably small p > 0, Iv_, v+] [crv_ + p, cry+ p] is, in the language of [RS], a
contracting rectangle.

In the case that f is given by (1.15) and # 0, we need to make the additional
assumption

(1.22) 0 E (v_, v+).

We conclude this section with an easy consequence of the assumptions above.
LEMMA 1.2. Assume (1.21). Then along sequences en - O, un u in L(QT)

weak and vn v in C(QT).
Proof. The standard weak compactness of bounded sequences in Lc(QT) yields

that u u, vn v, and Gn g(un, vn) G in Lc(QT) weak ,. On the other
hand, v is a classical solution of

v{ bay, + G 0 in (T.

Classical parabolic theory (see [LUS]) implies that for any p (1, oc), there exists a
subsequence (which we again denote by v) v -- v in W2p’I(QT), where Wp’I(QT) is
the usual Sobolev space restricted to H-periodic functions. (Incidentally, this is one of
the places where the periodicity assumption plays a role.) Therefore, v solves (in the
sense of distributions) the problem

(1.23)
vt bay + G 0 in (T,

v v0 on Ix x {0}.

If p (1, oc) is chosen sufficiently large, then v -- v in C(QT) by the standard Sobolev
estimates. Finally, the uniqueness of weak solutions to (1.23) yields that the whole
sequence v -- v in C(QT). gl

Our goal in this paper is to prove a stronger convergence result for the sequence uCn

to find a relationship between u and v and to determine an expression for G.

2. Generalized front propagation. We begin by recalling the level-set definition
of generalized front propagation according to (0.6). Given a closed set F0 C RN, N >_ 2,
choose 00 UC(IRN), where UC(ft) denotes the space of uniformly continuous functions
defined on f, satisfying

(2.1) ro {x e: Oo(x) o}

and consider the PDEs

(2.)
(i) Ot-F(D20, DO, x,t)

(ii) 0 00

in ]RN x (0, oc),

on x {t 0}.
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The function F is related to V in (0.6) by

(1( p(R)p) A, p )(2.3) F(A, p, x, t) IplV -- I
ip12 -- x, t

for all x E RN, t _> 0, p E RN\{0}, and A SN, the space of N x N symmetric matrices.
For the derivation of F, we refer to [ChGG], [BASS], [IS], etc. As is proved in [ChGG]
(see also [BASS] and [IS] for a relaxation of the assumptions of [ChGG]), the initial value
problem (2.2) admits a unique solution 0 G UC(RN x (0, oc)). (See [BASS], [ChGG],
[ESp], etc. for the relevant definitions, proofs, comments, etc.). Define the closed sets

(2.4) e t)= 0}, t >_ 0,

and call {rt)t_>0 the (level-set) generalized evolution according to (0.6) starting from F0.
It follows (consult [ChGG], [ESp] in the case F0 is compact, and [BASS] and [IS] if not)
that the definition (2.3) does not depend on the choice of the particular function 00 sat-
isfying (2.1). One of the most intriguing questions related to the generalized propagation
described above is whether or not the sets [’t have interior. This is a rather complicated
issue which we do not want to address here. Instead, we refer to [BASS] for a detailed
discussion.

A consequence of the level-set formulation is that the signed distance function to
Ft satisfies certain equations which we state below. Of course, as mentioned in the
introduction, this property of the distance function can also be taken to be the definition
of the weak propagation (see [Sol], [BASS]). To this end, we define the signed distance
function d(x, t) from x to Ft by

(2.5)
dist(x, rt)

t)
-dist(x, Ft)

if O(x, t) > 0,

if 0(x, t) < o,

where dist(x, Ft) is (again) the usual distance from x to rt and 0 UC(NN x (0, oc)) is
a solution of (2.2) which yields Ft.

THEOREM 2.1. The signed distance function satisfies

dr >_ F(D2d, Dd, x dDd, t),
(2.6) in {d > O}

-(D2dDd, Dd) >_ 0

and

dr <_ F(D2d, Dd, x dDd, t),
(9,.7) {d < o}.

-(D2dDg, Dd) < 0

For a discussion of the meaning of (2.6) and (2.7) as well as the proof, we refer to
[BASS].

As mentioned in the introduction, one of the most striking applications of the above
is the rigorous asymptotics of

ut aAu +./f(x, t, u) 0. in RN x (0,
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In the next section, we will use the main ideas involved in the proof of the above asymp-
totics to obtain our main results.

3. The asymptotics a y e-1 and/- e2 of the Fitzhugh-Nagumo sys-
tem. We consider the system

u eAu + 1/4 f(u, v) O,
(3.1) in

v bay + g(u, v) 0,

with initial condition (u,v)and we assume (1.2), (1.4), (1.7), (1.8), (1.10), (1.11),
(1.13), and (1.17)-(1.21). Lemma 1.2 yields the existence of sequences en - 0 and
functions (u, v) E L(QT) C(QT) such that u u in L(QT) weak and vn --, v
in C(QT). Let a(v) a(v, 0) be given by (1.8) and consider the front {Ft}t>0 defined
by the geometric PDEs

0 + c(v(x, t))[DOl 0

0 do

in ]tN X (0, 00),

on ]tN {0},

where do is the signed distance function from F0, which is given by (1.18)-(1.20). Finally,
let d be the signed distance function given by (2.5).

THEOREM 3.1. Assume (1.2), (1.4), (1.7), (1.8), (1.10), (1.11), (1.13), and (1.17)-
(1.21) and consider the functions (u, v) given by Lemma 1.2 for a given sequence -- 0,
and the front Ft which moves with normal velocity-a(v). Then

(3.3)

{d > O}
u- in u [h_(v),h+(v)] a.e. on Ft,

h_(v) {d < O}
and
u, ---+ u locally uniformly in {d 0}.

Moreover, v satisfies (in the sense of distributions) the singular limit problem

(a.4) vt bAv + G(v) O in

where
(3.5)

G(v)
{d < o}

{d > o}
and G(v) e [g(h+(v), v), g(h_(v), v)] a.e. on Ft.

The existence of solutions of (3.4) and (3.5) was proved by Giga, Goto, and Ishii
[GGI] by a method completely different from ours.

The assertion of Theorem 3.1 can be substantially strengthened as indicated in
Theorem 3.2 below in the case where the front defined by (3.2) does not develop interior.
For example, this can happen (cf. [BASS]) when c(v(x,t)) does not change sign. A
sufficient condition for this to happen in the case of (0.2) is given by Lemma 1.1. Theorem
3.2 asserts that if interior does not develop, the conclusions of Theorem 3.1 hold for the
whole family (u, v) and not only along sequences.
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(3.6)

THEOREM 3.2. In addition to the assumptions of Theorem 3.1, assume that

meas{(x, t): O(x, t) 0} 0,

where 0 is the solution of (3.2). Then

h+()
u - locally uniformly in

h_()

and

{d > 0}

{d<0}

v - v n C(Q).
In what follows, we will present the proofs of Theorems 3.1 and 3.2 under the

additional hypothesis that

u(x) q (d(X),v(x),O(3.7)

where do is the signed distance function from F0, r q(r,v(x), 0) solves (1.5) and
(1.6), and q(0, v, 0) h(v). This assumption is made only in order to simplify the
presentation below. The general case follows by combining our arguments with those of
Chen [Chx].

The basic step of the proof of Theorem 3.1 is based upon an adaptation of the proof
presented in [BASS] for the asymptotics of the scalar reaction-diffusion equation

1
(3.8) u eAu + -f(u, x, t) 0 in ]N X (0, ),

where f is of bistable type. The proof is based upon building super- and subsolutions
of (3.8) of the form

qa, X t

where qa, is a traveling wave corresponding to u f(u,x,t) a and w, is some
approximation to the signed distance of the limiting front.

In preparation for the proof of Theorem 3.1, we first regularize the function v

C(QT), which is obtained as the limit of v by Lemma 1.2 by means of a sequence
(v)N C C2,(QT) such that v v in C(QT). Then we approximate (3.2) by

0’’m + a(vm, a)]D0a,5,m O i N (0,)
(3.9)

0’’ d0 + on N {0},

where a(vm, a) is the limit of c(v, a), which exists by (1.8) and > 0. Observe that
the assumptions on f yield that a(v, a) a(v) s m and a 0. Finally, the
stability results of the geometric PDEs (cf. [BASS]) yield

(3.10) Oa,5,m O inC(QT) as m , 0, a O.

As in [ESoS] and [BASS], we introduce the auxiliary function : satisfying

]issmooth, 0C, C5-1, and
(3.11)

V(z) - if z 5 /4, V(z) z- 6 if z /2,
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and define
t)

where x da,e,’(z, t) is the signed distance function from the set

{y E RN Oa,5,m(y, t) 0}.

A straightforward modification of the proof of Lemma 10.1 of [BASS] yields the
following.

LEMMA 3.1. We have

w + ((vm(x w,,’Dw,e,’,t),a)lDw,5,’ >_ -o(1) in R x (O,t*),

where t* is the extinction time of {0,,n 0} and the o(1), as 5 - O, only depends on
the modulus of continuity of v C(QT) and not on a, 5 and m. Finally,

We can now complete the construction of the supersolution which we need for the
proof of Theorem 3.1. Since a subsolution can be built by a straightforward adaptation of
the above, we omit the details. To this end, let q be a traveling wave which corresponds
to u f(u, v) a and define

(3.12) Oa’5’n’(x’ t) q ( wa’5’-(x’ vm(x’ t)’ a)
LEMMA 3.2. Assume (3.12) and the assumptions of Theorem 3.1. Given a > O,

there exists mo- too(a) such that for all rn >_ rno, there exists 5o(a, m) such that for all
5 <_ 50 there exists co(a, m, 5) with the property that for all e <_ co(a, m, 5), ,’,, is a

supersolution of

1
f )>0 inQT.(3.13) Ct eA + (., v

The proof of Lemma 3.2 follows along the lines of the proof of Theorem 9.1 of
[BASS] with few technical adjustments. For completeness we present it below, assuming
for simplicity, however, that wa,’, has derivatives, instead of interpreting all statements
in the viscosity sense. This can be done easily following [ESoS] and [BASS]. Finally, to
simplify the notation we drop the superscripts whenever it does not create any confusion.

Proof. 1. The equation for the traveling wave yields

1lq(IDwl2 1) + -[f((I), v) f((I), v’)] + J,

where
J qg (vn eAvm) 2qvDw. Dv" eqgv [Dv" 12,

wigh the above quantities evaluated at (w(x, t)/e, v’(x, t), a).
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In view of the assumptions on q and the choice vm, it follows that for each fixed rn,

[eJl=(1) as-O

uniformly in 5 and a.
2. Choose rn large and then e small enough so that

and

IIv vll + vll (4K)-la,
IIc(vn, a) o(vrn, a)ll 4-a,

leJI 4-1 a,

where, by (1.4) and (1.21), IIfll K in [-M,M] x [_ + tOl+- fl]. Using all of the
above, (3.14) yields

lf(, qg a q#
(IDol u 1)(3.15) (t eA + v) >_ --(wt caw + c(vm, a)) - 4e e

where again qr and qgr are evaluated at (w/e, v", a).
3. We now use the inequalities for w given by Lemma 3.2. We have the following

cases.
Case 1" 5/2 < d < 25. Lemma a.1 yields

t_eA +
l
f( v) >_ q ( eC ) a

e -- ----(K+I)Co(1) +ee >-0

for 5 _< 5o(a,m) and e <_ eo(a, rn, 5), where K is as in (1.10) and since Ad _< Cd- in

{d > 0}.
Case 2" d < /2 or d > 25. If d < 5/2, then w _< -5/2, and if d > 25, then w > .

In either case, (3.15) and Lemma 3.1 yield

lf 1[a >0

for e _< co(a, rn, 5) since by (1.11)(ii), [Iqg] + Iqgl] --+ 0 as e --+ 0 uniformly in a, rn, and

We are now ready to proceed with the proof of Theorem 3.1.

Proof of Theorem 3.1. 1. It follows from (1.14), (1.5), and (1.6), that for a and e

sufficiently small, there exist a constant c, independent of v, a, and e, and a traveling
wave r q(r, v;(x), a) such that

q(r, v, a) >_ q(r, v, O) + ca,

where q(., v, 0) is given in (3.7).
The above claim follows easily from our assumptions on the vector field by an ap-

propriate choice of the initial condition q(0, v, a). Indeed, recall that q(0, v, 0) h(v).
In view of (1.4), there is a smooth function {(v,a), defined for all v E [v, v+] and all
sufficiently small a and e, such that

q((v,a),v,O)
hE (v, O) + h (v, a)
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Now choose q(., v, a) so that

q((v a)v a)- h+(v’ O)+ h(v,a)
2

The choices of Wa’m’5 and q as well as (1.13) now yield

0) a > + >

for small a and e and large m.
2. Lemmas 3.2 and 3.3 and a comparison principle for viscosity solutions of reaction-

diffusion equations (see [ESoS])yield

a,m,5,e te.

Using (1.6) and (1.13) we get

(3.16) Un <_ h+n(v",a) for all(x,t) and limu <_ h_(vre,a) in(d<0}.

The second inequality follows from the remark that if d(xo,to) < 0, then
O(xo, to) < 0 and, therefore, 0,’,e _< _c < 0 in a neighborhood of (x0, to) for small
a, m, 5, and e. But then da,’,e <_ 0 and, consequently, wa,n, <_ -5/2 in this neighbor-
hood; hence (3.16) follows.

3. Constructing appropriate subsolutions and arguing as before to obtain inequalities
analogous to (3.16), we conclude that

h+(v) in {d > 0},
(3.17) u --, locally uniformly.

h_(v) in{d<0}

Using that u--u in L(QT) weak ,, it is now easy to derive (3.3). Indeed, let E
C(B((Xo, to),p)) be such that 0 <_ . Then (3.16) yields

udxdt <_ h+ (v", a)dxdt.
T T

Letting n +oc, m +ec, and a 0 above, we get

p(h+(v) u)dxdt > O,
T

and thus h+ (v) > u a.e. in QT.
4. To prove (3.4) and (3.5), observe that, by Lemma 1.2, g(u, v) G in L(QT)

weak .. In view of (3.17) and the fact that vn v in C(QT), it follows immediately
that g -- G locally uniformly in {d = 0}, while to obtain (3.5) on Ft, we again use

We now proceed with the proof of Theorem 3.2. Here the construction of the super-
and subsolutions will be a bit different. The reason is that we need to look at the whole
system (3.1), which, in view of (1.2), does not satisfy the assumptions of the maximum
principle. To overcome this difficulty, we introduce the function

(3.18) a(t) a exp(St),
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where

Here K > 0 is such that

S (3 + L(K + 2))L and a > 0.

with M given by (1.21), and L is the Lipschitz constant of ge in [-M,M] x
[_ + p,+- p] and of h_ and h in [-M,M] x [_ + p,+- p] x [0, A]; recall that
we are assuming (1.21).

As before, we introduce the functions

(3.19) )a,’’,,c(x, t) q (wa,’,5(x,e_ t) v’(x, t), (K + 1)a(t))
and

(3.20) (x, t) v(x, t) + a(t) and v_(x, t) v(x, t) a(t),

where v comes from Lemma 1.2 along a fixed subsequence. Finally, let (I)’m’5’c be defined
-a,rn,5,eas but using 5(z) -r5(-z) in the definition of w,’,.
LEMMA 3.3. Let u and v be given by Lernrna 1.2 and assume all the assumptions

of Theorem 3.2. Then for any a > O, rn > rn0(a), 5 < 50(a, m), and e <_ e0(a, rn, 5), the

functions-,m,5, and ,m,5,, , and v_V_ satisfy, in the viscosity sense,

--a,rn,5,e ,m,5,e fe(-a,rn,d, V_) > 0(i) (I)t eAa +
(3.21) in QT

(ii) t bAT + g(u, v) a(t)S 0

and

Proof. The proofs of (3.21)(i) and (3.22)(i) follow along the lines of the proof of
Lemma 3.2. The main difference is that v_v_ does not depend on e. Therefore, the proof is
not restricted on the particular choice of the subsequence. On the other hand, (3.21)(ii)
and (3.22)(ii) hold in the sense of distributions and follow trivially using (3.6). [3

Next, we show that the pairs (a,n,5,, V) and ("’’, v__) are SOlne .kind of super-
and subsolutions of (3.1). To simplify the notation, in what follows, we again drop the
explicit dependence on (a, m, 5, e) and write only ((I), ) and (, v__).

LEMMA 3.4. Assume (1.2) and (3.6) and let a(t) be given by (3.18). Then

(3.23) -g(u, v) + a(t)S >.-g(go,V) a.e. in QT

for all a > O, m > too(a), and < eo(a). An analogous inequality holds for (, v).
Proof. 1. If d(x, t) > O, then u h+(v). Choose e small and m large enough so that

and Ih- h+/-l <_ a in [_ + p,+ p]
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and compute

g(u, v) + a(t)S
>_ -g(h+(vm, (K + 1)a(t)), ) L(Ih+(v h+(vm, (K + 1)a(t)) + a(t)) + a(t)S
>_ -g(h+(vm, (K + 1)a(t)), ) + La >_ -g((I), ).

2. If d(z, t) < 0, then wa,m,e(z, t) <_ -5 for a, 5, and e small and m large enough.
Therefore,

-(x, t) <_ q ( 5
vm(x, t) (K + l)a(t))

Then, by (1.12),

g(u, v) + a(t)S
-g(h_(v), v) + a(t)S >_ -g(h

_
(vm, (K + 1)a(t)), V) + aL

_>-g(,)+L [a- (q (--’S (K+ 1)a(t)) h

_
(vm, (K+ 1)a(t)))

_> -g(, ) for _< eo(a, m, 6).

We now introduce a change of variables in (3.1) in order to control the nonlinear
term in the first equation. Indeed, let

2
(2 [_M,M]

where M is given by (1.21), and define

F(t, r, s) Ar + e-le-atf(eX"tr, exits).

The following are immediate:

F- + f r, >_
(3.26)

f (e  tr, e ts) >_ O.

Finally, let

(3.27)

It is immediate that (g, 5) solves the system

(3.28) / (i) A + F(t, 2,) 0,

(ii) bA + + e-tg(u

Moreover, Lemma 3.3 yields that (a,n,6,, _V) satisfies

.in QT.

(3.29)
(i) t-A+F(t,,_v) >_0,

(ii) _v bA_v + A_v e-t[-g(u, v) a(t)S]
in QT,
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where we have once more dropped all of the superscripts. An analogous inequality holds
for (a,m,5,, ).

We now proceed as in [Chx] to obtain a comparison result for (3.1), always assuming

LEMMA 3.5. Let the assumptions of Theorem 3.2 hold. Then there exists a constant
C, independent of , such that

(3.30)

Proof. The proof is an easy consequence of the assumptions and the above construc-
tions. Indeed, if (x0, to) E QT is a point where- attains a negative minimum--again
we drop the superscripts--then, as in the proof of Theorem 3.1, to > 0. The assumptions
yield that at (x0,t0),

where C- sup[_M,M]2 fv. The lemma now easily follows.
LEMMA 3.6. Under the assumptions of Theorem 3.2,

(3.31) Cll( -   )+11oo

for some constant C independent of e and for e small enough.
Proof. Here we use (3.28)(ii), (3.29)(ii), and Lemma 3.4. If V _v-?, then

(3.32) Vt bAY + AV e-t[a(t)S + g(u, v) g(u, v)].

Multiplying (3.32) by V_-1 (p _> 2), integrating over QT, and using the periodicity of V,
we get

where

and

9(+/-,_)-g(u,_)

I1 (____, t)

(__L,)-(_,

i. (v__, ue
v-

ifC-u,
if u I,

ifvCv

ifv ve.



FITZHUGH-NAGUMO-TYPE SYSTEMS 1357

In view of our assumptions, I1 and I2 are bounded in QT uniformly in e. Finally, if e is
so small that Ilv vollc <_ a/2, then

< C II(- 5)+llp
T

V_dxdt +
T

V_dxdt

If e is small enough so that ,V -C >_ ,V/2, then we conclude the proof, letting p ---t-. D
Finally, we can state the comparison result for (3.1).
LEMMA 3.7. Under the assumptions of Theorem 3.2, for any a <_ a0, rn >_ rn0(a),

5 <_ 5o(a, rn), and e < eo(a, rn, 5),

(i)a,rn,5, < U <--a,rn,5,e

and
v-a < v < v+a.

Proof. If, for example, a,,,5,- u has a negative minimum, then Lemmas 3.5 and
3.6 yield

i.e., p- t has a positive maximum. The comparison for the subsolution pair (, v) and
the definition of A also give

1

which leads to a contradiction for e 0. V1

At this point, the proof of Theorem 3.2 follows exactly as the one of Theorem 3.1.

4. The asymptotics c e-, e2, and 7 e-1 of the Fitzhugh-Nagumo
system. Here we present a result about the asymptotics of the system

lf )-0,u Au + -- (u v
(4.1) in RN x (0,

v -bAv + g(u, v) 0

where now we assume that (1.9) holds. The corresponding geometric PDEs is

Or (A0 (DeODO, DO)/IDOI) + c(v)lDOI o

o do

in ]lN X (0, OO),

on N x {0},

where v is the limit of the v’s.
THEOREM 4.1. Assume (1.2), (1.4), (1.7), (1.9), (1.10), (1.12), (1.13), and (1.17)-

(1.21) and let (u,v) be the solution of (4.1). Then along subsequences, vn v in
C(QT) and un u and g(un, vn) G in L(QT) weak .. The pair (u, v) satisfies
(3.3)-(3.5), where the interface Ft now moves with normal velocity equal to its mean
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curvature ((v). Finally, if (3.6) holds for the solution of the corresponding geometric
POE (4.2), then the convergence result holds for the whole family (u, v).

The proof of Theorem 4.1 follows along the lines of the proofs of Theorems 3.1 and
3.2 and Proposition 10.2 and Theorem 9.1 of [BASS]. We therefore omit the details.
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GINZBURG-LANDAU EQUATIONS AND STABLE
SOLUTIONS IN A ROTATIONAL DOMAIN*

SHUICHI JIMBO* AND YOSHIHISA MORITA*

Abstract. The Ginzburg-Landau (GL) equations, with or without magnetic effect, are studied
in the case of a rotational domain in R3. It can be shown that there exist rotational solutions
which describe the physical state of permanent current of electrons in a ring-shaped superconductor.
Moreover, if a physical parameter--called the GL parameter--is sufficiently large, then these solutions
are stable, that is, they are local minimizers of an energy functional (GL energy). This is proved by
the spectral analysis on the linearized equation.

Key words. Ginzburg-Landau equation, stable solutions, rotational domain
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1. Introduction. Ginzburg and Landau [11] proposed a theory of low-tempera-
ture superconductivity. In their theory, the (local) energy density h(,A) inside a

superconductor is given by

1 [ a(1 []2 l[rotA[h(,A) I(V- iA), + + -where (I) (C-valued) is the wave function of the electrons in the material, A is the
vector potential of the magnetic field, and a > 0 is the Ginzburg-Landau (GL) pa-
rameter. We note that this energy density is written in a nondimensional form. A
superconducting state ((I), A) is formulated as a local minimizer of the total energy
functional calculated by h((I), A); namely, it is a solution to the variational equation.
This variational equation is called the GL equation. After Ginzburg and Landau’s
work, many mathematical results for the GL equation have arisen and contributed
to the study of the existence of solutions and their detailed properties. We are in-
terested in this problem in the case of bounded superconductors. In this direction
of study, there are several works concerning various situations (and boundary condi-
tions). Odeh [20] studied the occurrence Of a bifurcation from the zero solution as
the parameter a varies. Caroll and Glick [6] proved a unique existence of a solution
for a certain restricted range of a. Klimov [14] and Bobylev [5] obtained multiple
solutions in another range of a. Chen [7] constructed a nonsymmetric solution in a
bounded domain in N2. Yang [25], [26] constructed solutions in a bounded domain
in ]3 under an outer magnetic force and analyzed their regularity. Monvel-Berthier,
Georgescu, and Pruce [19] gave a detailed characterization of the configuration space
with prescribed total vorticity in a bounded domain in N2. See also [8].

Despite many important works, the stability analysis has not yet been done well.
In this paper, we deal with the GL equation in the case where the superconductor
is ring-shaped (cf. Fig. 1) and the external (applied) magnetic field is. absent. We
construct nontrivial solutions and study their stability for large a by analyzing the
second variation of the energy functional. We emphasize that the external field is
absent but the magnetic field driven by the current of the electrons is taken into the
equation. Hence this magnetic effect might influence the stability of the solutions.

Received by the editors November 30, 1993; accepted for publication (in revised form) March
3, 1995.

Department of Mathematics, Hokkaido University, Sapporo 060, Japan.
Department of Mathematics and Informatics, Ryukoku University, Ohtsu 520-21, Japan.
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However, we can also prove a similar result for the GL equation without the magnetic
effect A (cf. equation (1.6) below).

We remark that there are also many works on other important topics. Jaffe and
Taubes [12] developed several important methods for analysis of the GL equations, by
which they investigated the magnetic screening effect and the quantization phenomena
of the total vortices in R2. Moreover, for the special value of the GL parameter
(c 1/2), they solved the prescribed vortices problem in R2. Berger and Chen [3]
constructed a radially symmetric solution (with vortex) in IR and showed an elaborate
asymptotic behavior for ( oe. More recently, there have also been extensive studies
on the properties of the zero set of the solutions of the equation without the magnetic
effect in a domain in IR (cf. (1.6) with the boundary condition of the first kind). See
[2], [9], [4], and the references therein.

FIG. 1. Ring-shaped domain f.

We now formulate the problem. Let t C ]t3 be a bounded domain with a C3

boundary. We consider the following (GL) functional

(1.1) n(, A) I(V iA)el 2 + (1 -le dx + - IrtAldx"(I) is a C-valued function in ft and A is an lR3-valued function in ]I3. The first and
second terms correspond to the energy of the electrons confined in ft and that of
the magnetic field caused by the current of electrons, respectively. Note that the
magnetic field takes place in the whole space ]R3. We suppose A E Loc(]R3;]R3),
VA E L2(N3;N3x3), and (I) HI(;(). The GL equation is the variational equation
of this functional, that is,

(1.2)

(V iA)q + c (1 -I(I) ) 0 in

O
i(A. ,}o O on

rot rot A + (i(V(I) OVa)/2 + 1I2A) Aa 0

where (., .} is the standard inner product of vectors in R3 and Aa(x) is a discontinuous
function such as A(x) 1 for x ft and Aa(x) 0 for x R3 \ t. We construct
nontrivial solutions to (1.2) and prove their stability in the case where is a ring-
shaped domain. In the stability analysis, we have to take into account the invariance
of gauge transformation. Namely, the transformation ((I), A) ((I)’, A’) defined by

(1.3) e’(I), A A + Vp (p: R-valued function in R3)
leaves invariant. Accordingly, if ((I),A) is a solution to (1.2), (’,A’) in (1.3) is
also a solution of (1.2). Taking various p’s, we get a continuum of solutions from
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one solution (q), A). We note that all (q)’,A’)’s in this continuum correspond to one
physical state. In view of this, to see the stability of a solution (q), A), we need to study
the infinitesimal variation of 7-t in the direction that is transversal to the continuum
at (q), A). Consider the second variation of 7-t obtained by

(1.4)
d2

(q), A, , B) --e(q) + eq2, A + eB)l:o.

We see from the above observation that this quadratic form is degenerate in the
tangent space

T(q), A) {(iq), V)I R-valued function on R3}
of the continuum at (q), A). We take a space N(q), A) which is transversal to r(q), A)
and satisfies T(q), A)C’IN(q), A) {(0, 0)} and consider whether :(q), A,-,. is positive
definite in N(q), A) or not.

In addition to (1.1), we also consider the following functional 7% (which is given
by setting A 0 in (1.1)):

/{1 {(1.5) 7-to(q)) Vq) + dx.

In certain situations, the magnetic field is expected to be so small in the interior of ft
that A can be neglected, so this is also a significant model. The variational equation
of (1.5) is

(1.6)
Aq) + c (1 [q)[2)q) 0

0 on Oft.

(1.5) and (1.6) are also called the GL functional and the GL equation, respectively.
(1.5)-(1.6) has a similar transformation invariance to that of (1.1)-(1..2), that is, if
c E JR, the transformation q) q) defined by

(1.7) q)’ eicq)

leaves (1.5) and (1.6) invariant. In other words, given any nonzero solution q) to (1.6),
we get a contiuum of solutions {eicq) c E R} that is a one-dimensional set including
q). Consider the second variation of 7-t0 around q),

(1.8)
d2

c0(e, h-jd t0(e +

This quadratic form is degenerate in the direction of the tangent space of the contin-
uum at q),

T0() {i }.
As in the previous case, we take a space N0(q)) which is transversal to T0(q)) and
satisfies T0(q))CN0(q)) {0}. We consider 0(q), on N0(q)) and discuss the stability
of q).

In 2, we formulate several function spaces for the arguments of stability described
above. In 3, we specify the rotational domain in R3 and present our main theorems
on the existence of stable solutions. In 4, we construct solutions to (1.2) and (1.6).
In 5 and 6, we prove the stability of the solutions for large c.

2. Formulation. In this section, we formulate T(q),A), N(q),A), To(q)), and
N0(q)) for arbitrary (q),A) and q). Next, we deduce the concrete expressions of the
second variations (1.4) and (1.8) and some of their properties in the above spaces. Let
(q),A) satisfy q) CI(;C), A G CI(R3;R3), and VA L2(Ra;IRaXa). The solution
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we construct in 4 satisfies this condition. For convenience, we sometimes deal with
the (I)-component in terms of real functions by taking its real and imaginary parts. We
set u + vi and + i. Henceforth, we also denote
T(O, A/, and N(O, A) by 7-t(u, v, A), f_,(u, v, A, b, , B), T(u, v, A), and N(u, v, A),
respectively. The tangent space T((I), A) is defined as follows:

(2.1) T((I), A) T(u,v,A) {(-v,u, V) E Loc(R3), V E H1(]3; ]3)}.
To define a subspace N(, A) N(u, v, A) which is transversal to T((I), A), we use the
Helmholtz decomposition (cf. [24]). It is known that L2([2;R3) and L2(3;3) have
the following orthogonal decompositions:

where

L(gt;R3) Xl @ X2, L(R3;3) Y1 (R) Y2,

Xl {Vl e La(t), V L(t; 3)},
X. {B LV(t;3) divB 0 in H-(Q), (B. u) 0 in H-1/2(0)},

L2 [3 V L2(3" 3)}gl {V lock ],

Y2 {B L2(N3;N3)I divB 0 in H-(N3)}.

Let P and P be the orthogonal projectors of L(a;R3) and L(Ra;R3) onto X2 and
Y, respectively. Let us define

(u,v,A) {(,,B) HI() x HI(R3;R3) (v-u)dx-0, B,a X}

For these subspaces, we have the following properties.
PROPOSITION 1.

Hi(a) H(a) H(a;a) T(,, ,A)+ X(, ,A).

Pro@ Assume (u, v) (0, 0). Otherwise, the proof is straightforward. Let
(, , B) be any element in the left-hand side. Because BId (I-P)(Bla)+P (BId)
X @ X, there exists H(a) such that V (I- P)(BId ). Since 0a is C3, there
exists He(Ra) such that Ia . Set B1 B V and

Setting -- c, we have

+(,,)

PROPOSITION 2.

(e.e) H(a) x H(a) HI(a;) T(,,A) N(,,A).

Frog Assume (u, v) (0, 0). Otherwise, the proof is straightforward. Let
(, ,B) be any element in the left-hand side of (2.2). By using the decomposition
B V + B1 Y1 @ Ye, we have

(, ,) (--V,,) + ( +, , 1).

Modifying by adding an adequate constant to (as in the proof of Proposition 1),
we have ( + v, u, B1) N(u, v, A). Hence (, , B) T(u, v, A) + N(u, v, A).
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If (-v, u, V) belongs to N(u, v, B), is a harmonic function in R3 and so is O/Oxi
(1 <_ i <_ 3). Since O/Oxi is assumed to belong to L2(R3), it is identical to 0 from
the Liouville-type theorem. This implies that is a constant function in R3. On
the other hand we have fa(u + v)dx 0 holds and _- 0 follows. This implies
T(u, v, A) C N(u, v, A) { (0, O, O) }.

By direct calculation, we can derive a concrete expression of the second variation
(1.4).

Formula of the second variation of .
d2

(u, v, A, , , B) e-beH(u + e, v + e, A +

Remark. If div B 0 in ft and (B. u} 0 on OFt, then

(u(V. B v(V. B})dx fa ((Vv B) (Vu. B})dx.

This will be used in 6. In the next proposition, we see that the second variation
of 7-t does not depend on the tangential component T(u, v, A). The following property
can also be proved by direct calculation.

PROPOSITION 3. Let (q),A) (u,v,A) be a solution of (1.2). Then

(u, v, A, , , B) (u, v, A, ’, ’, B’)
provided that (, , B), (’, ’, B’) E Hi(a) 2 H1 (IR3; JR3), and (-’,-’, B-B’)

T(u, v, A).
We now present a similar formulation for (1.5). Let q) belong to CI(;C). Sim-

ilarly to the case of (1.1), we again set q) u + vi and + i and denote
7-/0(q)), 0(q), ), T0(q)), and No(q)) by 7-to(u, v), 0(u, v, , ), To(u, v), and No(u, v),
respectively. Let us define

To(q)) To(u, v) {(-tv, tu)

No(q))=No(u,v)= {(,)e H(Ft) H(f)I (v-u)dx= 0}.
We have the following properties.

PROPOSITION 4.

H (Ft) x H (Ft) To(u, v) (R) No(u, v).

Proof. The proof is straightforward.
The following formulas are also proved by a direct calculation.
Formula of the second variation of

d2
c0( , , ) h-jn0( + v +
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=/a { (IVI2 + ]V12) a(1 u2 v2)(2 + 2) + 2a(u + v)2 } dx.

PROPOSITION 5. Let (I) (u, v) be a solution of (1.6). Then

0(, , ,) 0(, , 4, ’)

provided that (, ), (’, ’) E Hl(t), and ( ’, ’) E To(u, v).
3. Main results. In this section, we present the main results. Let D be a

domain defined by D _= {(r, z) e R21r > 0} and let E be a bounded domain in D
with a Ca boundary (cf. Fig. 2). Henceforth, we make the following assumption on E.

D

FIG. 2. ECD.

Assumption. E is convex and E C D.
We now define t c R3 as follows (cf. Fig.l),

(3.1)

In this section and henceforth, we sometimes use the cylindrical coordinate system
(r,O,z) in N3 (i.e., xl rcos0, x2 rsin0, x3 z).

We consider stable rotational solutions to (1.2) and (1.6) for the above domain
Ft. In view of the rotationally symmetric situation, we seek for a solution (, A) to
(1.2) of the particular form

(3.2) A(r, z, O) y(r, z) (- sin O cos0 0) (, z, o) w(, z).
Here W W(r,z) > 0 and Y Y(r,z) are real-valued functions in E and D,
respectively.

The following theorem is the main result of this paper.
THEOREM 6. Let m be an integer. There exists a ao > 0 such that for any

a >_ a0, (1.2) has a solution ((I)s, As) with

(x) w(, z), As(x) Ys(r,z) ( -sinO csO )--,0

where Ws C2() and Y CI(D), and

(3.3) lim sup Ws(r,z) 11 0.
a-+c (r,z)E

Moreover, it is stable in the sense that there exists a constant 5 > 0 such that

(a.4)

Ft- { (r cos 0, r sin 0, z) e IR3I (r, z) e E, 0 _< 0 < 2r}
_
E x ql.
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for (, B) E N(, As) and a >_ Co.
We consider a stable solution to (1.6) of the form

> o),

and we have the following result.
THEOREM 7. Let m be an integer. Then there exists a constant (1 > 0 such that

for any >_ 1, (1.6) has a solution (x) Z(r, z)ei’ with

(3.6) lira sup Z(r,z)- 11 O.
a-*o (r,z)

Moreover, is stable in the sense that there exists a constant 50 > 0 such that

(3.7)

for any No() and >_
We prove these results in 4-6.
Remark. We can obtain similar theorems for the two-dimensional case, namely

for an annulus. The proof can be done in the same manner.
Remark. In our previous paper [13], we constructed a stable solution to (1.6) for

a "thin" annulus. Hence Theorem 7 is in an extension of the study in [13].
Remark. With u+vi (u, v" real valued), (1.6) becomes a stationary reaction-

diffusion system for (u, v). It is interesting to compare our result in Theorem 7 with
that obtained by Matano and Mimura [17] for the competition reaction-diffusion sys-
tem with 2 components. In [17], they constructed nonconstant stable solutions in a
special (dumbbell-shaped) domain. Theorem 7 may be regarded as a similar result to
theirs. However, there is a significant difference between the competition system (two
components) and our case. The competition system does not admit any nonconstant
stable solution in an annulus (or ring-shaped domain), whereas the GL equation does.

Remark. Although the range of c in Theorems 6 (i.e., c >_ (0) and 7 (i.e.,
might strongly depend on the shape of , it is difficult to specify this range in general.
However, it seems to the authors if the ring-shaped domain is very "fat" and its hole
is very small, (0 and c1 will be taken very large in order that the solutions become
stable.

4. Construction of solutions. In this section, we construct solutions to (1.2)
and (1.6) of the forms of (3.2) and (3.5), respectively. Moreover, we prove some
elaborate asymptotic behaviors of those solutions as a --+ oc (cf. equations (4.2) and
(4.4) below), which play essential roles in the stability analysis of the solutions. We
begin with (1.6). By direct calculation with (3.5), we get the equation for Z:

where

m2
LZ----Z+cZ(1-Z2)-O in E,

OZ
On

0 on 0E,

L=- r +
r

and n is the outward unit normal vector on 0E in D.
We have the following result.
PROPOSITION 8. There exists Co > 0 such that (4.1) has a unique solution Z
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Z(r, z) > 0 for c >_ Co which satisfies the following asymptotic properties:

lim sup sup
a--,oo (r,z)

lim sup sup
(4.2) (,z)e

lira sup a(1-Z(r,z)2) -m2
(,)er

0.

Similarly as above, we get the system of equations for (W, Y) from (1.2) with
(3.).

L1W g( Y)W + a W(1 W2) 0 in E,

(4.3) L2Y+(m-Y)W2A2=O in D,
OW
-0 on 0E, Y-0 on OD,

where
0

and Ar.(r, z) 1 for (r, z) E E and Arc(r, z) 0 for (r, z) E D \ E.
We have the following result.
PROPOSITION 9. There exists al > 0 such that (4.3) has a solution (W,Y)

(W(r, z), Y(r, z)) for > which satisfies the following asymptotic properties:

limsup sup a[W(r,z)- 1[
a (r,z)E

lira sup sup
(4.4)

lim sup (1-W(r,z)2)- =0.
(r,z)E

We prove these propositions after presenting several auxiliary lemmas.
LEMMA 10. Let p be a real-valued function which is C3 in a open set E C Nn.

Then we have

where grad p is the following differential operator:

grad p E Oxk Ox
k=l

Pro@ By direct calculation,

0 Op
Ox j=l

OX [Vp --[Vp[ -1
j=l

OXj OXjOX + OXjOX
j=l

n 0p 03pa Iv- Ox OxOj=l

IV pl z IVpl

_
gradp (Ap) in {x G e llVp(x)l 0},

j=l

k j=l
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Here we used Schwarz’s inequality. Summing up the above in k 1, 2,... n, we have
the desired inequality. [:]

LEMMA 11. Let E C ]n be a domain with C2 boundary and F be a relatively
open subset of OE. Let p E C2() be a real-valued function with Op/Ov 0 on F,
where is the unit outward normal vector on OE. Then

(4.6) 21 ouO [7p[2 -h(grad p, grad p) on F,

where h(., .) is the second fundamental form of the inclusion OE Nn with respect
to-u (cI. [15, Chap. 7]).
om the Neumann boundary condition of p, grad Plot can be identified with

first-order differential operator on F as well as a vector field on F.
Proof. First, extend u(x) (Ul(X),..., u(x)) as a C2 vector field on some neigh-

borhood of F.

10 1 0 ( 0 Op Op

k=l j=l k=l j=l

On the other hand, we have nk= u(x)Op/Ox 0 on F. Since grad p is differential
operator on F, we can operate grd p on the bove equation nd we get

Op Oep
0 grdp uk(x)Op/Oxk uk OXy OxyOx Oxy Oxy Oxk

k=l

Using this, we hve
1 0 Ouk Op Op
20u

[Vp=- OxyOxyOx"

This completes the proof of Lemma 11.

Proof of Proposition 8. Equation (4.1) is typical case in the framework given
in [1] and [23], so we briefly discuss the existence of a solution. Define two constant
functions as follows"

d
Z+, (r, z) l, Z-,a(r,z)=l in E.

it is easy to check that if d > 0 is large enough, Z_, Z+, are a lower-upper
solution pir of (4.1) for a > d. Applying [1] or [23], we get solution Z such that
Z-,a Za Z+, in E. The uniqueness of the positive solution can be proved in
the sme manner as in that of Lemma 3.1 in [13], so we omit it. The first estimate in
(4.2) directly follows from the inequality

(4.7) 1- Z(r,z) 1 in E

for a > d. We prove the remaining estimates of (4.2). Regarding Z as a function
defined in by Z(x)= Z(ffx + x, x3), we have

mZ(4.s) + + 0 a,

with the Neumann boundary condition on 0. The nonlinear term in (4.8) is bounded
in C() for a > d by (4.7), nd the Schauder estimate for the elliptic boundary value
problem yields that {Za}>d is bounded in C+(), where 7 e [0, 1) is n arbitrary
constant. This implies that {]VZ]}>d is relatively compact in C(), nd hence it
follows from (4.7) that ]VZa(x)] converges to 0 uniformly in as a . Applying
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grad Z to equation (4.8) with the aid of Lemma I0, we obtain the following differential
inequalities:

IVZlzXlVZl /g(x) >_ o in Ft
(4.9) O

IVZI-IVZI -h(grad Z, grad Z) _< 0 on OFt N G,

where

(/= + =1 1 + z+( 3z)lvzl.
The first inequality in (4.9) is deduced by direct calculation. The second inequality
follows from Lemma 11. Recall that grad Z is normal to the longitudinal direction of
Oft, i.e., Z Z(v/x + x, x3) is constant in the longitudinal direction. Considering
the sign of the second fundamental form and that the cross-section E of ft is convex,
we obtain h(grad Z, grad Z) >_ 0 on OFt. (4.9) is verified.

We shall prove that c VZIIL is bounded when a --+ with the aid of the
maximum principle. Z is not a constant function and the set F defined by

r { e a l0 < IVZ(x)l- mx

is not empty for > d. By virtue of (4.7), there exists c > 0 such that 0 % (1-Z) %
c in 2 for > d. We estimate IVZ in F from above. We divide the argument into
the following two cases (I and II) of .

Case I. Fa 09. Take any point x0 e Fa 0. We have AVZa 0 at x xo,
and we have 9(xo) O. By a simple calculation, we get

x + x k/x+x Z+a(1- 3Z)tVZl 2 0 in F,
j=l

1 0 ( m ) OZ 2aZIVZI in F
IVZJ .= x + z z+ a(1 z)lvza

-4- 2clVZo I.

(4.11) 0 VZaI/Ou <_ 0 on 0frGa.

First, we show that 9(x) >_ 0 in F. If 9(xo) < 0 for some z0 F, we see that

AtVZ > 0 in some neighborhood of 0 and we have OIVZI/Ou > 0 at x x0 from
Hopf’s boundary-point lemma (cf. [21]). This is contrary to (4.11). We conclude that
9 is nonnegative in F. By this fact, we get a similar estimate to (4.10) in Case I.

This completes the proof of the first two properties in (4.2). From these estimates,
C () norm of the nonlinear term of (4.1) is bounded when a oc. Again applying
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the Schauder estimate to (4.1), we get that Ilzllc2+(g) is bounded when

for any fixed 0 _< / < 1. This implies that AZ converges to 0 uniformly in E as
c + oo and we obtain the last part of (4.2). This completes the proof of Proposition
8.

Proof of Proposition 9. We remark that for m 0, we can reduce (4.3) to (4.1) by
setting Y 0. For m =/= 0, if (W, Y) is a solution to (4.3), then (W, -Y) is a solution
to (4.3) obtained by replacing m by -rn. Hence in the construction of solutions, we
can assume without loss of generality that m is a positive integer. Since m is positive,
(4.3) becomes a so-called cooperation system for functions such that 0 <_ W _< 1,
0 _< Y _< rn. Actually, the nonlinear term in the former equation is nondecreasing in
Y and the one in the latter equation is nondecreasing in W provided that W and Y are
in the above region. Hence the comparison method (upper-lower solution method) is
again applicable. However, in this case, we have the difficulty that D is an unbounded
domain and a coefficient of the equation of Y is singular on OD (see the operator
L.). We deal with this difficulty by considering an approximation problem by taking
a bounded subdomain Dp where the coefficients are bounded and we can thereby
get the desired solution in D by taking the limit p + oo. First, we introduce some
auxiliary comparison functions.

(4.12)

dlz) -, z)

r2
Yl(r,z) d2r2e-rl((r-a)+(z-b) ), Y(r,z)

1 + r2 + z2’

Y(r,z) (r. + z.)s, Y2(r,z) min(d3Y(r,z),daY(r,z),m),

where dl > 0, d. > 0, d3 > 0 and r] > 0 are positive constants and s is a constant
such that 4s2 2s- 1 < 0, 1/2 < s (for instance, s 3/4), and (a, b) is an arbitrarily
fixed point in E. Through easy calculation, we get
(4.13)

LEMMA 12. There are constants dl > O, d2 > O, d3 > O, ] > 0 such that the
following inequalities hold for large a > O.

(4.14) 0<WI<_W2_<I in E, O < Y <_ Y2 <_ m in D,

(4.15)

1
(m Y1)2L1W1 - Wi + CtWl(1- W) >_ 0

L2YI + (m- Y1)WAr _> O in D,
OWl
On

0 on OE, ]Zl 0 on OD,

in E,

(4.16)

L W2 1 m Y2 2W. + aW2 (1 -W) _< 0

L2Y2 + (rn- Y2)WAr. <_ 0 in D,
ow
On

=0 on OE, Y. O on OD,

in
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We should remark that Y2 does not belong to C2(D), and we have to take the differ-
ential inequality of Y2 in (4.16) in the weak sense, that is,

(4.17) Y2L2S + (m- Y2)WAS)r drdz <_ 0

for any S S(r, z) E C(D) satisfying S >_ 0 in D and supp S D.
Proof. By taking > 0 large, we see that

{(r, z) D l4lr(r- a)2 + 4]r(z- b)2 10r + 6a < 0} C E.

We take d2 > 0 so small such that 0 < Y1 < m in D. Then

1
L1W1 r- (m Y1)2Wl-+-OWl(1-Wl2)

_
Wl dl-- _0

for large fixed dl > 0. We can retake d. > 0 smaller such that the second inequality
of (4.15) is valid. Next, we prove (4.16). The first inequality is trivial. We see that
L2Y(r,z) and L.Y(r,z) are negative in D. Take d3 > 0 large so that Y2 m in E
and Y1 _< Y in D. The first inequality can in the sense of distribution be checked
from the definition of Y.

We approximate the domain D. Let Dp {(r, z) D lip < r, r + z < p2},
where p N is a parameter. We consider the following boundary value problem,

1
(rn- Y)2WLW - +aW(1-W)=O in E,

(4.18) LY + (rn- Y)W2Ar 0 in Dp,
OW
-n =0 on 0E, Y=YI on ODp.

This is a cooperation system in the region 0 < W < 1, 0 < Y < rn. If we have a lower
solution and an upper solution, we can conclude that there exists a solution-between
them by using the standard theory (cf. [17], [18], [23]). In our case, the situation
is a little different from those dealt with in the aforementioned literature because
the domains of definition of W and Y are different. However, we can carry out a
completely similar argument with using (W1, Y1), (W2, Y2) as lower-upper solutions
and get a solution (W, Y) such that W1 _< W _< W2 in E and Y1 _< Y _< Y2 in Dp.
Thus we have the following approximate sequence of solutions to (4.3).

LEMMA 13. For large p N, there exists a solution (W(p), Y(P)) C2+’() x
C+(-Dp) to (4.18) such that

(4.19) { W (r, z) <_ W(p) (r, z) <_ W2(r, z) in E,

Y (v, z) <_ Y(P) (r, z) <_ Y2(r, z) in Dp,

where 0 <_ " < 1 is an arbitrarily fixed constant.
Applying the Schauder estimates with (4.19) to (4.18), we obtain that for any

large k, the set of approximate solutions {(W(p), Y(P))}p>_k+ are relatively compact
in C2 () x C (k). Applying the diagonal argument, we get a convergent subsequence
and, consequently, a solution (Wa, Ya) E C() x CI(D) to equation (4.2)with the
same estimate as (4.19), that is,

(4.20)
W (r, z) <_ W(r, z) <_ W2(r, z) in E,
Y (r, z) <_ Y (r, z) <_ Y2 (r, z) in D,

for large a > 0. The former estimate in (4.20) implies the first property in (4.4).
Hence the nonlinear terms of (4.3) are bounded uniformly in a. Using the Schauder
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estimate, we have a constant c > 0 such that

(4.) 1 7w l / VYa[ _< c in ft (large a > 0).
To deduce the remaining estimates in (4.4), we can carry out a quite similar argument
to that in the proof of Proposition 8. Using the orthogonal coordinate (xx,x2,x3), let
us set Ws(x) W((x + x)X/,x3). The first equation of (4.2) becomes

AW x +x
0 on .

Applying gradW to the above equation and using Lemmas 10 and 11, we get

(4.23)

where G {x e W > 0} and

Consider the set

{
and apply the same argument as for Zs in the proof of Proposition 8; we have gs(x) >_ 0
in Fs for large a > 0. Thus we obtain a uniform bound for a]VWsl in ft. From this
estimate, the C1() norm of the nonlinear term of (4.22) is bounded when a --+. Again from the Schauder estimate, {Ws}s is bounded in C2+ for 0 _< "y < 1.
Therefore, AWs uniformly converges to 0 in 9t as a --+ oc and we obtain the desired
convergence in the last property of (4.4). [:]

5. Stability of (I)s in Theorem 7. In this section, we complete the proof of
Theorem 7. We will prove the stability of s, which was constructed through (4.1)
by Proposition 8,

(5.1)
To prove the stability of Os in (1.6) for large a > 0, we show that 0 is positive definite
in N0((s). For this purpose, we consider the linearized eigenvalue problem of (1.6).
For convenience of notation, we discuss the problem in terms of real-valued functions.
Let us and vs be the real and the imaginary parts of (I)s, i.e., us(x) Zs(r, z)cos mO
and vs(x) Zs(r, z)sin toO. Thus we consider the following eigenvalue problem:

where
0 0 0

+ 10(O) 02

r Or r-r + -0- +
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and are real-valued functions in ft. We can show that (5.2) is a self-adjoint
eigenvalue problem with real (countable)eigenvalues {#e(c)}_ which are arranged
in increasing order (counting multiplicity). It is easy to see that the set of eigenvalues
contains 0 because (, ) (-v, us) satisfies (5.11) with # 0. This is due to the
invariance in (1.7). We will prove that #1(c) 0 and #2(c) > 0 is bounded away
from 0 when c > 0 is large. We change the variables as follows:

(5.3) ((r, 0, z))_R(_m0)((r, 0, z)) (cos0 -sin0)(r, 0, z) (r, 0, z)
where R(O) sin 0 cos 0

The eigenvalue problem is written in terms of and as follows.

(5.4)

We express () in the form of the Fourier expansion

O, z) ) 1

(r, O, z) o(r, z) + E (k(r, z) cos kO + k(r, z)sin kO),
k=l

where the vector-valued functions

(, ), (,(,z)),(, z) (, ) (,(, z),(, z) )
are defined in E. Substitute (5.5) into (5.4); we can decompose the eigenvalue problem
(5.4) into an infinite series of elliptic eigenvalue problems.
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(5.8) is rewritten as follows:

(’ kk,2)
_

(k,1 1, ) 2ink
r2 (0 o) l )

2
(.9) ((1--)-) (k,l 0) in,

k, 0
on 0N (1).

)
m2+((I-Z)-) ( ,1

0 (00) inN,

0
on 02

We see that (.9) and (.10) are identical as an eigenvalue problem. Both of them are
rewritten as follows:

(g.11) + (1-Z)- 0 + 0

0
on 02,

where and are real-valued functions in 2. We can regard (.7) as the case where
0 in (. 11). We consider (g. 11) for each 0. Let

(5.12) {pk) (a)}_ and ()e’ C L(E) x L2(E)
t,a =1

be the set of the eigenvalues arranged in increasing order (counting multiplicity) and
the complete system of the corresponding eigenfunctions orthonormalized in L2(E) x
L2(E). In this and the following sections, L2(E) L2(E; rdrdz) is the space of the
real-valued square integrable functions with respect to the measure rdrdz, and it is
the Hilbert space equipped with the inner product with this measure. Thus we obtain

1 (o) (r, z) 1 (k) (r, z) cos 0 1 (r, z) sin 0

(o)(r,z) (k) (r, z) sin k0 -() (r, z) cos 0g,a ,a

(k 1, t 1), which form a complete orthonormM system of eigenfunctions of (5.4)
in L2(fi) x

We study the symptotic properties of these eigenvMues nd eigenfunctions for

LEMMA 14. For each nonnegative integer k,

(5.13) lira #k)(a)= #k) (k _> 0, g _> 1),

(5.14) limo (11"-" ()2 -() ) O,
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where {#k)}_ is the set of the eigenvalues arranged in increasing order (counting
multiplicity) of the following eigenvalue problem:

La r2-(7 +#(7-0

-n-O on OE.

in

Proof. We prove this lemma by the aid of the variational characterization of
the eigenvalues. Let {(7k)}e be an orthonormal system of eigenfunctions of (5.15)
corresponding to {#k)}=l, i.e., fr (7k)(7k)rdrdz 5i,j for i,j > 1. For each given
k, we prove (5.13) and (5.14). For simplicity of notation, we drop the number k and

) and (Te, respectively.k) ) -() (7() and (7 by #e, #e(a) we (7e,,denote# ,# (a), e,, e,,
We prove that for any sequence {cj}= which tends to oc as j - oc, there exists a

subsequence on which the limits in (5.13) and (5.14) hold for any g. From (5.11) and
the variational characterization of the eigenvalue of the self-adjoint operator (cf. [22]),
we have

(5.16) #l(a) inf {Ja(-,(7) (7,- Hl(E),((72 +-)rdrdz= l},
where

Using the test function (-, (7)= (0, (71), we have #(c) <_ Ja(0, (7). Using Proposition
8, we obtain

(5.17) limsup#l(Ct) t1.

On the other hand, the eigenfunction (rl,, (71,a) satisfies
(5.18)

f ( (o, ) (o, ) .
(1- z)- .+z. eez =.1

(.) \ + + 1, +,,
a(1 Z)- a, rdrdz ,(a)al,ll().

om Proposition 8 and the boundedness of pl(a) (when a ), it follows that

1.() o(1/) ( ).

Considering this fact with regard to (5.18), we obtain

and
lim IIl,ll()- 1.
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In view of (5.19), O’l,c is bounded in H1(2) and also relatively compact in the weak
topology. Thus there exists a subsequence {rj}j of {%}j such that al,vj weakly
converges to a certain 1 E gl(y]) and #l(r/j) converges to a >’ ( >). Dom the
lower semicontinuity of the H norm in the weak convergence, we see

(5.20) IL2(E) 1, lim inf Val,nj l2(E) IIVI 2(E).
j

Taking the limit-inf as j in (5.19) for a j, we get

(5.21) 72 ((01)2 (01)
2

()-

From the variational characterization of, (5.21) implies that ’ Pl, f # follows
from (5.17), and is a first eigenmnction of (5.15). Therefore, limj Pl(j)
holds. Moreover, we see from (5.19) that

This concludes the first step of the induction. Next take an element
such that (’I)L(Z) 0 and IIIIL<> 1, where L.h.[al, a] is the subspace spanned
by al, a. Recall that

By taking the test mnction (r, a) (0, ), we have

By the result obtained in the first step and taking the sequence a j (j 1, 2, 3,... ),
we get, by a direct calculation,

lim supp(j) P2.
j

From the above inequality and (4.2),

t ( ( OT2, )
2

( OT2’, )
2 k2 2ink

Or + Oz + ’ +

(- z)- , +ez ez-2,

or + Oz + ,+’’
(1- Z)- 2, ();

we have

and
lim sup I1, HI(x) < JI-OO.
j---oo

There exist a subsequence {;j}?=l C {?j}?=l (< #2), and . E Hi(X) such that

lim #9.(tj) #", lim a2,j weakly in Hi(x).
j-o j-oo
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It follows that

(.a) II.ll.() , (:,).() 0,

(524) /r((0220r] (0)2 k2 ) L ()+ + ddz <

By this we conclude that p p2. As in the first step, we obtain that " p, 2 is
a second eigenfunction of (5.15), and, moreover,

lira []a2,[[ [[V2[[ 2

j () L()"

For higher eigenvMues (g 3), we can repeat the similar argument inductively. Con-
sequently, for each g, there exists a subsequence {ae,j}=l c {ay}= such that

(5.25) lira pe(ae,y) pe,
j

om the arbitrariness of the sequence {}=1, (5.1a) and (.14) hold.
Now we are in a position to prove the stability of .
Proof of Theorem 7. om (5.1), it is easy o see that

pk) pk) r and > >0 (k0, e2),

where r0 inf{r (r, z) E} > 0. By Lemma 14, all p(k),s except for’ (0)
e, , are positive

and bounded away from 0 when a On the other hand, (0) 0 because wel,a
can take (7, a) (0, Z) in (5.11) with, 0 and k 0. Then there exist constants
50 > 0 and a, > 0 such that

eo( faJ(,) llL(a)+lll(a)) for (,)e H()xHl()with Zdx- O,

for a > a,. anslating this inequality into the one in terms of (, ) (see (5.3)), we
obtain

c0(, ) > 50 ( (a)+
for (,) e H() x Hl()with ](v-u)dx=O

for a > a,. This completes the proof of Theorem 7.

6. Stability of (a, A) in Theorem 6. In this section, we prove the stability
of (, A), which we constructed in 4.

(6.1) A(z)=Y(r,z)(-sin0r r
’cs 0),

( (, )0.
As is the case in 5, we express in terms of real-valued functions, i.e., we put

(z) W (r, z) cos m0, v(z) W(r, z) sin m0. We estimate the second variation

C(, , B) on N(, A) N(, v, A) from below. We change the variables and
into and by
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Using formula (2.3), we can express 12(us, vs, As, , , B) in terms of , 9, and B for
the solution ((I)s, As) (us, vs, As). If div B 0 and (B. } 0 on 0f (this is valid
for (, ,B) E N(us, vs,As)), the second variation is written concretely as follows"

(us, vs, As, , , B) I (, D) --/2() -- I3(, ), B),

where

h(B)- lrtBldx+ WB

OW OW
+ s + s ]

x,

where $1, $2, and Sa are defined from B through

B=(_SlsinO cos0 )+S2cos0, Sl+S2sin0, S3
r

To investigate the coerciveness of I1, we consider the eigenvalue problem

0(6.2) +c(1--W) ()- 2aW (0
o =0 on 0f.0u- 0u

As in the proof of Theorem 7, we express () in the Fourier expansion as follows:

(6.3) (r, 0, z) 0(r, z) + E (k(r, z) cos kO + k(r, z)sin kO),

where the real vector functions

(6.4) (r, z) ,2(r, z) (k,2(r, z)

The eigenvalue problem (6.2) is decomposed into the following:

(6.5)

(k _> 1).
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and

nl -k,2 -75 -k,2 + a(1-W)- --k,2

(6.6)
2

(ya )F ( k,1 2- ) -w (; 0) inN,

-&, 0
on 0,

respectively, where F- (0. 0)" It is easy to see that (6.5) and (6.6) are equivalent to
each other as eigenvalue problems. Both of them are rewritten as follows:

+ (-w:)-

a 0
on 0.

Let

{#) (a)}=l and e, L2 L2

()(,z) c (r) (r)
g,o /=1

be the eigenvalues arranged in increasing order (with counting multiplicity) and a
complete system of the corresponding orthonormal eigenfunctions of (6.7). We can
apply an argument completely similar to that in Lemma 14 and obtain the following
asymptotic behaviors of the eigenvalues and eigenfunctions.

LEMMA 15. For each nonnegative integer k,

(6.8) lim #k)(c)- #) (k > 0, g >_ 1),

(6.) ( 7<)11 + cllr() ) 0 (k > 0 e > 1)

where {#k)}cg= is the set of the eigenvalues arranged in increasing order (with count-
ing multiplicity) of the following eigenvalue problem:

(6.10)
La +#or 0

r2
cr

n 0 on OE.

in E,

LEMMA 16. The family of functions

(6.11)
1 (r()(r,z))e,()(,z) r()(r,z)coskO)-- cr() (r, z) sin kO

(k) (r, z) sin kO )1- _a(k) (r, z) cos kO

(k > 1, g > 1) form a complete orthonormal basis in

Now we can expand any () e L2(f) x Lg(f) in terms of the above basis"

(6.12) t.,a cos kO
ck,e

cr()sin/cO +d,e _o.()e,a e,a cos kO
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+ g gi, ok,i, dk,i E ].

Here gz, ck,, and dk, are determined from and by

(6.13)

1( )
ck,e (" (k)e, cos O)c(n) + (" e,(k) sin O)g(n)

=1 k=l =1

We prepare an auxiliary result concerning a complete orthonormal basis of a product
of Hilbert spaces, which we use in the proof of Lemma 19 below.

LEMMA 17. Let H1 and H2 be two real Hilbert spaces with inner products (., ")H1
and (., ")H2, respectively, and let H be the product Hilbert space H1 x H2 with the
following inner product:

(0, +

If there exists an orthonormal basis {( CnCn)}n=l C H, then

(6.14)
E(, n)H (, ?/)n)H. 0 for any H,
n--1

n:l n=l

Proof. Take any () H and expand with respect to the given orthonormal
basis. Then

(6.15) Z((, Cn)gl + (, Cn)g2) Cn
n--1

n----1

Taking 0 HI or %b 0 H2, we get the second and third equalities in (6.14).
The first equality in (6.14) follows immediately from (6.16). El

The following lemma directly follows from the above lemmas.
LEMMA 18. For any (, ) L2() L2(t), the following equalities hold:
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1 (e_22 (" ’e,"())g2() + 2 E ( a(k)e, sin kO)L.() + 2 E (" a(k)e,a cos kO)L.()
e,k>_l

Proof. Set H1 H2 Lg(a), (’,’)H1 (’,’)H (’,’)L(a), and (. )L.(a)
fa (r, 0, z)(r, 0, z)rdrdzdO for , E L(ft). Combining Lemmas 16 and 17 con-

cludes the proof.
I1 (b, @) is expressed in terms of the Fourier coefficients of q5 and :

(6.17)
g:l k=l :1

We remark that _(o) (r, z) 0 ..(o)(r, z) eW(r, z) #o) (a) #o) O, #o) > O,
a O, is a certain real number which satisfies lima ca

We have the following coercive inequality.
LEMMA 19. For any c > 0 and > O, there ezist constants > 0 and d > 0

such that

for any , Hi(a) and
Pro@ In view of the eigenvalues of (6.10) and Lemma 15, for a given c-> 0, we

can take a natural number N so that #k) (a) >_ c + 1 for k + g > N, k _> 0, _> 1, and
for any large a > 0. Thus we have,

N

11 (’ /) -- E t0) (O/)g nt- E k)(O)(C, -- d,)=1

E
Substituting (6.13), we have

N

271"I1 > E 0)(OZ)(T(0) 2

,? ()+2 E #)(a)((7(k),e,a cos kO)2L(n) + (eTe,a sink0)(n))
k+gN

+(c+ 1){ (7() ((k) (7(k) sin k0) )}e,)(a) + (re, cos k0)
>N

N

+ 7i, coskO)L=(a) , (a)
kTN
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kWg>N

4 Z #k)(a)’’7(k) kO)L. ;a(k)
[(p-, sin () e, cos (a)

k-Fe<_N

;z.(o) (o)+2(c+ 1) , e,a)L()( )L
*>N

(7i, cos () [Fa, sin (a)

,? (k) [G(k) k0)L[-e, sin kO)L(a) , cos (n)

N
(0)

g=l

+ 2 .k)(a) ’ e,a sink0)
2
L(a) + e, cos L(a)

k+gN

+
>N

om Lemma 18,

/e,o (a) (a)

N

(6.19) -/1( )> c +1, 1

g:l

,- ()1 {’(7() kO)2L.(n) ()+ (.k)(a)- c-- 1) k e,a cos + Le,a sink0)
k+gN

N
1

e, (a)

1
+ 4(pk)(a) c-- 1)() kO)L: GG() sinkO)L:w , cos () e, (8)

k+gSN

1 (k) sinkO)L (Gak) kO)L+ (--4)(.)(a) c 1)( e, (a) , cos (a)
k+gN

+ min(,)() ,)())(11[ =1’ (o)

We used o)() 0 r() 0, (o)
1, 1, eW. rom Lemma 15, equation (6.9), to the

right-hand side of (6.19) the terms that include e, can be absorbed in those that

include I111( nd 11( for rg > 0, W hv

Zl(, G) >_ cllll()+ (min(,) (a) .(1)())1 ) I1112c(a)
for large > 0. We obtain (6.18).

LEMMA 20. For B Loc(3;3) such that VB L2(3;33),

( + rot Bc(;.(a;aa) div B

Pro@ This equality is proved by the ourier transform.
Now we estimate (,, B) from below.
Pro4 4 Theorem 6. Assume that (4, , B) N(, v, A).
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2(6.24) (u2 + v)(x)dx 0, A 0 in t2,

From these equations, we see that

(6.25) rotB- rot in ]3,

(B. v) on 0t.
Or,

GINZBURG--LANDAU EQUATIONS

We prove that 113(, , B)I is dominated by I1 and

<
r2

( fa 1 fa ) fa(2 S+S)< e+ $e +sp

+ dx + sup IVW dx.
ro a 2

From B S/r + S + S and Proposition 9, tke e > 0 so that eh]m]/ro
1/2. Next, take c in Lemma 19 such that c ]m]/(4er0)+ 1. om Lemma 19
and Proposition 9, we cn tke a large so that the following inequMity is true for

()- min(p)/2, /2, 1) > 0:

(.0 (,, )> (llt )
L(3) IIot ttL() or

_ .
inequality on N(u, v, A). First, we recM1 the following inequality:

1 4 IV()ll (v 3,v 1(3)) (cf, [16]).

Since c a is a bounded domain, by fixing outside of , we see that there exists
a constant R > 0 such that

(6.21) J2 iv12 (v 1(3)),

From Proposition 9, equation (4.4), there exist constants R > 0 and > 0 such
that for any a >

It is also true that there exists a Ra > 0 such that

(6,23) 2s 3 (111 * Iv12) (v 1()).

which is, equivalently, - + , g + , B V + B, and
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(6.26) 2 + 2 (-v + )2 + (u + )2 _< 2(2 + 2) + 22

By (6.22) and (6.24), we obtain

On the other hand, (6.24) yields

and, subsequently,

(6.28)

in ft.

IV12dx (B. u}dS <
e 2dS + -e IB dS

+ IVSl )dx + (IBI + IVBI )dx.

Combining (6.27) and (6.28) and taking e R2/R3(R2 + 1), we have

iVidx< R](1 +I/R)fa dx( BI +IVBI

Using (6.26)-(6.29}, we conclude that there exists a constant c > 0, (which is inde-
pendent of (, ,B) e N(u, v,d)) such that

fa(+)dx+fa IBldx+ IrotB’dx c(+)dx+/a ]’dx+a [rotldx

On the other hand, from div B 0 in Ra and Lemma 20, we see that

and (,, B) (,, B) (cf. Proposition 3). Hence we obtain the desired inequality
(3.4) from (6.20), which completes the proof of Theorem 6.
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REGULARITY OF THE GAIN TERM AND STRONG L1

CONVERGENCE TO EQUILIBRIUM FOR THE RELATIVISTIC
BOLTZMANN EQUATION*

H/KAN ANDRtASSONt

Abstract. The main purpose of the paper is to show that the gain term of the relativistic
collision operator is regularizing. This is a generalization of P. L. Lions’ analogou.s result in the
nonrelativistic situation. The regularizing theorem has many applications in kinetic theory, and a
few are discussed in this paper. In particular, the asymptotic behaviour of periodic solutions to the
relativistic Boltzmann equation is studied. We show that such solutions converge strongly in L to
a global Jiittner equilibrium solution (sometimes called a relativistic Maxwellian) provided that the
initial data satisfy the physically natural bounds of finite energy and entropy.

Key words, relativistic Boltzmann equation, regularity, Fourier integral operators, stationary
phase, strong L convergence, Jiittner solution

AMS subject classifications. 76P05, 83A05, 35S30

1. Introduction. The relativistic Boltzmann equation models the space-time
behaviour of the one-particle distribution function, corresponding to a many-particle
system obeying the laws of relativistic mechanics. We refer to [ACB] for applications
to different fields such as plasma and nuclear physics, and we mention the books of
Synge [Sy], deGroot et al. [GLW], and Stewart [St] for background on the relativistic
equation.

In 1, the relativistic Boltzmann equation is defined and the assumptions used
throughout the paper are specified. Also, some general facts about theequation are
presented. Section 2 is the main part of the paper. Here we show that the gain term
of the relativistic collision operator is regularizing. In the classical setting, this result
was first obtained by P. L. Lions ILl. Recently, a simpler proof has been given by
Wennberg [W] by rewriting the gain term via Carleman’s representation and using
the fact that it then takes the form of a generalized Radon transform. Lions’ approach
ILl relies on the method of stationary phase and some facts from the theory of Fourier
integral operators, and we will also follow this approach in the relativistic situation.
The regularizing property of the gain term is a consequence of the specific nature of
the collision geometry. For relativistic interactions, the collision geometry is different
from the classical one due to the fact that the collison invariants have a different form.
It is well known that the collision geometry for classical interactions is spherical and
invariant under translations, i.e., the collision sphere is unchanged as long as the
relative velocity remains the same. This is not the case in the relativistic situation,
where we get ellipsoids instead of spheres and where the eccentricity of an ellipsoid
changes with the energies of the particles which take part in the collision process.
Therefore, the translation invariance from the classical situation is not carried over
to the relativistic case. The translation invariance is used by Lions to simplify the
operator to be studied. A simplification in the relativistic case is even more important
since the explicit calculations needed in the proof will become quite involved otherwise.
We use the Lorentz invariance of the relativistic particle mechanics to perform this
simplification.

In 3, we present two applications of the regularizing theorem. First, we discuss

Received by the editors September 12, 1994; accepted for publication February 27, 1995.
Department of Mathematics, Chalmers University of Technology, S-412 96 Gbteborg, Sweden.
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the problem of the asymptotic behaviour of solutions to the relativistic Boltzmann
equation. This problem has recently been studied by Glassey and Strauss in [G1S2]
and [G1S3]. We extend one of their results by proving strong L convergence to
a global Jiittner equilibrium solution when the initial data, periodic in the space
variables, satisfy the natural bounds of finite energy and entropy. The analogous
problem in the nonrelativistic situation was first solved by Arkeryd [Ar5] using a
nonstandard method. A standard proof was then obtained by Lions ILl by applying
the regularizing theorem. Both the nonstandard approach and the standard approach
will be discussed.

Next, we apply the regularizing theorem to a functional equation important in
relativistic kinetic theory. The result obtained, interesting in its own right, is then
used in the appendix to discuss a point of connection between Arkeryd’s and Lions’
approaches to the asymptotic problem discussed above.

We end this introduction with a presentation of the specific assumptions used in
this paper for the relativistic Boltzmann equation. Let the speed of light be normalized
to c 1 and the particle rest mass to m 1, and let (+ be the signature. The
relativistic Boltzmann equation models the space-time behaviour of the one-particle
distribution function, f f(x, p, t). The equation has the form

(1.1) (Or+ Po Vx) f Q(f f),

where the collision operator is defined by

1 f Ji (f(P’)g(q’) f(p)g(q))B(g, O)dftdq(1.2) Q(I, g)(p) p-- q--.
Here df is the element of surface area on S2, pU (Po,P) is the four-momentum
(p0 E R, p E 3, # 0, 1, 2, 3), and p0 V/1 + p2 is the particle energy. The total
energy and relative momentum in the center-of-mass system are s1/2 Iq + PI
and 2g Iq’ -PUl, respectively. Primed momenta denote the associated momenta
in the scattering process; hence pU + qU pU’ + q’. The scattering angle 0 in the
center-of-mass system satisfies

(1.3) cos0 1 2
(pt qt)(p q.)

The kernel B(g, O) and the scattering cross-section a(g, O) are related by

g81/2
(1.4) B(g, 0) ---r(g, 0).

Remark. Introducing the Moller velocity

(1.5) VM
g81/2 2gv/1 +
Poqo Poqo

with the identity @2 s- 4, we see that the equation is quite similar to the classical
Boltzmann equation. In particular, if we consider the classical limit where IPl+lql << 1,
we get 2g IP- ql. Thus the MOller velocity tends to the relative velocity, VM ’
2g IP- ql, and we have recovered the classical equation.
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In order to discuss the trend to equilibrium in 3, we adopt the assumptions
on the scattering cross-section used by Dudyfiski and Ekiel-Jeewska [DEJ], thereby
proving the global existence of equation (I.I), i.e.,

(1.6) B > 0 a.e., B

(1.7) __1 j/("Po Iql
O)dFt 0 Ipl- v/ <

do
as

_<R} qo

These assumptions are of the same type as those used by DiPerna and Lions [DPLI]
in the nonrelativistic situation but modified in a natural way to the relativistic case.

The collision operator (1.2) is defined in the center of mass system. We could
equivalently use a different representation (see Appendix II in [GIS2] for a derivation):

where

x[f(p + a(p, q, w)w)g(q a(p, q, )w) f(p)g(q)]dpdw,

(1.9) k(p, q,w)= 4scr(po + qo) 2 I. (c) -/3)[
( (. (; + q))).’

2epoqo(w (0 ))(1.10) a(p,q,w)-- -:-(z: i/ + q))2"

Here e := P0 + q0 is the total energy and x/xo, so is the relative velocity.
The function a is the distance from p to p (and from q to q). The quantities s and
a(g, 0) are defined above. The explicit form of the kernel k is not essential for our
purpose, but we want to give a proper definition of the gain term from a kinetic point
of view. rthermore, the transformation property of k under a change of coordinates
(p, q) (p’, q’) is important in the study of the relativistic Boltzmann equation, so
a short presentation on this topic will be given. For classical interactions, it is well
known that the Jacobian of the corresponding transformation is unity and that the
cross-section (kernel) is invariant. The behaviour is slightly different in the relativistic
situation, but, as is physically necessary, the relation

(1.11) k(p, q,w)dpdq k(p’, q’,w)dp’dq’

holds, meaning that there is local reversibility. In fact, the Jacobian is given by

(1.1) 0(’, ’)
O(p, q) poqo

(see [G1S1]), and this in turn implies

0(’,’)(.3) (, q, ) (’, 4, ) :q)

(see [G1S2]). Finally, the collision operator can be written in an obvious way as

O(f, .q) + (f, ) -(f, ),

where Q+ and Q- are referred to as the gain and loss terms, respectively.
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2. A regularity theorem for the gain term. This section generalizes P. L.
Lions’ result ILl concerning Sobolev estimates of the gain term to the relativistic
setting. Some familiarity with ILl will simplify the reading. The estimates obtained
in ILl rely on the specific nature of the collision geometry. For relativistic interactions,
the collision geometry changes according to the relativistic conservation laws

(2.1) Po + qo P + q{,
(2.2) p + q p’ + q’.

For fixed p and q, the possible values of pl and ql will all belong to an ellipsoid instead
of a sphere, as is the case for classical interactions. Thus the integration in the gain
term is performed over ellipsoids instead of spheres. However, the eccentricity of an
ellipsoid depends on the energies of the ingoing particles, whereas the eccentricity is
constant (= 0) in the classical situation, or, in other words, the translation-invariance
is not carried over to the relativistic case. Lions ILl uses this translation invariant
property to simplify the operator to be studied. A simplification of the operator is
even more important in the relativistic situation since the explicit computations in
the proof become quite involved without any reductions. Below we will reduce the
complexity of the operator by making use of the Lorentz invariance.

Let us take the dimension arbitrary (N _> 2). The gain term then takes the form

(2.3) Q+(f,g) fN ]i-1 b(p,q,)f(p+ a(p,q, co))g(q- a(p,q,))dpdw.

Here the notation of the kernel is changed to b instead of k. The kernel b is equipped
with specific regularity properties, as will be clear from the formulation of the following
main theorem.

THEOREM 1. Let b
Loc(Ii(N). Assume that b vanishes if IPl is large, if ql is large, or if Iq- Pl is small.
Also assume that b vanishes if
uniformly in . Then

(2.4) IIQ/(f,g)llH_N_() <- CIIflIL=(K)IIglIL(K)

for some C > 0 depending only on b. Here Kq and Kp are compact sets in IN such
that supp b

Remark. The hypotheses in Theorem 1 differ slightly from what one could argue
should be the natural extension of [L] to the relativistic case. In ILl, b vanishes if the
relative velocity is small and large, respectively. It seems natural that a translation
of this condition to the relativistic case, i.e., a vanishing of b for small and large
relative momentum, should be sufficient. However, uniform control of the eccentricity
of the ellipsoids is necessary for carrying out the proof, and that control is not quite
achieved with only this hypo.thesis on b. Indeed, an ellipsoid has its principal axis
directed along p + q, so the remaining N 1 axes have equal lengths. If we denot.e
by a the length of the principal axis and by/3 the length of one of the other axes, we
have

/: : (p + q):
(2.5) -- e
Hence the numerator could be fixed as the denominator approaches infinity, so control
of the relative momentum does not imply control of the eccentricity.
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Let us now consider g as fixed in L1, and let the linear operator Qg be given by

(2.6) Qg(f) Q+ (f, g).

We wish to compute the transpose of Qg in the L2 L2 duality (of real functions).
Therefore, for all e C(N), consider ftN Qg(f)dp or, explicitly,

(2.7) JJ//.N dpdq J/N- db(p, q, )f(q + a(p, q, )z)g(p a(p, q, ))(p).

Let us change variables (p, q) (p, q’) in (2.7), where this map and its inverse (see
[G1S2]) are given by

p’= p- a(p, q, ),
(2.8) p- p’ + a(p’, q’, ),

q’ q + a(p, q, w)w,
q q a(p, q, w)w.

We wish to show that the essential properties of the kernel are preserved under this
transformation, i.e., b(p, q,z) (p’, q’,) such that also satisfies the conditions
of Theorem 1. We saw above (1.12) that the Jacobian of the map (p, q) -- (p’, q’)
is harmless. Next, we observe from equation (2.8) that a large value of IP’I (or Iq’l)
requires that IPl or Iql is large, i.e., b vanishes, so this property is preserved. And if
Iq’-P’I is small, then necessarily Iq- Pl is small and b vanishes, so this property is
also preserved. Finally, since we are working in a compact domain, there is uniform
control of the eccentricity. This implies that if I((’- ’)" 1 is sufficiently small, then
I( i5)" [ is also small, and if [(q’ p’). [ is close to [q’ P’I, then ](q p). ] is
close to Iq- Pl. Thus all the properties of b are preserved. Since b and b have the
same behaviour, we shall use the same notation for the kernel and write b for below.

Formally, then,

(2.9) fN Q(f)dp f. dq’f(q’)

{ jfN dp’g(P’) N_ dwb(p’, q’ w)(p’ + a(p’, q’, )) }.
Due to the compact support of the kernel b in the momentum variables, formula (2.9)
is trivially justified.

We wish to rewrite the term in brackets in (2.9), considered as an operator in p. In
order to do so, we introduce the Lorentz transformation A(p) which carries a particle
with momentum p to rest. The transformation A(p), of course, acts on four-vectors
(if N 3...), and by the notation A(p)x, where x is a three-vector (if N 3...),
i.e., x E RN and X (xo,x) RN+I, we will intend the projection of A(p)X onto
the N-dimensional momentum space. The notation Xp := A(p)x will also appear
below. Further, if is a function with a momentum variable as an argument, then
(A(p)) (x) := (A(p)x). The distinction between primed and unprimed variables
has no relevance in what follows, so we will drop the primes from here on. The term
in brackets in (2.9) can now be reformulated as follows:

+
N N--1

N g(p) ([A(p) o Tp o A(-p)] ) (q)dp,



REGULARITY OF THE GAIN TERM 1391

where

b(p, q_p, F o A(p, q_p, &))J(p, q_p, &)(ao(q,

Before discussing the validity and purpose of this formulation, we define the quantities
in (2.11). First, for fixed p and q (p : q), the map F o A gN-1

_
sN-1 is defined by

A(p, q, &) A(-p)(ao(qp, &)&) p if q. & > 0.

If q. & < 0, then define A(p, q,&):= -A(p, q,&), where ao(q,):= a(0, q,). Also,
F :g

__
N-1 is the projection

X
r(x) x 0.

F o A is then continuously extended to all of N-I. Finally, J is the Jacobian of
the map (C) - FoA(p,q,(C)) w for fixed p and q. The map FoA takes care of
the aberration occurring under a change of coordinate frames; (C) is the angle of a
collision observed from the rest frame of p if the corresponding angle is given by w
in the laboratory frame. Formula (2.11) is now readily verified if one observes that
p + a(p, q, )z A(-p)(ao(qp, &)&) with & F o A(p) (p + a(p, q, z)).

Tp is the operator used by an observer in the rest frame of a particle with momen-
tum p. The reason for extracting this operator is that the collision geometry becomes
less complicated when one of the particles is at rest. The geometry of the interaction
process is crucial for the main part of the proof, which relies on the theory of Fourier
integral operators and the method of stationary phase. With no reductions bf the
geometry, the explicit computations for justifying the hypotheses needed in order to
realize the proof become quite involved. However, the explicit form of the kernel has
become more complicated due to the change of frames. But the vital features of the
kernel are maintained, so this will not affect the proof. The mapping -- & is, of
course, a diffeomorphism since it is just a result of deforming one ellipsoid into an-
other. The Jacobian J of this map only expresses the change of the eccentricity of the
collision ellipsoids under changes of coordinate frames. Again, since b has compact
support in p and q, there is uniform control of the eccentricity. Thus the Jacobian is
bounded in the support of b, and we may still just denote the kernel bJ by b. Hence
the operator Tp takes the form (recall that

b(p, q_p, w)gz(ao(q, (C))(C))d&,

where b satisfies the conditions of Theorem 1.
If we can show that Tp is bounded from H-(N-)/(]N) into L2(IN) (the bound

can certainly be taken independently of p since we are working in a compact domain),
then we may conclude the proof of Theorem 1. To see this, first apply Hhlder’s in-
equality to equation (2.9) and then Jensen’s inequality (recall that g _> 0) to equation
(2.10). From here, Theorem 1 follows if we observe that the Jacobian of the mapping
q - A(p)q is harmless because b vanishes for p or q large. Hence we only have to
prove the following.

THEOREM 2. The operator Tp is bounded from H-(N-1)/2(IN) into L2(]N) and,
more generally, from HS(IN) into Hs+(N-)/2(IN), S E I.
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We fix p in the support of b. An inverse Fourier transform yields, for all E
s(),

(2.15) Tpg)(q) jfN fN- (27r)-Nb(p’q-p’)ei‘(q’’)(’’)()d&d"

Let

S(F, q, ) JN--1 b(p, q--p, O2)ci[ao(q’o)(’&)--(q’)]d.

Clearly, s(p,., .) C(N2N), and

(2.17) T(q) j, (e)-()(p, q, )()d.

We claim that s satisfies, for some 0 < < 1/4 depending on p,

(2.18) s(p,q,)--O iflql < 5riflq-pl >

(2.19) s(p,q,) c(p,q,) if Iq" 1-> (1- 25)1q11 and I1 > 1/2,

and

(2.20)
s(p, q, ) ei[+(P’q’)-(q)]a+(p, q, ) + ei[-(P’q’)-(q’)]a_(p, q, )

if [q. [ _< (1- 5)lq[[ and I[ > 1/2,

where

(2.21)
(q. ) [qlv/2(d q2) + (q. 5)2

6- +
2 e2 q2

Here and below, e 1 + q0 and

c(p, ",’) S-cx (]2N),
a+(p,’,’),a_(p,’,’) S ({Iq[ > 5} {ll > 1/2}),

where S- ,aSn and S" is the usual class of symbols; see, for instance, [H3].
These claims will follow from the stationary-phase method, as will be clear below.
First, we show that they are enough to prove Theorem 2. Therefore, assume that
(2.18)-(2.20) are valid. Then we can write

(2.24)

where C(IRN) with 0 if Iql 5/2, 0 if [q_p[ >_ (/2) -1, 1 if Iql 5,
and 1 if Iq-l <_ ()-. We hve so taken 0 C(R) with O(t) 0 if Itl > - 5,
O(t) 1 if Itl < 1-2, and E C(IRN) with () 0 if I1 <- 1/2, () 1 if I1 -> 1.
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The first term obviously belongs to S-, and this is also true for the second term
because of (2.19) and (2.22). Thus, in view of (2.17), these two terms define bounded
operators from HS(IRN) into Hs+n(]RN) for all. rn E IR (see, for instance, S. Alinhac
and P. Grard [AG]). For the last term, we note that O4a+ s-(N-1)/2(I2N) due
to (2.23) and that the phase functions + are positively homogeneous of degree one
in . If + satisfy the crucial nondegeneracy condition on the support of 094, i.e.,

0+/- )(2.25) det
OqjO

then we could apply the theory of Fourier integral operators (see, e.g., L. HSrmander
[HI], [H4] or A. Cordoba and C. Fefferman [CF]) to conclude that the symbols
O@i[-(q-)]a+ define bounded operators from H into Hs+(N-1)/2. Obviously,
the claims in (2.18)-(2.20) and Lemma 1 below are enough to ascertain Theorem 2.
Let us finish this argument by proving the following.

LEMMA 1. + are nondegenerate on the support of 0.
Proof. The proof for + and

_
are analogous, so we present it only for +. We

want to prove that (2.25} holds on the support of 0b. The calculations become less
tedious with a change of coordinates. Introduce the map q --+ t,

(2.26) t-
q

q IN,
V/e2 q2

which is invertible"

(2.27)

For +, we then obtain

q 2tv/1 + t2 2tto.

(9..es) + (t. )t0 + Itlv/ + (t. ).
The Jacobian of the map q --, t is certainly nonzero, so condition (2.25) is equivalent
to

(2.29) det
OtjOk

An explicit calculation yields (recall Itl, I[ > 0 on the support of

( (t. ))otjo
1 ( (t;) ) (t.)E’(2.30) +t+t tl

where E + (t. ). With no loss of generality (the determinant is invariant
under a change of basis), we may assume that t 0 for j > 2. We find

0+ (t) -
where

(2.32)

toY-t+ (3tolt] + [)(t.)
+ (2tg + t) (t)2 + to E3



1394 HKAN ANDRIASSON

The first factor in (2.31) is obviously strictly positive, so it is enough to prove that Y
is nonzero on the support of 0(. To see this, we observe that Y factorizes

A simple calculation now shows that ((t. )/E + Itl/to) 0 if and only if (t. )
-[tl][, which means that (q. ) -/q[[[. Accordingly, ((t. )/E + [tl/to is strictly
positive on the support of 0(. This holds trivially for the last factor in (2.33), and
we are done. [3

Remark. If we had extracted the appropriate operator in the center-of-mass sys-
tem, where the collision geometry is spherical,, then the associated phase function
would be degenerate. It is obvious that the operator in the center-of-mass system
cannot be regularizing due to the fact that the hypersurfaces we integrate over do not
move with q. In Lions ILl, there is a discussion of the geometrical condition of the
hypersurfaces for obtaining regularizing operators.

Let us now complete the proof of Theorem 2 by proving assertions (2.18)-(2.20).
Statement (2.18) follows immediately from the nature of the kernel b. The two others
will follow from the stationary-phase method. In order to apply this method, we keep
the direction /1[ fixed and let the modulus I1 go to infinity. We want to find the
critical points over sN-1 of the C function

(2.34)

Recall that we only have to consider (q, ) E I2N such that Iql >- 5, [q_p] <_ 5-1, and
I] > 1/2. If &c (here and below, &c denotes an arbitrary critical point) is a critical
point of over y-1, then the gradient of at & will point in the direction of &c.
Hence the critical points are solutions of

(2.35) 0 (0)o gg
or, explicitly,

(2.36) (. )(d + (q. ))q + (q. )(: (q. ):) 2(q. )(. ).

Next, observe that if (q. &)/Iql is sufficiently small (depending on p), then ((_p-
i5). w)/l-p- i51 is also small (a collision sufficiently grazing in the rest frame of p
is also grazing in the laboratory frame), so b(p, q_p,w) vanishes. Therefore, we only
have to look for critical points such that (q. &) : 0. Assume first that q and are
not collinear. Then the ansatz

Aq + B(2.37) & IAq + B[

gives exactly four critical points -+-&+ and +&_. Here

/

and F is the same as above. As the directions of q and become increasingly coincident
(we have the parallel case in mind, the antiparallel case being similar), then &+
approaches q/]ql, whereas &_ approaches &+/-, which is a unit vector in the plane
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generated by q and orthogonal to q. Therefore, as Iq" l/Iqlll gets close to 1, then
Iq.&+]/Iql and Iq.&_l/Iq approach 1 and 0, respectively. As we saw above, b vanishes
if Iq" &l/Iql is sufficiently small. In fact, this also happens if Iq" &l is sufficiently close
to 1 since then I(q-p -P)" wl/Iq-p -Pl is close to 1 and b vanishes according to the
hypotheses made on b. Thus, if Iq’l/Iqlll is close to 1 no critical points are contained
in the support of b, and an application of the stationary-phase lemma without critical
points (see, for instance, [H2] and [GuS]) yields (2.19). Finally, we prove that our last
claim (2.20) holds. Certainly, we only have to work in the domain

(2.39) D {(q,)" Iql >- 5, Iq-pl-< 6-, I(I > 1/2, Iq" l < (1- 6)lqllSI}.

We will consider only the two critical points &+ and &_ since the contributions from
-&+ are similar. (If we also assume that b is even in w which is physically natural,
then, since is also even in w, the contributions are, in fact, identical.) We begin by
computing the functions +/- (q, ) defined by

(2.40) +/- (q, )= (q, , &+/-).

For this, we make use of equation (2.36). With &c (Aq + B)/IAq + BI where A
and B are defined in (2.38), we obtain (recall that q and are not collinear in D)

(2.41) (q, , &) 2e(q. &)(( ) q (Aq + B)
e2 (q. (C)c) 2 eB

Inserting the expressions for A and B, we obtain

+/-(q,
+ Iqlx/  (d q:) + (q.

e2 q2

and (2.21) follows if we observe that e2- q2 2(1 + q0) 2e. Now, in order to
apply the stationary-phase method (the case admitting critical points; see, e.g., [H2]
or [GuS]), we have to compute the Hessian of over SN-1 at the critical points.
We remark that, in general, the Hessian of a function f at a point p is well defined
(independent of the particular local coordinate system chosen) if p is a critical point.
Now let q and be fixed. We introduce the functions +/- :Me ]R defined by

e2
(2.43) +/-(w) (q,,w)

e2 (q &+/- )2 +/- (q, ) lwl 2, w e Me,

where Me {w E ]tN Il < 1 + e} and e is taken so small that is Cc on Me. (Of
course, an e that works for all q is possible to choose since q E D.) The Hessians of
+/- and over SN-1 coincide, of course, since is constant on SN-. Moreover, the
factor in front of ]al 2 is taken in such a way that the gradient of +/- with respect to RN

at the points &+/- vanishes. Thus, in view of the remark made above, we can compute
the Hessian of +/- over gN-1 at the critical points by restricting the Hessian of +/-
over RN to the tangent plane at the critical points. To do this, choose coordinates
(x, x’), where x is a coordinate in the direction of c)+ (respectively, c_) and x’ are
coordinates in the tangent plane at c)+ (respectively, &_). The derivatives are then
taken with respect to x’. To simplify the computations, set

(2.44)
v/e2 (q" ),
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with inverse

(2.45) w e

Expressed in these coordinates, + take the form

(2.46) +(r/) (q. U)(. r/) H+
2e + (q. r/) 2’ U e Im(Mc),

where

(2.47) +/-
V/e2 (q. &+/-)2

and

(2.48) H+/-
l+l+(q,) l+/-l(q .+)(.,+)

2 2

As usual, to facilitate the reading, we present only the computations for the "+"
case since the "-" case is analogous. Let us write r/ /+ + Ai + u+/-, where /
is orthogonal to + in the plane generated by q and . with IU[ [U+I and wL

is orthogonal to the plane generated by q and . Also, we introduce the notations
a (q. 7+), (. /+), b (q. U), and (. r/). We then obtain

(2.49) + ag + A(ag+zb) + Abg H+ ( 1+12(1 + A2) + 1+/-]2)2e + (a + ;b)

Accordingly, we wish to compute

02+(2.50) OxOxj](o o) with x (A, ,..., -v-2).

We readily obtain

02+ I<o,. o> 0 if j.(2.51)
OxOxj

Carrying out the calculations, we obtain

02/J+ [(o,...,o) 2b_ 2H+]rl+12 [ b2 4a2b2 ](2.52) x:= 0A2 2e+a2
1-

2e+a2 + (2e+a2) 2

(2.53) 0+ -2H+
Ou_---- I(o o) 2e + a2"

In order to apply the stationary-phase method, we have to compute the determinant
of the Hessian. Certainly, the determinant depends on the local coordinate system
chosen. However, we are only interested in the analytical behaviour of the determi-
nant, so we will not be concerned about the square of the Jacobian which appears.
This is necessarily positive and uniformly bounded from below and above since q be-
longs to a compact set. However, it is null homogeneous in because &+ &+(q, )
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is null homogeneous in . Furthermore, observing that is positively homogeneous
of degree 1, we can write

(2.54) det ( 02+ ’(0 o))_hN .(q, ),, (+ (q, ))N-2
OXiOXj

Here we have inserted the expression for H+m(2.48)--and hN E C(Ng Y-1).
Next, we will show that hN and + are nonzero for all q E D. Recall that

(. ) + Ilv/( .) + (. )
(.5) +(q’ ) d q
Since q:(2(e q:) + (q. )) e(q )2 (e: q)(q22 (q. )2), we immediately
conclude that b+ > e for some e > 0 on the domain D. To see that hN is nonzero,
we now only have to show that is nonzero or, in fact, that < 0. A simple
observation gives a > 0, 5 > 0, and b _< 0 for all q and . Indeed, a (q. r+) _> 0 if
and only if (q. &+) > 0 if and only if

qe (Iql(q" ) / ev/(e2 q) / (q" )) / Iql(e q)(q" ) >- O.(.ss)

But the second term is greater than the sum of the other two terms since

e2q4(2(e2 q2) + (q. )2) q:e4(q. )2
(2.57) eq(e2 q)(q22 (q. )2).

Similarly, (. r/+) _> 0 if and only if

e.// / _> 0.(.s)

However,

(Iql(.(: q) + (q. ).)) :(q. ): (:( q:) + (q. ):)
(2.59) (e q:) ((e qe) + (q. )) (qe (q. )),
so a and 5 are both positive and uniformly bounded a way from zero on D. Next,
since + Aq +B with A and B both positive, the fact that b < 0 on D is a purely
geometrical consequence of the positivity of a and 5. In view of (2.48), (2.52), and
the discussion above, it is enough to show that

1 a2)2 b2 a2 b2(2.60) (2e+a2):[(2e+ (2e+ )+4a2 >0

in order to prove < 0. Evidently, the relation a: + b q2 holds. Using this
relation and the expression for + (2.47), we obtain for the numerator in (2.60)

(e.6)
4:

(: q::): ( :q: + ::q: + :(4q: 4q)),

where s- ((q/lq]). &+). Clearly, 0 s 1 so the positivity of (2.60) holds.
The analogous computations for the "-" case give

k /
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In view of equation (2.52) and (2.53), we easily conclude that the signature of the
Hessian is -(N- 1) for the "+" case, and we have, in addition (the "-" case),

(2.63) sign+ :F(N- 1).

We may now apply the stationary-phase lemma to conclude that.a+ E S-(N-1)/2.
We could immediately refer to ILl for this task but prefer to give the arguments
below. In order to see that a+ S-(N-1)/2, we introduce a partition of unity on
N-1; XI,...,X5 with X Ccx(N-1), 0 Xi 1, Ei5_l i-- 1 on SN-1. Here
Xi 1, -1,..., 4, in a neighbourhood of the four critical points &+,&_,-&+, and
-&_, respectively. Apparently, no critical points are contained in the support of
so we readily see that the symbol fN_ e[4-(’)]bx5d& S-. Hence we only
have to show that

(2.64)

N--1

(2)-Nei[-(q-)]bxld(C) ei[+-(q’)] al,

N--1

where al S---r-.

A consequence of the stationary-phase lemma (see HSrmander [H2, p. 222] or Guillemin
and Sternberg [GuS, p. 6]) is that there is an asymptotic expansion of Sl such that
(recall that Idetl+ IlN-11hN(q, /l)ll+(q, /11)1N-2)

(2.65)

[a0 (q, [-)-F ’c’ -lal (q, )+’"+’’-NaN (q )]
< C Non

(1 / I I)N/

Here

s- for all j >_ 0.(2.66) 0
I1{I

It is also clear from (2.64) that for each pair of multiindices c and/, the estimate

(2.67) 0q al(q, {)1 C(1 +
holds for some constant C depending on c and . The estimates (2.65) and (2.67) are,
in fact, enough (see HSrmander [H3, p. 67]) to conclude that a s-<N-I>/2({Iql >
5} x {1{I > 1/2}), and the proof is complete. El

3. Applications of the regularizing theorem. The trend to a global equilib-
rium solution for the relativistic Boltzmann equation was recently studied by Glassey
and Strauss in [G1S2] and [G1S3]. The second of their papers deals with the question of
convergence to equilibrium in full physical space for small perturbations of the Jiittner
equilibrium solution. We will not treat the full-space situation but concentrate on the
periodic case, which was studied in [G1S2]. There the authors prove convergence in
a variety of function spaces for initial data periodic in the space variables and near
equilibrium. Theorem 3 below extends this result by proving strong L convergence
to a global Jiittner equilibrium solution for arbitrary initial data, periodic in the space
variables, and satisfying the natural bounds of finite energy and entropy.
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For the classical Boltzmann equation, the analogous result was first shown by
Arkeryd [Ar5]. The essential technique in Arkeryd’s work is a nonstandard measure-
theoretical analysis of the entropy dissipation term. A standard proof of this result
was then obtained by Lions ILl using a method based on the regularizing theorem and
on approximations. In the relativistic situation, one may apply Arkeryd’s or Lions’
approach to obtain strong L convergence to a local Jiittner equilibrium solution.
Below we will see that the periodicity in the space variables implies that every local
Jiittner solution is, in fact, a global one. This will require some different arguments
in comparison to those given by Arkeryd [Ar4] in the nonrelativistic case.

We now specify the assumptions and the asymptotic result in detail. Consider
the relativistic Boltzmann equation in a periodic box A, which after rescaling can
be taken to be 3/3. The kernel satisfies the conditions given in I. Further, we
assume that the initial density distribution f0 f(0) has finite energy and entropy

(3.1) /A jf fo(po + log fo.)dpdx < oo.

Solutions to (1.1) will be in the sense of renormalized solutions or any equivalent form
(iterated-integral, exponential-multiplier, or mild-solution form). For a discussion of
these matters, see [DPL1], [Ar2], and [Ar5].

We assume that the solutions of the initial value problem (1.1) together with (3.1)
satisfy

(3.2) JAr Jf f(t)(po /l log f(t)l)clpdx <_ C, t >_ O,

and

(3.3) 0 < ds (f’ f’, ff,) loga# < C.
ff,

HereE=AI3 P3 $2 and

d#
dp dq

dxd,
Po qo

and we write f f(t,x,p), f’= f(t,x,p’), f, f(t,x, q), and f f(t,x, q’). The
solutions in [DEJ], adapted to the periodic case, satisfy (3.2). Condition (3.3) is a

conseqence of the relativistic form of the entropy inequality

/A
(a.4) + ds (f’f; ff,) logBd O, t O.

This inequality is easily derived by reworking the proof of the corresponding inequal-
ity in the nonrelativistic case [DPL2] using the results in [DEJ]. To see that (a.a) cn
be derived from (a.4), we only have to show that the first term in (a.4) is a bounded
function of t. In fact, since the integrand of the third term is positive, only bound
edness from below remains to be shown. or this, we note that for all nonnegative
functions 9 on A x Ra and all R <

; g,log g,dpdX /A g log gdpdx 2; g log gdpdx
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Applying the elementary inequality t log(l/t) _< Cx/ for 0 < t < 1 and some C _> 0
and letting R -- oe, we get

for some positive constant C independent of g. Our claim follows from this general
inequality and the fact that the energy and entropy of the solutions are bounded (see
(3.2)). The driving force to equilibrium is, of course, the entropy inequality (3.3).

Let us now state the theorem concerning the asymptotic behaviour of solutions
to the relativistic Boltzmann equation.

THEOREM 3. Given a sequence (tk)keN, tk /z oc, there is a subsequence (tk,)
and a global Jiittner equilibrium solution

J(p) exp(a -/3p),

such that fort > O, f(. + tk,) --* J strongly in LI(A N3 [0, T]), and fort >
0, f(.,t + tk,) J strongly in LI(A R3).

Remarks. (1) The condition fl0 > 1/31 (i.e.,/ timelike) is necessary and sufficient
for J LI(]R3). (2) As in the classical case, we can not exclude that there are different
limits J for different sequences (ta)keN. If the open question of energy conservation
would find an affirmative resolution, then the uniqueness would follow.

Sketch of proof. Lions’ method to prove the nonrelativistic version of Theorem
3 is based on the regularizing theorem and on approximations. The regularization,
which crucially depends on the collision geometry, is in our case taken care of by
Theorem 1. The approximations are easily adapted to the relativistic setting since
they do not explicitly depend on the collision geometry. We remark that the minor
difference in the hypothesis of the kernel b in the regularizing theorem, between the
classical ILl and relativistic settings (Theorem 1), is irrelevant for the reworking of
Lions’ proof. Indeed, Lions only has to consider functions with compact support, so
the fact that b has compact support according to the hypotheses of Theorem 1 does
not affect the proof.

The author has applied Arkeryd’s method to the relativistic case in [An]. In order
to realize that proof, some specific results concerning the relativistic Boltzmann equa-
tion are needed. References of these results and details of the nonstandard approach
are found in [An].

In conclusion, whether we rework Arkeryd’s nonstandard proof or Lions’ standard
proof, we will obtain convergence to a local Jiittner solution J in the two senses given
in Theorem 3. The local Jiittner solution, periodic in the space variables, satisfies the
equation

(3.6) (Or+ Pop--" V) J- 0

in the distribution sense and has the form

(3.7) J(x, t, p) exp(a(x, t) -/, (x, t)p").

Here cx and/3 are Lebesgue measurable functions with c(x, t), 3(x, t) e IR for a.e.

(x, t) A x R+, and/, is timelike. Next, we show that the periodicity in the space
variables implies that a and/3 are independent of x and t, i.e., J is a global Jtittner
solution.
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Now, not only J but also log J satisfies (3.6) in the distribution sense. This
follows from a simple generalization of the arguments given by L. Desvillettes-[De] in
the analogous nonrelativistic situation. Thus

+ tl-(.s) 0
\ p0 /

holds in the distribution sense. Evaluating the derivatives and identifying the coeffi-
cients in front of the different functions of p by zero, we obtain

(3.9)
(3.10) o. + 0. 0,

where0gf= andxg=ggx (t -x) gg (+- --)
Obviously, the function a is space-time independent, i.e., constant. The system

(.3.10) consists of ten equations in four unknowns, g, and s called Killing’s equation.
Now, it is well known that the general solution of (3.10) is

(3.11) v 7v + x,
where v and wv are constants and wv -v. Since v is antisymmetric, we
have woo 0, so there is no time dependence in 0 and the condition 0 > [] implies.
v0 0 -wv0. The periodicity condition forces the remaining coecients of v, to
vanish, so wv 0. Hence J is a global Jfittner solution.

The next application of Theorem 1 concerns the functional equation

2N sNI(3.12) f()f(q) f(’)f(q’) .. on s,
where, as usual, p+q p+q andp0+q0 P+q. This equation has been
extensively studied under different assumptions on the regularity of f. Irrespective
of the assumptions, the solutions turn out to be the Jfittner equilibrium solutions.
This fact has been shown, for instance, by Chernikov [C], Bichteler [B], Marle [M],
and Dijkstra [Di] under the assumption that solutions are differentiable of order 1
[B], continuous [C], [M] or measurable [Di]. However, a beautiful trick of Lions based
on the regularizing theorem shows that solutions to the nonrelativistic analogue of
(3.12) are necessarily smooth. In view of Theorem 1, the result is also available in
the relativistic case. The generalization is straightforward, but we will present the
proof and not only refer to Lions. The structure of the proof is essential for the
discussion in the appendix, indicating a point of connection between Arkeryd’s and
Lions’ approaches to the asymptotic problem (Theorem 3). Hence let us prove the
following lemma.

LEMMA 2. Solutions 0 f Lo(N) of the functional equation (3.12) are
smooth.

Proof. If 0 f Lo(N) is a solution of (3.12), then g Loc(N) also
satisfies (3.12). If g 0, we are done. Otherwise, we introduce

(, q, ) -(Iql) 1)(11) )(1 q

where 0 ,J) 1, ,) C(), 1 for Iq , and 1 for

IP e-1 rther, ,a C(R), supp ,a) C (e/2, ), and e (t) 1 for
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t >_ e. Finally, !4) E C ([0, 1)), supp !4) C [0,1- e/2), and !4)(t) 1 for
t<l-e.

Hence, for each R > 0, we have

N N--1
b (p, q, dp > 0

on {]ql-< R} for small enough, and l e C(RN). In view of (3.12), we find that

g Q+(g,g)/l on { ql-< R}, and by Theorem 1, we obtain g HI(oN-I)/e(RN).
Next, we observe from the proof of this theorem that if g LI(RN) and f Hs(RN),
s R, we have

y.lk(N-1)/2 (RN) forTherefore, by iterating the argument above, we deduce that g E 1oc
all k _> 1. Accordingly, g

Appendix. A connection between the standard and the nonstandard
approach. We will present a different and simpler proof of a lemma by Arkeryd
[Arl], [ar3]. The lemma is crucial in his nonstandard (ns) approach to the asymptotic
problem (i.e., the nonrelativistic analogue of Theorem 3). Our proof is based on the
proof of Lemma 2 and hence on the regularizing theorem, which is the crucial part in
Lions’ approach to the asymptotic problem. A link between their methods of proofs
is therefore indicated. In what follows, some nonstandard techniques and notations
are used, and the reader not familiar with this matter may consult [HL] or [AFHL].

LEMMA 3 (see [Arl], [Ar3]). Let f *L_(RN) (N _> 2 and finite) be given with

(A.1) ft." pof(p)*dp
]N

finite and with

f(p)f(q) ’ f(p’) f (q’)

for Loeb a.e. (p, q, co) e ns *(RN x RN x N-1). Then either f(p) .. 0 for Loeb a.e.
p ns*RN or Of(p) > 0 for Loeb a.e. p ns*RN.

Remarks. (1) Condition (A.1)is a slight modification of the relativistic analogue of
arkeryd’s original formulation. (2) Condition (1.1)together with f f(p)log f(p)*dp
finite implies that f is S-integrable, which is essential for the nonstandard approach
to the asymptotic problem. For details we refer to [An].

Proof. For simplicity, we will consider only the two-dimensional case. It will be
clear from the proof that the result in higher dimensions follows by a simple iteration
of our arguments. Now, we rework the proof of Lemma 2 in the nonstandard context.
Assume that f f *dp > 0; if that is not the case, we have f 0 Loeb a.e. in *Re.
Observe that condition (A.1) implies that f is essentially concentrated in ns *Re; hence
for some noninfinitesimal e, we obtain l > 0. Accordingly, relation (A.2) implies that
f h Loeb a.e., in ns *R, where IIhll*H is finite and is a localized standard
function in C(Re). Actually, IIhll *g is finite for rn finite (so, in addition, h *Ck

for k finite). Now, there is a ,-measurable set A of finite diameter and positive Loeb
measure in ns *Re, where h > e for some e > 0, e R. Otherwise, h 0 Loeb a.e. in
ns *Re, implying f 0 Loeb a.e. in ns *R2. We will show that h > e/2 on a ball with



REGULARITY OF THE GAIN TERM 1403

positive Loeb measure in *R2, and this will, in fact, be enough, in view of well-known
arguments [Arl], to conclude that h > 0 Loeb a.e. in ns *R. Let p E A, d be a unit

vector in *IR2, and L(p, 5, d) be the line segment between p and p + 5d. We then have
the relation Ih(p+5d)- h(p)l--IfL(p,5,d) (vh" d)*dpl. If we could find a point p0 E A
and a positive number 50 IR such that

(A.3) andVS, 0_<5_<50,

then h > e/2 on the ball B(p0, 50). The proof is by contradiction. Assume that there
is no point p0 A with such a property. We will show that this assumption implies
that h can not be in *H2, where C with _-- 1 on a ball containing A (in N
dimensions, we need *HN). Let each point p E A be a center of a 7-1-cube C(p, 7-1),
where / R is large. From Wiener’s covering lemma, there are at least := [a]
disjoint cubes (in three.dimensions, r @), where a is a constant depending only on
the dimension and the Loeb measure of A, and Ix] denotes the integer part of z. Let
us denote the centers of the corresponding cubes by pj, j 1,..., r. The assumption
above implies that for each pj, there is a unit vector dj in *N, such that

(A.4) fL I(vh" dj)l *dp >
(,&,-/) .

Without loss of generality, we assume that all of the unit vectors j are directed along
pl. Indeed, if this is not the case, it is easy to see that the estimates below will be
changed by a factor depending only on the dimension. Let us fix j and denote by
L(c) the line segment

L(a) {p p pj + cn + snl, s (0,

where nl,2 are unit vectors directed along the pl,2-axes, respectively. Set Is :=

-o-l*dpl and note that I0 >_ e/2. Now, either Is _>_ e/4 for a [0,7-1/2]
or there exist some a0 (0, 7-1/2) with Iao < e/4. In the first case,

(A.6) 101hl.dpldp > -1 e,
and in the second case, we obtain from Stoke’s theorem (recall V Ifll-IV fl .e.
when f e HI; see, e.g., [Au, p. 82])

fo (A.7) 10 .0 hi *dp dp _>
() foo ] hi *dpldp2

JL()

(A.8)   10 hl*dp //L n101hl*dp
(0)

.
-2 4 4

There are r cubes, and one of the cases above occurs at least ]/2 times. If the first
case occurs rff2 times, then

(A.9) -:.j=l (PJ
101hl*dpldp _> r/eT-1/16 ’Te oo as 7 -- oc.
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In the second case,

j=l (pj,-l)
as 7 -- x.

Thus h cannot be in *H2, and this completes the proof. [:]
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A TRANSMISSION PROBLEM IN THE SCATTERING OF
ELECTROMAGNETIC WAVES BY A PENETRABLE OBJECT*

RODOLFO H. TORRESt

Abstract. Layer-potential techniques are used to study a transmission problem arising in the
scattering of electromagnetic waves by a penetrable object. The method proposed does not involve
the use of the calculus of pseudodifferential operators and hence it can be applied in domains with
very little regularity. The solutions are represented as a combination of a curl and a double curl of a
single layer-potential operator. The work relies on the important harmonic-analysis tools developed
in recent years to study boundary-value problems in domains with minimal regularity assumptions.

Key words. Maxwell equations, reduced wave equation, layer-potential methods, transmission
problems, scattering theory, nonsmooth domains
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1. Introduction. A classical problem arising in electromagnetism is that of de-
termining the field scattered by a penetrable object from the knowledge of the tan-
gential component on the surface of the object of an incoming field. See, e.g., [12]
and [15]. The mathematical formulation of this problem leads to a transmission prob-
lem for the Maxwell equations on a bounded domain (see 2 below for the precise
statement). The problem has been studied using several approaches based on layer-
potentials techniques. In particular, we want to mention works by Wilde [20] and
Costabel and Stephan [5]. Reference to related works can be found therein.

For time-harmonic electromagnetic waves, the solution of Maxwell equations are
divergence-free solutions of the vector Helmholtz equation. In [20], very general trans-
mission problems for the vector Helmholtz equation are considered. The solutions of
the problems are obtained as a combination of several single- and double-layer poten-
tials after solving, in appropriate HSlder spaces, a 4 4 system of of integral equations
of the second kind on the boundary of the domain. This classical method requires the
domain to be at least of class C2 and, as a consequence, the solutions have continuous
partial derivatives up to the boundary of the domain. On the other hand, in [5], the
so-called direct method is used. This is a general method applicable to strongly el-
liptic boundary-value problems and relies on the coercivity on certain Sobolev spaces
(the energy spaces) of a bilinear form related to the boundary data. In [5], the electro-
magnetic problem is transformed into a particular transmission problem for the vector
Helmholtz equation which is solved, again, by inverting a matrix of operators on the
boundary of the domain. In this work, the calculus of pseudodifferential operators is
used and hence the domain is assumed to be C. In addition, the boundary values
of the solutions are prescribed in the distributional sense and not pointwise. The
purpose of this paper is to develop an alternative approach to study the electromag-
netic transmission problem in domains which are less regular than the one considered
in the works just mentioned, allowing less regular boundary data, but still obtaining
solutions whose boundary values are prescribed pointwise (nontangentially).

As is well known, the study of boundary-value problems using layer-potential
techniques in domains which are C or Lipschitz is very delicate. One of the main
reasons for this is that some of the resulting integral operators on the boundary of the
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Department of Mathematics, University of Michigan, Ann Arbor, MI 48109. Current address:
Department of Mathematics, University of Kansas, Lawrence, KS 66045-2142.
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domain have to be interpreted as principal-value singular integrals. In particular, to
consider Lp data and solutions with boundary values obtained pointwise, deep results
from harmonic analysis are necessary. Dirichlet and conormal derivative problems for
several equations and system of equations in nonsmooth domains have already been
studied using harmonic-analysis techniques. A few examples are [9], [11], [17], [18],
[7]. Using similar techniques, transmission problems have been considered in [8] and
[16]. This last paper deals with the case of the scalar Helmholtz equation in Lipschitz
domains. See also [19] and [6], where an approach to transmission problems related
to [5] is used.

The study of the potential operators associated with Maxwell equations in C
and Lipschitz domains has been recently carried out in [13] and [14]. In particular,
the so-called Maxwell, electric, and magnetic boundary-value problems for a perfect
conducting object were solved with optimal estimates in the case of C domains. This
work depends heavily on the results in [2] and [3] about the Cauchy integral operator
on Lipschitz curves as well as the developments in [9]. For the previously known
results about these problems in the case of smoother domains, we refer to [4].

In this paper, we will combine the results of [13] with some of the ideas in [16]
to study the electromagnetic transmission problem in domains which are only C or
Lipschitz. Unlike the approaches in [20] and [5], we propose as a solution for the
electromagnetic transmission problem a combination of the curl and the curlcurl of
the single-layer potential. After taking traces, this ansatz leads to a 2 x 2 system
of integral operators on the boundary of the domain. The trace operator associated
with the double curl of the single-layer potential is hypersingular (even on smooth
domains). Nevertheless, in the case of the electromagnetic transmission problem, this
operator appears in a regularized way. This allows us to consider it on an appropriate

r.’Di consisting of tangential vector fields with surfacespace of functions: the space T
2,Divdivergence in L It was shown in [14] that LT is the right space of boundary data

to work with in domains with little regularity: As in [16], the solution of the-system
of integrals operators on the boundary relies on the knowledge of the spectrum of a
singular integral operator. In our present situation, the singular-integral operator is
the one obtained as the tangential component of the trace of the curl of the single-
layer potential.

The paper is organized as follows. In 2, we recall some basic facts about non-
smooth domains and state the transmission problem with boundary data in LDiv.
In 3, we show for appropriate values of the electromagnetic characteristics of the
object and surrounding media the uniqueness of solution to the problem in the case of
Lipschitz domains. In 4, we collect several results from [13] about the layer-potential
operators associated with Maxwell equations and include some new results regarding
the double curl of the single-layer potential. In 5, we show some existence results.

2. The electromagnetic transmission problem. The notation that we use
is standard for the subject. In particular, we will follow very closely that of [131 which
is our main reference. For the purposes of this paper, a Lipschitz, respectively, C1,
domain will always be an open, simply connected domain D of R3, whose boundary,
OD, is given locally by the graph of a Lipschitz, respectively, C, function. Let N be
the exterior unit normal to OD and let dcr denote surface measure on the boundary.
The spaces L2(OD) of functions or vector fields and the space L.(OD) of tangential
vector fields are defined with respect to dcr. The space L, (OD) is, as usual, the space
of L functions with tangential derivatives also in L. A vector field A E LT(OD) is
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said to have a surface divergence if there exists a function b E L2(OD) such that

fo (VT,A}da=-ffo Cbda
D D

for all functions which are Lipschitz in a neighborhood of OD. Here VT denotes
the tangential gradient and (., .} denotes the inner product in R3. The function b is
denoted by Div A and the space of all such vector fields (see, e.g., [14]) is denoted by
L2,DiV(0D) The space is equipped with the normT

IIAIILTDiV2, (OD) IIA[[L2(OD) + DiV A[[L2(OD).

At every point Q in the boundary of the domain, we consider an open, right-
circular, doubly truncated cone F(Q), with vertex at Q and two convex components,
F(Q) in D and F(Q) in R3\, so that the resulting family of cones is a regular
family in the sense of [17]. For a function u defined in D, the nontangential maximal
function of u is defined by

XEF(P)

The boundary values of functions defined inside D are assumed to be taken in non-

tangential fashion and almost everywhere with respect to &r. That is, UlOD is to be
interpreted as

u(P)= lim u(X),
X P

XEp(P)

whenever such a limit exists for almost every point in OD. Similar definitions apply
for derivatives of a function and for each component of a vector-valued function. For
example, if x denotes the exterior product in Ra and A is a vector field defined inside
D, then N x curl AIoD is given by

N x curlA(P)= lim
X P

xr(P)

N(P) x curiA(X).

For functions defined in the exterior of D, the nontangential maximal function and
the boundary values are defined in the same way but using Fe(P).

We can now state the electromagnetic transmission problem that we want to
study. We follow the classical description in [15]. Let D represent an object made of
an homogeneous material, and assume that the object is immersed in an homogeneous
medium represented by the exterior of D. In all space, we consider a time-harmonic
electromagnetic wave with frequency w, described by the electric and magnetic vector
fields E and H. These fields satisfy the Maxwell equations

curl E i#iH

and

curl H -iweiE in D,

curl E ico#H,
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curlH -icveE in R3\.
The electromagnetic parameters of the object and the surrounding medium in the
above equations are, respectively,

io’i iSi

where 0i and e0e are the dielectric constants, #oi and poe are the permeability, ai
and ere are the electric conductivity, and 5i and gre are the magnetic conductivity of
each medium. The usual restrictions on the values of these parameters are

(1) 0 _< argcz < ,
(2) 0i,0e >0 and #oi, Poe >0,

(3) o’i, ae >_ O and &i,&e_>0

(see [15]). We will assume i # e and # # #e. The wave numbers in the interior and
exterior of the obstacle are defined by

k2-w2ei#i and k2=w2ee#e,

where we assume

(4) 0 _< arg ki, arg ke < r.

In the exterior of D, the vector fields are decomposed as the sum of a known
incoming field and an unknown scattered field,

E-- Ein+Esc,

H Sin -- Hsc.

Both the incoming and scattered fields satisfy Maxwell’s equations in the exterior of
D. We also assume that the scattered fields satisfy the radiation conditions

X
(5) cz#e- x Hsc + keEsc o(]X1-1) and Esc O(IX[ -1)

as IXI --, oc. The tangential components of the total vector fields must extend
continuously across the boundary, so on OD we must have

N x E- N x Esc N x Ein,

N H- N Hsc N Hin,

where the values of N E and N H are taken from inside D. It follows that,
in order to obtain the total electric and magnetic fields from the knowledge of the
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incoming fields, we can consider a transmission boundary-value problem with the
tangential components of the incoming fields as datum. Because of the results in [13]
and [14] we will assume that these tangential components are in r.2’Div(69D) and
we will require the solutions to have nontangential maximal functions bounded on

L2(OD). In fact, it was shown in [14] that if E and H solve Maxwell equations in
a C or Lipschitz domain and E has pointwise (nontangentially) boundary values in
L2(OD) with bounded nontangential maximal function, then the companion field H
also have pointwise boundary values if and only if the tangential component of E is

2’DiV(0D). Since the roles of E and H can be interchanged, we have to requirein LT
the same kind of boundary data for the tangential component of H. Thus we are
lead to consider the following problem. Given two tangential vector fields A and B
in *’Tr2’Div (OD), find two vector fields in D, Ei and Hi, and two vector fields in Ra\,
E, and H,, satisfying the radiation condition (5) and such that

(T)

curl Ei iw#iHi in D,
curlHi -iweiEi in D,

curlE iw#H in R3\,
curlH -icoeE in R3\,

N x E N x Ei A
N x H-N x Hi- B

3. Uniqueness of solution. The uniqueness of solution of problem (T) is given
in [12] and [15] for smooth domains and functions continuous up to the boundary. We

L2’Divwill consider here the case of Lipschitz domains, ’boundary data in T. (OD), and
boundary values obtained nontangentially. We will always assume that the electro-
magnetic parameters satisfy the constrains in (1)-(4). Additional limitations in their
values will be imposed, if necessary, in the statments of the results to be proved.

Usually, the proof of uniqueness results for boundary-value problems involves
integral-representation formulas and some application of the divergence theorem. The
standard technique to adapt these formulas to the case of nonsmooth domains is an
approximation procedure. The main tool is the following lemma from [17].

LEMMA 3.1. Let D be a bounded Lipschitz domain. Then it is possible to construct
a sequence of C domains j C D (or ftj D D) satisfying the following properties:

(i) There is a sequence of Lipschitz diffeornorphisms Aj OD -- Orgy. such that
the Lipschitz constants of Aj and its inverse are uniformly bounded in j. Furthermore,
Aj(Q) e Fi(Q) (or Fe(Q)) for all j and all Q e OD and supQoD IQ Aj(Q)I < C/j;

(ii) There are positive functions fly OD -- t+ bounded away from zero and
infinity uniformly in j such that for any measurable set F C OD, fp pjdcr fAj(P) dory
and such that pj -- 1 a.e. and in every Lp (OD), 1 < p <

(iii) The sequence of normal vectors to fry, Nj(Aj(.)) converges a.e. and in every
LP(OD), 1 <_ p < , to N.

Let k be a complex number with Im k >_ 0 and consider the fundamental solution
of the Helmholtz operator A + k9 in R3,

(x)
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We will need to use the following formulae regarding solutions of the vector Helmholtz
equation.

LEMMA 3.2. Let D be a Lipschitz domain and let E be a smooth vector field in
D or R3\-. Assume that E, curl E, and div E have nontangentially boundary values
on cOD from the inside or the outside accordingly to where E is defined. Assume also
that

(6)

The following formulas hold:
(i) The tangential vector field N x E has a surface divergence in L(OD) and

(7) Div (N x E) {N, curl E}.

(ii) If E is a solution of the vector Helmholtz equation AE + kE 0 in D, then
for all X E D,

E(X) [ curlx((I)(X Q)N(Q) x E(Q))da
doD

+ [ Vx(X Q)iN(Q), E(Q))d
dOD

f ’(X Q)(N(Q) x curl E(Q) div E(Q)N(Q))dcr
doD

and

L (N(Q) -(Q), curiE(Q)} + div E(Q) (N(Q),-(Q)} dcr
D

Jo Icurl E(X)I2 + Idiv E(X)I kIE(X)I dX.

(iii) If E is a solution of the vector Helmholtz equation AE + k2E 0 in R3\-
that satisfies at infinity the radiation condition

X X
.(8) curl E x - + divE- ikE o(]X] -),

then for all X R3\-,

and

,(x)

E o(Ixl-),

curlx{q)(X Q)N(Q) x E(Q)}&r
D

Lz) Vx(X Q)(N(Q), E(Q))d

-Jr- LD ((X Q)(N(Q) x curl E(Q) div E(Q)N(Q))&r

/r
|-1 IkI2IE(X)I + Icurl E(X) x N(X) + div E(X)N(X)I2 ds



1412 RODOLFO H. TORRES

2Im(k) IcurlE(X)l + Idiv E(X)I + 1121(X)l

2Im (k rOD ((N(Q),E(Q)x curl(Q)} + dive(Q)(N(Q),E(Q)})da),
where dsr is ,the surface measure on the ball of radius r, Br(O), and where Dr

\ -5 (o).
Proof. The above formulas are well known for smooth domains. The validity of

them in the case of Lipschitz domains was justified in [14] using Lemma 3.1 and a
limiting argument. We shall not repeat the details here (cf. the proof of Theorem 3.4
below).

A simple consequence of the above lemma is the following result.
LEMMA a.a. et D be a Lipschitz domain. Let E be. a solution of the vector

Helmholtz equation in R3\- satisfying (6), the radiation condition (8), and the
inequality

Im (k rOD (<N(Q),E(Q) x curl(Q)} + dive(Q){N(Q),E(Q)})da) >_ O.

If Im k > O, then E O in Ra \-.
Proof. If Im k > 0, then from the last part of Lemma 3.2,

IE(X)IU dX --+ O,

which implies that E 0. rl

We can now prove a uniqueness results for solutions of the transmission problem
(T). Recall that solutions of the Maxwell equations

curl E iw#H,

curl H -iweE

are divergence-free solutions of the vector Helmholtz equation with wave number
ku wue#. Notice also the equivalence between the radiation conditions (5) and (8).

THEOREM 3.4. Let D be a Lipschitz domain. Assume that Im ki > 0 and Im kc >
0, and let Ei, Hi, Ec, andH be solutions of (T) with boundary data A B O. Then
Ei Hi =O in D and E He =O in R3\-.

Proof. We will use a limiting argument to adapt the proof in [15, p. 282], for
the case of smooth domains to the present situation. Let tj be a family of domains
approximating D from inside as in Lemma 3.1. Since solutions of Maxwell equations
are analytic inside D we can apply the divergence theorem on each domain ftj. We
obtain

(icoe IE i--aTmlH Iu)dX div (-i Hi)dX
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and using the change of coordinates Aj,

a
(iweilEi]2 -i-fiTpilHil2)dX

f (Nj(Aj(Q)),-(Aj(Q)) H(Aj(Q))) pjdo-.
D

The integrals on the left of the above equality are uniformly bounded by

C JfoD
Since we are assuming that IIE I]L(OD) + [[H IIL:(OD) < , we can use the properties
of the approximating domains together with the dominated-convergence theorem to
get

A similar argument in the exterior of D shows that

(ielEl ilHl)dX

Adding the formulas for th iterior d eterior, sig he rsissio ooditios
with A B 0 and the radiation condition at infinity, we get

[_ -  lH l )dX + [_

Now, by the constraints on the electromagnetic parameters,

Re (ie) 0 and Re (ip) O,

where e denotes either ei or e and p denotes either #i or #. In addition,

It follows that we must have

(9) Re (,f(iiE2-iiH,2)dX-0,
kD /
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and

(11) --+lim Re (k___)#e ]=,,. IEe[2ds-O"

Moreover, since we are assuming Im ki > 0, one of the parameters a, ei, and #i is not
a real number. Then either Re (iwei) < 0 or Re (-i-) < 0. From (9), one of the
fields vanishes in D and so both Ei and Hi must be identically zero in D. Finally,
from the transmission conditions, the tangential components of E and He on the
boundary have to be zero and, since Im
must be identically zero in the exterior of D.

Remark. The conditions Imk > 0 and Imke > 0 in the above theorem are
removed in [15] for the case of smooth domains by a more elaborated argument.
Nevertheless, we will still need those conditions to prove existence of solutions.

We conclude this section with another uniqueness result. As we will see in the
proof of existence of solutions, the transmission problem in the next theorem can be
used, in a general sense, as adjoint problem for problem (T) (cf. [6]).

THEOREM 3.5. Let D be a Lipschitz domain in R3. Assume that Im k > 0 and
Im ke > O. Assume also that either

(12) Im (ki2 #-2) -<0’
#i

(13) Im (ki #---f-)#i >0
or

(14) ee#i icr’e
0e -t- with > O,eOe >0 and r

(15) with #)e > 0 and o:’ > 0

Then the homogeneous transmission problem for the vector Helmholtz equation,

(T’)

AEi + k2Ei 0 in D,
divEi 0 in D,
EIIL=(OD) / II(curiEi)*llL=(OD) < ,
AEe + kEe 0 in
div Ee 0 in R3\,
EglIL=(OD) / I(curlE)*llL=(0D) <

N x Ee- N x Ei -0

"iN x curlEe- N x curlE{ -0
on OD,
on OD,

where Ee satisfies the radiation condition (8) with k k, has the unique solution

E O in D and Ee O in R3\-.
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Proof. Assume that conditions (12) and (13) are satisfied. Let Ei and Ee be
solutions of problem (T). Using the transmission conditions and the divergence
theorem (whose used can be justified again via Lemma 3.1 and the boundedness of
nontangential maximal functions), we get

J/0 J/o / (k/2#e) curli/ d(
D
(N,E x curlE} do

D
N, Ei x

Now using the constraints on the electromagnetic parameters, we see that

Im (ki Jf0D (N, Ee x curle} dcr) _>

Since div Ee 0, Lemma 3.3 implies that Ee 0. Again using the transmission
conditions and the representation formula in Lemma 3.2 for the interior of D, we also
obtain that Ei 0.

Assume now that conditions (14) and (15) are satisfied. Let Ei and Ee again be
solutions of the problem (T’). Then it follows that Ei, Hi 1/iw#curl Ei and Ee,
He 1/iw#ecurlEe are solutions of the homogeneous version of problem (T) with,_ _e#i/#e andelectromagnetic parameters e ee and #i #e in the interior and %
#’e #eei/ee in the exterior. By Theorem 3.4, Ei and Ee must be zero. D

Remark. The conditions on the electromagnetic parameters in the above theorem
look very technical because we have stated the result in great generality. If some of the
parameters are real valued, these conditions become much simpler. See Theorem 5.2
below.

4. Boundary integral operators. We recall some properties about -the layer-
potential operators associated with the Helmholtz and Maxwell equations. The results
are well known for smooth domains; see, e.g., [4]. For nonsmooth domains, we refer
for proofs and details to [1] and [16] for the case of the scalar Helmholtz equation and
to [14] for the vector-valued case.

Let D be a Lipschitz domain and let f be a function in L2(OD). The single and
double acoustic layer potentials are given by

and

Sf(X) 9[’0D ((X Q)f(Q)do-(Q), x e R3,

Df(X) J2D ONe(X Q)f(Q)da(Q), x E R3 \ OD.

Both Sf and f solve the Helmholtz equation in R3 \ OD and, as a consequence of
the results in [3], they satisfy

(Sf)* IIL2(OD + (VSf)* IIL2(OD + CDf) IILp(OD) <-- Cllfllc.(OD)
The trace values of Sf are given by

lim Sf(X) lim ,f(X) Sf(P), P e OD,
X P X P

xr(P) xr(P)
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where

1 fo eiklQ-PI
Sf(P) 4 D IQ PI f(Q) da(Q)’

The function T)f has a jump discontinuity given by

lim f(X)= (laI+K f(P),
X P
xr(P)

POD.

P OD,

(1lim Df(X) --I + K f(P), P OD.
X P

Xere(P)

where

Kf(P)
1 fo (N(Q),Q- PleclQ-PI(1 iklQ Pl)f(Q)do(Q)

n [Q- P[a

The normal derivative of the single-layer potential satisfies

lim

XF(P)
-2 + f(P)

and

lim

Xre(P)

(N(P),VSf(X)) (112 + K*) f(P),

where K* is the transpose operator of K. On the other hand, the tangential compo-
nent of VSf does not jump.

For the rest of the section, we will assume that the imaginary part of the wave
number k is positive. This condition guarantees the invertibility results in the next
lemma (see [1], [16]).

LEMMA 4.1. Let D be a Lipschitz domain in Ra. Then the following hold:
(i) S: L2(OD) ---+ L2(OD) is ,compact.
(ii) S: L(OD) ---+ L’I(OD) is invertible.
(iii) :klI + K" L(OD) ----+ L(OD) are invertible.
(iv)- + } I + K L2’1 (OD) ---+ L2,1 (OD) are invertible.
(v) /f OD is actually of class C, then the operator K is compact in L2(OD). [1

The action of the single and double layer-potential operators on vector fields is
defined componentwise. In addition, the traces of the divergence and curl of the
single-layer potential of a vector field A define bounded operators in L2(OD), and
their values are given by

lim

xCr(P)

1
(N, A} (P) + p.v.fo divp ((I)(P Q)A(Q))da(Q),divSA(X) - D

lira
xer(P)

1
(N, A} (P) + p.v.fo divp ((I)(P Q)A(Q))&r(Q),div 8A(X)

D
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and

lim

XF()

1
(N x A)(P) + p.v.L curlp ((I)(P Q)A(Q))da(Q),curl SA(X) -- D

lim

xer(P)

curl$A(X) -(N A)(P) + p.v. curlg ((I)(P Q)A(Q))da(Q).
D

We also have

II(divA)*llL.(OD) + II(curlA)*I]L(OD)

The function curl SA satisfies the vector Helmholtz equation outside OD as well as
the radiation condition (8) at infinity. In addition, the tangential component of the
trace of the curl of the single-layer potential is given almost everywhere in OD by

lim

XEF(P)
(1N(P) curlSA(X) -I + M A(P)

and

lim

xer(P)

N(P) curl SA(X) --I + M A(P),

where MA is the tangential vector field defined by

MA(P) p.v. LD N(P) curlp ((I)(P Q)A(Q))da(Q).

We recall from [13] the following result.
LEMMA 4.2. Let D be a Lipschitz domain in R3. Then the operator M maps

L(OD) into itself and r.2’Div
T (OD) into itself. Moreover, if D is actually C then M

is compact on both spaces.
In order to study the double curl of the single-layer potential, we need another

important result obtained in [14].
LEMMA 4.3. Let D be Lipschitz domain. A vector field A in L(OD) has a

surface divergence in L2(OD) if and only if II(V(div,.gA))*IIL2(OD) < +c. In such a

case, div 8A $(Div A).
As a consequence of this last result, we can now prove the following.

r.2,DiV(OD)"LEMMA 4 4 Let D be a Lipschitz domain. Let A be a vector field in
Then ]](curl curl,SA)*]]L2(OD) < +OO and

lim N(P) curlcurlSA(X) (N (k2SA + VS(DivA)))(P)x---P

nontangentially, both from the inside and outside of D. Moreover, if we define on OD
the operator

LA(P) (N (k2$A + VS(Div A)))(P),
r.2’Div (OD) into itself.then L maps T
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T’2’Div (OD). Using the identityProof. Let A be a vector field in

curl curl -A + Vdiv

and Lemma 4.3, we see that

curl curl SA k2$A + V$(Div A),
which implies the boundedness of the nontangential maximal function and the claimed
boundary values (notice that $ and the tangential component of V$ do not have

r.2’DiV(OD) into L’(OD).jumps) Clearly, the resulting boundary operator L maps
If we now apply (7) to the vector field

E(X) curl curl SA(X),
we obtain that

Div (LA) Div (N x E) (N, curl curl curl Sd} (N, kcurl Sd},
and, therefore,

IILAII @DiV (OD) I]LAIIL?r(OD) +
< IIg (k$d + V$(Div A))IIL?r(OD + II{N, k2curlSd}lln2(oD)
< C(]]SAIIL2(OD) + IIV$(Div d)]ln.(OD) +
< C(.lldllnr(OD + IIDiv

which concludes the proof. F!
We need to consider the potential-theoretic versions of some of the layer-potential

operators already described. Let So, M0, and L0 be defined using the fundamental
solution of the Laplace operator A in R3,

1
0(x)

The boundedness properties of the operators So, Mo, and Lo are the same as those
of S, M, and L. Moreover, we have the following.

LEMMA 4.5. Let D be a Lipschitz domain in Ra. Then,
(i) M- Mo" L(OD) L(OD) is compact.
(ii) M Mo L(OD) .2,DiV(0D) is bounded.’T
(iii) L- Lo L(OD) L(OD) is compact.
(iv) L Lo L(OD) r.Z’Div(0D) is bounded."T

Proof. A straightforward computation shows that the differences of partial deriva-
tives

Oil(P-Q)-Oio(P-Q)

and

o o e(P Q) o O eo(P
have locally integrable singularities on OD. From this easily follows that M- M0 and
n- L0 are compact operators in L(OD) (cf. [16]). To show that these operators map

r.2,Divn(cgD) into "-’T (OD), we notice that

Div (M Mo)A Div (N curl ($ ,_,Co)A)
(N, curl curl ($ So)A}

-(N,kcurlSA + V div(($ So)A)},
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which defines an operator with a kernel with a locally integrable singularity and
bounded in L2(OD). Similarly,

Div (L Lo)A Div (N x curl curl ($ S0)A)
(N, curl curl curl ($ S0
(N, kcurl SA},

again producing a bounded operator in L(OD).
We conclude this section with a simple result about the spectrum of M0 in C

domains.
LEMMA 4.6. Let D be a C domain in R3. Then, for any complex number

outside the interval [-5, ], the operator AI + Mo is invertible in L(OD) and in

2,DiV(OD)T

Proof. Since by the results in [14] the operator M0 still is L-compact in C
domains, it is enough to prove that AI + M0 is injective. This is done in [4, pp. 155-
157] in the case of C2 domains. Given the boundedness and invertibility properties of
the layer-potential operators discussed in this section, the same proof extends without
modification to the case of C domains. Finally, observe that since M0 is also compact

r’2’Div (OD) is the same. [:]in "rrU’Div (OD), its spectrum in L(OD) and in
Remark. In the case of Lipschitz domains, the operators M and M0 may not be

compact in L(OD). The invertibility of AI +M or AI + M0 can no longer be handled
via Fredholm theory. The usual substitute technique to prove invertibility results in
this kind of situation involves the use of Rellich-type identities (see, e.g., [17] and [7]).
Such techniques were used in [8] and [10] to study the spectrum in L(OD) of the
double-layer potential for the Laplacian AI + K0. The spectral properties of K0 in
L2,1(OD) were studied in [16]. The spectral properties of M0 in L(OD) in the case
of Lipschitz domains remain unknown, but from the results in [13], it follows that if

r.2’Div (0D).AI + M0 is in vertible in L(OD) for some A then it is also invertible in -T
This missing information about the spectrum of M0 in Lc(OD is the only additional
result that would be necessary to extend Theorem 5.1 in the next section to the case
of Lipschitz domains.

5. Existence of solutions. We now present the existence of solutions to prob-
lem (T) using a particular boundary integral representation.

THEOREM 5.1. Let D be a C domain in Ra. Assume that the electromagnetic
parameters satisfy the conditions in Theorem 3.5. Assume also that + and

ll, --Ii Ce --i

are not real numbers in the interval [-1, 1]. Then the transmission problem (T) has
r.2,Div (0D)"a unique solution for any A and B in T

Proof. In view of Theorem 3.4, we only need to show existence of solution. Let
L2’Div((D) and consider the ansatzU and V be vector fields in T

E(X) #curlSU(X) + curl curlSV(X) in R3\,

Ei(X) #icurl $iU(X) + curl curl,Sir(x)

1
He(X) curlEe(X),

in D,

Hi(X)
1

curlEi(X),
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where e and 3i denote the single layer-potential operators defined using the wave
numbers ke and ki. By the results of the previous section, for any U and V in

(0D) these vector fields solve the Maxwell equations and satisfy the radiationT
condition at infinity. Then, to solve problem (T), it is enough to show that given A

r2’Div (0D) we can find U and V such that the above electric fields satisfyand B in "T
on OD

N Ee N Ei A,

1
N

I
Nx curl Ee x curl E B.

That is, we need to solve the system

(i )--I+M U + M) U- LiV A,

Leu+k2e _1 + Me)V-LiU--k2#i (I+ Mi) V B.

We rewrite this as

_m+,i + #eMe2

Le Li

r.2’Div (0D)Notice that the above system, originally defined in the the product space T
L2’DiV(OD) makes sense in the space Lr(OD x Lr(c)D Now, we observe that if
M0 is the potential-theoretic version of M, the above matrix of operators can be
decompose as the sum of two matrices, W + W., where

and

I + ( m)Mo
Wl

2

0

w ( 9(M Mo)+ (Mo M,)
Le Li

0 )

Since we are assuming that

Le L
(Me Mo) + (Mo M)

are not in the interval [-I, I], Lemma 4.6 implies that the matrix Wl is an invertible

operator in both L(OD) L(OD) and r2’DiV(0D) r.2’DiV(0D) On the other handT T
by Lemma 4.5, the matrix W2 is compact in L(OD) x L(OD) and maps this space
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into LT2’Div (OD) x --TI-2’Div (OD). From this follows that the matrix Wl + W2 has index
zero in L(OD) x L(OD). It also follows that if U and V are solutions of the system

r.2,DiV (DD)of boundary integral equations in Lr(OD x L.(OD), then U and V are in
r.2’Div (OD). In particular the null space of the matrixif and only if A and B are in T

W1 + W2 is the same in both spaces. If we can show that this matrix of operators
is one-to-one in L.(OD) x LT(OD), we will have by the previous observation that it

/.2,Div (OD) x 2,Div(0D). This willis invertible in L(OD) x L(OD) and also in --T LT
conclude the proof of the theorem.

Assume that U and V are solutions of the system with A B 0. Since U and
Y.2’Div((0D) Ei, Hi and Ee He are solutions of the homogeneous versionV must be in T

of problem (T), and by Theorem 3.4, they must be identically zero. In particular, on

the boundary of the domain,

N x Ei.= N x Ee N x curlEi N x curlEe -0.

Now consider the new vector fields

E’e(X -curl ${U(X) 1curl curl in R3\,

1
E(X) curlSeU(X) + --curl curlSeV(X) in D.

Going to the boundary, we obtain the trace values,

(1 ) 1
N x E’e- -I-Mi U---LiV,

NxE- I+Me U+--LeV,

N xcurlEe__Liu_k (1__ ). +M ,
N x curl E LeU + k2 (l#e 2

+Me V.

It follows that on OD,

N x Ee- N x E _IN x Ei ---1N x Ee 0,

and also

#e 1 1

k#iN x curl Ee- N x curt E N x curl Ei-N x curlE 0.

Therefore, E and E are solutions of problem (T’) and, by Theorem 3.5, they must
be identically zero too. In particular,

N x E- N x E: N x curlE g x curlE: 0
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using the trace results of the previous section. Finally,

U N x Ei + #iN x Ee 0,

and

-V N x Ee #N x E 0. []

In physical applications, the parameters #i and # are usually assumed to be real
numbers. In such a case, the conditions on the electromagnetic parameters take the
following simpler form.

THEOREM 5.2. Let D be a C domain in Ra. Let Im ki > 0 and Im k > 0, and
assume that #, #, and a are positive numbers. Then the transmission problem (T)

r,2,Div (i)D).has a unique solution for any A and B in T
Proof. First, observe that if #i and # are positive numbers, then

and if c is a positive number, then the conditions Im ki > 0 and Im ke > 0 imply that

Also, conditions (13) and (1.4) are trivially satisfied. It follows that to use Theorem 3.5,
we need only to check that either

(16) Im (ki) _< 0

or

(17) Ira( ei ) (> 0 and Re
(e

By writing

ei leil exp ( arctan weoi(7--i)
02(0e

we see that (16) is equivalent to

(18) ai < ae
20i 0e

On the other hand, for positive w, the real part of e/e is always positive, and a

computation shows that (17) becomes equivalent to

(19) cri > cr
(0i (0e

Obviously, either (18)or (19)is satisfied, which concludes the proof. [1

Finally, the proof of Theorem 5.1 shows that for a Lipschitz domain D the fol-
lowing result holds.

THEOREM 5.3. Let D be a Lipschitz domain in Ra. Assume that the electromag-
netic parameters satisfy the conditions in Theorem 3.5. Assume also that + and

#e --#
c+ are not in the spectrum of 2M0 as an operator in L(OD). Then the transmis-
e --i

r.2’Div (oqD). []sion problem (T) has a unique solution for any A and B in
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DISSIPATION IN HAMILTONIAN SYSTEMS: DECAYING CNOIDAL
WAVES*

G. DERKSt AND E. VAN GROESEN$

Abstract. The uniformly damped Korteweg-de Vries (KdV) equation with periodic boundary
conditions can be viewed as a Hamiltonian system with dissipation added. The KdV equation is the
Hamiltonian part, and it has a two-dimensionM family of relative equilibria. These relative equilibria
are space-periodic soliton-like waves, known as cnoidM waves.

Solutions of the dissipative system, starting near a cnoidal wave, are approximated with a long
curve on the family of cnoidal waves. This approximation curve consists of a quasi-static succession
of cnoidal waves. The approximation process is sharp in the sense that as a solution tends to zero
as oc, the difference between the solution and the approximation tends to zero in a norm that
sharply picks out their difference in shape. More explicitly, the difference in shape between a solution
and a quasi-static cnoidal-wave approximation is of the order of the damping rate times the norm of
the cnoidM-wave at each instant.

Key words, perturbed KdV equation, cnoidal waves, asymptotic behavior

AMS subject classifications. 35B20, 35Q53, 76B25

1. Introduction. Consider the uniformly damped one-dimensional Korteweg-
de Vries (KdV) equation with periodic boundary conditions

-Ox [x +] , t > o, e (o,),
()

u(0, t) u(2 7r, t), ux(0, t) ux(2 r, t), t > 0..

In this equation e is a small parameter that gives the strength of the damping and
the subscripts denote differentiation with respect to the given variable. Furthermore,
we assume that the function u(x, t) has mean value zero for all time:

u(x, t) dz O, t>0.

In [5] and [7], it is shown that the initial value problem of (1) with 0 is well posed
in Hs, s _> 1. It is easy to see that if e 0, this property remains; see, e.g., [14].

If e 0, there is no damping present and the resulting equation is the KdV
equation, which can be regarded as a Hamiltonian system with the Hamiltonian- dxH(u) Ux u3

and with the operator Ox as the structure map. The KdV equation was originally de-
rived in 1895 as a model for planar, unidirectional waves propagating in shallow wa-
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ter [21]. Over the last thirty years, the KdV equation has appeared as a model equa-
tion for many other physical situations that feature wave motion wherein nonlinearity
and dispersion are comparable. For a review on the KdV equation, see [25] and [27].

The KdV equation is translation invariant. This invariance gives another first
integral in the system besides the Hamiltonian, namely the L2-norm of the solutions

1 foou9. dx()- -(Moreover, the KdV equation is completely integrable, but here we use only the
translation invariance.) The Hamiltonian/-flow is the translation operator (see [26])

+

The tangent vector to this flow is the Hamiltonian/-vector field, denoted by

Profiles of traveling-wave solutions of a translation-invariant Hamiltonian system
can be found as critical points of the Hamiltonian for fixed values of I. In other words,
they are relative equilibria (see [1]), and the family of all traveling-wave profiles is
called the manifold of relative equilibria (MRE). In case of the periodic KdV equation,
the relative equilibria are solitary-wave solutions, the so-called cnoidal waves. The
cnoidal waves with minimal period 2r form a two-dimensional family which can be
parameterized with the value of the integral I (a quantity related to the amplitude
of the cnoidal wave) and the "position" of the cnoidal wave. The MRE consists of
traveling-wave profiles, but for simplicity, the two-dimensional manifold consisting of
the relative equilibrium solutions--hence the traveling-wave solutions--is also called
the MRE. (Only when this can cause ambiguity, we will distinguish between these
two manifolds by calling the second one the traveling-wave MRE.)

The cnoidal waves are orbitally stable solutions. In [4], this orbital sta.bility
is proved by using that in fact the cnoidal waves are constrained minima of the
Hamiltonian for fixed values of the integral I. Here orbital stability means stability
modulo translations. In other words, the profile of the cnoidal waves is dynamically
stable; its "position" is ignored. This is the strongest kind of stability possible for this
system because a small change in the speed or amplitude can cause a translational
drift. For this reason, in this article, we consider only the profile of the waves and do
not bother much about the "position" of the waves.

For the cnoidal waves, this implies that we are only interested in the one-di-
mensional family of wave profiles. For every fixed value of I 7, we choose the
cnoidal-wave profile that has its maximum at x 0 (this profile is symmetric around
x 0) and denote it by (7). Then the set

_> 0}

is a one-dimensional submanifold of the MRE from which the translations are divided
out. The wave speed of the cnoidal wave with I 7 is denoted by/(/); it is also the
Lagrange multiplier in the Euler-Lagrange equation of the constrained critical-point
problem
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with c(’7) 2--, which follows by integrating the equation from 0 to 2r. The cnoidal
waves can also be found as unconstrained critical points. To see this, for 7 > 0, we
define the modified KdV Hamiltonian

H(u) H(u)- A(/)I(u).

Then for every 7 >_ 0, the cnoidal wave (7) is a critical point of Hr.
The first general method for using the variational characterization of relative

equilibria to draw conclusions about the stability was given in 1985 in [17]. Later,
this method was extended to the energy-momentum method in [28] and [29]. In
[15] and [23], the sufficient conditions for the stability of the relative equilibria were
weakened. In this article, we will extend the use of the variational characterization of
the relative equilibria to draw conclusions about the approximation with the cnoidal
waves in the damped KdV equation.

For c 0, the cnoidal waves are no longer solutions of equation (1) and every
solution decays to the zero state. This follows from the time behavior of the L2-norm
of u (which equals I()):

2r

(3) d--d I(u) (I’(u), 0, H’(u) P(u)) - u dx -2 I(u).

(We use the notation F(u) to denote the variational derivative of a differentiable
functional F(u).) In other words, (3) states that I(u(t)) I(u(O))e-t and that
limt_ I(u(t)) 0, which implies that limt_ u(t) O.

Although a solution never stays in the neighborhood of one specific cnoidal-wave
profile, the full MRE can be useful to approximate the behavior of a solution that
starts near a cnoidal wave. This behavior is indicated by numerical experiments and
analytical approximations; see [16]. A similar behavior can be found (numerically
and experimentally) for the KdV equation with dissipation on an infinite interval.
However, in this case, some problems arise in the derivation of an analytical approxi-
mation since the decay of the mass functional M(u) fu then has to be taken into
account; see [18]-[20].

In this article, we approximate a solution of the damped KdV equation on a
periodic interval by a projection of.the solution on the MRE. An important issue in
this article is the justification of the approximation of a solution with this projection.
We will use a norm in the Sobolev space Hper to derive this justification. The usual
Hper-norm is given by

I ll +  x( ) lex II llg + II xllg,   lor,Hpler
d 0

where II. II0 denotes the Lper-norm. Because we consider only functions with mean
value zero, by the Poincar inequality, the following norm is equivalent to the
norm:

2r

IItll tx(X) 2 dx --IItxll), E Hpler,O,

where Hper,0 is the subspace of Hpler consisting of 2r-periodic functions with mean
value 0. Furthermore, we will often use the following Poincar6 inequalities comparing
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the Lper-norm (respectively, the Ler-norm and the Hpler,0-norm:

(4)

max u(z)l- max u()d _< vlllllo
xe[O,2] xe[o,2]

Here x0 denotes any zero of u(t). (This zero exists because u(t) has mean value zero.)
As we stated before, we are not interested in differences caused by translations.

Therefore, we define (analogously to [3, 4]) translation-invariant distances related to
Hplr,o-norm, denoted by Po and pl, respectively, asthe Lper- and

z () u211, 0, 1.pi(u,u)-- min ll(I)99(tt2)--tt111i-- min II(I)o
[0,e] [0,]

See also Figure 1.

FIG. The translation-invariant distance pi(ul u2) pi(u2, ul). The translations

and (z z I-I1’(,) 1%()() ,1() are such that pi(u ) (1)- 11

To define a projection of a solution u(t), we choose the wave profile on the MRE
with an/-value equal to the/-value of the solution. Next, we define a position for
this wave profile. It is obvious to choose the position such that the pl-distance is as
small as possible.

DEFINITION 1.1. Let u(t) be a solution of the damped KdV equation. Define the
functions /(t) E R and D(t) IR such that

"y(t) I(u(t)),
((t)) ()II1 l((-),-(t/)I1-() ((t)) (G)II, min I1

Finally, we define (t) to be the difference between u(t) and its projection

(t) e ((t))- (-(t))-(t)

The projection of the solution t - u(t) onto the MRE is the curve t z (g(/(t)))(t)
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An important consequence of the choice of as given by Definition 1.1 is that

I111 Pl ((3‘), t). Furthermore, the differential equation for the function 3‘(t) is only
in terms of 3‘ and hence can be solved explicitly (see equation (3))"

/= 2 e 3‘ implying n(t)

The main result of this article can now be formulated.
THEOREM’ 1.2. For every o > O, there exists a K > 0 and art o > 0 such

that any solution u(t) of the damped KdV equation (1) with e <_ o that starts with
3‘(0) <_ 3‘o and, within a distance e of a cnoidal wave, stays in a relative e-neighborhood
of the family of cnoidal waves.

Explicitly, if (0) is such that /(0) <_ o and/91((3‘(0)), t(0)) , theft fo" all
t>O,

(6) Pl (,(3‘(t)), t(t)) _< I-et IIo

In (6), we use that on every compact 3‘-interval [[g(3‘)l10 and II(/)lll are of the
same order. Hence on [0, 3’o], the quotient I1(/110/11(/11 can be estimated by a
constant independent of 3‘.

Remark 1. Notice that the estimate for the initial condition and the estimate for
the time behavior are in the same norm.

Remark 2. From Theorem 1.2., it can be deduced that for every 3‘o > 0, there
exists a/22 and an go such that if-H((0))-H((3‘(0))) _<_ go, then H(u(t)) <_ I(u(t))
for all t. This is sketched in Figure 2.

On the contrary, for the KdV-Burgers equation, i.e., ut -0x ux +u + e u,
we observe a "self-organization" towards the MRE. In an H-I-figure, this means that
every solution decays to zero tangent to the MRE. Hence asymptotically every solution
will be. below the tangent line to the MRE at 0, hence below the line H I. This
behavior is sketched in Figure 3. This self-organization will not occur for the KdV
equation with uniform damping. Hence the situation sketched in Figure 2 is also the
best possible one. See [16] for more details.

Remark 3. In [14], the damped KdV equation with an additional forcing is con-
sidered and the existence of finite-dimensional attractors is investigated. In case there
is no forcing, the attractor is trivial. The result in Theorem 1.2 gives more information
than the existence of an attractor. It describes an approximation for the intermediate
and asymptotic states. The asymptotic result also shows how the solution decays to
the attractor 0.

In the next sections, we will prove Theorem 1.2. The proof uses the variational
principle which underlies the stability result of the cnoidal waves .(see [4]). More
explicit, to prove the stability of the cnoidal waves, we can use the (Lyapunov) func-
tional L(u) H(u)- H(g(I(u))). This functional is also similar to the so-called
amended Hamiltonian or energy-momentumfunctional as used in [28, 29]. To prove
Theorem 1.2, we will analyze the time behavior of the function L(u(t)), where u(t)
is a solution of the damped KdV equation, and derive a Gronwall-type inequality
for L(u(t)). However, it turns out that this inequality is not optimal. To obtain
optimal results in time asymptotics, a shift of the MRE to a neighboring (O(e)) set
has to be performed. The use of such a shift can also be found in [22]. However, in
that article, only equilibria of finite-dimensional perturbed Hamiltonian systems are
investigated on a finite time scale.
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H

FIG. 2. Sketch of the projection of a solution of the uniformly damped KdV equation, which
starts near the MRE, in the H-I-plane.

H H=I

I

FIG. 3. Sketch of the projection of two solutions ul(t) and u2(t) of the KdV-Burgers equation
in the H-I-plane. Note the tangent behavior near zero.

Remark 4. The shift of the MRE gives rise to an interesting question. The family
of cnoidal waves is not invariant for the damped KdV equation. We will see that at
every instance there is a forcing that drives a solution away from the MRE.

Keeping in mind the behavior as sketched in Figure 2, it is very unlikely that
the MRE is stable for fixed values of . In other words, we cannot expect that for
a fixed value of it yields that. for every 5 > 0 there exist a 50 > 0 and a T > 0
such that for every solution u(t) which satisfies Pl (u(0), ((0))) < 50, it holds that
pl (u(t), (7(t))) < 5 for all t _> T.

The question remains as to if there is another manifold near the MRE that is
stable in this sense. A possible candidate could be the shift of the MRE, but we
will see later that it has a disadvantage similar to that of the MRE, although it
approximates the solution up to higher order in . However, that does not help for
fixed values of . Another possibility could be an iterated shift of the MRE. If it exists,
it would give an invariant manifold. However, this question regarding existence is not
obvious to answer.

In [13], ideas similar to those used in this article are exploited to analyze the
relevance of a two-dimensional family of relative equilibria of a finite-dimensionM me-
chanical system with one cyclic coordinate to which uniform friction is added. An
extension to higher-dimensional manifolds of relative equilibria of (finite-dimensional)
Hamiltonian systems with symmetries and their relevance under a dissipative pertur-
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bation was recently established in [12].
2. A first analysis of the damped KdV equation. As seen in 1, the time

behavior of the additional first integral 7(t) = I(u(t)), where u(t) is a solution of the
damped KdV equation, is given by

(t) ((t))= ((0))-’ (0)=.
This implies that every solution converges to 0 and hence to the MRE. By Defini-
tion 1.1 it holds that I((7) + ) I((7)), implying that

() -0 -= ]0 ;
therefore,

and hence

(8) II(t)llo 2v2(0)-.
This implies that the translation-invariant L2-distance between a solution and the
MRE is less than or equal to a constant times the L2-norm of the solution.

As we stated previously, to prove Theorem 1.2, we will make use of a similar
(Lyapunov) functional as featured in the energy-momentum method to determine the
stability of relative equilibria in an unperturbed Hamiltonian system (see [28, 29] or

(for the KdV equation) [4]). To prove the stability of the cnoidal waves with such
a technique, it is essential that the cnoidal wave g(,) with minimal period 27r is
a constrained minimum of the Hamiltonian of the (unperturbed) KdV equation on
the level set with I /. This property is proved in Lemma A.1 in the appendix.
This lemma implies that the following functional acts as a Lyapunov functional for
cnoidal wave in the case of the unperturbed KdV equation.

DEFINITION 2.1. Let u E Hpler,0 Define the functional L(u) on Hper,0 as

(9) L(u) H(u) H(a(7)) H,(u)
with I(u).

Furthermore, define the self-adjoint operator () on Hper as

%() DL(r(,)) DH(r())I -Dx () (),

and let Q(7) be its restriction on Hr,0; hence

D:H(()).t,Q(7) DL((7)).,o
The Euler-Lagrange equation (2), i.e., (gzz + g + g) is constant, the notation

of Definition 1,1, and identity (8) imply that L(u) can be written as
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Define (7) as the subspace of the tangent space to the/-level set that is orthogonal
to the direction of the/-flow in Hper, and define Y(y) to be the restriction to Hper,o

(-y) {y Hpler (y, Xr(fi(’y))) 0 A (y, II((/))) 0},

V(Z {y e Her,0 (y, ZI(())) 0 A (y, I’(())) 0}.

om the minimality of the cnoidal waves, it follows that Q(7) is strictly positive
definite on Y(7) for a fixed value of 7 > 0.

For our purpose, we need a bit stronger property, namely that L is equivalent with
the translation-invariant Her-distance on every Ler,0-compact set, which includes 0.

LEMMA 2.2. For every compact interval with 0 , there exist C c > 0
and a neighborhood c Hpr,0 of the MRE such that for all u with I(u) 6, it
holds that

(10) cp((7),u) L(u) Cp((),u)
with - I(u).

Proof. Let 7 > 0. First, we prove that L is bounded from above. Let u Hpr,0

((7) + ) as in Definition 1.1. Using the Poincar inequalities (4)and write u
and (5), it is easy to calculate that there exists some C (7) > 0 such that

L()__[1 1

1 1 1
_< 11ll2 + I111 Ill + 111111 + 1111 I111o

(11)

__< C1 () 1121
in a neighborhood of the MRE, e.g., if I1111 1. By definition, I111 pl (, ); hence
equation (11) implies that

(12) L(u) Cl()fl( ())

and C1() is bounded if 7 0.
Lemma A.3 in the appendix yields that Q(7) is strictly positive definite on

explicitly,

(Q() y,y) ()llll for all y e

with c () 0 and limw0 c () > 0 gs well.
This inequality implies a lower bound on L. To see this, write a Xz(

b I(), y, where y (). We will show that a and b are of the order if
is small. First, we estimate a. We know that (, Xz(z

(u) (u))) 0; therefore,

I0 (, x,(()())) (, x()) + v(li)
allX() + V(llll)-

Nt w stit , usi tt tt (.)()) () (), by

i0 ((.)()) () (r(), ) + (IIII)
llr()ll + (IIII).
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Now we know that the "largest" part of is in Y(3’), and we can derive a relation
between L(u) and I111 for ]111 small:

This means that there exists a 60 > 0 such that for all u with Pl (, u) < 60 (recall
that ]]112 pl(u, g)),

1
L(t) c1 ()Pl (, t).

To prove equation (10), we use the facts that lim_0 c1(7) 0 and C(7) is
bounded. Hence in every compact interval that includes 0, there exist 0 < c _< C
such that (I0) holds, rl

After these observations about the unperturbed KdV equation, we return to the
damped KdV equation. The time behavior of the difference function (t) gives an
idea about what causes the deviation of solutions of the damped KdV equation of the
MRE. Using Definition I.i, we see that

d (u(t))] (/(t))4 [-,(,)
-0[= + + 2( + )] e( + ) -0(+ ).

To recognize more structure in this equation, we will rewrite it. By using the Euler-
Lagrange equation (27) (in the appendix) and the differential equation for y, it follows
that

4 o[ + + , +] + ( )o(a + ) [za’() a] e
OH’( + ) + (), i)O( + ) + ((’),)

with the so-called residual

(13) R((y), e) -e[2-y’ (7) ]-

The first two terms of the equation for have a Hamiltonian origin. The first term is
the modified KdV Hamiltonian. The second term induces a translation of the wave
profile; hence this term will be irrelevant for our analysis. The third and fourth terms
are the most relevant for our analysis. The third term represents the damping. The
fourth term does not depend on . It is called the residual because it shows the effect
of the damped KdV equation on the MRE, except for some irrelevant influence in the
translation direction Xi(). The residual is an element of Y(/); hence if the residual
is not equal to 0, then a solution that starts on the MRE will soon deviate from it.
This implies that the residual acts like a forcing in the -equation. In other words,
the third and fourth terms show a competition between a dissipation directed towards
the MRE and a forcing away from the MRE.

We have seen that the functional L is equivalent to the H-norm of . Therefore,
we look at the time behavior of this functional to see how fast can grow. Using the
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translation invariance of H and I, it follows immed!ately that L(u) L(t + ). Using
the second expression in (9) and the equation for , it follows that

d___ L(u(t)) J[I(fi / ) I(fi)] / (H7’( / c)

_
/ R(, ) ).

dt

The first term is zero because I( + ) I(). Note that H( + ) Q()- ;
hence (H’( +.),-) -2L(u)+ (,). We again use the Euler-Lagrange
equation to rewrit the inner product with (R(, )- ). This yields

dt
(u(t)) -2eL(y, ) + fi2 + fi2 + 3.

Note that in expression (14), for the time behavior of L, the first term is dissipative,
the second is a forcing-like component, and the last two terms are small compared to
the first two terms (if and are small).

With this expression for L(u(t)), we derive a preliminary estimate for the func-
tional L.

PROPOSITION 2.3. For every > O, there exist a > 0 and a constant Ko, both
depending on (0), such that

() 4L((t)) o [((0))+ (0)]
on a ](t) < .
Proof. For the last three terms in equation (14), it holds that

IIll 2 2wllll,

3 IIllJ0 2 lllllllll <

In these estimates, we use that IIII0 2 nd t Poinca% inequalities (4) and
().

To be able to switch from IIlll to the functional L, w will us Lemma 2.2. Let
a be such ha the equivalence relation (10) hods for a IIll < , Substituting
the relations above into (14) and using (10) gives the following estimate for the time
behavior of L:

o]
at 3c J

Define N(t) et; then this inequality implies that N(t) 0 or

lO]
3c N+-

Applying GronwMl’s lemma to this equation gives

--(o) o x(o) + (1(t) o(O) + eo



1434 G. DERKS AND E. VAN GROESEN

0,/-v(0) ].
The estimate of Proposition 2.3 only provides information about the approxima-

tion on a finite time scale. Even if we start on the MRE, hence with {{(0){{1 0, after
some time the norm of the right-hand side of estimate (15) is of order v instead of
order v" This effect is induced by the residual, which after an integration becomes
of order 1 instead of order . In other words, we need a smaller residual. The present
residual is induced by the projection on the MRE, which approximates the solution in
zeroth order. If we have a better approximation than this projection, we can expect a
smaller residual. In the next section, we will derive such a better approximation and
prove Theorem 1.2 by using a functional related to this better approximation.

3. Justification of the approximation. The residual R((3‘/, s> measures how
well the curve (3‘(t)) obeys the damped KdV equation. The function t - (3‘(t))
is a zeroth-order approximation of the damped KdV equation and therefore gives a
residual of order . It can be expected that the residual for a first-order approximation
of the damped KdV equation is smaller, of order s2. Using the knowledge that the
L2-norm I(u) is 3‘(0)e-et, which is a slow time behavior, we try to find a better
approximation of the form

+

Substitution of this expression in the dynamical system (1) gives

Ox[H( t_ 1) -/()I( Jr- 1)] [( + 1) 23‘(’ (3‘) Jr- (3‘, ))1 O.

After taking first-order terms in e of this equation, it remains (up to order-e terms)

(16)

(The operator 0-1 is defined to act on the space Hper,0 and a(e) is a constant which
is introduced by the integration.) If we can find a solution (g1(3‘, e), X(e), a(e)) of
equation (16) (with gl(3‘,e) g(3‘)+ eOl(3‘,e)), then we expect that the residual
in gl (3‘, e) is of order e2, an improvement compared to the residual in g(3‘), which is
of order e.

Another way to interpret the definition of the function 1(3‘,) is by noticing
that gl (3’, e) is a constrained critical point of a new Hamiltonian

Hnew(U, 3‘, e) H(u)- (0:-1_((3‘), ), t)

on the level set of I(u) 3‘. Hence 1 is a kind of new relative equilibrium. However,
the new Hamiltonian Hnw is not translation invariant; hence neither can we find a
two-parameter family of constrained critical points nor is (I)a(e) (gl) a solution of the
new Hamiltonian system. Because we ignore all shifts in the solution, a curve of new
relative equilibria gl (3‘, e) is sufficient to give a better approximation for a solution of
the damped KdV equation.

Remark 5. It is possible to define a new translation-invariant Hamiltonian which
possesses a two-dimensional family of relative equilibria that give
Analogously to the definition of the translation-invariant distance, we define this new
Hamiltonian as

I/rnw(U, 3‘, ) H(u) (0-1_/(, ), (I)(u) (t))
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with the functional Hper,0 [0, 27v) such that

[0,e)

If the minimum in (17) is attained at more than one value [0, 2), then (u) is
the smallest one. Now H,w is a translation-invariant functional and its derivative
with respect to u is

Hw 7 (u) $()(0R( e))

Hence the constrained critical points of nw on the level set I s,tisfy

0 H’() _()

Because () 0, the approximation 1 gives rise to a residual of order 2. See [10]
for more details.

First, we show that there indeed exists
in the neighborhood of 0 by applying the implicit-function theorem to Hew,
which is a perturbation of the original Hmiltonian H. To be able to pply the
implicit-function theorem, it is important that 0R((7),) is orthogonal to the
kernel of Q(7) nd hence orthogonal to X(). This will be shown in the proof of the
next lemma. By tking the inner product with X(I) in equation (16), it follows
that is orthogonl to R((7), ).

LEMMA 3.1. For every > 0 there exists an o() and a unique curve

of minimal points of the Hamiltonian Hw on the level set I in Hper,0. Explicitly,
for every o(), there exist unique Lagrange multipliers (, ) and (, ) such
that

0---- Hnew(?l (0/, c), 0’, )-/1 (0/, )1’(?1(0’, ))
0

Furthermore, there exists a K(7) > 0 such that for all ]] 0(7), it holds that

Finally, lim0 K(7 and lims0 s0(7) exist and s0(0) > 0.
Proof. Let 7 > 0. As we stated previously, we use the implicit-function theorem

(see, e.g., [9]) to prove this lemma. First, we reformulate the problem. Instead of
looking for a 2-periodic solution of (18) with mean value, it is more convenient to
add the mean-value zero condition to the equations nd consider the problem in the
space of all 2-periodic functions. Hence we look for a 2-periodic solution of

(19) 0 I(u) -7 0
0

where 1 is the function that equMs 1 for all x [0, 2] and M(u) -f0 u. Fore=0
(the unperturbed cse), this problem does not have a unique solution in Hr. We
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have seen that a one-dimensional manifold of solutions can be formed: all translates
of the cnoidal wave g(ff), hence {((g(/)), (/), a(7)) E [0, 2)}. Hence this will
cause a problem in the application of the implicit-function theorem to these equations
in Hper To avoid this problem, we will use the fact that I is orthogonal to R(, c).

We distinguish two cases.
1. If (R(g, c), gx)) 0, then we add the equation

(20) 0- (1/(, ), Oxn)--

to our set of equations (19), and we add the term/Xi(n) with the extra unknown
to the first equation. Explicitly, for e _> 0, we introduce the functions F and F0 on

Hpler x 1 x It{ I:

H’(u) AI’(u) 1 Xi(u) olR((7), ) k
Z;

and Fo(u, ,,k, o, ) F(n, k, c, ; O) for all n e Hpler and/, o,/ e ]t: A solution of the
equation

F(u, ), oz, 13; ) 0

gives a constrained critical point of the new Hamiltonian Hnew on level sets of I.
Indeed, take the inner product of Xx(n) with the first equation in F 0; then it
follows that/3 0. In other words, the first equation in F 0 is the Euler-Lagrange
equation for the critical-point problem. Furthermore, if c 0, the critical-point
problem for the KdV equation reappears; hence F0(g(/), (7), c(7), 0) 0 and this
solution is unique for e 0 in Hplcr x IR x R x R thanks to the last equation.

The function F0 satisfies the following properties:
(i) F0 is continuously differentiable. Indeed, it is a straightforward calculation

to see that for all (n,A,o,/), (, , &,)) Hpler x R x IR IR,

n

Fo(u, , c, ) Fo(, , &, )) + DFo(, i & ))

where G(u, t, ,, iX) (u g)2 + (/ )(u t). This implies that

Hence F0 is continuously differentiable.
(ii) DF0(g(7), A(7), c(7), 0) is injective and surjective. We prove this property

in Lemma A.5 in the appendix.
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(iii) DF0((7), A(7),a(7), 0)-l[F(u, A, a, /; e) F0(u,A,a,)] is Lipschitz con-
tinuous. This last property follows from the facts that F and F0 are Lipschitz continu-
ous and DFo(g(7), A(7), a(7), 0)- is bounded. This last observation is a consequence
of the minimality of the cnoidal waves and hence of Lemma 2.2.

With (i)-(iii), all conditions for the application of the implicit-function theorem
to the equation F 0 are satisfied.

2. If (R(g,e),gx)) 0, then we consider the equations (19) on a subspace
of Hper, namely

Also, in a way similar to case 1, we can prove that all conditions for the application
of the implicit-function theorem to equation (19) are satisfied.

The application of the implicit-function theorem implies that there exists a neigh2
borhood U () C He x x around the relative equilibrium (g(7), (7), a(7)), a

positive number 0(), and a curve of points ((l(,),A(,),a(,)))llGo(,)
in () such that

(21) 0 I(g) 7,

o

(22)

Furthermore, it follows also that

[A1(7,)- (/)1- 0),
e) 0(11o2  ( , e) Io).

From the definition of the residual R(g, e) (see (13)) and by using properties of elliptic
functions (see [8]), it follows that there is a constant K2 (independent of 7) such that

e)ll0 _<
We must still show that 1 (7, E) is a constrained minimum on the level set with

I 7. Consider the linearization of H’(u) AlI’(u) O-lR(g, e) around gl:

01(7, a) D2H(5I) AID2I(,) Q(7) (1 --/.)Id 2(, ).

Using the fact that Q(7) is strictly positiVe definite on Y(7) and (22), we will show
that Q1(7)is strictly positive definite on Yl(7) {V Hper (r], X(I)) 0, (r], I’(1))
0}.

Let E Y1(7). Then we have

2_> 3Kll021 3( , ) 011 ll0.
From the minimality of the cnoidal waves, it follows that there exists a c(7) such that
(Q(7),) -> c(7)I[II2 for all E Y(7). We will use this to prove that (Q(7)r, r) is
strictly positive. Write

rl aX(fz) + hi’ () + y
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with y E Y(7). Then we have

Ibl I(,,I’())1 10 + (,, (- ,))1

This implies that there exists some/ > 0 such that

--< K]Io%-1/i3(5, )11o11 o.

(7, ), ) /(7, ) 0Htnew(l, 7, ) -/(, ) P(l)
--2[I(7, 6") t(7)]- ff[l ]- IXI(I).

With 11(7) l (7, )ll O(ll()llo), we immediately see that IIR(I (7, ), )ll

Wih he new I-Iamilonian nd he new minima, we csn define functional o
"measure" the distance to the new minima:

Lnew(U, ) Hnew (u, 7, ) Hnew(l (7, ), 7, )

with 7 I(u). The functional Lnew is equivalent to the translation-invariant H1-

distance between u and gl (7, ) with 7 I(u).
LEMMA 3.2. For every 7 > 0, there exist C(7)

_
c(7) > 0, 5(7) > 0, and

Co(7) > O, such that for all e with lel
_

co(7) and for all 1 with (/,Xi(gl + /)) 0
and I(tl (7) + /) 7, it holds that

() I11 < Lnew(21 (7, ) -[- f/, ) -< c()llll

(Q(’), ) (Q(z), ) + (Q(z)v, v)
2

2

1
()IIII0

for e suciently small and 7 bounded. Hence

1

1

for sucienly smll. Wih Lemm A.4, his implies ha

(23) (1 (), ) ()II

to om ,() > 0 with a, (0) > 0. W c ooda that , () i cotia
minimum of the new Hmiltonian Hnew.

Finally, we consider the problem of the uniformness in 7. The procedure of the
implicit-function theorem cn be continued until the invertibility of the linearization
fails. Because the lower bound on (7) is iso strictly positive in the limit for 7 0,
there is a uniform (in 7) neighborhood around the MRE near 0 for which a unique
solution of (18) exists. In other words, the limit for 0 of 0(7) nd K() exist
and o(0) 0. U

Remark 6. At the new relative equilibrium (7, ), the adapted residual is of or-
der II()II0. deed,
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s ,long s I111
For every compact 7-interval , there exist C c > O, 5 > O, and o > 0 such

that for all with o, for all , and for all with (,XI(5I + )) 0 and
I(5 (7) + ) 7, it holds that

ClIII --< Lnew(l (if, ) + , ) --< Cll 21
as long as [[lll ,5.

Pro@ In the proof of Lemma 3.1, it is shown that 1(, g) DLnew(12 (, e), e)
is bounded from below on () { L (,X(g)) 0, (,XI()) 0} (see
equation (23)) and that this lower bound remains strictly positive if y 0. As in the
proof of Lemma 2.2, we can show that (23) implies that there is some c(7) > 0 such
that

Lnew(1 (, ) + , ) _> c()I11121

with c(0) > 0.
For the upper bounds, we rewrite Lw:

Lnw(l (Z, ) + , ) Hnw((Z) + V, , ) al (Z, )Z( (Z) + )
[Hnw(el (), 7, e) al (, e)I(el ())]

(HLw(())- (,)z’(()), )
1 1+ (#1(, ), ) 5 (’

It is a straightforward calculation to derive the following estimates for [[[[1 :
(#1(,), < IIIIg +( + Ial)llllg < c1(}

(24)

Note that C1 () is bounded from above if 7 --* 0 and that the second estimate in (24)
does not depend on 7 at all. Substitution of the estimates in (24) gives the upper
bounds in the lemma.

With Lnew, we investigate the time behavior of the distance between a solu-
tion u(t) of the damped KdV equation and the new relative equilibrium 1 (7(t), e).
For a solution of the damped KdV equation, we define

or, equivalently,

I7](t) (I)(t) (u(t)) l(’(t), 6)

Iu(t) (I)(t) (l(’y(t), 6 + 7](t))

with (t) such that .llr(t)ll pl(u(t), (G(t)), e)). (This implies the property that
(7], Xx(gl + 7])) 0.) With this definition, the dynamical equation for 7] is

Next, we give an estimate for the growth of L.ew which is essentially better than
the one we derived for L in the previous section.
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PROPOSITION 3.3. For every 7(0), there exists a constant K (depending on 7(0))
such that for all t >_ 0 and I <_ e0, it holds that

Lnew(U(t),a)

_
KLnew(u(O), )e-2a + Kae

as long as II(t)lll <_ 5 (5 is given by Lemma 3.2).
Proof. To prove this proposition, we consider the time derivative of Lnew"

(25) --- [Lnew(U(t), )] (Hnew(l / r],, ) ,11t(1 / 7) 1 /
dt

+ Nnow( +,,//-

(I) / (II).

We will elaborate the terms (I) and (II) separately.

(26)

In the same way as we showed that II(t)ll0 _< 2v/2(t) (se (s)), it can be seen

that II(t)ll0 _< 2V/2-y(t). Just as in the proof of Proposition 2.3, this implies that
2r 3 _< 8vll,ll o(=+).
Frthrmo, , (,) (, ) ; hnc I11 (, )11o 11*

11o + IIAII0. In this estimate, we use the explicit expression for the cnoidl waves in
terms of the Jacobi elliptic functions to conclude that 0 2s7’(7) ().

Using these estimates, we see that the second and third terms in (26) re bounded
by K4llll (K4 is a constant independent of 7 nd of ). We will give more
ttention to the estimate of the lst term because it will improve the estimate of
Proposition 2.3. By definition,

( [1
Furthermore (see Lemma A.2(ii) in the appendix),

/V(,’)/) / (- I)[/V(")/)/ 21(")/)].

Hence
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By using the facts that 2(?,1) -I111 (this follows from I(1 + 7) I(l)),
7/V(ff) O(v/-) and 11(7) 1 (if, )]]1 ((ff%/) (see Lemma 3.1), it follows that
there exist constants K5 and K6 such that

(U, !()[1 R(,)])<2K5IIUI’l +K6’IUI’2

Next, we estimate the second term of equation (25). Using the definitions of Hnew
and R(, ), it follows that

(II) =, (,01 0
(2’() +())

(Again, we use the explicit expression for in terms of the Jacobi elliptic functions.)
Finally, using the fact that 2

_
Lnw/C (for II-II1 < 5), we can estimate Lnwd

by

ALnw < -eL.w + K0Lnw +KoL.wdt

for some constant Ko. Integrating this equation and applying Gronwall’s lemma, we
have that there exists some constant K such that

Lnew(U(t), ) KLnew(7(0), U(0), )e-2et + Kae-2et.

The proof of Theorem 1.2 is a corollary of Proposition 3.3.
Proof of Theorem 1.2. om Lemmas 3.2 and 3.3 and the fact that I[v(t)]]

PI ((t), 1 ((t)), )), it follows that

p(u(t),l(7(t)),)) Kp(u(O),5(7(O)),a))e-t+ Kae-t

if II(0)Ili is sufficiently small.
Now we use the fact that 151(7, a)- 5(7)1 E llll0 for som constant (see

Lemma 3.1), which yields

p(u(t),5((t))) 5 pl(u(t),5l((t)),a)) + I]5((t),a)-

K, (.(0), 1((0)), ))-’ + R-’(1 +
K(.(0), ((0)))-’ R-’(1 + e(0))
+ Kllx((0), ) ((0))111-K(.(0), ((0)))-’ + R-’

for some constant K. This completes the proof of Theorem 1.2.

Appendix. Some properties of the unperturbed KdV equation and
cnoida] waves. As indicated in [4], the cnoidal waves are constrained minima of
the Hamiltonian on level sets of I.

LEMMA A.1. Let 7 > O. For all 2-periodic functions u with mean value zero
that satisfy I(u) 7, it holds that

H(u) >_ H(/(7)).
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If H(u) H((7)) and I(u) 7, then u is a cnoidal wave with 27r as a minimal
period. Explicitly, we have

(I(u) 7 A H(u) H((7))) => em[u ((7))1.
Furthermore, all cnoidal waves t(’,/) satisfy the Euler-Lagrange equation

(27) Ox(H’(u) kI’(u)) Ox(,= + + A) 0,

and the cnoidal wave () is an unconstrained minimum of the modified KdV Hamil-
toan H() H()- ()().

Proof. Let 7 > 0. We start by proving that the minimum of H on the level
set I 7 exists. For this proof, we show that H is a weakly lower semicontinuous

(w.l.s.c.) functional that is coercive on the level set I 7.
(i) First, we show coerciveness. For all u e Hpr,0 with I(u) , it holds that

(28) u3(x)dx IItl u2(x)dx lu1112

(we used the Poincar6 inequalities (4) and (5)). This gives

12 2 [i ]
()d

1
() (-) - () k If-Ill IIII1- a j.
The last expression grows to infinity for ][[[i .

(ii) Next, we prove weak lower semicontinuity. The norm is a w.l.s.c, functional;
p2 2hence a ()d [[1 is w.l.s.c. The term f3()d is a functional that is even

weakly continuous. To prove this, we use the fact that Hper,0 is embedded in C
and the embedding operator is strongly continuous. (See [30, p. 82].) Hence if the
sequence (un)nN converges weakly to u in Hper,0, then this sequence is uniformly
convergent to . This implies that

(a0) lim n

which shows that the functional fa(z)dz is weakly continuous. In the same way,

it is proved that the set { Hpr,01 f()e t is weakly closed.
A coercive w.l.s.c, functional defined on a (sequentially) weakly closed set attains

its infimum on this set. (See [6, 6.1] and [al, Chap. aS].) This completes the proof
that H has a minimum on the level set with I .
om variational calculus, it follows that this minimum satisfies the Euler-Lagrange

equation

(al) g’() aI’()

for some Lagrange multipliers and . Using properties of elliptic functions (see, e.g.,
[8] or [10]), it follows that the cnoidal waves with minimal period are unique solutions
of such a equation with minimal value of H.

In several places, we use properties of the operators Q() and Q() and the cnoidal
waves. We list some important ones.

LMMa A.2. The operators Q() and () ad the coidal waves satisf the

followin9 properties:
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(i) Q(3’)x(3’) (3’)x(3’) 0;
(ii) Q(3’)’ (3’) Q(3’)’ (3’) =/V(3’)(3’) + c’ (3’)1 and a’ (3") -;
(iii) ((3’)1 -2-/\(3’)1;
(iv) M(3’) < 0;
(v) range [((3’)] {u e Hper (XI(Ct), u) 0}.

Proof. (i) The translation invariance of both H and I implies that ,(3")XI(gt) 0;
hence Q(3’)(3’)- 0. Also, because x E Hper,0, Q(3")tx(3") O.

(ii) Differentiation of the Euler-Lagrange equation for the cnoidal waves, i.e.,

with respect to 3’ shows statement (ii) of the lemma. Integration of this Euler-
Lagrange equation yields a(3’) a

(iii) The equation follows immediately from the definition of Q(3’).
(iv) The proof of this property can be found in [11].
(v) Q(3’) is a self-adjoint operator, and in Lemma A.3 it is proved that Xx(g) is

the only eigenvector with eigenvalue 0.
The cnoidal waves are minima of the modified KdV Hamiltonian Hr. This implies

that Q(3’) is positive definite on Y(3’). In Lemma A.3, we show that a slightly stronger
property holds.

LEMMA A.3. The operator Q(3") is strictly positive definite on 3f(3"). To be
explicit, there is some cl (3") > 0 such that

(32) (Q(3’)y, y) > c (3’)IlYlI for all y

and lim_.o c (3’) > 0.
Proof. To prove this boundedness from below, we consider the eigenvalues of Q(3’).

These eigenvalues form a monotonically nondecreasing sequence in N:

(33) ,k0 __< /1 -- /2 __<’’" with lim An c.

For the smallest eigenvalue A0, it holds that

(34) ,k0 min (Q(3’), )1 e Hpler,0,

This number is negative because

(aa) < 0.

The last inequality is based on the fact that I(2) I(-5) and H(5) < H(-5)
because of the minimality of H(5) on the level set with I 3’. This implies that

2 2rf:3 < 1/2 f:3; in Other WOrds’ gf0 3<0"3
The translation invariance of H and I implies that Q(3’)x 0; hence Q(3’) has

at least one eigenvalue which equals zero for all 3’ > 0.
At 3’ 0, the operator Q(0) is equal to -(Dx + Id). The eigenvalues of this

operator on Hpler,0 are (k2- I), k N. All these eigenvalues are double. The continuity
of Q(3’) in 3’ implies that for 3’ > 0 in a neighborhood of 0, it holds that

(36) Ao(3’) < 0, 1 (3’)= 0, 2(3’) > 0.
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FIG. 4. Sketch of the behavior of the eigenvalues )o(/), )1 (), and

See also Figure 4.
We prove 2(7) > 0 for all 7 _> 0 by using a contradiction argument and ((7), the

extension of Q() on Hper. Assume that there is some /0 > 0 such that 2(0) 0.

Then the operator Q(7) has a double eigenvalue zero. The differential equation for
the eigenvalues and 2r-periodic eigenvectors of Q(/) is called Lam’s equation; see,
e.g., [24]. It follows from Sturm-Liouville theory that zero is the second or the third
eigenvalue of this equation because fix is an eigenvector at zero. In [2], it is proved that
the first three eigenvalues of this equation are single. Hence zero has to be a single
eigenvalue of ((). This contradicts our assumption that 2(0) 0 and implies that
2(0) > 0 for all /0 _> 0. We have seen that 2(0) 3; hence on every compact
7-interval, there is a positive lower bound for

Using ideas similar to those of [23], this behavior of the eigenvalues of Q(7) implies
that there is a c0(/) > 0 such that

(37)
2r

2[y2(x)- (2(x)- ,)y2(x)]dx (Q(,’/)y, y) >_ co()llyl]o

for all y E Y(/). In Lemma A.4, we will prove that (37) implies that

for all y

o(.) [:]with Cl (7) co (,)_]_1125(,)-t-)(,)11
In the proof of Lemma A.3, we used the fact that if (Q(’)y, y) is bounded from

below in the L2-norm for all y Y(’), then it is bounded from below in the Hi-norm
as well. This property can be concluded immediately from the following lemma.

LEMMA A.4. Let p(x) be a continuous function on [-r, r]. Iffor some Hper,0
it holds that

(38)
2r

2[x(x) + p(x)2(x)]dx >_ cll ll ,

then

2r

(39) [2 (x) + p(x)2 (x)]dx >_ cl I1 11 
Cwith c c+ll,ll"
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Proof. Assume that (38) holds for some E Hper,0. By rewriting the integral in
equation (38), we see that

(40)

+   (x)dx +   x(x)dx

2

+

Now we Use inequality (38); it follows that

The last subject in this appendix is the operator DFo((@,/(7), a(/), 0) as de-
fined in the proof of Lemma 3.1.

LEMMA A.5. The operator DFo((/),A(),a(y),0) is injective and surjective,

for all 7 > O.
Proof. Let - > 0. Define Ao on He R R R as

(7) -(7) -1 -x(7)/Ao DFo((7) A(7) a(7), 0) (7) 0 0 0
1 0 0 0

((), ) 0 0 0

(i) First, we prove that Ao is an injective map. Assume that Ao(v, l, a, b) 0
for some (v, l, a, b) E Hper R ; hence

(42) 0 ((7)v -1(7) al bSx(7),
(43) 0 ((7), v),
(44) 0 (1, v),
(45) 0 (R((7), c), v).

Taking the inner product of (47) with gx yields bll  ll 0 and hence b 0. Write v

Clg’(7) + c2gx + y, with y (7). This decomposition is unique because (g’(-y), g)
d (V, ) 0.

2 dllll 1 and hence g’(7) 3)(/) From (43) it follows that cl

Taking the inner product of (42) with v shows that 0 (0(7)v, v) ((7)y, y).
Hence y 0 because )(7) is strictly positive definite on (7). From (45), it follows
that 0 c2(R(g(7), c), gx). Because of the assumption that (R(g(7), e), gx) =/= 0, this
implies that c2 0 and hence v 0. Finally, substituting v 0 .and b 0 in (42)
yields lg(’y) + al 0. Because g(/) and 1 are linearly independent, this implies that
=0 and a=0.
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(ii) Next, we show that Ao is surjective. Assume that A0(v, l, a, b) (w, m, c, d)
for some (v, l, a, b), (w, m, c, d) E Hpler ] ; hence

(46) w Q(7)v ls(7) al b x(7),
(47)
(48) c (1, v),
(49) d s), v).

Taking the inner product of (46) with 2x yields bllftxll (W, gx). This defines b
because IIxll0 o. Tke the inner product of (46) with 1 and use Lemma A.2(iii),
which yields 2ra -(w, 1)- 2m- Ac. This defines a. Take the inner product
of (46) with g’(/) and use Lemma A.2(ii), which yields -(w, ft’(/))-b(tx, g’()) +
A’(7)m+a’(7)c. This defines 1. From Lemma A.2(v), it follows that Q(3’) is invertible
on {gx }+/-; hence

v (()-1 [w + lt + al + bt] + fftx.
The value of f follows from (49). [:1
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A REFINED WIENER-LEVINSON METHOD IN FREQUENCY
ANALYSIS*

K. PANt

Abstract. This paper is concerned with the problem of determining unknown frequencies
wl,..., wx, using the first N observed values of a discrete-time signal {x(rn)}m=0Y- arising from a
continuous waveform that is the superposition of a finite number of sinusoidal waves with well-
defined frequencies wj, j 1,2,...,I. In [K. Pan and E. B. Saff, J. Approx. Theory, 71 (1992),
pp. 239-251] (see also [W. B. Jones, O. Njstad, W. J. Thron, and H. Waadeland, J. Comput.
Appl. Math., 46 (1993), pp. 217-228]), we proved that unknown frequencies wj, j 1,2,... ,I, in a
periodic discrete-time signal can be determined by zeros of Szeg5 polynomials with respect to some
distribution function by using the first N samples with a rate of convergence of 1IN. We introduce
a refined way to obtain a rate of convergence of 1/NP by using about pN samples of the signals,
where p is any given positive integer.

Key words, frequency analysis, orthogonal polynomials

AMS subject classifications. 33C45, 40A15, 41A21

1. Introduction. We denote a doubly infinite sequence x {x(rn)}_ of real
numbers as a signal. We consider signals of the form

I

(1.1) x(m) jeijm, x(O) # O,
j=--I

where

(1.2) s0 0, O_j j, _j --j, 0 0 < 1 < < I < .
The problem of determining the frequencies j from the first N samples {x(m) N-

has important applications to science and engineering. Recently, a method for solving
this problem was introduced by Jones, Njstad, and Saff based upon the techniques
of Wiener and Levinson. The starting points for this method ae the autocorrelation
coefficients

N-l-k

m=0

They form a positive definite Hermitian sequence (cf. [JNS]); that is,

>0,

We consider the monic Szeg5 polynomials ,g(Z), n 1, as follows,

:=
(N)
n-1

--n+l

(N) (N) tN1)n--1 P’n--2

1 z zn

Received by the editors September 7, 1994; accepted for publication (in revised form) April 14,
1995.
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The following conjecture on the asymptotics of zeros of ,N(Z) was introduced
in [JNS].

CONJECTURE (see [JNS]). As n oc and N oc, the 2I + L zeros of Cn,N(Z)
of largest modulus approach the point e, j +1, +2,..., =kI, and also 1 if L 1.
Here L l if ao > O and L O if ao O.

This conjecture has recently been verified by the results of [PSI and [JNTW] for
n fixed, n _> 2I + L, and g oc. In [PSI (see also [JNTW]), we proved that the
rate of convergence is O(1/N) for n 2I + L. That is, let ON,j,n denote the zero of
Cn,N(Z) that is, closest to ej ;then ION,j,n --eiwj I"- (9(l/N) as N --+ oc and 1IN is
the best possible. Thus, for N large enough, those zeros of ,y(Z) can be used to
approximate the unknown frequencies.

From numerical experiments (cf. [JNS]), we can see that it may take 1000 samples
to get only two significant digits. We want to find some alternative ways to improve
this method.

In this paper, we introduce a new idea to approximate the unknown frequencies
by creating a "window" to compute the autocorrelation coefficients. This method will
give us an asymptotic rate of convergence of 1INp by using about pN samples of x
for any positive integer p _> 1.

The outline of the paper is as follows. In 2, we state our main results, and the
proofs of these results are given in 3. The numerical results can be found in 4.

2. Main theorems. For convenience we let/y e, j -I,..., I. Set

I

-I

Then the sequence {#k}_ is a positive .(2I + L)-definite hermitian sequence (cf.
[PSI). This means that

b > 0 for 0 _< n _< 21 + L- 1, b2I+L 0,

where

b det(#i_j).

For any integers N > 0 and p _> 1, we define a(N, p, k), k 0,...,pN, as follows:

pN

(1 + R +... + RN)p Ea(N’p’k)Rk"
k-----0

Also, we define

pN

,(N,p) E a(N, p, k)x(k)x(k + m), ,(_Np) ,(N,p),
k=O

m 0, 1, 2,

Although we cannot prove that {(mN’p) } is a positive definite hermitian sequence, we
can prove the following.

THEOREM 2.1. For N oc, we have

C(nN’p) := det(.(N,p) n
i-j >0, n 0,1 21+L-1i,j--0
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Furthermore, we have

(1)1 c(N’p) bn + (9
(N + 1)p(n+l)

n 0, 1,..., 2I + L- 1.

Next, set

)2I+L,N,p(Z) c(N,p)
2I+L-1

l]
N p

l]N’p)

l.(N,p)
(2ITn)-i

1

l]N,p) .(N,p)
t/_(2i+L)+

r(N,v) u(N,v)(2I+L)-2

Z Z2IWL

THEOREM 2.2 For any integer p > 1, we have

I

lim 2+n,N,p(Z) :+L(Z)"= (Z- 1)L E(Z- j)(Z- _j)
N---*cx

j=l

zEC.

The convergence is uniform on compact subsets of C. More precisely, we have for each
compact set K C C,

A

where A is a constant that depends on K.
COROLLARY 2.3. For each N large, let [N,j,p denote the zero of )2I+L,N,p(Z)

that is closest to j. Then for j +/-1, +/-2,..., +/-I and j 0 if L 1,

Remark 1. The rate of convergence in the corollary is the best possible. This can
be seen from the following example for the case when s0 0.

Let

:= 2

where/31 i, and 2(z) z2 + 1. On computing the moments l](kN’p) and using the
determinant representation for the orthogonal polynomial 2,N,p(Z), we find

)2,N,p(Z) Z
2 %- 1 for N even

and

1
2,N,p(Z) Z

2 %- 1%- for N odd.

Thus the zeros of 2,N,p(Z) approach +/-i with exact rate 1/Np.
Remark 2. From this example, we can see that the zeros of 2I+i,N,p(Z) do not

lie in Izl < 1 since {u(N’p) } is not a positive definite hermitian sequence.
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3. Proofs of theorems. Before we give the proof of Theorem 2.1, we need the
following lemma.

LEMMA 3.1. For N -- oc we have

(1)(N+ 1)P
m 0, :t:1,

Proof. Notice that

pN pN I I

u’P) E a(N, p, k)x(k)x(k + m) E a(g, p, k) E aj E tpt

k:0 k:0 j:-I l:-I

I pN

j,1-----I k--0

I pN pN

j I k--0 j-71 k=0

E laJl2-(N + 1)P + EaJt/t 1
j=--I j=/=l

Thus we have

(N+I)P :#+0 -Proof of Theorem 2.1. It follows from Lemma 3.1.

Proof of Theorem 2.2. From Lemma 3.1, we have

c(N,p)
2I+L-1

+1

t/(N,p) (N,p) l](__Nl,P)(2I-t-L)- ’(2I+L)-2

1 z z2I+L

b.I+L-1 + O(1/NP)

PO P--1

#1 #0

#(2i+L)-I #(2I+L)-2

1 Z

#-(2I+L)

#-(2I+L)+l

#-1

Z2I+L

2I+L(Z) + O(1/NP),
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where O(1/Np) is uniform in z on any compact subset of C. Here we use the fact that
(see [PSI)

b2I+L-1

P0 P-1

#1 # #-(2I+L)+l

#(2I+g)--i #(2I+L)-2 -1

1 z z2I+L

This completes the proof of Theorem 2.2. []

Proof of Corollary 2.3. From the proof of Theorem 2.2, we obtain that

2X+L,N,p(j) O(1/NP), j +1,..., +I and j 0 if L 1.

As previously remarked, N,j,p -- j. Thus for N --+ oc, we have

O(1/NP), N oc,

for j 4.1,...,4-1 and j 0 if L 1. rl

4. Numerical results. We can use Levinson’s algorithm to compute )2I+L,N,p(Z).
N,p) }N,p) (N,p) we compute 50, E0, 61, El, 52I+L E2I+LAfter we find ,"’,"2X+L,

successively Initially, set

N,P)ll](oN,P 0(1) (1)5o 1, Eo l/(ON’p), 1 =--r’ q --51, ql 1.

Then for k 2, 3,..., 2I + L, compute

k-1
(k-1) l/(kN,P)Ek-1 E qJ -l-j,

j=O

k-1 .(k-1), (N,p)Ej=O /j ’j+l

Ek-
k) : _(k-l) (k-l)

Vktlk-1 nt- qj-1 j 1,2,...,k- 1,

q(kk) 1, q(ok)=

Finally,

2I+L
(k) (N,p)Ek qj l]2I+L--j"

j=0

X-2Int-L ..(2I-t-L)zjThen )2I+g,N,p(Z) Z-.j=0 t/j

Example 1. (See Table 1.)

x(m) --/_rn -t-/3? 2 cos(mTi-/7), 1 eir/7 0.9009688680 + 0.4338837393i.

N,l,p the zero of )2,N,p(Z) that is closest to/31.
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N=10

N= 100

TABLE 1

N,l,p IN,l,p l
0.6812315316 / 0.4115244315i

0.8056936270 + 0.4281280070i
0.8897385565 + 0.4337942395i
0.9035357004 + 0.4338789879i

0.9022590749 + 0.4338825418i

0.8837853613 + 0.4336756199i

0.9003845124 + 0.4338834935i
0.9009557144 + 0.4338837362i
0.9009686365 + 0.4338837423i
0.9009688896 + 0.4338837430i

0.22087198933
0.095448933

0.11230668133
0.00256683679
0.00129020745

0.01718476698

0.0005843556517
0.00001315360037

0.2315194376 10-6

0.21914607 10-7

N 100

N 500

TABLE 2

3 0.0002508
4 0.0001524

2 0.000409366
3 0.000010432

0.001165689
0.000173923

0.0168823
0.0001343

Remark 3. We can see from Example 1 that we need only 10 samples to get two
significant digits by taking p 5.

Example 2. (See Table 2.)

x(rn) 4cos(m/4)+ 2 cos(rn/7),

/1 eir/4 0.7071067810 + 07071067810i,

./2 ei/7 0.9009688680 + 0.4338837393i,

N,,p := the zero of C4,N,p(Z) that is closest to 1,

N,2,p := the zero of 4,N,p(Z) that is closest to/2.

Acknowledgment. The author thanks the referee for valuable remarks and sug-
gestions concerning this research.
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FAMILIES OF ORTHOGONAL TWO-DIMENSIONAL WAVELETS*

PETER MAASSt

Abstract. We construct orthonormal wavelet bases of L2(2) with compact support for dilation
matrices of determinant 2. The key idea is to describe the set 742 of all two-dimensional (2D) scaling
coefficients satisfying the orthogonality condition as an implicit function. This set includes the
scaling coeffcients for induced 1D wavelets. We compute the tangent space of 742 at HN, the scaling
coefficients for induced 1D Daubechies wavelets. The structure of the tangent space allows us to build
nonseparable wavelets by starting at HN and tracing 74 along its tangent lines. Various families of
compactly supported orthogon1 2D wavelets for the quincunx grid are explicitly given.

Key words, wavelets, dilation equations, multiresolution analysis

AMS subject classifications. 42A52, 65D20

1. Introduction. The wavelet transform has by now proved to be a reliable tool
for a wide range of applications in signal processing. The success of this method often
relies on the special properties of orthogonal wavelets with compact support. In short,
an orthogonal one-dimensional (1D) wavelet is a function such that

forms an orthonormal basis for L(). Fast algorithms require compactly supported
wavelets. Besides the Haar wavelets

no compactly supported orthogonal wavelets were known before I. Daubechies [6] suc-
ceeded in merging the wavelet idea, originally defined via group representations on
the affine group [10], with the concept of a multiresolution analysis, stemming from
signal processing [12]. The outcome was a family {N } of compactly supported or-
thogonal wavelets with linearily increasing regularity. This family of functions has
found applications in such diverse fields as data compression, numerical solutions of
partial differential equations, the construction of multigrid methods [15], the exami-
nation of electrocardiograms, and many more. For a long but still incomplete list of
applications, see the references in [7, 17, 2, 16].

When constructing orthogonal 2D wavelets, the dilation parameter 2 is replaced
by a matrix A satisfying certain restrictions. For example, tensor products of or-

thogonal 1D wavelets lead to 2D wavelets for A diag(2, 2). In applications such as

image compression, these wavelet bases lead to artifacts in directions parallel to the
coordinate axis. In other words, these separable wavelets are not isotropic. Moreover,
we need det(A)l- 1 3 wavelets in order to obtain a basis of L2(]/2). Hence we are
lead to study dilation matrices with det(A) 2. Here the standard example is

which corresponds to a rotation of /4. Thus far, three types of orthogonal 2D
wavelets are known. First of all, a beautiful generalization of the Haar wavelet leads
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Fachbereich Mathematik, Universitt Potsdam, Postfach 60 15 53, D-14415 Potsdam, Germany.
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to 2D wavelets which are characteristic functions of certain sets [9]. Besides the
tensor-product wavelets for diagonal dilation matrices one can also lift ID wavelets
to higher-dimensional wavelets for dilation matrices A with Idet(A)l- 2 [4]. Both
types are called separable, they have an inherent ID structure. Moreover, nonsep-
arable quadrature mirror filters (QMFs) have been constructed in [II]; they lead to
continuous 2D wavelets [18].

Our aim is to develop a general construction procedure for nonseparable com-
pactly supported orthogonal 2D wavelets for dilation matrices with det(A)l 2. As
usual, we exploit the connection between wavelets and multiresoluton analysis. This
leads us to study the Fourier series H of the coecients of finite scaling equations.
Instead of constructing a particular H, we examine the set 7/2 of all trigonometric
polynomials H satisfying the orthogonality condition. The key idea is to use the de-
scription of 2 as an implicit function. Starting at a known point on 2, namely the
Fourier series HN associated with the lifted ID Daubechies wavelet PN, we can trace
part of 2 via its tangential space.

In this paper, we are primarily interested in constructing wavelets. Hence the
problem of investigating the regularity or the number of vanishing moments of these
wavelets will only be touched upon in 4.

The paper is organized as follows. Section 2 contains the relevant theory for ID
wavelets and multiresolution analysis. Section 3 starts from the 2D scaling equation
and constructs the tangent space of 2 at HN. The structure of the tangent space
allows us to examine 2 by starting at HN and tracing along its tangent lines.
In order to ensure that such an H 6 /2 actually leads to an orthogonal wavelet,
we also have to check the Cohen criterion. This is done in 4, leading to families of
nonseparable orthogonal wavelets.

2. Multiresolution analysis and orthogonal 1D wavelets. Wavelets are
most conveniently described within the framework of multiresolution analysis. This
concept was introduced in 1986 by Y. Meyer and S. Mallat; since then, it has be-
come the main tool for constructing compactly supported wavelets. A multiresolu-
tion analysis in a for a dilation matrix A consists of a series of nested linear spaces

c v c v c Vo c V_ c...

such that

UV L2(d),

f(x) V. f(Ax) V._,

where A, the dilation matrix, is a matrix whose eigenvalues/ have modulus greater
than 1, IAI > 1, and which maps the integer vectors k Nd to integer vectors, i.e.,

F Ad C zd.

The decisive condition that makes this scheme work is the requirement that there
exists a function p such that

is an orthonormal basis of V0.
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The requirement that a and its integer translates are orthonormal can be replaced by
alternative conditions [7], e.g., by the stability requirement that

{p(x- k) k e z"d} forms a Riesz basis of V0.

Note that the subspace V, is spanned by {(A-mx- k) k gd}. The name
multiresoIution analysis stems from the interpretation that different subspaces
contain functions representing details of increasing size as m -- oc. The projection
of a signal f onto V, can thus be interpreted as applying a low-pass filter with
diminishing bandwidth as m oc. From p V0 C V_, it follows that satisfies a

scaling equation

(1) (x) [det(A)l E hk(Ax k).

The set of scaling coefficients {h} is called the associated discrete filter. Most of this
article deals with properties of the Fourier series of such discrete filters.

The Fourier series of the scaling coefficients is denoted by H(a), cz d:

(2) H(w) sumzhe-k’,

where u. k denotes the standard scalar product.
Let A-t denote the transpose of the inverse matrix A- and define the Fourier

transform of a function f L2(ffd) by

](u) (2r) -d/2 I f(x)e-i’ dx.

Then taking the Fourier transform on both sides of the scaling equation (1) leads to

(a) H(A-tu)(A-tu)

H H((A-t)ru)"
m>l

By W, we denote the orthogonal component of V, in gin-l:

V OW V-x.

In other words, Wm is the complement of a low-pass filtered function space V, in a
space Vm-1 of functions with a larger bandwidth, i.e., the projection of a signal onto
W, amounts to applying a band-pass filter. Y. Meyer [13] proved that there exist
functions 1,... ’ldet(A)l-1 E L2(), the associated wavelets, with mean value 0
such that

span{j(x- k) k E z, j 1,..., Idet(A)l- 1} W0,

In other words, only dilation matrices with det(A)l 2 allow the construction of a
single function such that

(4) {.(x) 2-’/2 (A-’x- )lm
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forms an orthonormal basis for L2(d).
The most interesting dilation matrix in the 1D case, d 1, is therefore A 2,

and satisfies the scaling relation

An orthogonal wavelet can then be constructed explicitly from a given orthogonal
scaling function 4), i.e., (x) 2_ (x- k) if k 0, by, e.g.,

(6) (x) :

(7) gk (--1)khl-k.

All properties of can be deduced from the scaling coefficients {hk } [6]. For example,
in our search for compactly supported wavelets, we need only look at scaling equations
with a finite number of nonzero scaling coefficients. After introducing the Fourier
series

n

H(co) E hke- G(w) Ege-k
k=0 k=0

the main step in constructing compactly supported orthogonal wavelets requires us
to find a trigonoinetric polynomial H satisfying the orthogonality condition [6].

THEOREM 2.1. If E L() is a solution of (5) which is orthogonal to its integer
translates, i.e.,

# o: +/-

then

(8) [H(co)[ + IH(oo + rr)] 1, H(0)-- 1.

A set of coefficients {hk, 9k} satisfying (3, 4) is called a QMF in the language of
signal processing. A QMF is the discrete analogue of the function pair (9, ). Thus
far, we have reviewed the procedure which starts with a multiresolution analysis and
the related scaling function 9 (resp. the wavelets ) and ends at a QMF, i.e., a set
of discrete coefficients {h} satisfying an orthogonality condition (8). The construc-
tion of orthogonal wavelets proceeds in the reverse direction. However, there exist
pathological examples of QMFs where the corresponding solutions 9 (resp. ) of (5)
(resp. (6)) are not orthogonal to there integer translates [6]. This can be avoided,
e.g., by checking the following Cohen criterion, which we state for dimensions d 1
and d= 2.

CRITERION 2.2 (Cohen criterion). The Fourier series H(co) ke:e h e-ik, co

1R, satisfies the 1D Cohen criterion if there exists a set K c such that
K contains a neighborhood of the origin,
IK[ 2r and for all co in [-r, r], there exists a k such that co + 2kTr K,
for all rn > 0, H(2-’co) does not vanish on K.

The Fourier series H(co) -.ke:g2 hk e-ik’w, co (col,co2) :2, satisfies the
2D Cohen criterion if there exists a set K C ft such that

K contains a neighborhood of the origin,
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IKI 42 and for all in [-, ]2, there exists a k e Z2 such that +2k E
K,
for all m > 0, H(A-’) does not vanish on K.

In [3], it was proved that this criterion in addition to the orthogonality condition
(8) is necessary and sufficient for the L convergence of the infinite product (3) and
the orthogonality of the limit function.

THEOREM 2.3. Suppose H(w) hk ek satisfies (8). Then the infinite
product (3) converges in L() to an orthogonal solution of (5) if and only if H
satisfies the Cohen criterion (Criterion 2.2).

Our approach for constructing orthogonal wavelets starts by introducing H, the
set of all trigonometric polynomials in one variable satisfying the orthogonality con-
dition (8), and its subset C 1,

h ]Hstifies(8)
k=0

consisting of the polynomial solutions of (8) of degree (2N- 1). We choose to label the
subspaces by N instead of using the filter length n 2N- 1 because the Daubechies
wavelets obey scaling relations with 2N coefficents and their related Fourier series

HN are therefore elements of H. These polynomials have 2N coefficients; hence
can be viewed as a manifold in N.

Let us further define

(9) q(a;) [H()I.
For any H E -1, the corresponding q is an even positive trigonometric polynomial
with q(0) 1 solving the simple equation

q(w) + q(z + r) 1.

This is a linear equation with the general solution

t:l {q(w) l/2 + E ckcs((2k + l)) Eck --1/2’ q >_ O}
K:I is the intersection of a linear affine space with the convex cone of positive functions,
i.e., 1 is a convex set. We introduce the map

(11) q 7-tl K:
H IHI

We will often use the shorthand notation q(w) for (q(H))(w); we will identify the
trigonometric polynomial H with the set of its coefficients whenever appropriate. /C
has a simple structure; hence our construction follows a four-step procedure:

1. choose a q K;;
2. solve IHI q;
3. check the Cohen criterion;
4. solve the scaling equations (5) and (6).

In general, it is not possible to give a solution of (1) in closed form, but the graphical
iteration process described in [6] converges to a solution under rather general condi-
tions. Moreover, the values of and at dyadic values can be computed efficiently
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[7]. This solves step 4. Step 2, i.e., the.question of inverting the map q, is answered
by the following theorem.

THEOREM 2.4 (Fejer-Riesz theorem). Let q be a real positive polynomial in

cos(), .e.,
n

q() cos(), q() > 0.
k--0

Then there exists a trigonometric polynomial H of the same degree, i.e.,

with real coefficients, such that

n

H() E hae-i
k=O

(13) q()- IH(w)l 2.

This result is due to Riesz. The proof is based on the ability to factorize polyno-
mials in one variable, i.e.,

q(0) 0 ( 0) q();

see [14]. This is not possible for polynomials in more than one variable. The ma-
jor step in constructing orthogonal 2D wavelets will be a characterization of some
trigonometric polynomials in two variables which allow taking the root in the sense
of the above theorem.

The Fejer-Riesz theorem (Theorem 2.4) implies that any q KI has a root in the
sense of (13). Another way to view this result is as follows.

COROLLARY 2.5. q(-l) fll.
The main advantage of investigating instead of is that 1 is a fiat linear

manifold while T/1 is defined by a set of quadratic equations. Moreover, K: is convex.
To end this section, we determine a special set of extremal points of ]C by constructing
a set of supporting hyperplanes. This will lead to the well-known family of orthogonal
1D Daubechies wavelets. We define the subset of trigonometric polynomials of degree
2N- 1:

K:N {q deg(q)

_
2N- 1}.

LEMMA 2.6. For fixed N, let (dk k 0,..., 2N 1} denote the scaling coeffi-
cients associated with the Daubechies wavelets N and let

2N-1

HN(Z)- E dt e-ik

k=0

denote the corresponding Fourier series. Then

() fH()
go

sin(t)2N-1 dr,

CX sin2N-l(t)dt
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is an extremal point of K.N.
Proof. Define

U(W) I CN fO sin(t)2N-ldt.

We begin by establishing that

N-1

qN(W) E ( N- I + k (sin(w/2))2k
k=0

as defined in [6], is indeed equal to u(w). With the above definition of CN, we have

Tr-t-w

u(w + r) --CN sin(t)2N-1 dt

CN sinN-1 (t)dt.

u is a positive polynomial of degree 2N- 1 in cos(t) which solves (10); therefore,
u E/(;1N. Moreover,

u’(w) --CN sin2N-l(c0),

which implies that u is the unique element in K:N with

u(k)(r) 0, k 0, 1,...,2N- 1.

On the other hand, the Daubechies wavelet CN was constructed by requiring that
HN 7-N or, equivalently, qN IHNI 2 1N has a zero at w 7r of the highest
possible order. It follows that u qN. This part of the lemma, with a different
reasoning, can be found in [13].

It remains to show that u is an extremal point of K:IN. We construct supporting
hyperplanes. Any

2N-1

q(co) 1/2+ E
k=l

cos((  e

is an even positive smooth function which solves (10); therefore, 0 < q(w) < 1. Since
q(0) 1, we immediately have

2N-1

q’(0) 0, q"(0) E (2k- 1)2ak _< 0.
k=l

Hence the condition qtt(0) 0 defines a supporting hyperplane gl"

N

E(2k 1)2ck 0.
k=l

Note that q(HN) qr lies on this hyperplane.
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K;N n g is again a convex set. Among the elements q E K;1 n gl, we select the
functions on the plane $2 defined by q(4)(0) 0. This again gives a condition on

N

2" E(2] 1)40k --0.
k--1

We can continue in this vein, defining successive ge, g 1,..., N, each defined by

N

e" E(2k- 1)2o O,
k=l

and each ge is a supporting hyperplane for

t(21 N 2 N N K]g-1.

The corresponding linear equations for {ck} are linearly independent. Hence there is
a unique element in KIN lying in the intersection of all hyperplanes

q E NkN=lgk.
NBy construction, qN E nk= gk, so that qN is this unique element. El

3. 2D wavelets. Our aim is to construct compactly supported orthogonal 2D
wavelets, i.e., we search for functions E L2(li2) such that

{mk(X) 2-’/9 (A-mx- k) m e z, k e z2}

forms an orthonormal basis for Lg(/R2). Hencewe consider dilation matrices A with
Idet(A)l 2. Obviously, the scaling function and the related wavelet depend
very much on the dilation matrix A; see (3). For example, the same set of coefficients
{h} may lead to a wavelet with arbitrary high regularity for one dilation matrix A
and to a discontinuous wavelet for another A [4].

However, the 2D equivalent to the 1D orthogonality condition of Theorem 2.1
depends only on a set of representatives of the cosets of the adjoint grid

A ,2;

see Lemma 3.1 below. If Idet(A)l 2, then the set of representatives consists of
a single vector z E z2\f". There are exactly three different grids F stemming from
dilation matrices A with det(A)l 2:

the line grid, i.e., rn (ml, m2) F == m2 is even;
the column grid, i.e., rn (ml, m2) F ml is even;
the quincunx grid, i.e., rn (ml, m2) F ml + m2 is even.

Since the first two grids--and their adjoint grids --are related to each other by a
simple exchange of variables, we may assume without loss of generality that

Z

As in the 1D case, the construction of orthogonal wavelets centers around the Fourier
series H of the scaling coefficients. The following results treat all dilation matrices
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with ]det(A)l 2, but to illustrate the construction, we will always refer to the
standard example where A incorporates a rotation by r/4:

A=. 1 1

This matrix has been discussed, e.g., in I4], I17]. It is the most basic dilation matrix
with two complex eigenvalues; hence it produces nonseparable wavelets.

3.1. Orthogonality relation. As in the 1D case, the orthogonality of {(x-
m)} leads to an orthogonMity condition expressed in terms of the Fourier series (2).
The proof of the following lemma is a straightforward generalization of the corre-

sponding result in L2(); see [13].
LEMMA 3.1. Given a dilation matrix A with an arbitrary value of

choose a complete set of representatives of

(z 0, z,...,z

det(A)l

U +

Suppose the scaling equation (1) has a solution qa E L2(d) which is orthogonal to its
integer translates

Let z Z be a representative of the coset of the grid , i.e., (z + ) U Z2.
Then the Fourier series H satisfies the orthogonality relation

(14) IH(w)l + IH( + 2rA-tz)l 1, H(O) 1.

COROLLARY 3.2.
Lemma 3.1 is given by

If we specify this result, then we may choose a representative z such that

For d 2 and ldet(A)[ 2, the orthogonality condition of

(15) IH(w)l* +
2

1, H(0) 1.

The 2D orthogonality condition is very similar to its 1D counterpart, and we can
easily lift Fourier series which satisfy (8) to higher dimensions.

COROLLARY 3.3. If H1 (w) satisfies the 1D orthogonality condition, then

H(col, w2) H1 (w)

obeys (15).
This leads to so-called induced wavelets, which have been studied in [4]. They are

not suitable for application since they are not isotropic and have a poor smoothness.
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As in the 1D case, we have to check in addition the Cohen criterion, which insures
that an H satisfying (15) leads to an orthogonal scaling function which generates a
multiresolution analysis [4]. Moreover, we still need to know how to construct the
wavelet given the scaling function .

LEMMA 3.4. Let A denote a dilation matrix with ldet(A)l 2 and let z be a
representative of the coset of . Given an orthogonal scaling function with scaling
coefficients {hk k E g2}, define

gk (--1)c(k)hz-k, k z,
where the exponent e(k) is given by

; 0 if

e.g., for the quincunx grid, we may choose e(k) k + k2. Then

:=

defines an orthogonal 2D wavelet, i.e.,

is an orthonormal basis for L(:).
Proo The proof proceeds analogously to the 1D-case.

3.2. The implicit-function approach. As in the 1D case, we examine the set
of trigonometric polynomials H which solve (15)"

n2 {HH solves (17), H is a trigonometric polynomial}.

By C : we denote the subspace of trigonometric polynomials of degree deg(H)
2N- 1. We define

:.
The general solution of q(w) + q( + ()) 1 is given by

+k odd

is the intersection of an ane linear space with the convex cone of positive func-
tions, i.e., is a convex set. In contrast to the 1D case, not every q
polynomial root in the sense of (16). We define the subet

q(2) ]orth,

](orth {q E ]2 q- IHI 2, H is a trigonometric polynomial}.

In a slight abuse of notation, we write H for the set of scaling coefficients {hN k
2} and we use the same symbol for the Fourier series

H(w)- E he-ia’
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As described in Corollary 3.3, we can lift elements ql E ]1 (resp. H1 E 7-/1) to
higher dimensions:

ql ]1 q(al, 2) ql (021) ]orth.

For example, we can lift the scaling coefficients {d k 0,...,2N- 1} of the
Daubechies wavelet

(18) .HN {hkN ]--(]1, k2), 0

_
kl, ]2 2N- 1}.

Note that

hk,0) dk,

0 0.

Notational remark. The length of the filters is generally denoted by n, but in
most cases, we deal with the dimension n 2N- 1 related to the Daubechies filters.

The starting point for the following is the observation

(19) HN -1 C -2.

(20) q(HN) ]1 )orth 2.

As in the 1D case, we expect that ](orth has & more convenient structure than 2, at
least ]orth contains the flat subset

Our procedure for investigating ’2 and 2 proceeds as follows:
1. Describe T/2 as an implicit function, i.e.,

H(w) E hke-ik’ E TI2 F(H) O.
O<_kl,k<_n

The function F fit(n+) -- Kt(n+)-n+ is determined either via the description
(17) of K:2 or by expressing the orthogonality condition (15) directly in terms of the
coefficients {hk}.

2. Choose n 2N- 1 and apply the implicit-function theorem to compute the
tangent space of T/2N at HN. This requires three steps"

(a) Compute the Jacobian J of F at HN.
(b) Split the coefficients in two sets x n- and y (n+l) such that

OF
--(HN) is not singular.
Oy

(c) Compute the tangent vectors of 7-/2 at HN with the help of

( OF_y (HN))
-I OF

(HN)

where g(x) is the function implicitly defined by F(x, g(x)) O.
3. Choose n 2N- 1, start at HN 2, follow a tangent vector tN, and add

a correction term in order to stay on 2"

H HN + stN + correction term.
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We begin by writing out the defining equations for T/2 and (:orth in detail. We are
interested in compactly supported wavelets. Hence we investigate scaling equations
with a finite number of scaling coefficients {hk}. Let

n

(21) H(w) E hk e-ik’

k ,k,=O

be a trigonometric polynomial of degree n with (n + 1)2 coefficients. The grid points

FIG. 1.

corresponding to coefficients of the polynomial are marked in Figure 1. From (15),
we get the first condition for the coefficients {hk} H(0) 1, i.e.,

(22) E hk 1.
k

The coefficients of q IHI 2 are given by

q(w)= E hkh e-i(-)’ E {E hhk_m} e-m’
k,l m k

k m=l k=0

q e implies that the coefficients of cos(m, w), ml + me even, have to vanish and
that the constant term has to equal 1/2; see (17). Together with (22), this poses
n2 + n + 2 conditions. In other words, the coefficients g {hk} satisfying (15) are
the zeros of

F (+)
__
n

where the n2 + n + 2 equations are given by

(H)= 1,
k

F2(H)- Eh- 1/2,
k

Fm(H) E hkhk-m
k

for m-- (0, 0), ml + m: even.
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We are interested in filters of length n 2N- 1; 7-/2N is therefore given here as an
implicitly defined function

{H 0).

The next step requires us to compute the Jacobian of F evaluated at the scaling
coefficients N{hk } for the induced 1D Daubechies wavelets (18). These coefficients
vanish if k2 % 0; in order to distinguish between the 2D array of coefficients, hv and
its 1D vector of nonzero coefficients, we define for fixed N

(23) dk h,0), k- 0,...,2N- 1.

The partial derivatives of F1 and F2 are given by

OF2 N f 2dk k2 0,c3-F1 (HN) 1 (HN) 2hkOh Oh 0 k O.

For m (ml, 0), ml % 0 even, we obtain

OFm (HN) f dk-m q- dk+m k2 O,
Oha 0 otherwise.

We combine these partial derivatives in an (N- 1) (2N) submatrix J0 with coeffi-
cients (J)j, 1 <_ <_ (N- 1), 0 _< j _< (2N- 1)"

0F(.i,0)(24) (J0) (HN) dj-2 + dj+.
(h(j,0)

For example, for N 2, i.e., n 3, this submatrix is simply

Jo (d2, d3, do, d).

The remaining partial derivatives for 1 _< m <_ n, -n <_ m <_ n, m + m: even, are
determined by

OF,
(HN) dl-ml" if k2 m2, ml _< kl

_
n -- ml,Ohk 0 otherwise.

For fixed m2 > 0, m2 odd, we gather the relevant derivatives in (2N) (2N)
submatrix J with coefficients (J1)j, 0 <_ i,j <_ (2N- 1)"

(25) (J1)ij OF(-n+2i’m) (HN) dj+n-2i,
Oh(j,m)

r d 0 0 0 ...0
d_2 dn-1 dn 0 ""0

dl d2 dn 0
0 do d dn-1

\ 0 0 0 do /
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for a fixed rn2 > 0, rn2 even, we obtain a (2N-1) x (2N) submatrix J2 with coefficients
(J2)j, O < < (2N-2), 0<j<(2N-1)"

() (J.) OF(-n+l+i,,2) (HN) dj+n-l-2i,
Oh(j,m2)

/ dn-1 dn 0 0 0 0
dn-3 dn_ d 0 0

do dl dn
0 0 do d-a dn-.

\ 0 0 do dl

For N 2, these matrices reduce to

d3 0 0 0

( d2 d3 0 0 )J1 dl d. d3 0
0 do dl d2 J2 do dl d d3
0 0 0 do

0 0 do dl

If we arrange the 2D array of coefficients {ha } in a vector h, by

h(a,a) h,, k’ kl --t-- (n + 1)]g2,

i.e., the subvectors of length n / 1 correspond to coefficents ha on the same line in
Figure 1, then the full Jacobian J has the following block structure:

1 1
2Do,...,2Dn 0 0

Jo
J1

J1

\ J1 ]

For N 2, we obtain a 14 x 16 matrix. We collect some results concerning
and J. Similar matrices occur in the dyadic construction of (z) [5].

LEMMA 3.5. Let J1 and J2 be defined as above, n 2N- 1.
(a) J1 is a regular matrix, and
(b) J2 has rank n and x (xj)j=o ,, xj (-1)Jdn_j, satisfies

Proof. Let bj, j 1,..., (n + 1)/2, denote the jth line vector of J1. Since d - 0,
these vectors are linearly independent. Since do - 0, we conclude that the other line
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vectors, where cj, j 1,..., (n + 1)/2, denotes the (n + 2- j)th line vector of J1, are
also linearly independent.

The spans of the two sets of vectors are orthogonal since (de 0 if g < 0 or > n)
n

(bY’ ci} E dk+n-2(j-1)dk+,-2(n+l-i)
k=0

E dk,dk+2(j-l-n-l+i),
k=0

and the orthogonality of the Daubechies scaling function gives (g # 0)

0 ( (.), (.- ).)

4 ((2. -),

4 dd_e.
k=0

The indices and j run between 1 and (n + 1)/2; hence g j n + 2 -1 and

(, ) 0.

H.c th ( + ) i. vctor {,) of J r i.y i-dw-d-t; thi pov ().
In the same manner, we prove that the line vectors of J2 are linearly independent.

It remains to construct a nonzero vector in the kernel of J. Here we exploit the fact
that

vt. (,(.), ,(.- )) o.

Inserting the 1D scaling relations yields

0 E dk(-1)’d-m(av(2"-k), pv(2.-2 m))

E(-1)dkd+2e_k.
The ith coefficient of J2x is

(&x), +__(-1)_

n-kdE(--1) -k+.n-2i-ldk
k:0

--0.

This proves (b).
In order to apply the implicit-function theorem to

F J(n-bl)2 ]Rn2++2, F(HN) O,

we need to find n- 1 "flee" coefficients x (hfl,..., h.v_) such that the remaining
"dependent" coefficients y (h1, h.+N+.) have a regular Jacobian ._5_(HN).OF
Unfortunately, this is not possible.
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LEMMA 3.6. For any choice of (n- 1) coefficients x (hfl,... ,hfN_l), the
Jacobian ofF at HN with respect to the remaining dependent coefficients y (hdl
hdN2+N+.) is singular.

Proof. HN() satisfies the orthogonality condition (15); hence H(0) 1 and

n

HN(r) E dke-ik O.
k=0

It follows that the odd and even coefficients of HN both sum up to 1/2.
In each column of J1 and J2, either all odd or all even dn’s occur exactly once.

Therefore, the sum of the line vectors of J1 or J2 is the vector (1/2,..., 1/2). The
same is true if we combine the second row of J with J0. We see that the first row
vector of J equals the sum of the other rows.

But -F (HN) is the submatrix of J formed by those columns of F which correspond
to coefficients in y. This does not change the sum of the rows of oF (HN) i.e the

OF (HN) cannot befirst row of -F (HN) is a linear combination of the other rows and -regular. [:l

Nevertheless, the hard implicit-function theorem [1] ensures the existence of the
implicit function under the given conditions. However, the hard implicit-function
theorem is not constructive, i.e., it does not help to compute the tangent vectors
of the implicit function. To circumvent this problem, we first solve for the implicit
function without the first condition F1 hk 1. / denotes F without the first
equation, i.e., we examine

and compute the tangent space at HN E "]-2N of the implicit function defined by

f(h) =0.

If we later intersect this tangent space with the hyperplane hk 1, we will obtain
the tangent space of 7-/2 at HN.

There is not much choice for the n free coefficients: J2 occurs (n- 1)/2 times in J.
J2 has rank deficit 1, i.e., we need to choose one free coefficient for each occurrence of
J2. Combining the first (n + 1) entries of the first row of ] with J0 gives a (n + 1)/2-
by-(n + 1) matrix, i.e., we have at least (n + 1)/2 N free coefficients among the
first (n + 1)= 2N coefficients. With our convention for numbering, the first (n + 1)
coefficients are m (ml, 0), rnl 0,..., n. As free coefficients, we choose

x (h(0,0),... ,hN,o),h(o,2),h(o,4),..., h(0,2N-2));

the remaining coefficients are collected in y. Let J denote the matrix J2 without the
first column, and let J denote J0 without the first N columns: J is an (N- 1) x N
matrix; J is a (2N- 1) x (2N 1) matrix; o-- (HN) is a square matrix with dimension
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4N2 2N + 1 n2 + n + 1:

Oy

[ d(n+l)/.,...,dn 0 0 h

J1

J1

We now consider the function

g n j]n2 +n-t-

implicitly defined by F(x, g(x)) O. In order to obtain the tangent vectors of . at
HN, we compute the Jacobian g according to

Vg -y cox

OFox consists of those columns of the Jacobian of/ which were not used in -; hence
oF does not use anyo_2F and Vg are (n + n + 1) x n matrices. We observe that -Ox

columns involving the submatrix J1, i.e. the rows of oF corresponding to coefficinets

hk with k- (kl, k.), k: odd, are all zero. For N 2, we obtain

d3 0 0 )J- dl d2 d3
0 do d

d d3 0 0 0

O do d 0 0 0

Oy
0 J 0 0
0 0 J 0 Ox

0 0 0 J

(’ do d 0
d2 d3 0

0 0 d
0 0 do
0 0 0

\
(.9

here (9 denotes a 4 3 matrix with zero entries.
Once we have computed Tg, the tangent vectors t of N at HN are obtained

in the following way. We write the vector t naturally as an array t {tk k
(kl, k2), 0 _< kl,k2 <_ (2N- 1)}. Then dx (dx,... ,dx) corresponds to an array
dx {dxk (1,2), 0 1,2

_
(2N- 1)} whose entries are zero whenever

its index k corresponds to a dependent variable y; similarly, the (n2 + n + 1) vector
Vgdx corresponds to an array whose entries are zero whenever its index corresponds
to a free variable x. With this convention,

t- dx + Vdx

gives a desired tangent vector. In addition, we have to obey the omitted equation
0 Fl(h) hk 1. This is satisfied if we restrict the tangent vectors t to the
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hyperplane

LEMMA 3.7. The tangent vectors t {tk k (kl,k2)} of 7-l at HN satisfy

tk O if k2 is odd.

Proof.
system

The derivatives of the implicit function g are the solution of the linear

05
Oy

Vg Ox

(The columns of 7g are the tangent vectors of g.) This large linear system splits up
into smaller linear systems with matrices

The components of the tangent vectors of g corresponding to odd lines--i.e., k odd.
are the solution of the subsystem

Lemma 3.6 proves z 0, and hence t dz + Vgdx has zero entries whenever k
(kl, k2) k2 odd. D

Moreover, we can solve the linear systems with matrix J explicitly. This gives
the components of the tangent vectors corresponding to coefficients on even lines (k2
even).

LEMMA 3.8. Let z (Zl,... ,zn) denote the solution vector of

do
0

Then z -(-1)k-l(d,_/d), k- 1,... ,n.
Proof. The Daubechies wavelet bN is orthogonal to the scaling function N"

0= e))
4E dk (-1)’d1_, (N (2" --rn), PN (2" --2g k)}

rn,k
n

k=0
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On the other hand, the entries of the n n matrix J are given by

(J)zk dn+l-2+k, 1 _< t, k _< n.

Let z be defined as above:

n

(dn J z) E dn+l-2+k(-1)-d-
k--1

n-1

E(--1)k dd-2(e-n)-
k-----0

(-1)+dnd_2(e_)_ dnd+_e.

This gives--up to the factor dthe desired right-hand side.
Thus far, we have obtained a complete description of te tangent vectors of the

implicit function 9(z), i.e., the tangent directions of at H are given by dz+Vgdz.
o .9. et deote the set of coeciets

h {hk k- (k,k), 0 <_ k,k2 _< n)

satisfying the 2D orthogonality relation. Let HN denote the scaling coefficients asso-
ciated with the induced 1D Daubechies wavelet N. The tangent space TN of TIN at
HN is the direct sum

of the linear spaces T1 and T. TI is the induced tangent space of 7-tiN, i.e., it contains
tangent vectors t {t} with t(kl,k2) 0 for k2 O. T2 is spanned by (n- 1)/2
vectors t", m 1,..., (n- 1)/2"

t(,k.) t(,) 0 elsewhere

COROLLARY 3.10. In terms of Fourier polynomials, the tangent vectors at HN,
which are orthogonal to the induced 1D tangent vectors, are linear combinations of

e-i2mw2 N(O21), ?Tt 1,..., (n 1)/2,

where GN(W) E=o(-1)ad-ae- is the Fourier polynomial of the Daubechies
wavelet coefficients.

For N- 2, the Daubechies scaling coefficients are explicitly given as

do 1 -1
d 3 1
d2 3 + x/

1
d3 1 1

Remark. These are the coefficients of the scaling equation for the scaling function. The scaling equation for the wavelet has coefficients g (-1)d_. The
connection between wavelet coefficients and central difference quotients can be seen
here. The gk’s are a simple combination of the central difference quotient of order 3
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and the central difference quotient of order 2 on four points. In a similar way, one
can easily parametrize all orthogonal 1D-wavelets by difference quotients.

The tangent vectors of 7-/2 at H2 are given by the induced tangent vectors s and
8
2

0 0 0 0 0 0 0 0

sl 0 0 0 0 s2 0 0 0 0
0 0’ 0 0 0 0 0 0

-1 0-V 1+/- 0-1 1-x/-

and the additional tangent vector t1,

0 0 0 0
-1 x/ 3 + x/--3+v 1 /-

0 0 0 0
0 0 0 0

The tangent vectors are given as arrays, with the convention that, e.g., s0,3
2 t-t(2,0 1 + V/, s(0,2 (2,3) 1

For the proofs of the results above, we used only that HN satisfies the orthog-
onality condition (8). Hence the tangent spaces look the same for any induced
H c 1"1 C -{2 with h0 0 - h,, n odd. No further properties of the Daubechies
wavelets were necessary.

Now we start computing the tangent vectors at

q(HN)
_

q(7-[.2) ]Corth C /C2,

where q is defined by q(H) [HI 2. The tangent vectors of K:orth at q(HN) are
therefore computed as the linearization of

q(HN(Wl) + se-i2k aN(col)).

Since ](71 is a flat subset of ](orth, it follows that the Fourier polynomials of the induced
1D tangent vectors are linear combinations of

COS(Ttcol) COS((Tt 2re)col), ?Tt 1,..., (N 1)/2.

THEOREM 3.11. Let {dk} denote the scaling coefficients of the Daubechies wavelet
and define

n n

HN(COl) E dlf, e-il’O1 aN(C01)-- E(--1)kd-ke
k=O k=O

-iko21 e--iTto21N((.1).

The Fourier polynomials of the tangent vectors of ](:orth at q(HN) are linear combi-
nations of the induced 1D tangent vectors with

ei2k’[HN(Wl)-N(Wl)] + e--i2kw2[--I]N(COl)aN(COl)], k 1,..., (n 1)/2.

Our idea was to compute the tangent spaces of ](orth with the hope that ](:1 is
not the only flat subspace of K;orth. But numerical tests did not reveal any other fiat
subspaces. Nevertheless, the simple structure of the tangents at HN E ui2 allows us
to trace part of H2 by following the tangent lines.
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4. Families of orthogonal 2D wavelets. In the last section, we studied the
tangent space of the set 7-/2 of coefficients {ha } satisfying the 2D orthogonality con-
dition (15). 7-/2 is not a flat manifold; therefore, starting at HN E 7-t2 and following a
tangent t does not lead directly to new wavelets. In this section,, we discuss different
correction terms c such that

H(wl, w2) HN(Wl) + #t + #c(wl, w2) correction term e 2.

Moreover, the orthogonality condition ensures only discrete orthogonality of the coef-
ficient set. In order to prove that the solution of the scaling equation with coefficients
H {ha} 7-/2 is orthogonal to its translates, we also need to check the condition
stated in Criterion 2.2; see [4]. However, not only do the Fourier series HN of the
scaling coefficients for the 1D Daubechies wavelets satisfy the 1D Cohen criterion with
K r, r], but we also have

V?Tt > 0, 0 < < " HN(2-m&l) does not vanish on e, + e].

This follows directly from Lemma 2.6. This implies for our construction that the 2D
Cohen criterion will be satisfied at least for small . For a special class of wavelets,
see Lemma 4.3, we will check the orthogonality directly.

4.1. Twisted wavelets. Let n 2N 1 be an odd integer and let H0()
denote the Fourier polynomial of an orthogonal 1D wavelet wi-th (n + 1) coefficients,
e.g., the Daubechies wavelets HN. As shown in the previous section, the Fourier filter
of the tangent vector is given by

Go(7) e-Ho(
-this denotes complex conjugation. The linear combination Ho()+pe-Go()
proceeds Mong a tangent line of. In order to stay on , we must add a correction
term.

LEMMA 4.1. Let Ho and Go be defined as above. Define H1 and G by

H () (1/2)e-{e-[Ho() Ho( + 7)] + e[H0(7) + Ho( + )]},

+ + + +
For any k ;Z, # , the Fourier filter rn(a;, a;.) defined by

(1 + H0( l)+

is a solution of the 2D orthogonality condition, i.e., it constitutes a QMF.
Remark, H also satisfies the 1D orthogonality condition, and G is the corre-

sponding tangent vector. The coefficients of H come from a simple twist of the coef-
ficients of H0: if we pair the coefficients of H0, i.e., (h(0,0), h(1,0)), (h(2,0), h(3,0)),...,
(h(n-l,0), h(n,0)), and reverse these pairs and their order, i.e.,

(h(-,o), h(,o)), (h(-3,o), h(n-2,0)),. (h(o,o), h(1,0)),
then we obtain the coefficients of H1.

Proof. It is a lengthy but easy calculation to show that m obeys the 2D orthogo-
nality relation: the summands of ]rnl 2 are, e.g., of the form
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It follows that

(GoHi + GoHi)(7) + (GoH + GoH)(7 + 7c) O.

The other terms are treated in the same way. []

For these Fourier series, the coefficients are concentrated on two lines, namely
(ml, 0) and (ml, 2k). Alterations of the above procedure lead to more equally spread
coefficients, e.g.,

(1 + #2)m(wl, w2)
H0(x) + ,-(+)0(1) ,{-(+)() ,-H()}.

These series also solve the orthogonality relation.
Another class of trigonometric polynomials satisfying the orthogonality condition

with a more convenient description can be found as follows.
THEOREM 4.2. Let H(w) E denote the Fourier series of the scaling coefficients

{hk k 0,..., n}, n odd, for an orthogonal 1D wavelet. Denote the tangent vector by
G(-). Let P and Q be (re, rr)-periodic trigonometric polynomials in (col, co.) satisfying

IPI 2 + I?12 1, P(O)- 1.

Then

m(w,wg.)- P(Wl,W.) H(w) + Q(w,w2)G(Wl)

satisfies the 2D orthogonality relation, i.e., rn constitutes a QMF.
Proof. Obviously

Iml -]P[eIHI + IlllI + PHQC] + PHQG.

Therefore, exploiting the periodicity of P and Q and the orthogonality of H leads to

I.(, )1 + I-( +, + )1

+ (PQ)(wl,w2)[HG(Wl)+ HG(rc + dl)].

n is odd and G(-) e-in(r + -). Therefore, the terms in the brackets van-
ish.

Of course, this family of nonseparable QMF filters could have been found directly,
but the structure of the tangent space inspired this choice. The relation for P and Q
looks rather similar to the 2D orthogonality condition, but P and Q do not have to
be related by a shift of the argument. For example, we can choose IP[ 2 to be a power
of cos(x) and construct the corresponding Q with the help of the Fejer-Riesz theorem
(Theorem 2.4). This opens a way of controlling the zeros of rn and might be helpful
in constructing smooth wavelets for the quincunx grid.

We have to show that these Fourier series satisfy the 2D Cohen criterion. We will
single out a special class and prove the orthogonality of the wavelets directly.

LEMMA 4.3. Let HN denote the Fourier series of the scaling coefficients for the
1D Daubechies wavelet x. As usual, GN(CO) denotes the tangent vector. Let

P(cog.) HN(2Co.) and Q(cOl,CO2) ei(l+)GN(2W2).
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Then

+

is the Fourier series of the scaling coefficients for a compactly supported orthogonal

--112D wavelet for the dilation matrix A )"
Remarks. The exponential factor ei(1+) can be replaced by any ei(kl+k22),

where kl, k2 E z, kl + k2 are even,, and 2kl k2 1 or 2. Moreover, generalizations
to other dilation matrices A with det(A)l 2 are obvious.

Proof. We have to check the Cohen criterion, m has a set of trivial zeros at

(2nTr, r/2 + kTr), ((2n + 1)r, kTr), k, n e z.

If (031,032) is a nontrivial zero of rn, then

IHN(2032)I21HN(W1)I 2 --IHN(Tr + 2032)I21HN(Tr + 031)12

or

IHN(22)I IHN(r + 031)l 2

IHg(r + 2we)l IHN(wX)l 2

q -IHNI is monotonically decreasing on [0, 7r], q(0) 1, q(Tr) 0, q is an even
function, and q is a multiple of sin2N-l(03). Hence there is no zero outside the lines

The lines 032 -(1/2)(031 7r) + kTr may be excluded since N is odd, H(w) H(-03)"

rn(wi,-(1/2)(Wl 7r) + kTr) HN(wi)HN(Tr Wl)[1 ei(/2+/2+k’r)],

which is nonzero unless 031 is an odd multiple of
We have to find a set K congruent to [-Tr, 7r] 2 where , a solution of the scaling

equation with coefficients given by rn, does not vanish. The Fourier transform of the
scaling equation gives

(29)
j>o

The previous consideration restricts zeros to lines

032 (1/2)(031

and their images under (At)j. These lines intersect [-Tr, 7r] 2 at four line segments.
Translating those line segments by (0, 27r) yields a set K such that m does not vanish
on (At)-JK with the possible exception of the critical points

(
At these points,

IP(vu)HN(Wl)] :fi IQ(,.)G()I, i.e., m -: O.
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Hence we have constructed a set K where @ does not vanish. A standard argument
as in the proof of Lemma 3.1 of [6] shows that 5 is bounded away from 0 on K. D

Naturally, we are interested in differentiable wavelets. The critical points in (30)
form an orbit under the action of A (I). Hence we can obtain upper bounds
for the smoothness of by applying the techniques of [4, Chaps. II.3.b and IV.3.b].
Also, generalizations of the methods introduced by T. Eirola [8] and L. Villemoes
[18] to higher dimension will lead to Sobolev estimates for p. However, preliminary
calculation did not reveal any canonical candidates for smooth wavelets among the
members of the family of wavelets described above. However, following Theorem 4.2,
we have some freedom in choosing P and Q such that, e.g., m has a zero of a specified
order at (Tr, r).

4.2. s-wavelets. In this section, we develop an iterative procedure for con-
structing QMFs, i.e., solutions of the 2D orthogonality condition. We again begin
with an induced ID wavelet and proceed along the tangential direction at this point.
This implies that we obtain orthogonal wavelets for at least small values of the tangent
parameter.

We begin by investigating Fourier filters with 16 coefficients {h, rn (ml, rn2),
0 <_ rn, m2 <_ 3}. The results of 3 show that if we proceed along the tangential
directions t, then

t, 0 if m is odd.

2 3

FIG. 2.

The position of the remaining eight coefficients in the grid ’2 are marked in Figure
2. These eight coefficients are grouped in pairs of two. In particular, the first two
coefficicients on the baseline form the pair a- (h(0,0), h(1,0)).

Up to normalization the four coefficients on the baseline should satisfy the 1D
orthogonality condition; this implies

(h(2,o), h(3,o)) c+/- ,(-h(1,o), h(o,o)).
Now we add a multiple of the tangent vector in line m2 2k and adjust a in order
to satisfy the 2D orthogonality condition.

THEOREM 4.4. Let a (h(0,0),h(1,0)) and , # E 1R U {+oe} and define a-L

(-h(1,o),h(o,o)),

(31) h

0 0

-A#a #a
+/-

0 0
a As+/-
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(

2(1 + A2)(1 + #)(1 A# + A + it, 1 Ait- A it),

then the Fourier series of h satisfies the 2D orthogonality relation.

Proof. Let H denote the Fourier filter of h and let q IHI. We have to check
that q ]C, i.e., the coefficients of cos(k. ), k (kl,k) :fi (0,0) even, have to
vanish. We cn phrase this condition differently: the discrete convolution of h with
itself has to vanish except at the origin. Since . +/- 0, this is obviously the case.

We have two degrees of freedom left, i.e., (h(0,0), h(1,0)), and we have to satisfy
two more conditions"

The first conditon restricts (h(0,0), h(1,0)) to a line in

h(0,0) (1 Ait + A + it} + h(1,0)(1 Ait- A- it) 1;

the second condition restricts (h(0,0), h(,0)) to a circle:

(ho,o) + hl,O))( 1

__
)2)( 1

__
it2) 1/2.

We show that the line is a tangent to the circle, i.e., the point on the line with minimal
distance from the origin is also a point on the circle. Obviously, the given in the
theorem is the point on the line with minimal distance from the origin. We compute
its norm:

4(1+A2)(1+,) {(1-AS+A+,)2 + (1-AS-A-,)}
1

B
2(1+ Ae)(l+ )"

The pair of prmeters (A, p) (2 + , 0) leds to the Dubechies wavelet .
Remark. We cn generate more QMFs by shifting the indices of the coefficients

(-Aa, pa) in the line m 2 of h. Shifts of (,g) lead to coefficients
satisfying the orthogonlity relation s long as g (-2, 2k) and g + g is even. For
example, let a- (a, a) nd g- (-1, 1); then

h__ ( 0 --1 --2 --2 1 )
defines a QMF. More possibilities arise from splitting (-Aa,a) into its two com-
ponents

--Aa and 7=Pa-

and shifting both components separately by g and g. The resulting set of coefficients
h still satisfies the 2D orthogonality condition as long as g (-2, 2k), g (-2, 2k),
g g + (2, 0). For example, g (I,-i) and g (-i,-3) lead to

01 02 --AO2 AO
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COROLLARY 4.5. This set of coefficients is--up to normalization--identical to
the family of QMF filters studied in [11]. In particular, the choice (A, #) (-2 +
x/-,-x/-) leads to a wavelet for the quincunz grid which is known to be continuous

Now we start iterating the procedure above. First, we choose arbitrary nonzero
values for A #1, #.,..., #t and compute. Let h [h, h] denote the full set of
coefficients, where h (c, ha+/-) denotes the set of coefficients on the baseline and

h (-#2Aa,#2c+/-) denotes the coefficients on the line m 2k. The iteration
produces a family of coefficient sets {h -[h, #th][1 E N} by

It follows by induction that

(32)

2"

The question remains of how to choose values for c (OZl,OZ2).
introduce the auxiliary values

To this end, we

recursively defined by

n1- 1, n= 1, ftl1- A, Ttl2 --A,

Then we define the vectors n and c by

O
nl

The procedure for constructing h starts by choosing arbitrary values A #1, #2,. #z;

then nt, a, h, and h are computed.
THEOREM 4.6. The set of coefficients h satisfies the 2D orthogonality condition.

Proof. The proof requires several induction arguments.
First, we have to check whether

(34) E (h)n- 1, E (h)2- 1/2.
mE mE,
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From the definitions of h, h, ft1, 2, 1, and n2, we easily deduce by induction
that for any choice of a (al, a.), we have

(0 0h ), cl + c,

12

Therefore, we easily obtain

} (hg) ( 0
m ht)rn + E(h)m c .nt 1.

With the help of (32), we see that

The auxiliary values have been chosen such that (proof by induction)

2’

The geometric interpretation of the above says that the equations in (34) restrict the
choice of c ((1, c2) to the intersection of a straight line with a circle. Incidentially,
the line is tangential to the circle as in Theorem 4.5.

Finally, we have to check that the expansion of IHI 2 contains no even cos terms.
However, let q denote the square modulus of the Fourier series associated with h.
The terms cos(re, w) for an even m - (0, 0) vanish by the same convolution argument
as in the proof of Theorem 4.5. The only critical term is the coefficient of cos(2kw2).
The coefficient of cos(2kw2) is given by

(,/= -..-(-,-/+ (-,L/ 0.

The last equality follows from (32).
Acknowledgments. The author would like to thank the referees for their careful

reading of the manuscript and their suggestions for improving this paper.
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DIMENSION AND LOCAL BASES OF HOMOGENEOUS SPLINE
SPACES*
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Abstract. Recently, we have introduced spaces of splines defined on triangulations lying on the
sphere or on sphere-like surfaces. These spaces arose out of a new kind of Bernstein-B6zier theory on
such surfaces. The purpose of this paper is to contribute to the development of a constructive theory
for such spline spaces analogous to the well-known theory of polynomial splines on planar triangula-
tions. Rather than working with splines on sphere-like surfaces directly, we instead investigate more

general spaces of homogeneous splines in IP3. In particular, we present formulas for the dimensions
of such spline spaces, and construct locally supported bases for them.

Key words, multivariate splines, piecewise polynomial functions, homogeneous spline spaces,
dimensions, sphere-like surfaces, sphere, interpolation, approximation, data fitting
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1. Introduction. Let A {T[i]}N be a planar triangulation of a set , and
let 0 <_ r _< d be integers. The classical space of splines of degree d and smoothness r
is defined by

where Pd is the space of bivariate polynomials of degree at most d. These spaces
of spline functions have found numerous applications in interpolation, data fitting,
finite element solutions of boundary-value problems, computer aided geometric design,
image processing, and elsewhere.

There is a well-developed (albeit incomplete) constructive theory for the polyno-
mial spline spaces $(A) which includes

(1) dimension formulas,
(2) construction of local bases,
(3) estimates on the approximation power,
(4) algorithms for manipulating the splines,
(5) algorithms for interpolation, data fitting, etc.
Recently [4], we introduced analogous spaces of splines defined on a triangulation

on the sphere or on a sphere-like surface. As suggested by our companion paper [6],
we believe that such spaces have important applications, and hence it is important to
develop the analogous constructive theory.

Following [4], we will analyze spherical splines by investigating a more general
class of splines associated with a trihedral decomposition T := {T[i]}lN of a set t C_ ][:3
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(see 2 below). Given such a decomposition, the associated spaces of homogeneous
splines are defined by

(2) 7-t(7") := {s E Cr (ft): S[TII E 7-td, i= 1,...,N},

where "]-ld denotes the space of trivariate polynomials of degree d which are homoge-
neous of degree d (recall that a function f defined on IR3 is homogeneous of degree
d provided f(cv) cdf(v) for all real numbers c and all v IR3). Splines on the
sphere or on a sphere-like surface S are then obtained by restricting 7-/(T) to S.

The main purpose of this paper is to establish dimension formulas for spaces of
homogeneous splines and to show how to construct bases of locally supported splines.
Homogeneous splines can be stored and evaluated using the algorithms presented in

[4] for homogeneous polynomials. The question of the approximation power of ho-
mogeneous and spherical splines will be dealt with elsewhere. Applications to the
interpolation and fitting of scattered data on the sphere or on a sphere-like surface are
discussed in [6]. Even though we are working in IR3, because of the nature of homoge-
neous polynomials--which are essentially bivariate functions--the entire development
is closely modelled after the analysis of the bivariate spaces of splines S(A) carried
out in [8, 15, 16, 17].

2. Homogeneous spline spaces. We begin by introducing some notation,
closely following [4].

DEFINITION 1. Let {vl,v2,v3} be a set of linearly independent unit vectors in
IR3. We call

T {v IRa v blv + b2v + bava with bi >_ O}

the trihedron generated by {v, v., v3}. As in [4], we call the real nurnbers bl, b., b3 the
trihedral coordinates of v with respect to T. They are homogeneous linear functions
in the coordinates of v.

We call the set {v T: b 0} the (ith) face of T, and the set {av: c >_ 0} the

(ith) ray of T (or the ray generated by v). To avoid awkward repetitions, we abuse
our notation slightly: in addition to writing v for a unit vector, we also use v to denote
the associated point in IR3 and the associated ray generated by v.

DEFINITION 2. Let T {T[]}N_ be a nonernpty set of trihedra, and let ft :=
UT[i]. Then we call T a trihedral decomposition of ft provided that

(1) the interiors of the trihedra in T are pairwise disjoint;
(2) the set ft N S is homeornorphic to a two-dimensional disk or equals S, where

S is the unit sphere;
(3) each face of a trihedron in T is either on the boundary of ft or it is a common

face of precisely two trihedra in T.
Each of the T[i] C? S is a spherical triangle and A {T[i] C S N}i= is a spher-

ical triangulation; cf. [19]. We say a trihedral decomposition T is total if Ft IR3.
Otherwise, we say that it is partial.

It will be convenient to denote the set of unit vectors defining the rays of the
trihedra in T by 12. If T is a partial trihedral decomposition, it is natural to define
rays to be boundary rays of T provided they are associated with vectors v 12 which
lie on the boundary of ft. All other rays will be called interior rays. We denote the
sets of boundary and interior rays in T by ]2B and 12x, respectively. Clearly, all rays
of a total trihedral decomposition are interior rays. Following the notation used for
planar triangulations, we denote the number of boundary and interior rays of T by
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VB and Vx, respectively. Similarly, we denote the number of boundary and interior
faces of 7" by EB and Ex. For a partial decomposition, the number of rays is given
by V := V + VI, and the number of faces is given by E := E + E. For a total
decomposition, V V1 and E E.

Let T be a trihedron generated by {vl, v2, v3}, and let bl, b2, b3 denote the cor-
responding trihedral coordinates as functions of v E IR3. The homogeneous Bernstein
basis polynomials of degree d associated with T are the polynomials

b2b3, +j + k d,(4) B(v) i!j!k!b Y t

which closely resemble bivariate Bernstein basis polynomials [12, 13, 14].
The space T/d of trivariate homogeneous polynomials is a (d2+2)-dimensional lin-

ear space, and, as observed in [4], it is spanned by the set of (d2+2) Bernstein basis
polynomials defined in (4). Thus each p E 7-/d can be written uniquely in the form

i+j+k--d

In [4], p is referred to as a homogeneous Bernstein-B&ier (HBB) polynomial of degree
d.

It will be convenient to define the domain points associated with T to be the
points

iv + jv + kv3(6) Pijk
d

i + j + k d.

In contrast to the case of polynomial splines on planar triangles, this definition of Pijk
is not the only natural one (see Remark 24 in 9).

If we look at all of the domain points for all of the trihedra in a trihedral de-
composition, it is clear that the domain points associated with a common face of two
trihedra coincide. If we eliminate such repetitions, we see that for a given trihedral
decomposition 7", there are one point associated with each ray, d- 1 points associated
with each face, and (d) associated with the interior of each trihedron. Thus the set
G of distinct domain points has cardinality

(r)
d- 1) N"y + (d- +

The importance of the HBB form of homogeneous polynomials is that it provides
a simple way to describe when two such polynomials defined on adjoining trihedra join
together smoothly. Indeed, suppose T[] and T[2] are two trihedra generated by the
sets {v, v:, V3} and {vl, v3, V4}, respectively. Then as shown in [4], the two associated
homogeneous polynomials pill and p[2] of degree d agree on the face shared by T[]
and T[:] in value and all derivatives up to order r if and only if

,[21 C[ 11 k (V4) fOr all k < r, + j + k d,(s)

where kBu.. are the Bernstein basis polynomials of degree k associated with T[1]
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By (8), pill and p[2] join continuously across their common face if and only if

o[2] o[1] + j d.(9) 0 o,

We conclude that a spline s E 7-/(T) is uniquely defined by a set of p(G) coeffi-
cients, one associated with each point P E . This implies that the space 7-/(T) has
dimension (G).

For later use, for each P , it will be convenient to define a linear functional
Ap defined on (T) with the property that for any s (T),

(10) Ap8 Cp,

where cp is the coefficient associated with the point P. We denote the set of all such
linear functionals by A. Clearly,

For each A A, there is a unique spline sh 7-t(T) such that

(11) 7sh 5,h, all 3’ E A.

The spline sh has all coefficients equal to 0 except for the coefficient Ash which has
value 1. By construction, sh has one of the following supports:

(1) a single trihedron T if the coefficient Ash is associated with a domain point
in the interior of T;

(2) a pair of adjoining trihedra if the coefficient Asx is associated with a domain
point in the interior of a face separating two trihedra;

(3) the union of all trihedra which share the ray v if the coefficient Ash is associated
with the domain point v.
In view of these properties, we say that such splines have local support. The duality
property (11) assures that the splines sh for A A are linearly independent, and since
there are precisely () of them, they form a basis for 7-/(T).

To obtain analogous results for ?-/(T), we follow [8, 15, 17]. To get an upper
bound on dimension, we construct a determining set F C A such that if s (T),

(12) 7s-0 for all 7F implies s-0.

Then as shown in [8], dim(T) is bounded above by the cardinality of F. We can
get a lower bound for the dimension (and construct a basis at the same time) if F is
chosen so that for each A F, there exists a spline sh E 7-/(T) satisfying

(13) 7sh 5,h, all 3’ F.

This duality implies that the splines {sh } are linearly independent, and it follows that
the dimension of 7-/(T) is equal to the cardinality of F and that these splines form a
basis. Such a set F is called a minimal determining set.

We close this section by presenting the main result of the paper. Its proof will be
developed in the following sections.

THEOREM 3. Let r > 0 and d > 3r + 2. Suppose T is a trihedral decomposition
of a set ft c_ IR3. Let

(14) E av, where cry’= E (r + m + l mev)+
vE12r m=l
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and ev is the number of distinct planes containing the faces that meet at the ray v.
Then

(15) dim 7-/(T) (d- r)(d- 2r)V 2d2 + 6dr 3r + 3r + 2 + r

if :Y is a total decomposition, and

(16)
dim 7-/(T) (d- r + 1)(d- r)

2
v. + (d- )(d- 2)V

2d -6dr + 3r 3r- 2

2

if :Y is a partial decomposition. In either case, there exists a basis for 7-td(7") consisting

of splines such that the support of each spline is either a single trihedron, an adjoining
pair, or the set of trihedra containing a single ray.

3. Minimal determining sets for splines on oranges. In [8, 15], the key
to analyzing the dimension of bivariate spline spaces was first to examine the special
case of a cell consisting of a set of triangles sharing one vertex. In this section, we
construct minimal determining sets for spline spaces on the trihedral analog of cells.
In the context of tetrahedral decompositions, these were called oranges in [10, 20].
Throughout this section, we assume only that 0 _< r < d.

DEFINITION 4. A trihedral decomposition (9 consisting of a set of trihedra sharing
one ray v is called an orange. We call v the axis of the orange; see Fig. 1.

Suppose the trihedra in (9 are labeled in counterclockwise order as TIll, T[2],...,
T[N] as we move around the axis v, where the rays of T[] are v, v, and v+l. If v is
an interior ray, we have VN+ v. We can label the domain points in these trihedra
as

(17) p[] iv + jv + kV+l + j + k d.ijk d

THEOREM 5. If (. is an orange associated with a boundary ray v, then

(18) dim H((9)= (d+2) + (- 1)

If (9 is an orange associated with an interior ray v, then

(9)
dr

dimT-t((2)-(r+2}2 (d-r+1)2 E+ N + (r + rn + 1 me)+,
rn---

where e denotes the number of distinct planes shared by trihedra in (9.

Proof. Let II be a plane which intersects the axis of (2 at a point w which is not
the origin, and so that II is perpendicular to the axis. The intersections with II of
those faces of (.9 which contain the axis are rays in II emanating from w. If we replace
them with unit line segments with one end at w and then connect their endpoints in
order, we get a planar triangulation A consisting of a set of triangles sharing the vertex
w. Clearly, the restriction of a spline in ((9) to A is a spline in (A). Conversely,
by the homogeneity of the splines in T/((9), a spline in $(A) extends uniquely to a

spline in T/((9). The two spaces (A) and T/ ((9) are therefore isomorphic, and the
dimension assertion follows from Theorem 2.2 in [17]. [:]
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V

2

v3 (R)

/
(R) /

Vl

v4

FIG. 1. An orange with axis v.

Following the proofs of Lemma 3.1 in [15] and Lemma 3.1 in [8], we now construct
minimal determining sets for 7t(O) when O is an orange. We need the concept of a
ring of domain points around a ray v.

DEFINITION 6. Let 0 be an orange as above. Then given an integer d, the ruth
ring of 0 is the set of domain points

{ P[d,,j,k J + k --m, 6 1,2,...,N}.
The m-disk in (9 is the union of the Oth through ruth rings.

The concepts of ring and disk are illustrated in Fig. 1. In particular, the domain
points in the 5-ring around the vertex v in the figure are marked with + signs. The
domain points in the 5-disk include all points marked with * or with +. To avoid
cluttering the picture, the domain points in the far face (with vertices v, vl, and
have been omitted.

THEOREM 7. Suppose (9 is an orange associated with a boundary ray v. Then
the set

N

(21) /_< "i+j+k-d mJ [] "k>r+lijk
Z=2
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is a minimal determining set for (T). Suppose 0 is an orange surrounding an
interior ray v, and let e be as in Theorem 5. Let

(22) tN-e+l < PN-e+2 < < tN-1 N, N N + 1,

be such that the associated edges are pairwise noncollinear, and let

(23)

be the complementary set so that

(24) {#I,#.,...,#N} {2,3,...,N + 1}.

Let Fo c_ A be the set of functionals corresponding to domain points in the trihedron
TIll. In addition, for each m 1,..., d- r, let Fm be the set of functionals corre-
sponding to the first Nm (r + m + 1) + (r + m + 1 me)+ points in the ordered
set

(25) [1]{rd-rn-r,m-l,r+l," d-rn-r,O,m+r’ d-m-r,m-l,r+l’ d-m-r,O,rn+r}"

Then

m--0

is a minimal determining set for H(O).
Proof. We prove the result only for the case where the axis of the orange is an

interior ray; the other case is similar. It is easy to check that the cardinality of F is
given by the formula (19), and so we only need to show that F is a minimal determining
set. To that end, consider the plane II that is perpendicular to the vector v and passes
through the point v. Explicitly,

(27)

where denotes the ordinary dot product. Let we denote the orthogonal projection of
ve onto II, i.e.,

(28) we ve+(1 vt.v) v, g-l,2,...,N.
v.v

The intersection of O with H forms a two-dimensional cell A in the sense of [17]. Let Fzx
denote the functionals defined on S(A) corresponding to the projections of the points
defining F. In view of the correspondence between bivariate polynomials and trivariate
homogeneous polynomials, by Theorem 3.3 of [17], Fzx is a (minimal) determining set
of S(A). The fact that F is a determining set for (O) now follows from a careful
comparison of the smoothness conditions for S(A) and (O). Any spline s e (O)

,[e] To obtain thecan be expressed on the trihedron T[e] in the form (5) with cijk "ijk"
smoothness conditions for 7-/ (O), we write

(29)
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where for convenience we treat all rays, domain points, and coefficients cyclically as
we move around v (so that vo VN for example). By (8), a spline in H(O) belongs
to H(O) if and only if for all g- 1, 2,..., N,

for k <_ r and + j + k d. Consider now the corresponding smoothness conditions
for S (A). It can be checked that the projections of the ve satisfy

(31) We+ eV 2t- 8ewe- -t- tewe,

where

(32) e 1 se re.
Using a tilde to denote the coefficients of a spline in S(A), we obtain the conditions

(33) z[e+l]
iJ E [e]

ci+.,.,j+ #!,!!
yst[, g 1,..., N.

We now show that F is a determining set for 7-t(O). Consider a spline s E (O).
We work our way through the rings of the orange. The 0th ring is v itself. It is in F
and therefore the coefficient corresponding to it must be zero. Suppose now that the
coefficients corresponding to the first rn rings are all zero and consider the (m + 1)th
ring and the smoothness conditions (30) and (33) for k m. In spite of re and e
being different, these equations are equivalent since the terms where re : 0 and e 0
contain coefficients which are zero by the induction hypothesis. Thus the coefficients
of s must vanish on the (rn + 1)th ring and it follows that F is a determining set.
Since it has cardinality equal to the dimension of H(O), it follows that F is mini-
mal. 13

Remark 8. The argument used in the proof of Theorem 7 applies to all minimal
determining sets which have PFm points on the (r + m)th ring for rn 1,..., d- r.
However, it is not true in general that the analogue of a minimal determining set for
a two-dimensional cell is also a minimal determining set for a corresponding orange
as is shown in the following example.

Example 9. Let (9 be an orange with N 4, v3 -Vl and v4 -v2.
Discussion. Figure 2 shows a minimal determining set for S(A) that is not

determining for H ((9), where points corresponding to functionals not in the set are
marked with a dot, and the functionals corresponding to all other points are in the
set. Note that in particular the functional corresponding to the center point (which
is at v) is not in the set. Clearly, in the two-dimensional cell, the coefficients at the
points marked with a crosshair ((R)) or a triangle (A) determine the coefficient at v.
In fact, we have

(34) +cA

On the other hand, the relevant smoothness condition for H ((9) is

(35) ca -cA,
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Vl

v2

V

v4

FIG. 2. A nondeterrnining set.

v3

and so the two points marked with (R) or/ cannot both be in the minimal determining
set. It is of course easy to construct sets that are minimal determining for both $2 (A)
and H((9). An example (conforming to Theorem 7) can be obtained from Fig. 2 by
replacing the point marked with (R) with v. D

4. A minimal determining set for Tt(T) when d >_ 3r + 2. In this section,
we construct a minimal determining set F for (T) in the case where d >_ 3r + 2.
As in the bivariate case [8, 15], the key to the construction is to partition the Bzier
coefficients into suitable subsets. Consider a trihedron T generated by the vectors
v2, v3, and let :P := {Pijk}i+j+k=d be the associated set of Bzier coefficients. To
make the description of F easier, we recall the correspondence between coefficients,
domain points, and the associated linear functionals,

(36) Cijk

and work only with domain points Pijk here. We define the distance of Pjk from the
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ray v to be

(37)
d-i

dist(Pyk,v) d-j
d-k

if v Vl
if v v,
if v v3.

For 1, 2, 3, let

(38)

where

r+lJ(39) # := r + 2

and we identify V4 --Vl and v5 -v2.
The set/9,(vi) contains the points in a disk around vi of radius #. A(vi) (called

a cap in [15]) is the set of points not in/?,(vi) but whose corresponding coefficients
are involved in smoothness conditions of order up to r across the two faces sharing vi.

The sets g(vi), BL(Vi), and 13R(vi) include only domain points whose corresponding
coefficients are involved in smoothness conditions across the face opposite the ray vi.

Finally, C corresponds to coefficients which do not enter any smoothness conditions.
In Fig. 3, we have marked the domain points associated with one trihedron for

the case d 23 and r 6 to show which of the above sets they belong to. Dots
correspond to points in the sets/?,(v), circles to points in the sets g(vi), asterisks to
points in the caps 4(vi), plus signs to points in the sets BL(Vi) and 13R(Vi), and x’s
to points in the set C.

As in the bivariate case, in order to describe a minimal determining set for 7-/(T),
we have to take account of certain degenerate faces. In [15], an edge F of a planar
triangulation is defined to be degenerate at one of its endpoints v if the edges preceding
and succeeding F and connected to v are collinear. We require a similar concept for
trihedral decompositions.

DEFINITION 10. Let F be an interior face of a trihedral decomposition T, and let
v be one of the two rays generating it. We say that F is degenerate at v if the faces
other than F of the two trihedra sharing F and meeting in v are coplanar.

We also need to adapt the familiar concept of a singular vertex.
DEFINITION 11. An interior ray v of a trihedral decomposition T is said to be

singular if it has precisely four faces meeting at v which lie in two distinct planes.
In contrast to the planar case where an edge can be degenerate at only one

endpoint, for trihedral decompositions, it is possible for a face to be degenerate at
both of the rays defining it, see Example 19 below. We are now ready to describe a

minimal determining set F for 7-/(T) in the case d _> 3r 4- 2.
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0++$$++0O,
00+$+000

0000000,/O0000xo
(R)++O00xxo00++(R)+++Oxxo+++oo***0000**,oo(R)

(R)(R)*+0000+,ooooo
++000++(R)Ooooo+0000+oOO(R)ooo

FiG. 3. Division of domain points by Algorithm 12; d 23, r 6, tt 9.

ALGORITHM 12. If d k 3r + 2, choose the set F as follows:
(1) For each interior ray v of q-, choose a minimal determining set as described in

Theorem 7 for the space 7-/(T) restricted to the p-disk of Or, where (gv is the
orange surrounding v.

(2) For each boundary ray v of T, choose a minimal determining set as described in
Theorem 7 for the space T/(T) restricted to the p-disk of O, where O is the
orange containing v.

(3) For each trihedron T in T, choose the functionals corresponding to C and all three
of the sets A(vi) associated with T.

(4) For each face F in T, include the functionals corresponding to the set $(v) associ-
ated with a ray v in an adjoining trihedron and opposite to F. If F is a boundary
face, there is only one such trihedron, while if it is an interior face, we can work
with either of the two trihedra sharing it. If F is a boundary face, also include
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the functionals associated with the two sets BL(V) and BR(v).
(5) Suppose that v is an interior vertex and that rn of the faces attached to v are

degenerate at v. Then for each such face F, remove the functionals corresponding
to the cap nearest to v in the triangle preceding F (in counterclockwise order),
and replace them by the functionals in the set BL associated with F and lying in
the same triangle. If F is degenerate at both of its ends, carry out this step at
each end. It is easy to see that rn can only be 1, 2, or 4. For an illustration of
this step in he case rn- 1, see Figs. 1 and 2 in [15]).

(6) If v is singular, add the functionals corresponding to one cap A(v) in one of the
trihedra containing v.

THEOREM 13. Let T be a trihedral decomposition and let d >_ 3r + 2 and r >_ O.
Then the set F constructed in Algorithm 12 is a minimal determining set for
and its cardinality is given by (15) if T is total and by (16) if T is partial. For each
E F, there exists a unique spline s Tld(T) such that (13) holds. Then {s}er

forms a basis for Tlrd(T) such that the support of each spline is either a single trihedron,
an adjoining pair, or an orange.

Proof. We give the proof only in the case where T is total since the case where
it is partial is very similar. First, we observe that the cardinalities of the sets defined
in (38) are as follows:

#(v) (#+2)2

A(vi)- :BL(Vi)- BR(Vi) (2r # + 1)(40) 2

#g(vi) dr + d- 12#r 3# 1 + 6r2 + 4#2,

4=(d-3r-1)"2
Moreover, the sets are pairwise disjoint and their union is the set of all domain points
in the trihedron 7-.

Next, we show that the cardinality of the set F is given by (15) when 7- is total.
It can be shown that in this case

(41) N-2(V-2) and E-3(V-2),
where E is the number of faces of 7". Note that step 5 of Algorithm 12 does not change
the cardinality of F, and that step 2 does not contribute since there are no boundary
rays. With these observations, it follows from Algorithm 12 and Theorem 7 that

2 + Ev
2 + 5v (step 1)

(42) + N (d-3r-1)2 +3(2r-#+1)12 (step3)

+ E[dr+d-12#r-3#-l+6r2+4#2 (step4)

+ K(2r-#2 + 1), (step 6)

where E is the number of interior faces meeting at the ray v, K is the number of
singular rays, and

(43) a := E (r + rn + 1 me)+.
m=l
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Using

(44) E E 2E

and (41), the equality of the right-hand sides of (42) and (15) follows after a straight-
forward manipulation. (Note that for singular rays, the ff and the factor multiplying
K combine to produce cry.)

We now show that F is a determining set for 7-t(T). In the absence of degen-
erate faces, this follows as in [15]. For a degenerate face, note that the coefficients
corresponding to points in the cap moved in step 5 of Algorithm 12 are implied to be
zero by the smoothness conditions (8) across the degenerate face, independent of the
possible relocation of other caps.

To complete the proof, we now construct a basis for (2r} satisfying (13).
Clearly, for a given A E F, we can set the coefficient As i and all other coeffi-
cients corresponding to 7 E F with 3’ A to zero, we can solve for the remaining
coefficients using the smoothness conditions. If the domain point P corresponding to
A is contained in a set C, then the resulting spline sA has support on the trihedron T
containing P. If P is in a set of the form g(vi), then sA has support on the union of
the two trihedra containing the face opposite vi. In all other cases, sA has support on
an orange.

Remark 14. Instead of constructing an explicit basis, it is also possible to prove the
dimension statement in Theorem 13 by showing that the expressions in (15) provides
a lolve bmmd on dim-() as was done in [I] in the planar case. This is done by
thinking of i(T) as a subspace of (T), enforcing the smoothness conditions in the
#-disks via Theorem 7, and then subtracting the number of appropriate smoothness
conditions (8) needed to enforce smoothness across the interior faces of

5. A minimal determining set for 7-t(T) when d _> 4r+ 1. As in the case of
splines defined on a planar triangulation [8], the construction of a minimal determining
set can be greatly simplified if d >_ 4r + 1. In this case, the disks of radius 2r around
rays of T do not overlap, and the remaining smoothness conditions across faces of T
decouple. In that case, the following much simpler algorithm can be used:

ALGORITHM 15. If d _> 4r + 1, choose the set F as follows:
(1) For each interior ray v of T, choose a minimal determining set for ((9) as

described in Theorem 7, where (9 is the orange surrounding v.
(2) For each boundary ray v of T, choose a minimal determining set for ((9) as

described in Theorem 7. where (.9 is the orange containing v.
(3) For each trihedron T in T, choose
(4) For each face in T, choose

(45) 2(I)1) ---(1)1) \ [)2r (1)2) U )2r (1)3)],

where vl, v2, v3 define a trihedron such that v2 and v3 span the face.

For the case d- 23 and r 5, Fig. 4 shows the choice of the domain points for
a single trihedron T using Algorithm 15. As in Fig. 3, dots correspond to points in
sets of the form :D2(v) and circles correspond to points in g(u), while x’s mark the
points in C.
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 (R)OOxxxxxO0o(R)(R)

FIG. 4. Division of domain points by Algorithm 15; d 23, r 5.

6. The case d <_ 3r + 1. As in the planar case, it is also possible to treat
spline spaces for d < 3r + 1 provided we restrict the class of trihedral decompositions
somewhat.

THEOREM 16. Let d 3r + 1, and suppose that the trihedral decomposition :Y
does not possess any degenerate faces. Then the dimension of H3r+.(T) is given by
(t5) or (16), depending on whether 7- is total or partial. Moreover, there exists a basis
with local supports as in Theorem 13.

Proof. A minimal determining set can be constructed by an obvious adaptation
of the prescription given in [9] for the planar case. gi

It is also of interest to consider certain generic decompositions; see [11] for the
planar case.

DEFINITION 17. A trihedral decomposition T is said to be generic with respect
to r and d provided that for all sufficiently small perturbations of the rays of T, the
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resulting trihedral decomposition satisfies

(46) dimH() dimH(T).

THEOREM 18. Fix d E {2, 3, 4}, and suppose T is a generic trihedral decomposi-
tion with respect to r 1 and d. Then the dimension of HJ (T) is given by (15) or

(16), depending on whether 7" is total or not.
Proof. The space H (7") is isomorphic to the space S (A), where A is the gen-

eralized triangulation (see [11]) obtained by projecting the points in ; through the
origin onto a plane that does not contain the origin and is not parallel to any of the
rays in T. The result then follows from Theorems 27 and 33 in [11]. [:]

The proof of Theorem 18 does not involve finding a minimal determining set. For
d 4, it may be possible to construct one using the techniques in [7]. However, in the
case d E {2, 3}, no general procedure for finding a minimal determining set is known
even in the (generic) planar case.

7. Doubly degenerate faces. While the structure of bivariate splines on pla-
nar triangulations and homogeneous splines on trihedral decompositions in IRa are
very similar, there is a situation which can occur in the homogeneous case but cannot
occur in the planar case: it is possible for a face to be degenerate at both rays. We
illustrate this in the following example.

Example 19. Let

(47) v --Vi+3 ei, 1, 2, 3,

where e denote the standard unit vectors, and let 7"* be the set of trihedr generated
by the sets

(48) {Vl, V2, V3}, {Vl, V2, V6}, {Vl, V3, VS}, {Vl, V5, V6},
{V2, V3, V4}, {V2, Vn,V6}, {V3, V4, V5}, {V4, V5, V6}.

The convex hull of these points forms a regular octahedron; see Fig. 5. In the
resulting trihedral decomposition, each face is degenerate at each of its two rays, and
at each ray each face sharing the ray is contained in one of only two planes. Thus all
rays of 7"* are singular.

As a check on our formulas and to provide actual numbers for comparison pur-
poses, we have computed the dimensions of H(T*) in Example 19 for 1 _< r _< 5 and
I <_ d <_ 15 by setting up the smoothness conditions and numerically computing the
rank of the matrix describing the smoothness conditions using the Goliath package [2,
3] and other special purpose software. For the trihedral decomposition T*, there are
six singular rays. Thus for d >_ 2r, the expression (15} becomes

d-r

(49)
4d2 12dr + 9r2 + 3r + 2 + 6 E (r + 1 m)+

m--1

2 (2d2 -6dr + 6r + 3r + 1).

This gives

(50)

4d2 12d + 20
4d2 24d + 62
4d2 36d + 128
4d 48d + 218
4d2 60d + 252

if d _> 2 and r 1,
if d _> 4 and r 2,
if d _> 6 and r 3,
if d _> 8 and r 4,
if d > 10 and r 5.
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V3

V4 V1

V6
V5

FIG. 5. The regular octahedron.

In Table 1, we have used an asterisk to mark those cases where the computed
dimensions of H(T*) differ from the values of . As a curiosity, we note that for
the trihedral decomposition T*, the formulas are in fact correct for d- 3r + 1 (and
of course all larger values) but not for d _< 3r, even though T* is not generic and all
faces are degenerate.

TABLE
Dimensions ofH(T*) on the regular octahedron.

d: 2 3 4 5 6 7 8 9 10 11 12 13 14 i5
r=l:

r=2:

r=3:

r=4:

r--5:

3* 9* 19" 36 60 92 132 180 236 300 372 452 540 636 740

3* 6* 13" 24* 39* 61" 90 126 170 222 282 350 426 510 602

3* 6* 10" 18" 30* 46* 66* 93* 127" 168 216 272 336 408 488

3* 6* 10" 15" 24* 37* 54* 75* 100" 132" 171" 217" 270 330 398

3* 6* 10" 15" 21" 31" 45* 63* 85* 111" 141" 178" 222* 273* 331"

8. Super splines. As in the planar case [15], the methods above can also be
used to compute the dimension and to construct locally supported bases for spaces of
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homogeneous super splines:

(5) U (T) V},

where 0 {pv}vev and r <_ pv < d for all v. Here s E Cp (v) means that all of the
derivatives up to order pv of the pieces of s which join at v have a common value at
v. We assume throughout that the #- and p-disks around neighboring rays do not
overlap, i.e.,

(52) max {#, p} + max {#, p} < d

for all pairs of vertices u and v which generate a face of T, where # is defined in (39).
THEOREM 20. Let T be a partial trihedral decomposition and suppose that d >_

3r + 2 and that (52) holds. Then

,o ()dimd (7")-- (d- r)(d- 2r)
r + 2

V + Z pv 2
2

(53) [Ev (Pv r + l) 2d2 + 6dr 3r2 + 3r + 2

d-r

+E E (r+m+l-me)+
v6V m:pv--r+l

if is a total trihedral partition, and

dim’ (T)
2

VB + (d- r)(d- 2r)-
2

V

2d -6dr + 3r 3r- 2
2

(54)

(r + m + 1 me)+
vV m=pv--r+l

if T is a partial trihedral decomposition. Here E is the number of interior faces
attached to the vertex v for each v 1?. Moreover, there exists a basis of splines for
Tld’ (7") such that the support of each spline is either a single trihedron, an adjoining
pair, or an orange.

Proof. nWe give the proof for the case of a partial trihedral decomposition. The
proof when the decomposition is total is.similar (and simpler). The key observation
is that the set of points chosen by Algorithm 12 and lying inside the disk Dp (v) is a
minimal determining set for . ((9,), where (gv is the orange with axis v. Thus, if
we now impose C continuity at v, then we can replace those dim T/, ((9.) points by
(2+2) points lying in one trihedron in CO. This shows that for each ray v, the change
in the number of points in the minimal determining set F constructed by Algorithm 12
is given by

(55) dimH(O) dim HoQ (O) dim H,. (O)- (Pv; 2).
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Thus

(56)

Now, combining terms, we get (54).
Our new minimal determining set can now be used to construct a basis of locally

supported splines as was done in the proof of Theorem 3. [:]

The case where all pv are equal is of particular interest.
COROLLARY 21. Suppose that

(57)

and that 2p < d. Then

(58)

dim 7-/’ (T) (2d2 6dr 3r2 + 12rp + 3r 5p 3p) V
2

+ (-2d2 + 6rd + 3r2 3r + 6p2 12rp + 6p+ 2)

v "12 rn p r+

if T is a total trihedral partition, and

tr,e (7-) (d d + d + -,. + )
dim v

2
(2d2 6rd 3r2 + 12pr + 3r 5p2 3p)+ v

2
(59) (-2d2 + 6rd + 3r2 3r + 6p 12rp + 6p + 2)+ 2

d-r

+
v2 re=p--r+1

if T is a partial trihedral decomposition. Moreover, there exists a basis of splines for
7-td’ (T) such that the support of each spline is either a single trihedron, an adjoining
pair, or an orange.

Proof. Substituting (57)in (53) and using (41) and (44)leads to (58). For a

partial decomposition, the classical Euler relations for a triangulation imply

(60) E Ev 2Ex 2(V + 3VI 3).
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Now, substituting (57) in (54) and using (60) leads to (59). [:]

In both Theorem 20 and Corollary 21, the formula for a total trihedral decompo-
sition can be obtained from the formula for a partial one by dropping the term with
VB and doubling the constant term. Moreover, if we set p r in the corollary, of
course, we recover the formulas in Theorem 3.

9. Remarks.
Remark 22: The proof of Theorem 7 is based on the proof of Theorem 3.3 of

[17] for polynomial splines on planar triangulations. The description of the minimal
determining set for a cell given there is not quite correct in that it allows N-1 < N,
which could lead to the same point being included in F twice. This is easily fixed by
requiring that #N-1 N, as we have done here.

Remark 23. As in our paper [5], it is possible to develop a theory of homo-
geneous splines defined on a (total or partial) decomposition of IR2 by wedges (the
two-dimensional analogs of trihedra). Such splines can be restricted to a circle or a
similar curve to obtain univariate functions along the curve. The corresponding di-
mensions and minimal determining sets can be obtained .in a straightforward manner
by considering a single ring in Theorem 7.

Remark 24. In the bivariate polynomial spline case, there is no question that the
right way to define domain points Pijk associated with the Bernstein-Bzier coeffi-
cients of a polynomial is by the formula in (6). In that case, the set of pairs {P, cp}p6
is called the Bdzier net of s and has an important geometric interpretation. However,
in the trihedral setting, it is not so clear what the best way is to define the analogous
points. As discussed in [4], there are reasonable alternatives, although it appears that
there is no definition which carries the full geometric significance of the domain points
in the planar case. Our choice here is a useful way to label control coefficients.

Remark 25. For polynomial spline spaces on planar triangulations, there are well-
known lower and upper bounds on the dimension of $(A) which are of interest for
d < 3r + 2; see, e.g., [18] and references therein. Similar bounds can be derived for
our homogeneous spline spaces and will be treated elsewhere.

Remark.26. The formula (54) given in Theorem 20 for a partial trihedral decom-
position is much simpler than the corresponding formula in Theorem 2.4 of [15]. Since
our proof of Theorem 20 can also be used in the bivariate case, the simpler formula
(54) is also valid there.
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ON A REPRESENTATION FORMULA FOR B. TEMPLE SYSTEMS*

S. BENZONI-GAVAGEt

Abstract. The author gives an inf-sup representation formula associated with genuinely nonlin-
ear characteristic fields of B. Temple systems of conservation laws which reduces to the Lax formula
in the convex scalar case. The proof is derived by means of geometrical arguments together with a
method of characteristics. It holds for piecewise-smooth entropy solutions to the Cauchy problem
for a large variety of initial data including Riemann data.

Key words, systems of conservation laws, B. Temple systems, weak entropy solutions
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1. Introduction. In the theory of hyperbolic systems of conservation laws, the
class of B. Temple systems [7] is known to generalize the properties of scalar conser-
vation laws to a certain extent. Indeed, let f convex domain C n ln be a
C2 strictly hyperbolic flux function, i.e., such that for all u E gt, the Jacobian matrix

dr(u) has n distinct real eigenvMues [2].
DEFINITION l. We say that a characteristic field associated with a given eigen-

value belongs to the B, Temple class if the associated left eigenvector field is orthogonal
to a foliation by hyperplanes of gt. By B. Temple system, we mean that every char-
acteristic field belongs to the B. Temple class.

This is a very strong requirement which implies two "scalar-like properties" for
B. Temple systems. First, the elementary wave curves are straight lines. This result
was part of the original paper by Temple [7]. Second, Serre [5] has shown that
such systems are rich, that is, one can construct an infinite number of entropies. In
[6], Serre proved several integrability properties of such systems. More precisely, he
showed that if Vx u and vt -f(u) with f a B. Temple flux function according to
Definition 1, then the graph {x, t, v(x, t)} of v lies in a surface E C Rn+2 given by
the intersection of n envelopes of hyperplanes. This result is not complete, however.
It does not enable us to distinguish entropy solutions from other weak solutions. This
means that E may contain loops--corresponding to the occurrence of shocks (in the
genuinely nonlinear case)--that should be eliminated from G (which in principle is
the graph of a Lipschitz-continuous function). The inf-sup representation formula
presented in this paper does involve some entropy criteria. Since it reduces to the Lax
formula [2] in the convex scalar case, it may be a way to erase the irrelevant parts of
the graph in all cases.

It is well known that shocks are closely related to genuinely nonlinear fields.
DEFINITION 2 (Lax). A characteristic field associated with an eigenvalue ) and

a right eigenvector r is genuinely nonlinear if dA. r never vanishes on .
The aim of this paper is to produce as many representation formulas as there

are genuinely nonlinear fields in a given B. Temple system. Thus for any A-shock in
an entropy solution of ut + f(u)x 0, the ambiguity regarding the location of v in
the envelope may be eliminated through the scalar representation formula associated
with the A-field.

In order to prove those formulas, we shall first show that for each genuinely
nonlinear field, certain kinds of generalized convexity inequalities are satisfied. Then it
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follows rather easily from a method of characteristics that the involved "inf-suprema"
are nonpositive. It is a somewhat awkward task to see they are actually equal to zero.
We shall prove them to be so for a large variety of initial data, including "monotone"
(in a sense that we will specify) and especially Riemann data. The result remains a
conjecture for general bounded-variation (BV) initial data.

2. Statement of the problem. As mentioned above, we consider the system
of conservation laws

(1) ut + f(u)x O, u(x, t) e ]n, x e I, t > 0,

which is assumed to be strictly hyperbolic, the eigenvalues being denoted by/1 (U),
An (u) for each state u E gt C ]n. This is assumed to be a B. Temple system. It is now
classical that this implies the existence of a set {wl,..., wn} of n independent strong
Riemann invariants (i.e, for all u, the forms dwl (u),..., dwn (u) are left eigenvectors of
dr(u) associated, respectively, with A (u),... ,An(u)). And this ensures the existence
[3], [4] and the uniqueness [1] of a BV entropy solution to the Cauchy problem

(1) ut + f(u)x 0,

0)  0(x) e a, x e

provided that u0 E BV(II). Initially (through 3), these results are sufficient for our
analysis. We do not need to assume that each characteristic field belongs to the B.
Temple class. However, this will be used explicitly in Lemma 4.1 which suggests that
certain strong interactions between all the fields are involved in formula (5). This
point is not completely clear since this assumption is not used in the results of 4.1
and 4.2.

Henceforth, we suppose that (A, r) (r being a right eigenvector associated with A)
is a genuinely nonlinear B. Temple field of system (1). (Note that in the absence of
genuine nonlinearity, it is impossible to derive any kind of Lax formula.) Since dA. r
does not vanish on t, we may choose, for instance, r such that

(i) dA(u).r(u) > 0, Vu e Ft.

Let w be a strong Riemann invariant associated with this field. By the strict hyper-
bolicity of system (I), we know that dw. r cannot vanish. Let us assume, possibly
changing w into -w, that

(ii) dw(u) r(u) > O, Vu e gt.

By Definition 1, we know that the family of characteristic submanifolds {u t; w(u)
a} consists of a foliation by hyperplanes of gt. Thus for all a w(), there exists a
hyperplane Ha C such that

{u w(u) a} gt.

The one-parameter family of hyperplanes (IIa)aew(a) may be described by means of
their affine equations

Ha {t ]ln;ta .t ma},



ON A REPRESENTATION FORMULA FOR B. TEMPLE SYSTEMS 1505

where the ea’s are linear forms and the ma’S are scalar quantities. Clearly,

W n

so that we can choose ea pointing into the same half-space as dw(u) for u E Ha n .
This means we also have

(iii) ea r(u) > 0 Vu EIIa n .
It is not difficult to see that ea. f(u) is also a constant on II n rt, which we shall
denote by q:

ea f(u) qa Vu I n .
DEFINITION 3. We refer to a genuinely nonlinear B. Temple field (A, r) with its

related objects w, ea, ma, and qa as a GNLBT field.
We now assume the entropy solution u of the Cauchy problem (1)-(2) to be

piecewise smooth. Thus it can be expressed as the space derivative of v such that

(3) vt //(vx) O,

(4)
x

v(x, O) vo(x) Uo(U)d7.

With these assumptions, the conjectured representation formula reads as follows:

inf sup{ea" vo(y) ea v(x, t) + (x y)ma t qa} O.
Y a

This formula clearly reduces to a Lax formula in the strictly convex scalar case.
Indeed, in that case, there is just one field which is obviously of the B. Temple class
and is genuinely nonlinear by the strict convexity. Inequalities (i)-(iii) are satisfied
with A(u) f’(u), r 1, w(u) u, ea 1, ?Tta a, and qa f(a). Substituting
into (5), we obtain

inf sup{vo(y) v(x, t) + (x y)a- tf(a)} 0
Y a

or, equivalently,

inf {vo(y) + sup[(x y)a
a

v(x,t),

i.e., for t > 0,

v(x’t)=inf{v(Y)+’f*(x-Y)},
This is the well-known Lax formula [2].

Formula (5) was motivated by a result of Serre, who proved [6] that (y, a; x, t) :-
ea(Vo(y)) -e(v(x, t))+ (x-y)m tqa vanishes when y is given by the bottom of the
A-characteristic passing through (x, t) and a is the constant value wou(x, t) wouo(y)
of wou along this characteristic. Actually, (5) is meant to clarify the point concerning
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FIG. 1.

shocks in Serre’s work. Indeed, his result says that the graph G C ]ln+2 of v is included
in the envelope of the hyperplanes

P (x, T, V; oo() V X,,oo() + T qoo(.) oo()" o(v) v noo()}.

If there are shocks, some parts of this envelope should be removed because they should
not be attained by G.

Example 1. We can examine the Burgers equation with initial data generating
a shock in finite time (at time t 1 on Figure 1). We see that the envelope does
contain a loop which is eliminated by the Lax formula.
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The next section is devoted to proving the first "half-result":

infsup{ea, vo(y) Ca" v(x, t) 2t- (x Y)ma tqa} <: O.
Y a

This will be achieved through a very similar method to that of the scalar case using
a sort of "generalized convexity inequality."

3. A first result. Let (A, r) be a GNLBT field. Then we have the following.
THEOREM 3.1. /f (i)-(iii) hold, then for all a e w() and for all u e ,

(6) Ca" f() qa (u)(ea t ma) O.

Note that in the scalar case, this is merely the classical convexity inequality

f(u) f(a) f’(u)(u a) O,

which implies that the graph of f lies above its tangents.
We will use the following lemma in the proof of Theorem 3.1.
LEMMA 3.2. Let (A, r) be a GNLBTfield such that (i)-(iii) hold. Let s e I H u(s)

be the integral curve ofr passing through a given state b at s 0 (with 0 E I). Then the
real-valued function s e I 5r(u(s); b) := dw(b) (f(u(s)) f(b) i(u(s))(u(s) b))
admits a strict global maximum at s O.

Proof. Using the identity dr. r =_ At, we immediately compute the first derivative

d--:- 9V(u(s); b) -(dA(u(s)) r(u(s))) dw(b) (u(s) b)
ds

since du/ds r(u(s)). Now by (i), we see that (d/ds)JZ(u(s); b) and dw(b) (u(s) b)
vanish simultaneously at s 0 and take opposite signs elsewhere. Moreover, the
integral curve of r passing through b encounters the hyperplane Hw(b) only at the
point b (corresponding to s 0). Therefore, by (ii), we get that dw(b). (u(s)- b) > 0
for s > 0 and dw(b). (u(s) b) < 0 for s < 0. 13

Proof of Theorem 3.1. Relation (6) is equivalent to

dw(b) (f(u) f(b) A(u)(u- b)) <_ 0

for all states u, b e Ft. However, 9(u; b) dw(b). (f(u) f(b) A(u)(u b)) has the
same sign for all b
(depending on u). We can choose b to lie on the integral curve of r passing through u.
This curve is transverse to the hyperplanes lie (since dw. r = 0) and thus encounters
all of them. Then the trick is in considering the opposite point of view, which will
make our computations much easier. We take b e Ha ’ and examine $’(u(s); b),
where s u(s) is the integral curve of r passing through b (such that u(0) b). Now
Lemma 3.2 and the fact that (u; u) 0 imply that 9r(u(s); b) _< 0 for all s. This
completes the proof.

Now it is quite easy to prove the following.
THEOREM 3.3. Let (), r) be a GNLBT field such that (i)-(iii) hold. If v satisfies

equations (3) and (4) and is such that u vx is piecewise smooth and is the entropy
solution to equations (1) and (2), then for all (x, t) I l+,

(8) infsup{ea, vo(y) ea v(x,t) -- (x y) ma tqa} O.
y a
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Proof. Let us denote by the function

.(y, a; x, t) ca" vo(y) ca" v(x, t) + (x y)rna tq.

This is a Lipschitz-continuous function with respect to x and t. Moreover, (y, a; .)
is a nonincreasing function of time along any A-characteristic for every y and a. This
is a straightforward consequence of Theorem 3.1 since the relations

(9) t(Y, a; x, t) e f(u(x, t)) qa,

(o)

imply that

x(Y, a; x, t) e u(x, t) + m

t(Y, a; x, t) + A(u(x, t))x(y, a; x, t)

Ca" f(u(x, t)) qa ,k(U(X, t))(ea u(x, t) ma)

_
0

Va E w(Ft), ryES.

Serre pointed out in [6] that the Lax entropy inequalities enable us to go backward
along any A-characteristic. Therefore, for any point (x, t) IR IR+, there is at least
one point of intersection between the A-characteristic passing through (x, t) and the
space axis, which will be denoted by (y(x, t), 0) and referred to as the "(x, t)-foot."
Note that if (x, t) lies on a A-shock curve, there may be two "feet," which we will then
denote by yl(x, t) on the left and yr(x, t) on the right. In this case, y(x, t) refers to
either one.

DEFINITION 4. For any point (x, t) I ]R+, we define (x, t)-foot to be a
point (y(x, t), 0) of intersection between the A-characteristic passing through (x, t) and
the space axis. If there is a A-shock passing through (x, t), we denote by (yl(x, t), O)
(respectively, (yr(x, t), 0)) the intersection point lying on the left (respectively, on the
right) of the shock.

Here we have

(y(x, t), a; x, t) <_ (y(x, t), a; y(x, t), 0) 0 Va e

which proves (8).
Remark 1. Let us note that for all a w o u(x,t), (y,a;x,t) is a strictly

decreasing function of time along the A-characteristics while .(y, w o u(x,t);., .) is
constant along the A-characteristic passing through (x, t). (We recall that w o u(x, t)
is also a constant along such a characteristic.) Indeed, the inequality in Theorem 3.1
is strict unless w(u) a (el. Lemma 3.2). This implies

sup .(y(x, t), a; x, t) 0,
a

where the supremum is actually a strict maximum attained at a w o u(x, t)
o t)).
Therefore, if the conjectured formula is true, it amounts to saying that the "worst"

situation appears at the foot y y(x, t) in the sense that the infi.mum

inf[sup (y, a; x, t)]
Y a

is, in fact, a minimum attained at y y(x, t).
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4. The reverse inequality. In this section, we discuss the situation in which

(11) sup(y,a;x,t) >_ 0 Fy E .
a

In the scalar case, inequality (II) is true due to another monotonic property of
: which states that/:(y, a; y + ff (a)t, t) is a nondecreasing function in time. It is not
difficult to show that this is a consequence of the "reverse" convexity inequality

f(u)- f(a)- f’(a)(u- a)

_
O.

Thus we have

(y, a; x, t) _> (y, a; y, 0) 0

for a such that if(a) (x- y)/t. (If (x- y)/t does not belong to the range of f’,
then y does not contribute to the infimum since SUPa[((x y)/t)a- f(a)] +c.) In
fact, a f* ((x y)/t), f* denoting the convex conjugate function of f.

In the case of a B. Temple system, we have a kind of "reverse" inequality to (7).
LEMMA 4.1. We assume that all of system (1) is of the B. Temple class. Let

(), r) be a GNLBT field such that (i)-(iii) hold. Let s e I u(s) be the integral
curve of r passing through a given state b at s 0 (with 0 I). Then the real-valued
function s e I G(u(s); b) := dw(b) (f(u(s)) f(b) A(b)(u(s) b)) admits a strict
global minimum at the point s O. In other words, whenever the states u and b lie
on the same integral curve of r, they satisfy

(12) dw(b) (f(u) f(b) (b)(u- b)) >_ O.

Proof. Our computations are even easier than in Lemma 3.2. We have

d
ss(U(S); b) (A(u(s)) A(b))dw(b) r(u(s)),

which clearly vanishes at s 0. Moreover, from (i), we know that/\(u(s)) > A(b) for
s > 0 and A(u(s)) < A(D) for s < 0. However, integral curves of r are, in fact, straight
lines. (This is where we use the property of the whole system belonging to the B.
Temple class; see [7].) Therefore, dw(b), r(u(s)) cannot vanish and remains positive
since dw(b), r(b) > 0 (ii). [-1

Unlike (7), which is equivalent to (6), inequality (12) cannot in general be written
just in terms of a. There is one particular case in which Lemma 4.1 enables us to
prove equation (5); that is when A(b) depends only on w(b) (which, of course, includes
the scalar case).

PROPOSITION 4.2. Assume that all of system (1) is of the B. Temple class, (, r)
is a GNLBT field such that (i)-(iii) hold, and

dik A dw O in .
If v satisfies equations (3) and (4) and is such that u vx is piecewise smooth and is
the entropy solution to equations (1) and (2), then for all (x, t) 1+,

inf sup{ca" vo(y) Ca" v(x, t) + (x y)ma t qa} O.
Y a
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Proof. Indeed, A is then constant on Ha f? Ft. Let us denote its value by Aa. From
Lemma 4.1 (with b the intersection of IIa and the integral curve of r passing through
u), we have for all states u E ft and for all values of a E w(ft),

(13) ca" f(u) qa Aa(ea 1, ?Tt,a) O.

This enables us to work out the formula in the same way as in the scalar case.
Let y be any point in N. From (13), it is easy to see that (y, a; y + Aat, t) is a

nondecreasing function of time. If c (x y)/to is in the range of Aa, let a such that
Aa c. We get

(y, a; x, to) >_ (y, a; y, O) O.

Now, if c > sup Aa, let aM be an upper bound for w o u. Then c > AaM and we have
a

d
:(y, aM; y + ct, t) caM" f(u(y + ct, t)) qaM
dt

C(eaM t(y r- Ct, t) ?TraM)

with ea" u(y + ct, t) rnaM < O. Thus (d/dt)(y, aM; y + ct, t) >_ 0 and therefore

(y, aM; x, to) >_ (y, aM; y, O) O.

Of course, if c < infa Aa, the same holds with a lower bound a,. Thus we have (11),
which with Theorem 3.3 completes the proof.

Note that this case is very similar to the scalar case since A-characteristics are
straight lines.

In the general case, the eigenvalue A is not a constant on the hyperplanes
Lemma 4.1 states that (y,a;Xa(t),t) is nondecreasing along curves that are no
longer straight lines but are defined as

dXa
dt

 (Va "(Xa (t), t))),

where ha(u) denotes the intersection of the integral curve of r passing through u
(that is, u + Nr(u)) with IIa. These curves are not easy to handle. Unlike the A-
characteristics, they do not have to intercept the x-axis. Indeed, in order to use the
Lax entropy inequalities A(ur) < cr < A(u), we need some information on ha, such as

A(ba(ur)) <_

>_

There is no obvious way to derive such inequalities unless w(ur) <_ a <_ w(ut) (which
is undoubtedly related to Lemma 4.9 in 4.2). In any case, the existence of such
points of intersection would not even solve the problem. For a given a and a possi-
ble corresponding point ya(x, t), the quantity (y, a; ya(x, t), 0) does not have to be
nonnegative.

These remarks are meant to point out the kind of difficulties encountered when
we try to check whether or not inequality (11) holds for all y (and especially for y -y(x, t)). Nevertheless, we conjecture this inequality--and thus also the representation
formula (5)--to be true. The proof is now given for several particular cases when
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the initial data are "nice enough" so that it is possible to produce at least one a
(depending on (x, t; y)) such that E(y, a; x, t) >_ 0.

Before going further, let us show that (11) holds at t 0 for any initial data of
bounded variation. Indeed,

ft.(y, a; x, O) ea (vo(y) Vo(X)) + (x y)ma,

which is equal to zero if y x (for all a e w(f)) or, for y x,

Uo maE(y, a; x, O) (y x) ea y x

which is equal to zero for a w ((1/(y- x))f no). (The mean value (1/(y-
x)) f u0 still lies in the convex set .)

4.1. Proof of equation (5) for special initial data. For t > 0, let us begin
with a very simple case.

THEOREM 4.3. Let (A, r) be a GNLBT field such that (i)-(iii) hold. Assume that
w uo is nondecreasing. If v satiCes equations (3) and (4) and is such that u v
is piecewise smooth and is the entropy solution to equations (1) and (2), then for all
(x, t) +,

inf sup{e, vo(y) e v(x, t) + (x y)ma tqa}:O.
Y a

Proof. This is a simple case in the sense that there is no A-shock in the solution
with such initial data. In addition, the proof works out almost immediately. Indeed,
let a(x,t) w o u(x, t) w o Uo(y(x, t)). Then (y, a(x,t);., .) is constant along the
A-characteristic passing through (x, t) (see Remark 1) and thus

E(y, a(x,t); x, t) (y, a(x,t); y(x, t), O) Vy e .
Now let us compare E(y, a(x,t);y(x, t), 0) to (y, a(x,t);y, 0) 0 for any y e l. From
equation (10), (ii), and (iii), we know that

(4) sgn Ex(y, a; x, t) sgn(a w o u(x, t)).

Therefore,
if y <_ y(x, t), then w o no(z) <_ a(,t) for all z E [y, y(x,t)] and (y, a(x,t); z, 0)

is nondecreasing for z E [y, y(x, t)];
if y >__ y(x,t), then w o no(z) >_ a(x,t) for all z [y(x,t),y] and (y,a(,t);z, O)

is nonincreasing for z [y(x, t), y].
In both situations, we see that

0 (y, a(x,t);y, O) <_ (y, a(,t);y(x, t), 0) (y, a(,,); x, t). [:]

Let us now take some rather simple initial data which may give rise to a A-shock.
Let X0 I.

THEOREM 4.4. Let (, r) be a GNLBT field such that (i)-(iii) hold. Assume that
w o uo reads

o  o(z) { Wr



1512 S. BENZONI-GAVAGE

If v satisfies equations (3) and (4) and is such that u vx is piecewise smooth and is
the entropy solution to equations (1) and (2), then for all (x, t) E ]R ]R+,

inf sup{ca vo(y) Ca" v(x, t) q- (x y) ?Tea t qa} O.
Y a

Note that this case contains the Riemann problems but is more general in the
sense that u0 is. only required to stay in a given hyperplane (Ho, or IIw) on each
interval instead of being a constant. However, there is no additional difficulty in the
proof.

Proof. If w _< wr (i.e., a A-rarefaction wave appears for t > 0), then, in fact,
Theorem 4.3 holds. Henceforth, we assume that wt > wr. Then a A-shock takes-place
for t > 0. However, due to the Lax entropy inequalities, the A-characteristic passing
through (x, t) cannot cross this shock at any time s _< t. For example, let us assume
that the A-characteristic passing through (x, t) lies to the right (of the ,-shock curve
initiated at X0) until time t. Let us split the study of supa (y, a; x, t) into two cases
depending on whether the point (y, 0) lies on the same side as the A-shock curve or
the opposite one.

1. Let us take y >_ X0. Then the proof does not depend on w o uo(Y) for
Y < Xo. Indeed, let a=wou(x,t)=WOUo(y(x,t))=WOUo(y)=w. Then
we have

0 (y, a; y, O) (y, a; y(x, t), O) (y, a; x, t),

which proves that supa .(y, a; x, t) >_ O.
2. Now let us take y < X0. We will see that a=WOUo(y) still gives the

desired estimate. We denote by X(t) the position of the A-shock at time t. Then going
backwards along the A-characteristics, we see that wou(, t) w < wt wouo(y) a
for all E ]X(t),x]. Therefore, using (14), we have

(y, a; x, t) > (y, a; X (t), t).

Now we consider yz(X(t), t) the "(X(t), t)-left-foot" as in Definition 4. Then, applying
case 1 to (X(t), t)instead of (x, t) and wz instead of w, we get

0 (y, a; y, O) .(y, a; yz(X(t), t), 0) (y, a; X(t), t)

since a wt w o u(X(t) O, t) w o uo(yl(X(t), t)).
Remark 2. In case 1 of the proof, we may weaken the assumption on w o u0.

Indeed, let us assume that w o uo(z) is only nondecreasing for any z > X0. Let
a w o u(x, t) w o Uo(y(x, t)) (which is possibly no longer equal to w o uo(y)).
Then we have (see the proof of Theorem 4.3)

0 (y, a; y, O) <_ (y, a; y(x, t), 0) (y, a; x, t),

which still proves sup (y, a; x, t) _> 0.
Remark 3. We have seen in case 2 that the proof does not always work with

the "simple" value a w o u(x, t). This is not surprising. For the scalar case, the
"working value" is a f* ((x y)/t). For systems, we do not have a tool similar to
f*, which explains the difficulties related to the derivation of more general results.

Remark 2 prompts us to try the following generalization of Theorems 4.3 and 4.4.
Let us take X0
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THEOREM 4.5. Let (;, r) be a GNLBT field such that (i)-(iii) hold. Assume that
w o uo is a nondecreasing function on each of the intervals]-c, Xo) and (Xo, +c[.
If v satisfies equations (3) and (4) and is such that u vx is piecewise smooth and is
the entropy solution to equations (1) and (2), then for all (x, t) E l 1+,

inf sup{ea, vo(y) ea v(x, t) nt- (x y)ma tqa} O.
Y a

We shall only consider the case when

o o(Xo 0) > o o 0(Xo + 0).

(Otherwise Theorem 4.3 holds and gives the result.) This generates a single A-shock
wave. More precisely, we need the following lemma.

LEMMA 4.6. Let uo be of bounded variation such that w o uo is a nondecreasing
function on oo, Xo) and (Xo, +oo[ and w o uo(Xo O) > w o uo(Xo + 0). Then
the entropy solution to equations (1) and (2) consists of a A-shock wave t -, X(t) and
won(x, t) is a nondecreasing function of x for x < X(t) and for x > X(t). Moreover,
let

,(t) o (x(t) o, t)

and

(t) o o (x(t) + o, t).

Then wt t (respectively, w t is a continuous nonincreasing (respectively, nondecrea-
sing) function of t > O.

Proof. The monotonic properties are derived by going backward along the/k-char-
acteristics and using the properties of w o no. If w o uo has some points of discontinuity
apart from Xo, then they generate rarefaction waves; hence we have the continuity of
w,(t), cl

In particular, Lemma 4.6 implies the existence of wt,r limt_++oo wt, (t) such
that

(15) (0) >_ F > oF > (0).

Proof of Theorem 4.5. If (y, 0) lies on the same side of the A-shock as (x, t), the
proof of equation (5) is the same as the proof of Theorem 4.3 (see Remark 2).

The remaining problem is when (x, t) and (y, 0) lie on opposite sides. Let us
assume, for instance, that (x, t) lies on the left, i.e., x < X(t) and thus y(x, t) < Xo.
Let us take y > Xo. We shall discuss different cases concerning the location of y(x, t).
Let us define

yoo= sup{Y _< Xo; w o no(Y) <_ w},
Yroo sup{Y < Xo; w o no(Y) <_ w },
yO sup{Y X0; w o no(Y) <_ w(0)}.

Clearly, from (15), these points (possibly equal to -c) are in the following order:
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1. If y(x, t) <_ yO, then w o u(x, t) W o uo(y(x, t)) <_ wr(O). In this case, the
proof is the same as if w o u0 were nondecreasing on the whole interval [y(x, t), y]
(whereas there is a "bump" between Yr and X0). Indeed, let a w o u(x, t). Then
w o uo(z) >_ a for any z E [y(x, t), y]. Therefore, due to (14), (y,a; z, 0) is a nonin-
creasing function of z for any z E [y(x, t), y], which gives

0 (y, a; y, O) <_ (y, a; y(x, t), O) (y, a; x, t).

2. If Y < y(x, t) Y, then wr(O)
w, there exists a T 0 such that w o u(x, t) w(T). Let a w o u(x, t). Let us
consider y(X(T),T) to be the (X(T),T)-right-foot. There are two possibilities:

If the shock has already canceled at time T, then w(T) wt(T) and we have

0 (y, a; y, 0) (y, a; y(X(T), T), 0); (y, a; X(T), T) (y, a; x, t).

If we have w(T) < wt(T), then the A-characteristic passing through (x,t)
cannot have encountered the A-shock at time T. Indeed, from Lemma 4.6, we have
w o u(x, t) w(T) < wt(T) wt(7) for all T. Therefore, let X be the position
of this characteristic at time T.
On one hand, a wou(x, t) forces (y, a;., .) to be a constant along the A-characteris-
tic passing through (x, t) while a w(T) forces (y, a;., .) to be a constant along the
A-characteristic(s) passing through (X(T), T). On the other hand, since w o uo(z)
w o uo(y(x,t)) for z [y(x,t),Xo] and due to (14), (y,a;. ,T) is nonincreasing on

[x,X(T)]. Thus we can write

0 (y, a; y, O) (y, a; y(X(T), T), 0) (y, a; X(T), T)
(, a; , T) (, ; x, t).

The limit case w o u(x, t) w follows from the continuity of , which gives

0 (y, wF;z, t).

3. If y(x,t) < X0, then w w u(x,t) w(O) w o uo(Xo 0).
Now, if w o u(x, t) > w, there exists a T 0 such that w o u(x, t) wt(T). Then
the A-characteristic passing through (x, t) encounters the shock curve at time T and,
of course, t T. Let a w(T). Let us consider yr(X(T), T) to be the (X(T),T)-
right-foot. Since (y, a;., .) is a nonincreasing function of time along A-characteristics
and is constant iff a is the constant value of w o u along such characteristics, we have

0 (y, a; y, O) (y, a; y(X(T), T), 0) (y, a; X(T), T)
(y, a; x, t).

The limit case w u(x, t) w follows from the continuity of , which again gives

0 (y, wF;x, t).

4. If Y < y(x, t) < , then w w u(x, t) w. The A-characteristics
issued from any point in [Y,] are necessarily defined for any time. Let t,r be
the location at time t of the A-characteristic issued from ,. We have
and w o u(., t) w on ]x,t]. Therefore, let a w. The function (y, a;., t) is
nonincreasing on Ix, t] and we have

0 (y, a; , t) (y, a; x, t).

This ends the proof of Theorem 4.5.
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Before going further, it may be interesting to notice that there is a kind of paradox
in this proof, which actually throws light on the asymptotic behavior of the solution.
This is summed up in the following statement.

COROLLARY 4.7. Let uo be of bounded variation such that w ouo is a nondecreas-
ing function on c, Xo) and (Z0, +c[ and w o uo(Xo O) > w o uo(Zo + 0). We
denote by t H X(t) the generated A-shock wave in the entropy solution to equations
(1) and (2) and

(t) o (x(t) o, t),

(t) o (x(t) + o, t).

f o o(-) < o o(+), t

lim w(t)= lim mr(t).
t-*+cx t---+x

If w o uo(-x) >_ w o Uo(+), then

lim wt(t) w o uo(-oe) and lim wr(t) w o uo(+cx).

Proof. We are going to show that case 4 in the proof of Theorem 4.5 is void. In
other words, there are no points (x, t) such that

(6) F < o (z, t) < F.
Indeed, if (x, t) were such a point and were lying on the left of the shock, we

would have from case 4 that

z:(, F;x, t) > o.

Since won(x, t) < w, the A-characteristic passing through (x, t) could not encounter
the shock in finite time, and because won(x, t) > w, the function (y, w;., .) would
be strictly decreasing along this characteristic. Thus this function would have a finite
nonnegative limit as t --, + and its derivative would tend to zero. However, this
derivative is

ewe" f(u(x, t)) qw A(u(x, t))(evo u(x, t) mw)
and cannot tend to zero unless w o u(x,t) tends to wr (see Remark 2). This is
impossible since w o u(x, t) is a constant along the A-characteristic and is not equal
to w by assumption.

If (x, t) were a point lying on the right of the shock, we could show in exactly the
same way (taking (y, 0} on the left) that (16) cannot hold.

Thus we have either ]w, w[ , which means

(7) =F,

or

(18) w=wouo(-oc) and w=wou0(+oc).

If w o uo(-oe) < w o uo(+oc), equation (18)is impossible since we always have

w _< w, so equation (17) must hold.
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Therefore, the asymptotic behavior of the solution consists of either the cancella-
tion of the shock or its adaptation to the profile given by w o u0 (-cx) and w o u0 (+cx).
This is a rather nontriviM consequence of our analysis.

Using Theorems 4.3, 4.4, and 4.5, we can easily obtain the following results con-
cerning "piecewise-constant" initial data (which may be interesting in relation to finite
difference schemes).

THEOREM 4.8. Let (, r) be a GNLBT field such that (i)-(iii) hold. Assume that
w o Uo is piecewise constant and is such that

1. w o uo is nondecreasing,
2. w uo is nonincreasing, or
3. the "mesh" contains at most three intervals.

If v satisfies equations (3) and (4) and is such that u vx is piecewise smooth
and is the entropy solution to equations (1) and (2), then for all (x, t) E +,

inf sup{ea, vo(y) ea v(x,t) + (x y) ma tq} O.
Y a

Proof. Case 1 is contained in Theorem 4.3. Case 2 can be proved similarly to
Theorem 4.4 with a w o no(y). Actually, it will follow from the next section that
a wuo(y) gives the desired estimate for any nonincreasing initial data. As for case
3, the initial data takes at most three values. In any case, we can apply either cases
1 or 2 or Theorem 4.5. Unfortunately, with more than three intervals, our method
would become too complicated.

4.2. Attempt to extend the proof to any initial data. One attempt to
extend the proof to any kind of initial data proceeds as follows. Drawing inspiration
from Theorems 4.3 and 4.4, we may consider the following situation. Let (x, t) E I
+* and (y(x, t), 0) be its foot. Let y < y(x, t). Consider a point z(y; x, t) e [y, y(x, t)]
such that w no(z) <_ w o uo(z(y; x, t)) for all z e [y, y(x, t)].

Assume that the A-characteristic issued from z(y; x, t) attains time t. We denote
by Z(y; x, t) its location at that time. Let a w o Uo(Z(y; x, t)). By the definition
of a, we have that w o no(z) <_ a, for all z e [y, z(y; x, t)] and also that

o u(Z, ) <_ o (z(v; , ), t) o 0(z(v; , )) a

for all Z e [Z(y; x, t), x]. Therefore, we get from equation (14) that

(, ; , t) > (, a; z(; x, t), t) (, a; z(; , t), 0) > (, a; , 0) 0.

In the case where the A-characteristic issued from z(y; x, t) encounters a A-shock
before time t, the preceding argument fails in general. However, it does work in the
following situation. If w o u0 is nonincreasing, then the proof is based on an additional
monotonic property of ; which we state in the following lemma.

LEMMA 4.9. Let (A, r) be a GNLBT field such that (i)-(iii) hold. Let t X(t)
be a A-shock wave. Moreover, let us denote by

o (x(t) o, t) o **(x(t) + o, t) (t).

Then t (y,a;X(t),t) is a nondecreasing function of t on any interval [t0,tl]
provided that

sup w_<a_< inf
[to,tl] [to,t,]
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Proof. We look at the first derivative of the Lipschitz-continuous function t -(y,a;X(t),t). Equations (9)and (10)imply that

-(, ; x(t), t) (, a; x(t), t) + (t)&(v, ; x(t), t)

e. f(uz,(t)) q a(t)(e, uz,(t) ma).

(Both values give the same result owing to the Rankine-Hugoniot condition.) Now
we appeal to the classical convex entropy of (1),

whose entropy flux is u -. sgn(ea.U- ma)(ea" f(u)- qa). The associated entropy
inequality along the shock curve reads

> sgn(ea .ur ma)(e, f(ur) qa) sgn(e "uz m)(e, f(uz) qa).

Note that due to the Rankine-Hugoniot condition, this inequality would be trivial if
we had (ea’Ur-ma)(ea’ut-ma) > O. However, the assumption (w(ur) <_ a

_
w(ut)),

(ii), and (iii)imply that

e u ma < O < e ul m.

These quantities cannot vanish simultaneously. (Otherwise, there would be no shock
at all.) Therefore the entropy inequality together with the Rankine-Hugoniot condi-
tion imply that

-2cr(e, .ut m,) > -2(e. f(ul) q)

or, symmetrically,

-2a(ea u,, ma) >_ -2(e,. f(u,,) q).

This proves that (d/dt)(y, a; X(t), t) is nonnegative. [:1

THEOREM 4.10. Let (A, r) be a GNLBT field such that (i)-(iii) hold. Assume that
w o uo is nonincreasing. If v satisfies equations (3) and (4) and is such that u vx
is piecewise smooth and is the entropy solution to equations (1) and (2), then for all
(x, t) x +,

inf sup{ea" vo(y) ea v(x, t) + (x y)ma t qa} O.
Y a

Proof. Let (x, t) E 1 +* and (y(x, t), 0) be its foot. Let, for example, y <
y(x, t). We again consider a point z(y; x, t) e [y, y(x, t)] such that w uo(z) < w
uo(z(y; x, t)) for all z e [y, y(x, t)]. The assumption on w o u0 enables us to take
z(y; x, t) y. If the A-characteristic issued from z(y; x, t) y attains time t, we
can stick to the preceding argument. If the A-characteristic issued from z(y; x, t) y
encounters a A-shock at some time to < t, we denote by s H X(s) this A-shock curve
and

o (x(t) o, t) (t), o (x(t) + 0, t) (t).
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By definition, we have either w o uo(y) wt(to) or w uo(y) w(to). Moreover, by
a lemma similar to Lemma 4.6, we have that wt is a nondecreasing function of time
whereas w is nonincreasing. Let a w o Uo(y). In any case, we get

sup wr _< a _< inf wt.
[to,t] [to,t]

Applying Lemma 4.9 and equation (14), we get

(y, a; x, t) >_ (y, a; X(t), t) >_ (y, a; X(t0), to) (y, a; y, O) O. D

Eventually, we will have proved the formula in both monotonic cases for w o u0.
That is one of the reasons why we make the following conjecture.

CONJECTURE 1. Let (, r) be a GNLBT field such that (i)-(iii) hold. Let uo
belong to BV(R). If v satisfies equations (3) and (4) and is such that u vx is
piecewise smooth and is the entropy solution to equations (1) and (2), then for all
(x, t) e x

inf sup{ca" vO(y) Ca" v(x, t) zr (x y)ma ’qa} O.
Y a

Remark 4..We can prove that supa E(y, a; x, t) >_ 0 for points (x, t) lying outside
cone with vertex y. Indeed, let am,M be such that

am <_ wouo <_ aM.

It is sufficient to prove that

sup (y, a; x, t) _> O.
ae[am ,aM]

Since is continuous with respect to a (in fact, it is at least Cl) and is Lipschitz
continuous with respect to (y; x, t), the upper envelope

L0(y; x, t) sup (y, a; x, t) max (y, a; x, t)

is Lipschitz continuous. We shall easily prove that there exists some nonnegative
constant. C such that L0(y; x, t) >_ 0 if I(x y)/t >_ C.

Indeed, suppose that we have some compact and convex invariant domain K C t
that contains u0. For each a E [am, aM], let

a(u) ea "U--ma

This gives a continuous function of the two arguments a and u.

min[a.,M]K [5(u)[. We have--among other things--that
Then let C

t(Y, a; x, t) e f(u(x, t)) qa >_ -C[m e u(x, t)[ -CI x(y, a; x, t)I.

In particular, this gives, for x < y,

t(y, am; x, t) >_ +Cz(y, am; x, t)
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and, for z > y,

aM; X, t)

_
-Cx(y, aM; x, t).

After integrating these inequalities along the lines with "slopes" -C and + C, re-
spectively, we obtain that is nondecreasing along those lines. Since equation (14)
implies that

(y, am; Y,O) >_0, Y < y,

and that

(y, aM; Y O)

_
O, Y > y,

we must have that L0(y; x, t) _> 0 for all (x, t) such that I(x- y)/t >_ C.

5. Conclusion. Formula (5) has been proved for a large variety of initial data,
including Riemann data and more generally monotone initial data (in the coordinates
of Riemann invariants). For general initial data of bounded variation, its proof should
rely on

(11) L0(y;x,t) >_0 VyEIR

for all (x, t) E R R+. It was noted that inequality (11) holds at t 0 and also for
(y;z, t) such that I(x- y)/tl _> c > 0. However, there is still a great deal of analysis
to do in order to remove all the restrictions.

Acknowledgments. This study was suggested to me by D. Serre. I would es-
pecially like to thank him for his constant encouragement.. A. Heibig. also took an
interest in my work for which I thank him sincerely.

REFERENCES

[1] A. HEIBIG, Existence and uniqueness of solutions for some hyperbolic systems of conservation
laws, Arch. Rational Mech. Anal., 126 (1994), .pp. 79-101.

[2] P. D. LAX, Hyperbolic systems of conservation laws I, Comm. Pure Appl. Math., 10 (1957),
pp. 537-566.

[3] R. LEVEQUE AND B. TEMPLE, Stability of Godunov’s method for a class of 2 x 2 systems of
conservation laws, Trans. Amer. Math. S0c., 288 (1985), pp. 115-123.

[4] D. SERRE, Solutions & variation bornde pour certains systmes hyperboliques de lois de con-
servation, J. Differential Equations, 68 (1987), pp. 137-169.

[5] , Richness and the classification of quasilinear hyperbolic systems, IMA Vol. Math. Appl.,
9 (199), pp. al-aaa.

[6] , Temple’s fields and integrability of hyperbolic systems of conservation laws; in Proc.
International Conference on Nonlinear PDEs, Guangchang Dong and Fanghua Lin, eds.,
International Academic Publishers, 1993, pp. 233-251.

[7] B. TEMPLE, Systems of conservation laws with invariant submanifolds, Trans. Amer. Math.
Soc., 280 (1983), pp. 781-795.



SIAM J. MATH. ANAL.
Vol. 27, No. 6, pp. 1520-1543, November 1996

1996 Society for Industrial and Applied Mathematics
OO2

CONVERGENCE OF THE HOMOGENIZATION PROCESS FOR A
DOUBLE-POROSITY MODEL OF IMMISCIBLE TWO-PHASE

FLOW*
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Abstract. In this paper, we justify by periodic homogenization the double-porosity model
for immiscible incompressible two-phase flow. The volume fraction of the fissured part and the
nonfissured part are kept positive constants and of the same order. The scaling is such that, in
the final homogenized equations, the less permeable part of the matrix contributes as a nonlinear
memory term. To prove the convergence of the total velocity and of the "reduced" pressure, we use

the two-scale convergence since it seems to be appropriate for the problem, even though it would
be possible to work with periodic modulation. However, in the final step, the degenerate ellipticity
prevents the use of the two-scale convergence method and leads us to use periodic modulation.

Key words, flow in porous medium, double porosity, fractured reservoir, homogenization,
dilation

AMS subject classifications. 35B27, 35B45, 35K55, 35K65, 76S05

1. Introduction. Naturally fractured reservoirs may contain many fractures
that permeate different regions of the reservoir and are characterized by the existence
of a system of high-conductivity fissures together with a large number of matrix blocks
containing most of the oil. The fractures serve as highly conductive flow paths for
the reservoir’s fluid, increasing the reservoir’s effective permeability significantly over
the permeability corresponding only to the rock matrix. The reservoir mechanism
of fractured systems is significantly different from that of a so-called single-porosity
system; see, for instance, [15, 17, 18, 23, 26]. To describe the flow of the fluid in such a
fractured reservoir, several authors in the engineering literature [8, 16, 19, 31] showed
that if there are many well-connected fractures, the network of fractures behaves as
an equivalent porous medium, described by the so-called "dual-porosity" model.

In Barenblatt’s dual-porosity model of the fractures, the width is considerably
greater than the characteristic dimensions of the pores and the permeability K* of
the fissure system considerably exceeds the permeability k of the individual blocks
of porous media. At the same time, the fissures occupy a smaller volume than the
pores, so the ratio of the volume of the fissures to the total volume is smaller than the
porosity of any individual block of porous media.

To obtain the dual-porosity model, the fracture system’s local properties are
averaged over a volume containing both the fractures and a matrix. The so-called
dual-porosity model for a porous medium consists of an equivalent coarse-grained
porous medium in which the fissures play the role of "pores" and the blocks of porous
media play the role of "grains."

While no flow is allowed between blocks, only matrix-fractures flow is possible,

*Received by the editors November 2, 1994; accepted for publication (in revised form) July 18,
1995.

)Equipe d’Analyse Numrique, Universit de Saint-Etienne, 23 Rue Dr. P. Michelon, 42023
Saint-Etienne cedex 2, France (bourgeatanumsunl.univ-st-etienne.fr).

$Institut fiir Angewardte Mathematik, Universitt Bonn, Wegeler Strafie 6, D-53115 Bonn,
Germany.

Laboratoire d’Analyse Numrique, Universitd Lyon 1, Btiment 101, 43 Boulevard du 11
Novembre, 69622 Villeurbanne cedex, France (andro@lanl.univ-lyonl.fr).

1520



DOUBLE-POROSITY MODEL 1521

and the porous-rock matrix system plays the role of a global source term macroscop-
ically distributed over the entire equivalent coarse-grained porous medium.

Since flow in the fractures is much more rapid than inside the matrix, the fluid
does not flow directly from one matrix block to another. Rather it first flows into the
fractures system and then can pass into a block or remain in the fractures.

Denote by the ratio between the size of one block of porous media tn to the
size of the whole domain of calculation ; then the characteristic time scale for any
parabolic evolution in one block tm will be of order -2.

In our case, the parabolic evolution is driven by the system of continuity (2.1)-
(2.6) below. On the other hand, to have a permeability ratio of order 2 between
the system of equations in the blocks of porous media and the system of equations in
the fissures means that the ratio of the characteristic time for the rescaled flow (by
y x/) in a single block and the characteristic time for the flow through the entire
system of fractures is of order -2. Roughly speaking, we .may say that a time ratio of
2 between the fractures and the porous block will give a time scaling allowing at the
global level (i.e., - 0) the matrix-fracture interaction phenomena described before
and will lead to the dual-porosity model. At a time t I, a large fraction of the
reserves is extracted from the fractures; then at time t 0(I), the exchange between
porous blocks and fissures as described in [25] begins. This effect has already been
observed in the case of a diffusion equation coupled with Darcy flow in the paper of
Vogt [30]. It should also be noticed that this 2 tinle scaling is done in the engineering
literature, as, for instance, in [27, 28], but is motivated by introducing a geometrical
factor of transmissibility. If one takes the ratio of the two permeabilities of order one,
then by the usual theory of homogenization the limit model will be, as, for instance,
in [ii, 12], a single-porosity model. If the ratio is smaller than of order 2, then there
is no contribution from the blocks to the global continuity system of equations in
the limit model, which then corresponds to the homogenization of only the system of
fissures.

The precise physical assumptions made before averaging for the system of porous
blocks and fissures are as follows. The medium is of "dual-porosity" type; i.e., the two
parts of this medium, the fissures and the blocks, both behave like porous media and
obey the generalized Darcy law. They differ only by their porosity and absolute per-
meability. Moreover, the two phases--the wetting and the nonwetting--are assumed
to be incompressible and in capillary equilibrium at the pore level. This last assump-
tion means that the faster time scale (or order 2 as discussed before) is sufficiently
large to be bigger than the required time to establish pore equilibrium in both parts
of the porous medium; moreover, we assume that there are no capillary hysteresis
effects, which means this capillary equilibrium is unique. These last two assumptions
lead in both parts of the medium to capillary pressure and relative permeability curves
depending only on saturation and space and, finally, to the two-phase immiscible-flow
parabolic-elliptic system of equations with a degeneracy. In this we follow the existing
engineering literature.

It should be noticed that in some experimental situations as described in [9] or
[I0], the physical assumptions above are not valid; some other models of fissured
porous media must be used. Some of these models in which the capillary pressure
in the fissured part is neglected lead to a system with a purely convective equation
instead of the degenerate one. This type of purely convective equation is outside the
scope of this paper and of the homogenization methods presented herein.

The main objective of this paper is to derive rigorously (from the mathematical
point of view) the dual-porosity model for incompressible two-phase flow. Rigorous
mathematical proof of this dual-porosity model has been obtained before only for the
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single-phase flow in [6], i.e., when the equations are linear. For the case of two-phase
flow, where the leading equations are much more complicated (a nonlinear system of
coupled equations with parabolic degeneracy), the authors of [6] were able only to
derive this model by formal asymptotic expansion in [7].

To prove our result, we use the two-scale convergence method defined in [3] and
[24] to prove convergence of the total velocity and of the "reduced" pressure, but the
difficulty added by the degenerate ellipticity prevents the use of two-scale convergence
of the saturation and leads to the use of periodic modulation as defined in [6] or [30].

For the sake of simplicity, as usual in the engineering literature (see, for instance
[25, 28, 31]), we assume periodic distribution of the cells; each cell contains only one
matrix. However, the two-scale method could also be used with randomly distributed
cells as in [3], and although the periodic modulation is used herein under periodic
assumptions, we think that it could certainly be extended to some type of randomly
distributed media.

The remainder of the paper is as follows.
In the next section, we present the equations that describe the microscopic nature

of the two-phase flow in a naturally fractured reservoir. These equations are spacially
scaled by e, the ratio between the size of the blocks and the size of the domain gt,
and are time scaled as explained above by e2. After extension of the solution and the
pressure from the fissured part to the whole domain f, we obtain from the a priori
estimates in 3 the convergence to the homogenized macroscopic model in 4.

2. The microscopic model. The system of. small fractures surrounding the
block of porous medium is considered itself as a porous medium with dimensionless
absolute permeability K* and porosity *. For this medium, the relative permeability
curves are denoted Kri(S), o, w, and the capillary pressure curve is denoted Pc(S).

In each individual cell Y, the matrix block of porous medium Yrn has dimensionless
absolute permeability k and porosity 9 with relative permeability kri(s), o, w, and
capillary pressure curve pc(s).

Denoting by f/n the blocks of porous media, by ftf the fissures surrounding
and by F* the boundary between ft and ft, with (0, T) a time interval, we write the
conservation of mass in each phase, combined with the generalized Darcy law, as

OS o }*(x)-- div [VP pog] fo (x, t)
]to

and

{ }*(x)--- div [VP pog] fw(x, t)

in f} x (0, T),

}e(x)--- 2div [Vpo-pog] fo(x,t)
#o

and

Os(2.4) 9 (x) -0- { }e2div [Vp pog] fo(x, t)

in gt x (0, T),
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(2.6)

(2.7)
(2.8)
(2.9)
(2.1o)
(2.11)
(2.12)

Po=po on Fs (0, T),
P$=p on r*(0,T);

So(x, O) So(X) in , So(x, O) So(X) in

S(x, 0)=Sw(x) in t, s(x, 0)=s(x) in flm;
So+S=I in t, s$+s=l in gFm (0, T);

P$-Po=Pc(S) in tx(0, T),
p-po=pc(S) in gtm(0, T),

where v denotes the outward normal to Fs.
Also, we define the boundary conditions

(2.13) Po=PoD on F (0, T), p=pD on F x(0, T)

(i.e., F represents the part of the boundary 0f/ that is in contact with a liquid
continuum).

[VPo po ](2.14)
#o

on 1"2 x (0, T),

K*Krw(S) [VP6 pg] v g(2.15)
#

on F2 x (0, T)

(i.e., a prescribed flow rate is assumed through the pervious boundary F2).
At this point, we state a number of assumptions on data.

(A1) To avoid too much notation, let t } CJtm tJFs be a cube and Y ]0, 1[n
be a cell. Let 0t F1UF2, FlClF2 0, where each F and F2 is an (n- 1)-dimensional
manifold (with boundary).

(A2) Let * E L(Ft) and *(x) >_ . > 0. Furthermore, let e-1 E /N and
S(x 0 () e n(t), where 0 is a Y-periodic function and S(x) _> . > 0.

x(A3) Let ks(x) k (7), where k is a Y-periodic tensor, ks e L(Ft)n2, and

furthermore, let K* L(Ft) and K*(x) > k. > O.
(A4) The capillary pressures Pc and pc are strictly monotone increasing and locally

Lipschitz continuous in (0, 1).
(A5) The saturations Si(x, Z) and si(x, Z), considered as functions of the capillary

pressure Z, are measurable in x fl and continuous in Z E [0, 1]. Furthermore,
Sw(X, Z) 0 8w(X, z) for Z _< Pmin (for z _< Pmin, respectively) and So(x, Z) 0
So(X,Z) for Z _> Pmax (for z _> pmax, respectively); -c _< Pmin
and -oc <_ Pmi < 0 < Pmx < +OC. Finally, So and so are monotone decreasing
and Sw and sw are monotone increasing in Z [Pmin, Pmax] and in z [Pmin, Pmax],
respectively.
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Now following [4] and [15], we transform our system (2.1)-(2.15) to a system for-
mulated as an elliptic-parabolic problem for the "reduced" pressure, the total velocity,
and the saturation of the w-phase.

Adding (2.1) and (2.2) gives

(2.16)

where

div{+vI-fo+fw in ft) x (0, T),

K*Ko(S)o [Po o],
#o

9 _K*Kr(S5) [VP5 pg].

Now we denote by Ko and K the relative permeability curves as functions of
S5, and we define the "reduced" pressure as in [15]"

l(pg+ p) +s ( K/ 1) OP(2.17) pe
Ko/O +K/ 2 dS.

We then have with definition (2.17) that

K(S)/.p= o()/o po + pg
Kro(S5)/#o + Ko(S5)/#vo Ko(S5)/tto +

and

-K* Ko(S)
o(S)/.o + K(S)/.

For simplicity, we suppose fo 0 and f 0. Then (2.16) and (2.17) imply

{ [ 1(2.18) div K* Kro(S) +

Ko(S)/o + K(S)/
O.

Furthermore, we use the identity

which gives

Now combining the last equality with (2.2) gives

(2.19) qS* OS5 { KoKro OPt
div K*##o(K/#w + Ko/#o) [-VS5
Ko/o + K/w( +) O.

+ (po pw)g]
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Following Alt and DiBenedetto [4], we introduce the saturations of the wetting
fluid as

S(x, t) S (x, P$ Po) S (x, Pc(x, t)),
(x,t) (x,p (x, t));

the "reduced" pressures as

P(x, t) - (Po + P) + Kro/#o +

p(x, t) - (po + p) + ko/o +k/

2 -dS,

1) Op
2 -s ds;

and the total velocities as

V(x, t) -K*(x) A (S)[VP E (S) g],
(x, ) -k(x) ()[Vp () ],

where

To simplify the notation inside (2.19), we introduce the notation

A(S) K(S)Ko(S) dP,S,(
#o#oA(S) dS

k(S)kro(S) dpc(S)
a(S) #o#,(S) dS

B(S) K(S)Ko(S) (po p)
#o#A(S)

(s) k(s)o(S)
o,(s)

(po p),

K(S)D(S) #A(S)’
(s)d(S) ()

With this new notation, we have transformed the system (2.1)-(2.6), (2.11), (2.12)
into

div {K*A(S)VS + K*B(S)g D(Se)V} 0

in gt (0, T),

V=-K*A(S)[VP-E(S)g] in gt(0, T),.
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(2.23)

divVe=0 in x (0, T),
cgse

oe(x)- div {2kea(se)Vse + kee2b(se)g d(se)v } 0

in (0, T),

(2.24) ve -e2keA(se) [Vpe e(se)g] in gtem x (0, T),
(2.25) divve=0 in tn (0, T),

where the following assumptions have been made.
(A6) The functions of Sg, K,o, K,.,, k,., and k,.o are continuous in [0, 1] and

strictly positive in (0,1), K,-o(O) > 0, Kr(1) > 0, kr(1) > 0, k,.o(O) > 0, and
K(0) k(0) Ko(1) ko(1) 0. Furthermore, the functions A and A satisfy

0 < A, _< min{A(S), A(S)} < max{A(S), A(S)} < A* <

(A7) A and a are continuous functions defined on [0, 1],

A(0) A(1) a(0) a(1) 0, A, a>0 on (0,1).

(A8) B and b are continuous functions defined on [0, 1],

B(0) B(1) b(0) b(1) 0.

(A9) D, d e C[0, 1] and D(0) d(0) 0.
(A10) E, e E C [0, 1] and E and e are strictly positive.

After having derived in (2.20)-(2.25) the equations for pe, pe, S, se, Ve, and
ve, we turn to the boundary conditions (2.7) and (2.8) together with (2.12). The
assumptions (A4)-(Ab)imply

(2.26) Se=se on rex(0,T),
(2.27) pe =pe on Fe x (0,T).

Finally, (2.5)-(2.6)and (2.22)-(2.24)imply

(2.28) V.,=v.t, on rx(0, T),

(2.29) K*[A(Se)VSe + B(Se)g] z ke[e2a(se)Vse + e2b(se)g] z

on F x (0, T).

It remains to write the boundary conditions on the outer boundary 0 as

(2.30) I Ve’=go+g=O on

K*[A(Se)VSe + B(Se)g] , g,

Se=S(x,PD-PoD on

(0, T),
on r2(0,T),

(0, T).

To simplify the manipulations, we suppose that S(x,P PoD) 0, i.e.,

(2.31) +Se=0,Pe= =PTD on F (0, T).
2
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The initial conditions are

(2.32) Se(x, O) Sw(z) in f}, se(x, O) s(x) in from.

Now we define a weak solution to the problem (2.20)-(2.32).
DEFINITION (see Antontsev, Kazhikhov, and Monakhov [5]). The measurable

functions P, pe, S, s, V, and v are a weak Solution to the problem (2.20)-(2.32)
if the following hold.

(a) 0 <_ S(x, t) <_ 1 (a.e.) in ft) x (0, T); 0 _< ss(x, t) <_ 1 (a.e.) in ft x (0, T).
(b) VP eL((0, T); L2(a))n), Vpe e L((0, T);

A(S)VS e L2(af (0, T))n, ea(ss)Vs e L(a x (0, T)).
(c) The boundary conditions (2.31) hold on F (0, T).
(d) Conditions (2.26) and (2.27) are satisfied.
(e) For every e HI(Ft x (0, T)) and every e HI() satisfying 0 on

F x (O,T) andq2=O onF1, we have

(2.33) *S0 O- + es- A(Se)K*VSeV

+ D(S)V*V + d(s)vSV *S*( ., t)(., t)dx

+ s (., t)(., t)dx *S(., 0) *s(., 0) g

for (a.e.) t e (0, T) and

(2.34) / VVdx + [ vVdx 0 for (a.e.) t E (O,T),
J

where V and v are given by (2.22) and (2.24).
Following Antontsev, Kazhikhov, and Monakhov [5, pp. 203-204], we make the

following assumptions:

(2.35) 0_<S_<1 in ft and 0_<sw_<l in f;
(2.36) PTD e L(0, T Hl(a)), gwe L((0, T) F2).

Then the existence theory (see Alt and DiBenedetto [4], Antontsev, Kazhikhov,
and Monakhov [5], or ZrSner and Luckhaus [21]) gives the existence of at least one
weak solution for all e > 0.

3. A priori estimates and extensions. As a simple consequence of the con-
struction of the weak solution, we get the estimates

(3.1) TA A(S)IVSI2 C,
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(3.2) ()lvl < c

(3.3) 0_<S_<1 (a.e.)in t (0, T),
(3.4) 0<s_<1 (a.e.)in tm(0, T),

(3.5) IVPel 2 <: C,

(3.6) ]7p12 _< ,

(3.8) Iv[ 2 _< Ce2.

To get some additional a priori estimates and to homogenize the e-problem we
need to extend S and P to the whole domain t t2 tO t2 tO F.

We assume then the geometry of the cell Y defined as follows.
(All) Y,, the matrix part, is a connected open subset of n; y, C y0, with

Lipschitz boundary; Yf Y \ Ym, the fissure part, is connected.
Now defining gtJ f3 [.JkZn (Y + k) from .Acerbi et al. [1], there exist three

constants ki ki(Y,,n,q) > 0, 0, 1,2, and a linear and continuous extension
operator

(3.9) I/l/" 1,qr w,(a) ,,,o (a)

such that

(3.o)

(3.11)

(3.12)

IIu=u (a.e.) in

/ IYIulqdx < k / lulqdx,
(o)

’V(Iiu)lqdx<-k2jf ’Vulqdx
(o)

for all u E Wl,q(a) and where 9t(ek0) {x e a dist(x, OFt) > ek0}.
To avoid dealing with boundary layers, we make the following additional assump-

tion on the structure of the whole domain Ft.
(A12) Ft (ek0)N ([.Jken e(Y, + k)) and
Now let us derive L2-estimates for P and p. Supposing that the blocks are

removed in an eko-neighborhood of OFt, (3.11), (3.12), and (3.5) imply

(3,.13) f [v(nP)l. < c.

Using the boundary condition on F1, we get

T

f IHePel2 _< C.
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Furthermore, by the continuity of pressures, we have

]p IIpl.dxdt <_ Ca ]V(p IiP)ldxdt

which implies

P-IIP ]]L2(n(O,T)) <_ C ]1VP IIL(n(O,T)) + C VP llL(n(O,T))- --< C

and

(3.15) iT/Ft IP12dxdt <- C.

Now we plug a test function pC-IIP in f and 0 in f into the variational
equation (2.34).

Equation (2.34) and the a priori estimates (3.13)-(3.14) give

We define by

and get

pe(x, t) if x E tm,= P(x,t) if xEgt

(3.17) fif l12dxdt <_ C,

foT IV12dxdt <_ C.

Now we define Z(S) f[ v/A(rl)d. Obviously, Z is a monotone function of S.
Furthermore, we set Z Z(S).

Then
O<Ze<MZ= max v/A(r) (a.e.)in gtix(0,T),n[o,]

VZ v/A(S)VS e L2(f, x (0, T)).
Hence

(3.18) i
T

/ IV(HeZ)12dxdt <_ C,

(3.19) 0 <_ HZ <_ Mz (a.e.) in

Introducing as (Z)-I(HZ) leads to

(0, T).

dZ/dS

and to the estimate

(3.20) iT/ a(-)lV-12dxdt <_ C,
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0_< _< 1 (a.e.)in gt (0, T).

To extend s we introduce as before z dr/
Since dz/ds x/ > O, z is monotone.
Once again, we have

O<z<Mz= max - (a.e.)in gt(0, T),
e[o,]

Hence for

we have

Vz v/a(s)Vs E L2(tm (0, T)).

z(x,t) for x E ftm,
Z(x,t) for xgtf,

(3.22)
T/U

IVI2dxdt <_ C/2,

(3.23) 0 <_ <_ max{Mz, Mz} (a.e.) on ft (0, T).

Finally, we set

Then

s(.x,t) for x e Ftm,gz
S(x,t) for xgt.

(3.24) 0 _<

__
1 (a.e.) on gt (0, T).

After deriving the estimates for the spatial derivatives, we turn to the behavior
in time. In the case of nondegenerate nonlinear problems, one method is to formulate
an estimate for the time derivative of a fractional order (see Aganovid and Mi.keli5
[2]). For this degenerate parabolic-elliptic system, we use a similar but more direct
approach.

We start with the variational formulation ,(2.33) and define

B(x,t) A(S)K*VS + B(S)K*g- D(S)V in gt (0, T),

B(x, t) a(s)k*Vs + b(s)k*g s-2vd(s)

It is natural to set B 0 for t (0, T). Then

in t x (0, T).

and IBI <

Let us take (x,t) (t)(x), r e C((0,T)), e H(a) as a test function in
(2.33). We get
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which implies

Now we choose an interval IT, T + AT] C (0, T), T > 0, AT > 0, and after integrat-
ing (3.25) over that interval we find the equality

where Au u(., T + AT)- u(., T). Noting that T is a parameter in (3.26), we choose
Are as a test function in (3.26). We get

L+A Sa s2B(x’t)VAzedxdt

IA’,I + IA’,-I

L1 i 2B(x’ T + aAr)VAzdadx

Integration in time over [0, T- AT] and HSlder’s inequality give

fT-Ar *ArZA.S + AzAs < IArl,
o o

{IIB II(ix(o,r)). VAZ
+ BI IIs_,-(x(o,:r)),, VA-z IIs_,-(axlo,:r-,-rl):) -< CIA’,’I.

Using monotonicity, we get

(3.27) f ia [("" + A-r) (., .)1 l’(.,. + A’r) (., ")l < CIArl
do

and

For Z, we get

f-’" / Iz(.,. + A-,-) z(., .)1 . < CIf.,-I,

and since our extension is by reflection, we conclude
(.9)

[(rIz)(.,. + At) (nz)(., .)1 (.,. + At) (., .) _< ClArl
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and

(3.30)

4. Compactness and convergence results. Using the a priori estimates de-
rived in 3 and the concept of two-scale convergence as in [13] and [24], we get the
following compactness results.

PROPOSITION 4.1. There exists a subsequence such that
(4.1) HP P e L2((0, T); HI()) in the two-scale sense;
(4.2) V(IIPe) ---, VP + VyPl(t, x, y) in the two-scale sense, where

P1 e L2((0, T) Hpler(Y));

(4.3) ---. p e L2((O,T);HI()) in the two-scale sense;
(4.4) IIZ Z e L2((0, T); H()) in the two-scale sense;
.(4.5) V(HZ) VZ + VyZ(t,x, y) in the two-scale sense, where

Z1 C L2((0, T) Hpler(Y));

(4.6) IIZ Z strongly in Lq((O,T)
(4.7) - S strongly in Lq((O,T)
(4.8) g s e L2((0, T) Y) in the two scale-sense;
(4.9) z -- z e L2((0, T) fl ;Her(Y)) in the two scale-sense;

(4.10) e7 -- VyZ e L2((0, T) Y) in the two scale-sense.
Furthermore, let Y be equal to Y in f (0, T) and v in m (0, T). Then

we have
(4.11) Y --- Y e L2((0, T) f Y) in the two scale-sense;
(4.) diV o ad di f V(x, )d O.

Proof. The proof is a direct consequence of the a priori estimates and of Theorem
1.2 and Proposition 1.4 in Allaire [3].

Again as in Allaire [3], we plug into (2.34) a test function of the form

(, t) + (x, xl, t) + (x, xl, t),

where E T(QT), 1 e T)(QT Cpr(Y)), and :D(QT ;Cpr(Y)) with 0 for

We get

Passing to the two-scale limit yields

+ lim kA(s)VpVy O.
-0



DOUBLE-POROSITY MODEL 1533

Choosing 0 gives

(4.13) -divxfK*(x)A(S)[VP+VsP1-E(S)g] =0 in QT

and

with

-divv {K*(x)A(S)[VP +.VyP E(S)g]} 0

K*(x)A(S)[VP + VvP E(S)g] u 0 on

for a.e. x, t
We shall use O, the tensor whose (i, j) component is Oj/Oyi, where j is a periodic

solution in Y of the auxiliary problem

Aj 0 in Yf,(4.14)
Vvj.v =-ey. on OY.

Since S is independent of y from (4.6) and (4.7), P is given by the product

Finally, (4.13) reduces to

(4.15)
Vdy,

-divzV=0 in

with

g., y ,( + 0) , + ()

In our next step, we plug in a test function of the same form as above into (2.33).
We have

+ (s)w[ + +] o.
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Passing to the two-scale limit yields

The choice 0 gives

OS(x, t) lyre Os(x, y, t)
dy

=0 in QT

and

divy{v/A(S)K*(x)[VxZ + VuZ1] + B(S)K*g- D(S)V(x,y)} 0

in Yf for(a.e.) x, tEQT,

v/A(S)K*[VxZ + VuZI] + B(S)K*g. 0 on OY,

since
V. K*A(S)[VP + VyP + E(S)g] 0 on

Using (as for the pressure equation (4.15)) O defined by (4.14) and

(4.18) K,u l_lrl K*(I + O)dy ----K* I + O(y)dy

we obtain Z j j(y)(OZ/Oxj + B(S)/v/-A(s)gsj3).
Finally, (4.16) reduces to

,0S- -div {K*H (A(S)VS + B(S)g) D(S)}

f, o() O(x, , t)(4.19) IYI ot
in QT.

However, in (4.16) we have the term

0-- (Y)S(X’ y’ t)dy,

which belongs to H- (QT) a priori.
In fact, we will show that this term is more regular.
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LEMMA 4.2.

Ot /y. 7)(y)s(x, y, t)dy e L2(QT).

Proof. We introduce F as

F v/a(s)k(x)Vz d(s)v -with F IIL.(a (O,T))n <_ C.
Obviously, ---* F* in the two-scale sense and

(y)Ots-divyF*(x,y)=O in H-I(QTXYm).

Consequently, for all HI(0, T), we have

79(y)sOt divy F* 0 in H-(ft x Ym),

which gives

{/0T }-divy F* E L (Y,)

and for all e Ho (0, T).
Hence

for (a.e) xf

T

F* e L2(ft x Ym)n and }divv F* L2(Ft x Ym),

and we conclude that foT F* u L2 (ft ;H-1/2(OYm)).
Now we obtain

(y)s(x, y, t) Otdt F*. u e L2(ft).
Ym

The right-hand side is well defined for all L2(0, T). Therefore,

Ot fYm (s)s(x’ y’ t)dy e L2(QT).

Our next step is to show that p P. We have the following result.
LEMMA 4.3. Let P and p be defined by (4.1)-(4.2) and (4.3), respectively. Then

we have

(4.20) P(x, t) p(x, t) for (a.e.) (x, t) e QT.

Proof. By the continuity of the pressures we have

(4.21) Ip -IIp12dx dt <_ Ce. IV(P -IIP)ldx dt <_ Ce.
Passing to the limit e --, 0 yields (4.20).
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It remains to find the equations satisfied by s and. z. The first result is the
identification of initial conditions.

LEMMA 4.4. Let S and s be defined by (4.8) and (4.9), respectively. Then we
have

[YII*S(x, 0) + fy (y)s(x, y, O) dy

*S(x)lrl + (x) fy (y)dy (a,e.) xe

and

(a.a) (, , o) (x) (a...) (, ) e Y.

Our next step is to look for an equation for s. First, it should be noticed that by
(2.24) and (3.16),

(4.24) II v II/=(nm x(0,T))- Ce2

T

d(s)vV

Consequently, there will be no transport term in the equation for s. The remaining
nonlinear term in (2.23) is monotone. Therefore, it would be natural to try passing
to the limit using monotonicity. This approach would work.nicely if the nonlinearity
was not degenerate. The degeneration makes the standard monotonicity argument
(see, e.g., Lions [22, pp. 190-204]) fairly complicated if not impossible, and we have
chosen a different approach, that is, the periodic modulation. The approach through
the periodic modulation makes it possible to go to the limit in the degenerate terms
that depend nonlinearly on s.

DEFINITION 4.5. For a given e > O, we define a dilation operator De mapping
measurable functions on f x (0, T) to measurable functions on 12 x Ym (0, T) by

(4:26) (Du)(x, y, t) u(c(x) + ey, t), y e Y,, (x, t) e f x (0, T),

where c(x) denotes the lattice translation point of the G-cell domain containing x. We
extend (Du) from Ym to Jk(Ym / k) periodically.

It is easy to see that

Deu IIL(QY): u IIL<QT), 1 <_ q <
VyDu eDVxu (a.e.) in QT Ym

for all u E L2(0, T ;Wl,q (Ft)), For more properties of the dilation operator D, we
refer to Arbogast, Douglas, and Hornung [6, pp. 828-831].

The connection between the periodic modulation and H-measures is discussed in
Tartar [29, pp. 203-204].

To proceed, wehave to establish in the following proposition the link between the
two-scale convergence and the weak convergence of a periodically modulated sequence.
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PROPOSITION 4.6. Let {u} be a uni]ormly bounded sequence in L2(fm x (0, T))
that satisfies the conditions

Deu u weakly in L2(QT; L2per(Ym))

and
Xn,u -- u* e L2(QT L2per(Y))

Then we have

in the two-scale sense.

(4.28) u u* (a.e.) in QT x Ym.

Proof. Let e C(QT) and h e Cr(Fm). Then we have

Now we use the estimate

(z, Ce Vz + k)
(’+k)

and get

Hence u u* (a.e.) in QT Ym.
Some additional useful properties of the dilation operator are given by the fol-

lowing lemma and corollary from Arbogast, Douglas, and Hornung [6].
LEMMA 4.7. Let , E L2(0, T ;Hl(f). Then

(De, De))L2(Q.TY.) ((, )L2(fl (0,T)),

VuDeqo IIL(QY.,) DsVqo

(D:, :)(.:) = (:, D:)(.
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COROLLARY 4.8. With the above notation, we have

Des IIL2(Qr; L=por(Y,)) <-- C,
Deze IIL(Qr; L2per(Yrn)) C.

Having established the link between the two-scale convergence and the weak con-
vergence of the periodically modulated sequence {s }, our strategy is simple; we find
an equation for Des and pass to the limit.

Now from assumptions (All) on the geometry of the cell, we may prove the
following proposition.

PROPOSITION 4.9. Let > 0 and let Dese be defined by (4.26). Then Des -$e

satisfies the equation

(4.29) (y)Ot(Des) div{k(y)Vy A()}
adivy{k(y)b(-e)g} -ldivy{d(-ge)Deve} in L2(O, T; H-I(Ym)) for (a.e.) x e aem.

Proof. Let E H-l(0, T L2(Ym)) N L2(0, T C(Ym)). Then we define

(4.30) (De)(x,z,t)= e ’,

0 otherwise.

Let {k(y,t) = {(y + k,t),k zn. Obviously, {k is defined on Ym + k and
{k eHI(0, T L2(Y,+k))NL(O,T; C(Y,+k)). El

Now we plug (De{k) (x, x, t) into (2.33) as a test function. Since supp (Dek) C
e(Ym + k) (0, T) and the components cf tm are strictly separated, we get

Moreover, for x (Ym + k), ce(x) Ck, and the change of variables y
--I(x C(X)) gives

(4.3)

for (a.e.) x e e(Ym + k). (4.29) is a simple consequence of (4.31).
Remark. It should be noticed that

(4.32) DeZe Deze in H/2(OYm) for (a.e.) (x,t) e glen x (O,T),
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where D ze f0D’s" x/-a)dr/.
Having obtained the equations for Dese we are now able to establish the a priori

estimates for Deze and Dese, analogous to those obtained for Ze and Se for all k E 2n.
Then we could pass to the limit for fixed k and, finally, by a density argument the
limit equations for s would have been obtained. However, the limit equation for s has
already been obtained in Arbogast, Douglas, and Hornung [6] by formal asymptotic
expansion, and since it is decoupled from the pressure equation, we prefer comparing
the formal limit equation with the equation for the Dese.

We consider the following problem. Find s* L2(QT L2per(Ym)) N L(QT x
Ym), 0 _< s* _< 1 (a.e.) on QT x rm, a(s*)Vs* L(QT L2per(Ym))n, Ors* e
L2(QT; Hp-r(Ym)) such that

(4.33)

(4.34)

for (a.e.) x e ft.
For fixed Z L2(0,T; Hl(gt)), S L(QT), 0 _< S <_ 1 (a.e.) on QT and

Sow ic(t), 0 <_ S <_ 1 (a.e.) on , the classical theory (see, e.g., Lions [22]) gives
existence of a unique solution s* for (4.33)-(4.34).

Our final step is to compare the problems (4.33)-(4.34) and (4.3)-(4.32). We
have the following result.

PROPOSiTiON 4.10. Let Dese be defined by (4.26), and let s* be a solution for
(4.33)-(4.34). Then we have

Dese s* in L2(xYmx(0, T))

and
s* s (a.e.) on x Ym x (O,T),

where s is defined by assumptions (All)-(A12).
Proof. Since a can vanish for Dese 0 or 1, we choose the test function by a

change of pivot. Therefore, we introduce we by

(4.36) {-div{k(y)VyWe}we == O(Y){DSeon 9Ym s*} in Ym,

for (a.e.) (x, t) e QT.
Obviously, we e HI(QT x Ym),

and

(4.37) { -div{kVuw(X’w(x,.,Oy’ 0)}. == 09(Y){DesonOYm.
s}’

Now we introduce the function e by Dese -s* and ,4 by jr(s) f0 a(r/) dr/.
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Obviously, ( satisfies the variational equation

(4.38) ’oT ]m /Ft o0(Y)OtC /QT /Y, k(y)VY{A(Ds) A(s*)}VY

L (Y)("T) (.,T)+/L (Y){Ds-s}("O)

;; k(y)b(Ds)g -l fQ /y d(Ds)(Dv)Vv

V H (QT Y), =0 on

and the boundary condition

(4.39) d= )d in L2(O,T;H1/2(OYm))(a.e.)x e a.
(,t)

To estimate the L2-norm of we choose w as the test function. We have

(4.40) f o()Otw f o()(.,T)we(.,T)

Using the uniform boundedness of w in L(QT Y) we find out that the
right-hand side is bounded by C.

rthermore,

2

nd

/A ,(Y);’(’, O)w’(’, O) /A k’’yw’(’, O)[2.

Therefore, we write (4.40) in the form

; k(y){A(Ds) A(s*)}Vw

c+ I(., 0)1 c {+ - II(g},

It remains to find an estimate from below for the diffusion term. We have

-A(S)}k(y)V,w" .- for fr {A(Dese) A(S)}div’{k(Y)V’we}
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Therefore,

and consequently,

{A(Dese) A(s*)}{Dese s*} - 0 (a.e.) in QT Y,.

Hence Des s* --* 0 (a.e.) in QT x Y, and Dese s* - 0 (a.e.) in Lq(QT x Ym)
for all q E [1, +oc[ by Lebesgue’s dominated convergence theorem.

We summarize our results in Theorem 4.11.
THEOREM 4.11 (convergence theorem). Let the assumptions (A1)-(A10) be sat-

isfied. Let {P,pe, Se, se, Ye, Ve}{e>0} be weak solutions to the problem (2.20)-(2.32).
Then there exists a subsequence, denoted by the same subscript, such that

(4.41) YIP P e L2(0, T ;Hi(f/)) in the two-scale sense;

(4.42) V(HePe) VP + VvP1 in the two-scale sense;
s

(4.43) HeZe He./n v/A(rl)&l Z e L2(0, T ;Hi(f/)) in the two-scale sense;

(4.44) V(HeZe) VZ + VyZ1 in the two-scale sense

with ZI,P1 e L2(QT; Hpler(Y));

(4.45)
(4.46)
(4.47)
(4.48)

e (Ze)_l(HeZe) S strong!y in Lq(QT) Vq e [1,
IIeZe Z strongly in Lq(QT) Vq e [1,+[;

"ge s e L2(QT Y) in the two-scale sense;
Dese -- s strongly in Lq(QT Ym),

where the extension operator He is defined by (3.10)-(3.12), "de is equal to se in
t ]0, T[ and to Se in t}x]0, T[, Dese is defined by (4.26), and {P,S,s, V} are
solutions to the nonlinear system

(4.49)
]y]

Vdy -K*HA(S)[VxP- E(S)g]

-divx 0 in Q.T,
D D

V. u 0 on F2 x (O,T), P- PT 2

in QT,

on r x (0, T);

(4.50)
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with K*H defined by (4.18).
For (a.e.) x e , the right-hand side of (4.50) is defined from

z-- /-d Z----- v/A()d on OYm,

(4.51) (y)Ots div{k(y)a(s)7s} 0 in QT Ym,

s(x, y, O) sw(x) in Ym.
From (4.49)-(4.51) above, due to the strong convergence of S and hence of

all functions of Se, doing the inverse of what we have done in 2, we conclude the
following:

There is a macroscopic fracture system driven by equations in all (0, T)
similar to (2.1), (2.2) and with an effective absoluterock permeability K*g given by
(4.18) and an effective porosity IYsl (I)* but with an additional right-hand side source-

like term - fy, (y)Otsdy foy, k(y)a(s)Vys. d.
For each x E t there is a matrix block, the flow in which is described by

(4.51) and produces the source-like term.
Remark. In the definition (4.18) of K*H, the effective permeability, the term

I +- fvs O(y)dy plays the role of a tortuosity factor like that defined in [14] or [20].
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TRAVELING WAVES AS LIMITS OF SOLUTIONS ON BOUNDED
DOMAINS*

GIORGIO FUSCO], JACK K. HALES, AND JIANPING XUN

Abstract. This paper is concerned with the asymptotic behavior as 0 of solutions of the
reaction-diffusion equation ut e2uxx (u + a)(u2 1) defined in (-1, 1) with Neumann boundary
conditions. For a 0, this equation has a monotone equilibrium solution u with the property that
ue(x) -1 (resp. +1) on [-1, 0) (resp. (0, 1]) as 0; that is, the solution has a sharp transition
layer if a 0. Also, it is known that u has a one-dimensional unstable manifold AA(ue). Solutions
near A,i(ue) decrease exponentially to jA(ue) and move with a speed O(e-c/e) along A/[(ue).

This paper considers the case where a is small and fixed. For each fixed e, a #- 0, small, there
is an equilibrium solution u with unstable manifold of dimension one, but u approaches either
the function 1 or -1 as 0; that is, there is no monotone equilibrium solution with a sharp
transition layer. If we rescale x to ex and consider the rescaled equation on (-cx, c), then there
is a unique (except for translation) monotone traveling-wave solution on (-cx), ) with wave speed
-/a. Using a geometric approach, we prove that there are positive constants eo and ao such that,
for 0 < e < eo and la[ < ao, solutions of the rescaled equations on (-7, 7) in a neighborhood
of size Cvfa’ of a monotone traveling-wave solution decrease exponentially fast before they enter
a neighborhood of size O(ek) of such a solution, where k can be any positive integer. Along the
traveling-wave direction, solutions move with the traveling-wave speed plus an error term O(ek). It
also is proved that the L-norm between the solution and a translation of the traveling wave is of
order O(ek) for Clklog 7 < <:

Key words, transition layers, phase separation, unstable invariant manifold, traveling-wave
solutions

AMS subject classifications. 35B30, 35B25, 35K55

1. Introduction. It is generally accepted folklore that traveling-wave solutions
of parabolic partial differential equations are representative of typical behavior of
solutions of the same partial differential equation on a large unbounded domain. The
intent of this paper is to make this rigorous for a scalar reaction-diffusion equation in
one space variable. More specifically, we consider the equation

ut=e2uxx-fa(u), xE(-1,1),

with homogeneous Neumann boundary conditions

(2) ux=0, x=+l.

In this equation, e > 0 is a small parameter, a is a small parameter independent
of e, and

(3) fa(u) =: (u + a)(u2 1) =" fo(u)+ ag(u),
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(4) fo(g) =: (2- I), g() =: 2- I.

Equation (I) is a gradient system corresponding to the Liapunov functional

J(u) :" {eu2 F(u) dx,2 +

where F(u) is a function such that fa(U) F’(u). Equation (1) is perhaps the
simplest mathematical model for the dynamical phase transition. In this context,, u
is an order-disorder parameter which is related to the microscopic structure of the
matter in such a way that u near -1 corresponds to one of the two phases (solid) and
u near 1 corresponds to the other phase (liquid). The parameter a corresponds to the
temperature. For a < 0, the constant solution u -1 (solid) is the unique global
minimizer of J(u). If a 0, then both u T1 minimize J(u) and this corresponds
to the situation where two phases of the same substance can coexist at the transition
temperature. For a > 0, u 1. (liquid) is the unique global minimizer of J(u).

It is known that equation (1) generates a dissipative semiflow in several function
spaces and that it possesses a global attractor Jtc (see [HI).

If a 0, the number of fixed points (stationary solutions of (i)) increases without
bounds as e -- 0. When the equilibria are hyperbolic, the attractor jtc is the set of
equilibria together with their unstable manifolds. In the view of IF-HI (or [C-P]), the
solution quickly "lands" near 4 and there it is strongly attracted toward an unstable
manifold; it then enters a slow stage during which it moves along the unstable manifold
and, when it gets close to the boundary of this unstable manifold, the motion is quick,
to be followed again by slow movement along another unstable manifold, etc. This
phenomenon has been observed numerically and studied rigorously by Carr and Pego
[C-P], Fusco and Hale IF-HI, Fusco IF], and Bronsard and Kohn [B-K].

For a 0, there is an el > 0 such that, for 0 < < i, there is an equilibrium
solution u of (I) which is monotone increasing on (-I, I) and, for very small, is in an

I) and in an -neighborhood of -I in (-I -e log ).e-neighborhood of +1 in (e log ,
It is known [C-P], IF-HI, IF] that, for e << 1, the stationary solution u is hyper-

bolic and unstable with the unstable manifold A/t having dimension one. Moreover,
as -- 0, any compact part of A approaches the manifold defined by the translates
of the standing waves of the equation

and the flow on A// is extremely slow (speed of O(e-c/)). More precisely, the manifold
JA approaches the manifold AA defined by the map

(’-)hU
h

where U is the unique solution of the problem

(6)

fo(U) 0,
lim V(x) -+-1

u(0) :0.

Since the equilibrium point referred to above is hyperbolic, we can find a function
a a(e) approaching zero as e - 0 such that there is an equilibrium point u of (1)
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which is monotone increasing with a profile which is close to a step function if e is
sufficiently small. The dynamics in this case will be similar to those when a 0.

On the other hand, if we fix a > 0 small but independent of e and let e 0, the
equilibrium solution ua will not develop an interior layer and approach a step function
but instead will develop a boundary layer at x 1 and approach -1 uniformly in any
compact interval in [-1, 1). On the other hand, the dimension of the unstable manifold
of ua is one and it is exponentially attracting.. Thus we would expect that this one-
dimensional manifold Ada would converge to some one-dimensional stable object as
e --+ 0. This object should correspond to the invariant manifold JMa of the monotone
traveling wave (and its translates) for equation (5) with fa replacing f0. To give a
complete proof of this conjecture is beyond the scope of this paper. However, we prove
in the following that, if > 0 is small, solutions of (1) and (2) with initial condition
close in a certain sense to jr4a are attracted to a very small neighborhood of Aaa
and remain near jr4a for a time of O(e-1) drifting along Ada with a speed which is
almost exactly that of the traveling wave. We now make this more precise.

If we rescale the space variable x -+ ex, then we obtain an equation with diffusion
coefficient 1 but defined on the interval (-, )"

x e ---.

and

1
"’) 0 tor z +-.

It is known that, for given initial data uo(x) which is less than a in I1 =: [-1,
) and greater than a in I2 (, 1], where is some number between -1 and 1,
the solution n(z,t) of (1) and (2) which begins at t 0 with this initial data will
be attracted to -1 in I1 and 1 in I2 in a short time and a sharp interface will be
formed near x . This is the so-called phase-generation stage. In the next stage,
the configuration of the solution generated in the first stage will stay almost the same
but the interface will drift slowly toward the boundary (see [A-B-F], [A:Mc], [B-F1],
[B-F2], [C-P], [D-S], [F-H], [B-X1], and [B-X2]).

The main interest of this paper is the limiting behavior of the solutions of (1)
and (2) as e 0 for large but finite t. In other words, we are interested in the second
stage of the motion described above.

Let U(x + x/at) be the unique (except for tiranslation) monotone traveling-wave
solution of (1’) on (-oc, oo). Our main goal in this paper is to prove the following
theorem.

THEOREM. There exist positive constants C and ao such that, for any integer
k, there are positive constants o, C1, C2, and Ca such that, if 0 < < o and
lal <_ ao, then, for any solution u(x,t) of (1’) and (2’) with initial data in aC
L-neighborhood of U(.), there is a positive constant ho such that

[u(x, t) U(x + x/at- ho)l <_ Ce

(C2k log. t
We organize the paper as follows. In 2, we construct an approximate manifold

such that the traveling-wave solution of (1) is nearby. We also give some estimates
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about the base manifold and derive equation (i) in the new coordinate system. In 3,
we give an estimate of the motion speed of a solution of (i) and (2). In 4, we prove
that the approximate manifold attracts solutions which start in a small neighborhood
of size independent of e. Finally, in 5, we prove that solutions of (I) with initial data
in a small neighborhood of the approximate manifold approach the traveling-wave
solution of (I) as -- 0.

2. The tubular coordinates and the equations of motion. We consider
equation (1) together with the Neumann boundary conditions (2), assuming through-
out that a in equation (1) is small but independent of . We study the limiting behavior
of the solutions of equation (1) when - 0. We construct the approximate manifold
by patching together solutions (x, , +/-1) of the equation

:0 f0(O) 0,

0=0, =+,
as was done in [C-P], where it was proved that, if } is small, (7) has a unique positive
solution (x, g, +1) which is exponentially close (in terms of e) to 1 at x 0 and a
unique negative solution (x, g,-1) which is exponentially close to -1 at 0.

Let X" R - [0, 1] be a C cutoff function with X(x) 0 for x _< -1 and X(x) 1
for x > 1.

We define

(8) po =:{hER’po-l<h<l-p0},

where p0 is a small but fixed positive number. For any h E Vtpo, let

(x + ,(h+ ),-)

x- h) (x- 1 2(1 h) 1),() + X

and we take the approximate manifold to be

(10) {u" h o}.

Remark. From our definition of the approximate manifold, it is clear that A/[
does not depend on a. This may look strange at first but becomes reasonable when
one takes into account that the special nonlinearity fa that we are considering has
the remarkable property that, as a varies, the speed of the traveling wave changes but
its profile remains unchanged and coincides with the standing wave corresponding to
a 0. On the other hand, as we discuss in Propositions 4 and 5 below, if is small,
the function we used for constructing the approximate manifold is extremely close
to the standing wave.

It is not necessary to assume that the function fa has the particular form (3). In
fact, we could have considered a more general double-well potential Fa(u) depending
smoothly upon a parameter a with the property that Fo(u) has only three critical



1548 GIORGIO FUSCO, JACK K. HALE, AND JIANPING XUN

points--two nondegenerate minima u and u0+ with Fo(u) Fo(u+o) and a nonde-
generate maximum at u. The same type of result as above is true. Of course, in this
case, it is not possible to use such a simple approximate manifold. An appropriate
one can be chosen following the approach in Fusco and Hale IF-HI. We have chosen to
present only the simplest case.

The following notation will be used throughout the paper:
a() -: .2x -/a();
Lah() e2xz f(uh); that is, L is linerized t uh;
7h(x):: [X((x e+I)/e)(x)x((1 x )/)(x)]

where <., .> is the inner product in L2 (-1, 1). Also, we let . be the norm in L (-1, 1)
induced by

It is possible to show (cf. Lemmas 7.8 nd 7.9 and Proposition 3.4 in [C-P]) that
the tangent vector u to , aside from smM1 term of O(e-/), coincides with
-u. On the other hnd Th and -u re different only in interwls of size 2e near the
boundary, where u is O(e-C/). Therefore, Th is lmost tngent to nd unlike u
satisfies Neumann boundary conditions.

Our objective is to show that, in very precise sense, can be considered as n
approximate invrint manifold. To do this, we employ a new coordinate system

u(h,v) meaning u=uh+v, where

(11) (v, Th} O, v O at x O, 1.

If we define

(12) B =" {u E L hEgtpoinf I[u-- uhllc < (7}
it is proved in [C-P] that, if u Bo, the coordinate representation (11) is valid for
some fixed o0.

Now let u(x, t) be a classical solution of (1) and (2) having the coordinate repre-
sentation

(3) t) + t).

If we differentiate the identity (v(., t), rh(*)) 0 with respect to t and use the
expression for v, which is obtained by inserting (13) into (1), we obtain the equations

(14)

where, for simplicity of notation, we suppress the dependence on t. Equations (14)
and (15) will be of primary concern in the remainder of this paper.

In the next section, we will need some estimates about the approximate manifold
that we have just constructed explicitly. Here we list some results, the proofs of which
can be found in [C-P] (cf. Proposition 2.3 and Theorem 5.2).
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PROPOSITION 1. There are constants Ao > O, C, c, and o > 0 such that, if
o, we have, for h E ftpo,

(6)

As was proved in [C-P] or in the appendix of [ABF], the last estimate in (16) is a

consequence of the fact that 7"h is exponentially close to the first eigenfunction of L0h
and the first eigenvalue is exponentially small.

PROPOSITION 2. There exist constants A and el such that, for h ftpo and
e < el, the following assertions hold:

(i) if v e H and (v, Th} O, then

/o
(ii) if veil2, vx O at x O, 1, and (v, Th} O, then

(18) AF (2v2 + f(uh)v2)dx A{v,-Lv) <_ [[LhovI[

3. Estimate on hi(t). The. goal of this section is to give an estimate on h
h(t). Later, we will refine this estimate and show that h approaches the speed of the
monotone traveling-wave solution of (1) on (-oc, oc). Throughout the remainder of
the paper, C will designate a generic constant independent of e and a.

We estimate {v, Thh} first. In the following, we take 0 < e _< e0 and lal < a0 with

e0 and a0 fixed small constants and assume the following:
I. u(x, t) is a classical solution of (1) and (2) such that u(., 0) e Bo so that the

coordinate representation (13) is valid in a neighborhood of t 0.
II. The function v(x, t) defined in (13) satisfies

The continuity of the representation (13) and the continuity of the solution of
(1) and (2) with respect to the initial data imply that this inequality holds for t in
some interval [0, T) provided that it holds at t 0. We shall see that, if e0 and a0 are
small enough, it holds until h(t) leaves ftpo. We will prove this by obtaining a priori
estimates under this assumption and then show that our estimates imply that we can
choose e0 and a0 so that II is always satisfied.

By assumption II and Proposition 1, we obtain the inequality

(19) I@,  hh>l CIIVlIL II - IIL’ c -a-df.-1.
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From this estimate and Proposition I, we see that

From (10) and (20), we can see that the coefficient of h’ in formula (14) is nonzero.
Therefore, we can rewrite (14) as

(14’) h’=X(h,v),

where

(14") (u + v),X(, v) ="
’,> i;,)

We estimate (a(), Th> as follows"

(2)

<a(t), Th> <0(?.th), Th> + (2Vxx f(th)v, Th)

=" I + II + III,

where f and g’ are evaluated at points between u,and Uh.
By using Proposition I, we have

(2) I1 0(-/);

(23) 0(-/).

On the other hand, if a0 is sufficiently small, assumption II implies that, for
lal < ao,

IIIII <_ Caoll*llz,,

and therefore

(24) ]IIII _< Cao.

In fact, the definition of Th implies that

IIh[lz I[hllL + 0<-/) < C.

Combining formulas (19) through (24) yields the following proposition.
PROPOSITION 3. If assumptions I and II hold, 0 < < Go, and lal <_ ao, then

there is a constant C > 0 such that the following estimate is valid:

Ih’l < Caoe.

4. Estimates in the direction orthogonal to AA. In the previous section,
we gave an estimate in the direction tangential to A/. In this section, we obtain an
estimate in the direction orthogonal to A/. In order to do this, we need a number of
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estimates on the functions (x,g, -F1) that we used for constructing A4. We present
the estimates in a sequence of propositions.

PROPOSITION 4. For any integer k, there exist positive constants el and C such
that, for 0 < < 1, we have

I(x, 2e,-1)-rb(x-g.)l <--Cek, xe [0,

I(x, 2e, 1) + (I)(x e)l _< c, x e [0, el,
where (x, 2g, +1) are solutions of equation (7) with g replaced by.2 and (x) U()
is the standing-wave solution of

(25)
e(x) 10(e(x)) Io x e (-oo, oo)
(x) +1 asx ---, -Foe

(0) =0.

Proof." Step 1. Let 5 be a fixed positive number such that

(26) q2 min{f(s).ls-F 11 < 25} > 0.

If (x) is either (x, 2e, +1) or (x, 2e,-1), then depends on e and e through the
ratio =’r and there is a positive number H H(5) such that

(27) for x e [0, e- ell).

Let a =: a(r) F((0)), where F is defined by F’ = fo, F >_ 0 and F(-F1) 0. It
is known and actually not hard to show that (0) + 1 O(e-c/) and therefore that
(r) O(e-/<)(see [C-P]).

Let H > H be such that

(28) I(x e) + 11 < 5 for x (--oe, g e/]

and e > 0 sufficiently small. This is possible since (I)(-eH) is e independent and
approaches -1 as H -+ oe. If we define p (g- ell) and p =" (-eH), then p is e

independent.
Using the fact that

O du

V/2(F(u)- a(r))

o du

and c(r) > 0, we know that -1 < p < p <: (x) _< 0 for x E [e- e, el. Therefore, for
x [e_-H, el, w hv F((x)) _> C > 0 for some constant C depending only on F
and H. It follows that if we let V(x)-" (x)- (I)(x- e), then, for x

x(X) x/((F((x)) ()i/2 F((x))l/2)

_
-C(( + ),

?(e) o, ?(x) >_ o,

where C is a positive constant depending only on F.
By integration, we deduce that I(I)(x- g)- (x)l

_
Via(r) for x

where C1 eCfI. Therefore, using the fact that a(r) is exponentially small, we obtain

(29) I(- e)- (x)l _< cf for x e [g- e/r, e]
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and any fixed C _> 1 provided that e > .0 is sufficiently small.
Step 2. In this step, we will prove (29) in the interval I =" [0, t-/e]. We denote

(x) (x) O(x- t) as in Step 1.
Let =" (x- g) + 1. Using (28) and the definition of q in (26), we can compare

with the solution of

to obtain

e2yxx q2y for x

(-) 0, (-) =

o <_ (x) <_ y(x) =

for e sufficiently smallThis is bounded above by Cek provided that x <_ - ek log
and where C _2

q:
Then, for x E I [0, t- e/], we have

? F,((x))-,F’((z- ))
F"()?(x) >_

where (27) and (28) are used.
At the endpoints of I, we have if(0) 5 and (t-/e) . We have already

recalled in Step 1 that (0)+ 1 O(e-c/). Moreover, O(0)+ 1 O(e-C/). It follows
that, for e > 0 small,

i1 = i[(0)+ 1)]- [(I)(-g)+ 1]1

_
cek.

On the other hand, by (29), I1 _< Cek for e sufficiently small.
If we solve

e2y" qy for x I,

(0) , (-) ,
and use a comparison argument, it is not hard to conclude that

--e)- (x)[ (x)l ly max {Ig], [} C[ek

for x [0, g e]. The proof follows if we adjust the constant
PROPOSITION 5. For any positive integer k, positive constants e and C as in

Proposition 4, and any positive integer 0 < n < k, there exists CI> 0, which may
depend on n, such that, for 0 < e < e, we have

(30) I(n)(x) O(n)(X e)! <[ C1k-n for x e [0, el.

Proof. We give the proof only for n 1, and the general case follows immediately
from the following fOrmula:

where f and g can be any smooth functions and the ca(g)’s in the sum are functions
of g.
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For x E [0, g], we start with the relation

:[==(x) +==(x )] F,() F,(+).

Integrating, we obtain

[(x) (x e)l IF,(0) F’(()ldx -b ff20(k-1).

As a consequence,

<: C[ ek+ log
1

and the proposition now follows. FI
We now show that A/I is "close" to being invariant under the flow generated by

equations (1) and (2). Actually, the following propositions show that M attracts
nearby solutions exponentially fast into a neighborhood of A/I of size O(ek), where k
can be any positive integer provided 0 < e < e and e0 is small.

To make the above statement rigorous, we denote

(31) h(t) =: -x/aet, (x, t) =: uh(t)(x).
Note that we need to require that the t in (31) is such that (t) E po and therefore
O<t< C.

PROPOSITION 6. There is a positive constant ao such that, for any positive integer
k, there are positive constants eo and C1 such that, for 0 < e < eo and lal N ao, we
have

0 1
(a) (x, t)= o((x t)) < cog:

for.x [-1 1] and O < t <
Proof. For simplicity, we denote the function X(-h) by X(x- h). We have (cf.

Lemma 7.8 in [C-P])

(33) uh (1 X(x- h))(x + 1, 2(h + 1),-1) + )U(x- h).(x- 1,2(h- 1), 1),

(34) u -[(1 X(x- h))x(X + 1, 2(h + 1),-1)
+ X(x- h)x(x- 1, 2(h- 1), 1)] + O(e-c/e),

and

(35)
uh (1 X(X h))(x + 1, 2(h + 1), 1)

+ X(x h)x(x 1, 2(h 1), 1) + O(e-C/).

The traveling-wave solution U(x, t) of equation (1) on (-, c) can be calculated
explicitly as

(36) (x ) -1 + exp(v/( +@(x, t)=" U - + x/at =:
1 + exp(x/( + x/at))
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Then we have the following estimates:

(37)
IU(x, t) ((x, t)[ _< (1 X)l@(x, t) (x + 1, 2( + 1),-1)[

+ X[(x, t) (x 1, 2(t 1), 1)
_< Ce,

where we have used the fact that is simply the translation of the standing wave of
(1) with a 0, and therefore Proposition 4 applies. Similarly, using Propositions 4
and 5 and formulas (34) and (35), we obtain

e2l((x, t) (x, t)l <_ Cee log 1,

(38) It(x, t) t(x, t)l <_ Cao ek log 1.

The proof of the proposition follows from (37), (38), and the fact that is a traveling-
wave solution of (I).

We need an estimate on the Frchet derivative of the function X(h, v) defined by

(39) X(h,v)

PROPOSITION 7. If v satisfies assumption II, then there is a positive constant C
such that

(40) < C%/cl/2

Proof. If # is a smooth function satisfying boundary condition (2), then it can be
verified that

0 i+II(41) O--Xh, v)# ((u, Th) (V, -))2’
where

thI =: [( h, Th) (V, T)](e2txx fa(Uh + v)lt, Th},

ii =: {#, -}((u + V)xx fa(Uh + v),

Using (20)and (41), we obtain

(42)
0
vX(h,v)# < C2[]II +

,We have

(43)
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where we have used the fact that IIL0()ll- O(e-c/) by Proposition 1.
Similarly, we derive the following estimate for iI:

(44)

[III- I(Z:0(u), T) + (v, Lho Th) + (--ag(uh) --ag’(uh)v
1

<_ [c-/ / Caoll-h[IL]-3/211,11

The proof of the proposition follows from (42), (43), and (44). El
PROPOSITION 8. There exists a positive constant ao such that, for any integer k,

there are positive constants eo and C such that, if 0 < <_ o and v satisfies assumption
II, then

(45) IIv(., t)ll I1(’, o)11e-A + Ck

for x E [-1,1] and O < t < c.
Proof We have

10
2 ot Ilvll2 <v, v>

=(,o()

=(v, [a(uh) uX(h, 0)1 + Lho v ag’(uh)v

1
+ -f’a’V2 + uhh[X(h, O) X(h, v)]}

I + II + III + IV + V.

By Propositions 4 and 5 and the fact that t =/a() -x/ate, it follows that
X(h, 0)~= -x/ae + O(ek+l) for any h. Therefore, if we let s h/(-x/ae), then
h(t) h(s), where/t is defined in (31), and

a(uh) -uX(h, O)= (u) ff---u + O(e-c/).

From this, Proposition 6, and assumption II, it follows that III Cek. By Propo-
sition 2,-II _> AIIvl[ 2.

Using assumption II, we have ]IIII, IIVI _< Cx/llvll 2.
For V, we use Proposition 7 to deduce that

where (x, t) is a suitable value between 0 and v(x, t).
Combining all of these estimates, we obtain

0
o11,11: + AII,II . <
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provided that a0 is chosen sufficiently small. The proof of the proposition follows
immediately from Gronwall’s inequality.

In order to obtain an L estimate on v, we need the following proposition.
PROPOSITION 9. There is a positive constant ao such that, for any integer k,

there are positive constants e0, C, C1, and C2 such that, if 0 < < o and assumption
II is satisfied, we have

(46) <--Lohv( ., t), v(., t)> < Cek

C2for x E [-1, 1] and CI k log < t < --.
Proof. We have

(47)

ld
2 dt <--Lhv’ v> IILohvll 2 + <--LhoV, f_,o(uh)>

+ o, (;’ + a"). + (o, a()/
h+ (o, a’()/+ (o,h

/ - (fD’ uh)uh’v, v)

="-[[L0hv[[ 2 + I + IX + III+ IV + V + VI.

There exist positive constants bi, 1,..., 4, whose sum is 1/2 such that the six
terms in (47) are estimated as follows:

III < IlLtdvllllo(uh)ll < blllLhovll 2 / CIl-,o(uh)ll 2

<_ bl llLho vll 2 / O(e-/),

where, in the last inequality, we have used Proposition 1.
By the second part of (17), we know that Ilvll 2 _< CIILvllllvll and therefore

Ilvll <_ CIILholl, and it follows from this that

IIII < cIIvllllLovll < bllLovll.
We estimate III by integration by parts. Noticing that the boundary term con-

tribution is O(e-c/e), we obtain using Proposition 8 that for 0 _< t _< T, T such that
assumption II is satisfied in [0, T],

IIIII < I<Lo(ag(u)),v)l + Ce-/
< Clal I1(., t)II
<_ Clal + c-/ (11(’, 0)11-A/ + c/)

Therefore, we can take e small such that

IIIII _< CIal (llv(x, 0)11-A/2 + ).

Similarly to estimating III, we have

IVl < Clal (llv(x, 0)lie-At/ +
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By using Propositions 2 and 3 and assuming that a0 is sufficiently small, we estimate
VI as follows:

IVII < Caollvll < CaollLovll.
Combining (47) and the above estimates, we have

d
d(-Lhov, v} <_ -IILo,ll + C (llv(x, O)lle-A</ + ).

This inequality together with Proposition 2 implies that

d
d(-Lho v, v) + A(-Lho v, v) <_ C (llv(x, o)11-*/a + ),

and, from an application of Gronwall’s lemma, we conclude that

(--Lhov( ., t), v(., t)) <_ (--Lhov( ., 0), v(., O))e-At + C (11(, 0)11-/a + ),

and the proof follows.

5. Solutions in bounded domain approach the traveling-wave solu-
tion. In this section, we prove the theorem stated in 1. After all the work in the
previous sections, this is a fairly easy task.

We may choose C1 such that AC1 > 1; now, using inequality (45), we see that
C__zClklog 7 < t < implies that IIv(.,t)ll <_ Cek From (14’) and (14"), we have

h’(t) (o(uh) + ag(uh) + fv, mh) + (V, LhTh)
(,) @,)

-aA + O(e(k-1)/2)
A /2+ O(e(-)
-av + 0((+)/),

where A is a constant which can be calculated explicitly.
Therefore, by choosing a different k, we have h(t) -aev/ + O(ek) for to -:

CClklog < t < -7- t. Thus, if we let h0 h(to)e-, then

(48) h(t) -aex/t + hoe + O(e(k-) ).

Also from (46), it is easy to deduce that there is a positive constant C3 such that

(49) IIv(.,t)ll <_

c__a (49) wasfor Ck log 7 < t < Estimate obtained under hypothesis II; that is, as
long as II is satisfied, inequality (49) is satisfied. Therefore, if we choose e0 so that

C3e0k- < Cv/- where C is the constant in II, then II will be satisfiedfor 0 < e < e0

and lal _< a0.
Applying Propositions 4 and 5 and formulas (36), (48), and (49), we obtain

lu(x, t) (x + ex/at h0e)l
_< I O(x + v%t h0e)l + Ivl _< C-
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for to < t < tl, where is the solution of equation (25). Therefore, we have proved
the following proposition.

PROPOSITION 10. There is a positive constant ao such that, for any positive
integer k, there are positive constants o, C, CI, and C2 such that if 0 < o and
lal <_ ao, then

[u(x, t) q(x + ex/at- hoe)l <_ Ck-2
c_zforxE[-1,1] andClklog <t<

The theorem stated in 1 is a direct result of this proposition using the rescaling
x--+x.
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ASYMPTOTIC BEHAVIOR OF TWO INTERREACTING
CHEMICALS IN A CHROMATOGRAPHY REACTOR*

DANIEL N. OSTROVt

Abstract. The chromatographic separation of two chemical species (Cl and c2) that transform
into each other with first-order kinetics as they pass through a Langmuir isotherm reactor is governed
by the following system of nonlinear hyperbolic conservation equations:

0c__1_ 0 ( Cl ) _kcl + k’c2Ox - 1+ c1+ c2

Oc2 0 ( /c ) "(kcland x +- 1+c1+c2
-kc2),

where E (-c, c).

An analysis is presented of the two species’ asymptotic behavior as they progress down a semiinfinite
(i.e., x E [0, c)) separation reactor with cyclic (periodic) entering feed concentrations. First it is
shown that the method of generalized characteristics can be extended to describe the above system
of equations. Then generalized characteristics are applied to show that the w-limit set for the species
concentrations is comprised of a single determined point on the curve of chemical equilibrium and
that this point is approached at an exponential rate.

Key words, chromatography, hyperbolic conservation laws, generalized characteristics

AMS subject classification. 35

1. Introduction. Chromatography is a process used by chemists and engineers
to separate two chemical components in a fluid phase. The two components are passed
through a tubular reactor packed with solid particles. Even though the fluid velocity
may be constant, the fact that the solid will absorb different amounts of the two
chemical components will cause the two concentration distributions to move down
the reactor at different rates.

When a reaction allowing the two components to transform into each ,gther occurs
in the fluid, the separation caused by the chromatographic reactor will be inhibited.
We will consider the most common case where the kinetics of this transformation
are first order (i.e., the rate of a component’s transformation is proportional to the
component’s concentration). A simple example of chromatography with a first-order
transformation is provided by considering a separation of the cis and trans isomeric
forms of an organic compound. When the temperature of the chromatography reactor
provides enough activation energy to allow the isomers’ chemical bonds to break and
reconnect, each isomer will transform into the other at a rate proportional to its
concentration.

When the solid phase consists of small, densely packed particles and the fluid
velocity is relatively slow, each chemical species approaches an equilibrium between
its fluid and solid phases at each point in the reactor. If thetemperature within the
reactor is assumed to be uniformly constant in time and space, this equilibrium allows
us to express each species’ solid concentration strictly as a function of both species’
fluid concentrations. The function describing this relation is called an adsorption
isotherm. The Langmuir isotherm is the most common type of adsorption isotherm
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and Army Research Office grant DAAH04-93-G-0198.
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used by chemical engineers. It corresponds to a simple kinetic model for adsorption
that effectively describes a large range of observed solid-liquid kinetic behavior [7].
For a chromatography reactor in which the two components interreact with first-order
kinetics and the solid-liquid equilibrium is governed by the Langmuir isotherm, the
mass balances for the two species are

(lla) 0c_____0( C / _Cl .__ IC2Ox - l+c+c

Oc 0 ((1.1b) and -x + - 1+
7c2 = 7(kci k’c2),
c +c2

where t

In these balances, ci and c2 are proportional to the two species’ concentrations in
the liquid phase, k and k are proportional to the rate constants in the reaction, x is
proportional to the length down the reactor, t is related to the time, and /is a known
constant between 0 and 1 dependent on the nature of the Langmuir isotherm. To
avoid potential confusion, it should be noted that the mathematical roles played by
x and t in the above chromatography equations are the opposite of the mathematical
roles that x and t typically play in physical hyperbolic systems (e.g., gas dynamics)
and in most hyperbolic systems literature.

It is not immediately clear how the species concentrations will behave as the
reactor gets progressively longer (i.e., as x --, x). On one hand, the chemical reaction
will tend to push the concentrations toward chemical equilibrium (c2/cl k/k); on
the other hand, the separation caused by the chromatographic effect will tend to push
the concentrations away from equilibrium. Even in cases where the concentrations do
approach equilibrium, the fact that the equilibrium is defined by a curve, as opposed
to one point, means that the nature of the w-limit set is still uncertain. Further, we
would like to know at what rate the w-limit set is approached. This rate of approach
can be useful in designing reactors of this nature.

In 2, we will start to approach these questions by translating the physical con-
ditions of the reactor into an appropriate mathematical problem. We will begin by
deriving the mass balances given in (I.I). It is more convenient to describe the be-
havior of ci and c2 when these concentrations are transformed into two special state
vector coordinates called the Riemann invariants, z and w. We will determine the
Riemann invariant forms of the mass balances in (I.I) and also determine which re-

gions of the (z, w) graph are physically possible. Finally, we will note some of the
properties of the equilibrium curve on the (z, w) phase portrait.

Section 3 will describe the method of generalized characteristics, which will be
the tool used to determine the evolution of z and w. Classical characteristics are
curves in the (t,x) plane where the shape of the curve and the evolution of the
solution along the curve are defined by a characteristic system of ordinary differential
equations (ODEs). For a system of n equations with n unknown functions, there are
n families of these characteristic curves. Classical characteristics can be used to solve
nonlinear differential equations in the region between their initial condition (x 0)
and the value of x corresponding to the first shock formation. At the shock formation,
characteristic curves of the same family cross each other, leading to multiple possible
solutions.
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The method of generalized characteristics allows the characteristic system of
ODEs to be extended past shocks to all x E [0, oc). This is accomplished by con-
sidering any specific point in the (t, x)plane and looking at the funnel of all classical
characteristic curves and shock curves of each family that emanate backward in x
from that point to the initial condition x 0. Each funnel is bounded by a minimal
and maximal backward characteristic. For genuinely nonlinear systems (such as chro-
matography reactors with Langmuir isotherms), the minimal and maximal backward
characteristics are not shocks; they propagate with classical characteristic speed. This
fact, along with the standard entropy condition (which corresponds, physically, to re-
quiring the concentration cl at a fixed location to increase as shocks pass through the
location), will allow us to study the solution in regions of the (t, x) plane with shocks.

The nonlinearity caused by the Langmuir isotherm will identify the system in
(1.1) as part of a special class of equations defined by Temple in 1983 [9]. This
class of equations is remarkable in the sense that shocks tbrmed by the characteristics
associated with the family of one Riemann invariant will not induce discontinuities
in the other Riemann invariants. This property has the powerfill effect of preventing
rarefaction waves from occurring when x - 0. In other words, there can only be
one generalized characteristic (classical or shock) from each family emanating in the
forward direction from any point (t, x), where x > 0.

Section 3 will show how basic properties of the minimal and maximal charac-
teristics can be used to derive one-sided Lipschitz bounds on the variation of the
solution in the t direction. These bounds will be used to prove that the Riemann
invariants exhibit the properties of Temple equations even though (1.1) contains in-
homogeneous reaction terms. From these properties, we will be able to determine the
structure of the solution. The approach used in this section will involve modifying
the method used by Dafermos and Geng to describe the behavior of characteristics
for the homogeneous form of (1.1) [2].

With the tools of generalized characteristics in place, we will be able to explore
the long-term behavior of (1.1) in 4. We will consider the case of periodic initial
conditions since they physically correspond to the conditions under which a continu-
ously run chromatography reactor would operate. First, we will define regions of the
(z, w) phase plane that are invariant (i.e., if the solution is contained by the region
at z Zo, then the solution is contained by the region for all x > Zo). We will then
establish that under periodic conditions the smallest invariant region containing the
solution shrinks in proportion to its own size as z increases. It immediately follows
from this conclusion that the a-limit set is comprised of a single point on the chemi-
cal equilibrium curve and that this point is approached exponentially as x increases.
Finally, by using an integrated form of the mass balances in (1.1), we will determine
precisely which point on the equilibrium curve is being approached.

2. Mathematical modeling of the chromatography reactor. We begin
with the mass balances of the two components in the chromatography reactor

(2 lb) Oc_ On2
Oz - kc k’ce.

where cl, c2 and n, n are the component concentrations in the reactor’s liquid and
solid phases, respectively, z is the location down the reactor, t is related to time, and
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k and k are the first-order reaction rate constants. The derivation of this system is
detailed by Rhee, Aris, and Amundson in [7].

The Langmuir isotherm expresses each solid concentration as a function of the
liquid concentrations:

NKici(2.2) ni 1 + KlCl -K2c2’ 1, 2,

where N, K1 and K2 are experimentally determined constants. Inserting (2.2) into
(2.1), rescaling t, x, the concentrations, and the rate constants, and defining 3‘
K./KI leads to the forms of the mass balances shown in 1:

(11a) 0c___ 0 ( c I=_kcl+klc2Ox I-- l+c+c

and

(1. lb) OC20x + -0 ( 1 --c13‘c2--c2 ) 3‘(kC1- ktC2),

where t E (-c, c), x E [0, c).

We can label the two chemical components so that K _> K2 and therefore state that
3’ (0, 1]. We will consider 3‘ (0, 1) since the case where 3‘ 1 can be solved with
the aid of the single homogeneous expression for cl + c2 obtained by adding the two
equations in (1.1) together. Again, we point out that the mathematical roles played
by x and t in (1.1) are the reverse of the mathematical roles that x and t typically
play in hyperbolic-systems literature.

The Riemann-invariant form of the system in (1.1) partially decouples the be-
havior of the two components. This form can be obtained by first transforming (1.1)
into a system investigated by Dafermos and Geng [2] by making a change in the state
variable coordinates

u ------ (c + c2 + 1)/3‘, v (3‘cl + c2 + 1 + 3‘)/3‘

and also making a scale change in the independent variable by defining x/3‘ to be
equal to a new variable x, which yields

Ox Ot
-an + bv c,

0,(2.3b) ax at

where a--3‘(k+k’3‘), b-_-3‘(k+k’), andc--(k’+

It should be noted that the constants in (2.3) are all positive and have the property
that b2 ac -3‘kk(I 3‘)2 0.

The Riemann invariants z and w for the system in (2.3) are

1 1
(2.4) z and wu #u
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where A and # are the characteristic speeds of the system, which can be expressed in
(u, v)coordinates or (z, w)coordinates:

v v/V2- 4u 1 v + v/V2 4u 1
(2.5) ,

2u zw # 2u. zw

In regions where the solution to (2.3) is smooth, the system can be transformed into
tim desired Riemann-invariant form:

Oz
o + ot g(z, w),

Ow Ow
(2.6b) 0- + #- -g(z, w),

where g(z, w) =_ a(zw) b(z + w) + c

zmw

We will assume in any solution to (2.6) that the Riemann invariants do not stray,
for some constant M, from the following restricted ranges:

(2.7) zE ,M and wE 1,
These restrictions physically correspond to requiring that the concentrations, Cl and
c2, are nonnegative and do not approach infinity.

Further, we assume that the solution remains bounded away from the umbilic
point z w I/-, which implies that the system is strictly hyperbolic since 0 </ <
#.

Both characteristic fields are genuinely nonlinear since

0A
(2.8) Oz

<0 and <0,
which is immediately seen from (2.5) and (2.7).

The chemical equilibrium curve (c2/cl k/k’) for (1.1) corresponds in the Rie-
mann-invariant system to the curve defined by g(z, w) 0. If we define

c- bw c- bz
and we(z) =-(2.9) z(w) =_

b aw b az

then we have that g(z(w), w) g(z, w(z)) =_ 0 from the definition of g. Therefore,
both z and we define the equilibrium curve in the Riemann-invariant plane.

We wish to note some of the properties of g and z. From (2.7) we see that
z(w) is defined only for w E [1 c-bMb-’aM]" This restricted domain of z implies that the
expressions for the first and second derivatives of z must be positive:

dze ac- b2
(2.10a)

dw (aw b)2 > 0,

(2.10b) d2z -2a(ac- b2) > 0.
dw (aw b)
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bla

c-bM t
b- aM

Z=Ze(W),
=We(Z

M

FIG. 1. The Riemann-invariant phase plane. The invariants can only take values inside the
solid rectangle shown above. As z o, the equilibrium curve asymptotically approaches w b/a.

These properties of ze(w) along with (2.7) allow us to construct the phase plane shown
in Fig. 1. Finally, we have that

Og az2 2bz + c
(2.11a) Ow (w- z) > O,

Og aw 2bw + c
(2.11b) 0--- -(w- z) < O.

The speed of shock propagation cr is given by the Rankine-Hugoniot conditions
as applied to (2.3). These can be expressed in terms of the Riemann invariants by
using the fact that v z + w and u zw:

(2.12a) O’(Z+U+ Z_W_) -I- Z_ + W; Z
-1

l)
-1 O,

(2.12b) or(z+ + w+ z_ w_) + zlw z-lw-1 O,

where the subscripts "+" and "-" refer to the limit as t approaches the shock from
the right and the left, respectively. Solving (2.12) leads to two possible shock speeds"
1-shocks, where z_ - z+, w_ -w+, and

(2.13a) cr z-lzlw_l;
and 2-shocks, where w_ - w+, z_ z+, and

(2.13b) cr w-lwz.
From (2.13), it is clear that shocks associated with one Riemann-invariant family do
not induce discontinuities in the other invariant family, and so our system belongs to
the class of equations defined by Temple.

The initial-value problem for (2.3) may have many solutions whose shocks satisfy
the Rankine-Hugoniot conditions. By using the entropy, ], and the entropy flux, q,
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we are able to remove solutions that are physically irrelevant. The entropy conditions
used in chromatography are completely analogous to the entropy conditions discussed
in the context of gas dynamics [7]. r] and q are any two functions satisfying

(2.14)
Oq

A 0]
Oq 0]

Oz zz and
Ow # Ow"

In 3, we will make use of the solution pair (r, q) to (2.14) of the Lax type considered
by Dafermos and Geng [2]"

+ w- zw exp

In particular, we will use the following two equations, which are determined directly
from (2.15)"

2 1 (w) (1)1 (1)(2.16a) q(z, w) (z, w)rl(z, w) --[ 1- --z +0 -[ exp -z

+ O exp
z z

Entropies of the type considered by Lax [5] are generally convex only when is large
in one direction. However, the entropies for Temple-class systems are special in that
they are convex when is large in either direction.

Entropy-entropy flux solution pairs also exist that look similar to (2.15) with the
roles of z and w interchanged.

Existence of entropy solutions to homogeneous systems of conservation laws in
Temple’s class under any initial condition with bounded variation has been shown by
Serre [8]. Existence for the inhomogeneous system in Temple’s class examined in this
paper may be established through a routine extension of these methods. The issue
of uniqueness of the entropy solution, even in the homogeneous case, has only been
partially resolved, and in the inhomogeneous case, the problem is open.

3. Generalized characteristics. We consider a (weak) solution (cl (t, x), c2(t, x))
of locally bounded variation (BV) to (1.1) defined for (t,x) E (-oc, ec) x [0, oc). We
assume that the Riemann-invariant fields (z(t,x),w(t,x)) induced by this solution
take values in a small neighborhood of some fixed state (Zo, Wo) and that the two
characteristic fields have well-separated speeds.

We assume that for any fixed x > 0, the concentrations c(.,x) and c2(.,x)--
and thereby also the functions z(., x) and w(., x)--have bounded variation locally on

(-oc, oc). This ensures that limits of the solution from the left and the right (i.e.,
C1 (t-Jr-, X), C2(t+/-, Z), Z(t+/-, Z), and w(t+, x)) always exist. If we wish, we can normalize
the solution by requiring that the solution always equals its left (or right) limit. This
will define the value of the solution on the set of all shocks and, therefore, will require
an alteration of the solution on no more than a set of measure zero since BV solutions
can have no more than a countable number of shock curves.
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We will require that the solution satisfies the standard entropy condition, which
can be written in terms of the characteristic speeds

a(z(t-,x), (t-,x)) > a(z(t+,x), (t+,x)),

,(z(t-, x), (t-, x)) >_ ,((t+, x), (t+, x))

or, equivalently, in terms of the Riemann invariants

(3.2) z(t-, x) <_ z(t+, x), (t-, x) < (t+, x).

These conditions imply that for any convex entropy function, r/, and its associated
entropy flux, q, the relation

(3.3) O Oq
o- + < g(z,) Oz o

holds in the sense of measures.
The entropy condition in (3.1) has been previously applied to chromatography

equations in [7]. It corresponds (see [2]) to the physical requirement

(3.4) Cl (t--, X) C1 (tt-, X).

In other words, as a shock passes through any fixed location in the reactor, cl, the
concentration of the species that can induce higher concentrations in the solid phase
(see (2.2)) will increase.

A classical l-characteristic on the interval Ix1, x2] for the system being studied is
an integral curve of the ODE

dt
() d- (z(t, x), (t, x)).

Classical characteristics determine the solution in regions where the solution is smooth.
To extend characteristics to regions with shocks, it is necessary to consider them as
integral curves of (3.5) in the sense of Filippov [3] since the right-hand side of (3.5)
can now be discontinuous. It follows that a generalized l-characteristic is defined as
a Lipschitz curve T(X) such that

(3.6) ’(x) e [(((x)+,x),((x)+,)),(z((x)-,x),((x)-,x))] ..
Similarly, a classical 2-characteristic satisfies

dt
(3.7) d- #(z(t,x), w(t,x)),

and a generalized 2-characteristic is a Lipschitz curve v(x), where

(3.8) .’(x) e [.(z(.(x)+,x),(.(x)+,x)),.(z(.(x)-,x),(()-,x))] ..
We state some elementary properties of characteristics which can be determined

by extending the proofs in [1]. Every generalized/-characteristic (i 1, 2) propagates
with either classical characteristic speed or with the shock speed associated with the
family. From any point (T, X) in the upper half-plane, there emanates in the backward
(i.e., decreasing-x) direction a l-characteristic funnel and a 2-characteristic funnel,
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which only intersect at (T, X). Each funnel is bounded by minimal and maximal
/-characteristics (which may or may not be distinct). These minimal and maximal
characteristics always propagate with classical characteristic speed; specifically, we
have the following.

LEMMA 3.1. Consider (T, X) E (-cx, oc) (0, x). IfT is the minimal or maximal
backward 1-characteristic emanating from (T, X), then for almost every x e [0, X],

(3.9) z((x)-, x)) z((x)+, x)), ((x)-, x)) ((x)+, x)),

(3.10) ’(x) (z((z)+/-, x), ((x)+, x)).

If v is the minimal or maximal backward 2-characteristic emanating from (T, X), then
for almost every x [0, X],

(3.11) ((x)-, )) z((x)+, x)), ((x)-, x)) ((x)+, x)),

(3.12) ’(x) ,(z((x)+,x), (,(x)+, x)).

Now we consider the behavior of the Riemann invariants on these minimal and
maximal characteristics. Over a classical l-characteristic, we have that =gdz(z, w),

d w). We begin to deriveand over a classical 2-characteristic, we have that "x -g(z,
similar results for the extremal characteristics by using entropy.

LEMMA 3.2. Let T and v be the minimal and maximal backward 1-characteristics
emanating from any point (T, X) of the upper half-plane. Then .for all 0 <_ <_ X <- X,

X

z(T(X)-, X) z(’()-, ) <_ g(Z(T(X)--, X), W(’(X)--, x))dx,

z(v(x)+, X) z(v()+, ) >_ g(z(v(x)+, x), w(v(x)+, x))dx.

Similarly, if T and v are the minimal and maximal backward 2-characteristics ema-
nating from the point (T, X), then for all 0 <_ <_ X <- X,

(3.15) W(T(X)--, X) w(-()-, ) _< --g(Z(T(X)--, X), W(T(X)--, x))dx,

(3.16) w(v(x)+, X) w(v()+, ) _> -g(z(v(x)+, x), w(v(x)+, x))dx.

Proof. we will only show the proof of (3.13), since the proofs of the other three
relations are similar.

First, we define T, an integral curve in the sense of Filippov of the differential
equation

dt
(3.17) d-- A(z(t, x), w(t, x)) + e
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which emanates from the point (T c, X), where c is a small, positive, fixed number.
It follows that

(3.18) ;() _> ((()+, ), (()+, ))+

for almost every x E [0, X] and that -(x) < T(X) for all x E [0, X]. Further, T(x)
converges uniformly on [0, X] to T(x) as 0.

We now integrate the entropy inequality in (3.3) over the domain {(t,x) [ <
x < X, -(x) _< t < T(X)} and apply the Gauss-Green theorem to obtain

() [()
()

(z(t, x), (t, x))dt
()

(z(t, ), (t, ))dt

x
+ (((x)-,x), ((x)-,)) ’(x)v((()-,), (()-,))d

(z(()+, x), ((x)+, )) ;(x)v(z(()+, x), (()+, ))d

(3.19) < g(z, w) dtdx.
(x) Oz Ow

By using the expressions for r and q given in (2.15) with very large and negative, we
can use (2.6), (3.10), and (3.18) to show that the last two integrals on the eft-hand
side of (3.19) are nonnegative and nonpositive respectively. Therefore, both integrals
can be removed from (3.19) and the inequality is preserved:

()

rl(z(t, X), w(t, x))dt rl(z(t, c), w(t, ))dt
(x) ()

(3.20) _< 1 + O dtdx.
( z z z

If we. define 2(x) essinf[(z),(x)] z(.,x), 0(x) esssup[(x),(x)] g(z(.,x),w(.,x)),
(x)- f() dt, we can express (3.20)in termsand of()

(3.21) -l](x) (1 + O(1/1))a2(x)dx.() () <_
.()

Since the integrand in (3.21) is finite, it immediately follows that (I)(x) is Upper Lip-
schitz continuous. Any upper-Lipschitz-continuous function f(x) is differentiable al-

most everywhere and fb dfd(xX dx >_ f(b)- f(a). Therefore, when we divide (3.21) by
X;- and let X, we get an expression for the derivative of (I) almost everywhere.
Further, after rearranging the resulting expression and applying the chain rule, we
can integrate between new and X points and--since ln((x)) is upper Lipschitz
continuous--we preserve the inequality

in
(X) < dx < (1 +O(1/l))dx.() d (x)
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Now we multiply (3.22) by -1/1 and let - -oc, which causes the (I) terms to
converge to the L norm of the exponentials in heir entropy expressions given in
(2.15), which leads to

1 1 fx 7(x)
dx,(3.23) 2(X) + <- 2(x)

where 2(z) esssup[(x),7-(x)] z(., z). Letting e - 0 forces the z terIns on both sides
of the inequality to converge to the limit of z from the left of the -(z) curve:

1 1 .[7,(x)dx(3.24) -(X--- + - <- (z)

where (z) z(7(x)-,z) and 0(z)- 9(z(-(z)-,x), w(-(x)-, x) ). From the upper-
Lipschitz-function argument used to establish (3.22), we can "differentiate" (3.24),
cancel terms, and then integrate while still preserving the inequality. This yields

X

(3.25) (X)- () < {](x)dx,

which is identical to (3.13).
An almost identical method is used to show (3.14), but instead of using a char-

acteristic %, which is displaced slightly to the left of -, one uses a characteristic
which is displaced slightly to the right of v. Also, we let (as opposed to -1) be large.
In the proofs of (3.15) and (3.16), we follow the proofs of (3.13) and (3.14) but use
the form of the entropy which is similar to (2.15) with the roles of z and w switched.

The next lemma establishes bounds on the widening of extremal backward char-
acteristics of a family. These bounds depend on the total variation of the Riemann
invariant associated with the other family along this extremal curve. We will assume
in any z interval of finite length that this variation is bounded uniformly over the
extremal characteristics; specifically, for any Xl < oc, we have that

(3.26a) t(z(X1) sup [TVx[O,xl]z(v(x)-, z)] < oo
v

and

(3.26b) Iw(X1) sup [TVx[O,x]W(7(x)- x)]

where v is any extremal 2-characteristic and - any extremal 1-characteristic that
emanates from the line x xl.

LEMMA 3.3. Let -oc < S < T < oc and X > O. If - is the minimal backward 1-
characteristic emanating from (S, X) and v is the maximal backward l-characteristic
emanating from (T,X), then there exist positive constants D, 5, , c, and L such
that for x E {[0, X]" X- x < L},

v(x) (x) < 2IT- S] exp (O(X) O(x))

(3.27)

+ 2Zig(r+, x) x)] fx
x D

(O(V) + Y)exp dy,
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where 0() TVxe[o,]W(T(X)-, x) + . Similarly, if T is the minimal backward 2-
characteristic emanating from (S, X) and v is the maximal backward 2-characteristic
emanating from (T,X), then there exist positive constants D, , /3, c, and L such
that for x E ([0, X]" X x _< L},

v(x)--(x)<_2[T-S]exp (--’(O(X)- O(x)))
+ 2[w(T+,X) w(S-,X)] exp (O(y) O(x)) + a(X y) dy,

where 0() =_ TVxe[o,]z(T(x)--, x) + .
Proof. We will only show (3.27) since the proof for (3.28) is essentially identical.

The proof for (3.27) is somewhat involved, so we will employ the following simplifying
notation:

z(x) ((x)-, x), (x) -_- ((x)-, x),

Z(x) z(()+,x), w(z) ((x)+, ),

(x) =_ z(x)- Z(x), (x) =_ (x) w(),

(x) (x) (x).

Since we are looking for bounds on the characteristics’ widening, we begin with
the expressions for the characteristics’ slopes given .in (3.10) and (3.12)’

1 1 z+Z 1
(3.29) ’(x) Z2W z2w WZ2z2(x) + Z2wWW(X) a.e.,

where z, Z, w, and W are all functions of x. From (2.7), it is clear that the fractions
in front of and w are bounded away from both 0 and (x), so we next concentrate on
looking for bounds on the behavior of and w.

Lemma 3.2 gives an expression bounding :
y

(v) (x) _< aZW b(Z + W) + c azw b(z + w) + c
+ d

y -aW2 + 2bW c -az2 + 2bz c
(3.30) (Z W)(z W) () (z W)(z w)w()d,
where z, Z, w, and W are all functions of . Since we are bounded away from the
umbilic point where w(t,x) z(t,x), the denominators in the fractions of (3.3o) are
bounded away from zero. The numerators in the fractions of (3.30) are also bounded
from zero since b2 -ac < 0. Therefore, there are positive, finite constants al, a2, and
bl such that a > a2 and

(3.31)
y

(y) (x) <_ [-a()() + b[w()l d,
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al if() < 0,
where a(c) =_

a2 if () _> 0.

As in Lemma 3.2, the properties of upper-Lipschitz-continuous functions allow us to
"differentiate" (3.31), multiply the result by an appropriate integrating factor, and
preserve the inequality upon integration between x and X, leading to

(x) _> (X)exp a()d -bl Iw()lexp a(x)dx d, x e [0, X].

From (3.32), we obtain our final form of the bound on (x)"

(3.33) (X)

_
(X)e(X-x) bl eal(X-x)

al if((X) < 0,
where -_-

a2 if (X) > 0.

Next, we derive the following bound on the integral of w(x)"

(3.34) Iw(y)ldy <_ 5(x)+ D (y)dO(y).

We require a somewhat intricate construction to establish (3.34). First, we define
the function P(y) in the case where w(y)

_
0 to be the x coordinate of the point of

intersection of T with the minimal backward 2-characteristic emanating from (v(y), y).
In the case where w(y) > 0, P(y) is defined to be the x coordinate of the point of
intersection of - with the maximal backward 2-characteristic emanating from (v(y), y).
Next, we define p(y) =_ infe[y,X P() on the domain y E (, X], where inf{y E
[0, X] P(y) is defined}. The domain of definition of p is extended to the point
by using p() infix,x] P() when P() is defined or p() inf(3,x] P() when

P() is not defined, p is a monotonically increasing function with the property that
p(y)

_
y since the characteristic speeds are positive. We also define an "inverse" for

p: h() =_ sup{y p(y-) <_ <_ p(y)}.
Now we fix x e [0, X] and define ) by ) if x [0,p()], ) h(x) if x

(p(), p(X)], and ) X if x e (p(X), X].
Since the characteristic speeds, are well separated, there is a constant C such that

0 <_ ) x _< C(x). Combining this with the requirement that w stays in a small
neighborhood of some fixed state yields

(3.35) Iw(y)ldy <_ 6(x), where 5 1.

This estimate also holds, with ) X, when is undefined.
Now we consider the integral of Iw(y)l over the remaining region: y E (),X].

Using Lemma 3.2, we can establish that

(3.36) Iw(y)l <_ A(y) A(P(y)) + IlgllL(y P(y)),

where A(y) _= TVe[O,y]W(T()-, ). IIglli must exist since the ranges of z and w are
restricted by (2.7). From the definition of p(y), it is obvious that p(y) <_ P(y). Using
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this and the fact that the separation of speeds implies that y- P(y) _< C(y) allows
the integral of (3.36) to be expressed as

(3.37) Iw(y) ldy <_ A(y) A(p(y))dy + CI ]gl IL j ()d.

We wish to reexpress the integral of the total variations in (3.37). This is ac-
complished by constructing a sequence {An} of nondecreasing, absolutely continuous
functions which converge pointwise to A(y) on [0, X] so that we have

(3.38) JAn (y) An (p(y))]dy A()ddy
(y)

fp (x)[h()-]A’()d+
() a

X

[h() ]a’()d + IX ]a’
(x)

From the separation of the characteristic speeds and the definition of h, we infer that

h() 9 _< c(), e [p()), ],

h()- _< C(),

x- _< c(), e (p(x), x].

Moreover, by the construction of ), it follows that p()) _> x. Therefore, (3.38) yields

(3.39) JAn(y) An(p(y))]dy < C ()dAn().

Passing to the limit as n ec causes (3.39) to converge to

(3.4o) [A(y)- A(p(y))]dy C ()dA().

Substitution of (3.40)into (3.37).yields

(3.41) [(y) Idy D (y)dO(y),

where D is a constant and dO(y) dA(y)+dy. This combined with (3.3a) establishes
(3.a4).

With the bounds on and w established in (3.33) and (a.34), w return to the
bound on in (3.29). Substitution of (a.33)into (3.29) yields

(3.42) ’(y) -AI(y)] + (x)(x-> al(X-y> I()ld

where A, B, and are all positive constants. Now we integrate (3.42) between x and
X. The double integral in the resulting relation can be reexpressed by the following
change in the order of integration:

jy I()IaI(X-y)ddy I()l al<X-y>dyd
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(3.43)
X

<_ (1/al)(eal(X-x) 1)

so that (3.42) yields
(3.44)

(x) < (X) -(/a)((X)(e(x-x) 1) + [A + (B/al)(ea(x-x) 1)] I(m)ldm.

Next, we substitute (3.34)into (3.44). Further, we restrict X-x <_ L, where L is some
positive constant such that the bracketed term in (3.44) is less than 1/(26) whenever
X- x _< L. This process yields

(3.45) (x) < 2(X)- 2(/a)(X)(ea(x-x) 1)+ -- (y)dO(y).

Application of a generalized form of Gronwall’s inequality [2], [4] to (3.45) leads to

(x) _< 2(X) exp [-(O(X)
(3.46) (x) xp -which is equivalent to (3.27), the claim of the lemma.

From Lemma 3.3, we can quickly deduce the following.
LEMMA 3.4. /f (T,X) is any point of the upper half-plane where z(T-,X)

z(T+, X), then a unique backward 1-characteristic, T, emanates from (T, X) and

’x

X

(3.47) z(’z(x)+, x) z(T+, X) g(z(-(y)+, y), w(-(y)+, y))dy, x E (0, X].

Similarly, if w(T-, X) w(T+, X), then a unique backward 2-characteristic v em-
anates from (T, X) and

x
(3.48) w(v(x)+, x) w(T+, X) +/x g(z(v(y)+, y), w(v(y)+, y))dy, e (0,x].

Proof. Since z(T+, X) z(T-,X), (3.27) clearly implies that the minimal and
maximal backward characteristics must be the same curve, -(y), for all y E [0, X].
From (3.9) of Lemma 3.1, we have that

x

/x
x

(3.49) g(z@(y)-, y), w(’(y)-, y) )dy g(z(7(y)+, y), w(-(y)+, y) )dy;

therefore, Lemma 3.2 implies that

X

(s.s0) z(()+,) _< (T+,X)- ((()+,)(()+))d <_ (()-,).

However, the entropy condition in (3.2) states that Z(T(X)+,X) >_ Z(Z(x)--,X), SO

(3.50) must hold as an equality, which establishes (3.47).
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The proof for (3.48) is completely analogous.
Lemma 3.3 also gives us the following one-sided Lipschitz conditions.
LEMMA 3.5. There are functions H(X) > 0 and (X) > 0 which are unbounded

only as X 0 such that

(3.51) z(T,X) z(S,X) > -H(X) -oc < S < T < cc, X > O,T-S

X) > < ’3 < T < X > O.

Proof. It suffices to establish (3.51) under the assumptions z(T-, X) z(T+, X),
z(S-, X) z(S+, X), and z(S, X) > z(T, X). Since the left-hand side of (3.27) is
nonnegative, we immediately have for any x E [0, X], where x _> X L, that

z(T,X) z(S,X) >
-exp (--(O(x) O(X)))

T S fl exp (--(O(x) O(y)) + a(X y)) dy

exp --(O(X)-O(y))+a(X-y) dy

-1

By choosing x judiciously and exploiting the uniform bounds on the total variation
of w given in (3.26), we define H(X)"

[/3 X (a (X Y-1 ifX >fX-L exp (--Kw(Z) t_ --) y)) d
-1

L
(3.54) H(X) =_

[ foX exp (--K(X).+ (a ) (X y)) dy] if X L.

The proof for (3.52) is completely analogous.
The conclusions of Lemmas 3.1-3.5 are collected in the following theorem, which

states that forward characteristics are unique and summarizes the properties of min-
imal and maximal backward characteristics. In particular, we see the classical 1-
characteristic behavior (dz_=g(z,w)) on extremal 1-characteristics (except pos-
sibly at the characteristics’ endpoints) and the classical 2-characteristic behavior

-g(z, w)) on the extremal 2-characteristics (except possibly at the endpoints).
THEOREM 3.1. Let (T, X) be any point of the upper half-plane, with X > O. A

unique forward l-characteristic emanates from the point. Further, if we define T and
v to be the minimal and maximal backward l-characteristics emanating from (T, X),
then for x (0, X),

’0

x

z(-(0)+, 0) + g(z(T(y)2z., y), W(T(y)+/-, y))dy <_ z(’r(x)+, x)

z(T-, X) g(Z(T(y)+/-, y), W(T(y)+/-, y))dy

x

z(’r(x)-, x) <_ z(-(0)-, 0) + g(z(’r(y)+/-, y), W(T(y)+/-, y))dy,
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x

z(v(0)+, 0) + g(z(v(y)+/-, y), w(v(y)+/-, y))dy < z(v(x)+, x)

X

z(T+, X) g(z(v(y)+/-, y), w(v(y)+/-, y))dy

(3.56)
x

z(v(x)-, x) <_ z(v(O)-, O) + g(z(v(y)+/-, y), w(v(y)+/-, y))dy.

When z(T-, X) z(T+, X), and v coincide.
Similarly, a unique forward 2-characteristic emanates from (T, X)., and if we now

define T and v to be the minimal and maximal backward 2-characteristics emanating
fo, (T, X), th fo x e (0, X),

x

w(-r(0)+, 0) 9(z((y)+/-, y), w(-(y)+/-, y))dy < w(’t(x)+, x)

"x

X

w(T-, X) + 9(z(’(y)+/-, y), w(T(y)+/-, y))dy

w(r(x)-, x) < w(-(0)-, 0) 9(z(-(y)+/-, y), w(-(y)+/-, y))dy

x

o) v). v))dv <_ x)

X

w(T+, X) + 9(z(v(y)+/-, y), w(v(y)+/-, y))dy

w(v(x)-, x) <_ w(v(O)-, O) g(z(v(y)+/-, y), w(v(y)+/-., y))dy.

When w(T-, X) w(T+, X), and v coincide.
Proof From (3.51) and (3.52) in Lemma 3.5 and the expressions for/ and # in

(2.5), we.determine that

(3.59) A(z(t,x), w(t,x)) A(z(s,x), w(s, x)) < AH(x) + B/:/(x),

(3.60) #(z(t,x),w(t,x)) lt(z(s,x),w(s,x)) < AH(x) + B(x).

Since H and/:/are bounded everywhere except at x 0, it follows from Filippov’s
theory [3] that the initial-value problems in (3.5) and (3.7) with datum (T,X) have
unique solutions in the forward spatial direction if X > 0. In other words, unique
forward 1- and 2-characteristics emanate from (T, X).
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We now establish (3.55). From Lemma 3.1, we have that z(7-(x)+, x) z(-(x)-, x)
for almost every x. Combining this fact with (3.47) of Lemma 3.4 implies that
z(7(x)+,x) z(z-(x)-,x) is true for all x e (0, X). Combining this new result
with Lemma 3.4, we see that - is both the minimal and maximal characteristic em-
anating from (-(x),x) for any x e (0, X). The last inequality in (3.55) now follows
directly from (3.13) of Lemma 3.2, and the first inequality in (3.55) follows directly
from (3.14) of Lemma 3.2.

All that remains to be proven in (3.55) is that

(a.6) z(()-, ) (T-, X) (((), ),((), ))a.

This is established by considering an increasing sequence {t} such that t converges
to T and z(t-,X) z(t+,X) for all n. We let denote the unique backward
1-characteristic emanating from (t, X). From Lemma 3.4, we know that

(3.62) z(w(x), x) z(t, X) g(z((y), y), w((y), y))dy, x (0, X].

As , z(t, X) z(T-, X) and 7(z) (z) uniformly on (0, X]. The uniform
convergence of establishes the convergence of the integral"
(3.63)

i g(z(7(), ), w(Tn(), ))@ 9(z(7()-, ), w(7()-, B))dB.

The uniform convergence also allows us to state that

(3.64) iz(7(), ) z(7()-, ).

Therefore, taking the limit as n of (3.62) yields (3.61).
The proofs of (3.56), (3.57), and (3.58) are quite similar and therefore are omitted.
The knowledge we have collected concerning the nature of characteristics is ap-

plied to the following three theorems, which describe the structure of solutions to our
system. The reader can find the explicit proofs of these theorems in [6]; however,
they are omitted here due to their similarity to the proofs used in [2] by Dafermos
and Geng for the homogeneous form of (1.1).

THEOaEM 3.2. Let (T,X) be an point on the pper half-plane with X > O.
Consider the (niqe) forward 1-characteristic and the (not necessaril distinct)
minimal and mazimal backward 1-characteristics,

_
and %, emanatin9 from (T, X).

Define the sets

s_ { (, ) o < x, t
_

() o.. x, ()}
and

s+ { (t, ) o < x, t +() o x, t ()}.
Then the restriction 4 z(t-,z) to S_ and the restriction 4 z(t+,z) to S+ are con-
tinos at (T, X). In particular, z is continuous at (X, T) if and onl if z(T-, X)-
(T+,X).

Similarly, if is the forward 2-characteristic and
_

and + are the minimal and
mazimal backward 2-characteristics emanating from (T,X), then the restriction of
w(t-, z) to the set
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and the restriction of w(t+,x) to the set

+ {(, ) o <_ < x, >_ + (x) o >_ x, >_ ()}

are continuous at (T,X). In particular, w is continuous at (X,T) if and only if
(-,x) -(T+,X).

The next proposition states that once a discontinuity develops, it has to propagate
all the way to infinity as a shock.

THEOREM 3.3. If cr is the (unique) forward 1-characteristic emanating from a
point (T,X) of the upper half-plane with z(T-, X) < z(T+,X), then z(cr(x)-, x) <
z(r(x)/, x) for 0 <_ X < x < o.

Similarly, if cr is the forward 2-characteristic emanating from (T, X), where w(T--,
X) < w(T+, X), then w(cr(x)-, x) < w(cr(x)+, x) for X

A point (T, X) of the upper half-plane will be called a 1-shock generation point if a
forward 1-characteristic cr emanating from (T, X) satisfies z(cr(x)-, x) < z(cr(x)+, x)
or e (x, ) . .o. o th bk.rd -hrtriti .ti.g ro (T,X)
contains any point of discontinuity of z. The definition of a 2-shock generation point
is completely analogous. By virtue of Theorem 3.3, it is easily seen that if (T, X) is
a point of discontinuity of z (or w), then at least one backward 1-characteristic (or
2-characteristic) emanating from (T, X) must pass through a 1-shock (or a 2-shock)
generation point.

When (T,X) is a 1-shock generation point, either z(T-,X) z(T+,X) or

z(T-, X) < z(T+, X). In the latter case (T, X) is the focus of a 1-compression wave.
Similarly, 2-shock generation points (T, X) may be either points of continuity of w,
w(T-, X) w(T+, X), or loci of 2-compression waves when w(T-, X) < w(T+, X).

The following proposition describes the structure of shocks.
THEOREM 3.4. Let be a 1-shock generated at the point (r(X), X). Consider the

four functions z+(x) z(cr(x)+, x), w+(x) w(cr(x):k,x), defined on IX, oc). Then
the following hold:

(i) z+ are right-continuous functions with bounded variation locally. For x > X,

(.6) _() < +(), _(x-) >_ _(+), +(-) _< +(+).

When z_(x-) z_(x+), (a(x),x) is a point of continuity of the restriction of z to
the set {(t, .): > X, t < a()}; otherwise, (a(x),x) is a point of interaction of c
with another l-shock or it is the focus of a l-compression wave impinging from the
left. When z+(x-) z+(x+), (cr(x),x) is a point of continuity of the restriction of
z to the set {(t, .(): > X, t > cr()}; otherwise, (r(x), x) is a point of interaction of
c7 with another 1-shock or it is the focus of a l-compression wave impinging from the
right.

(ii) w+ are functions of bounded variation locally; w_ is right-continuous while

w+ is left-continuous. For x > X,

.,_(-) >_ _(+), +(x--) >_ +(+),

(3.66) w_(x-) w+(x-), w_(x+) w+(x+).

x is point of discontinuity of w+ if (cr(x),x) is a point of interaction of (r with a
2-shock.

(iii) cr is right-differentiable at every x >_ X and

(3.67)
d+ 1

d
() _

()z+()_ ()’
x <_ < .
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(iv) If x is a point of continuity of z+ and w+, then cr is differentiable at x.
A similar statement holds for 2-shocks with the roles of z and w appropriately

interchanged.
Proof. We present a proof of the claim that z+/- and w+/- are functions of bounded

variation locally since the proofs given in [2] cannot be extended to the inhomogeneous
case considered here.

To show that z_ has bounded variation, we first prove that for any Y E [0, oc),

<:_ [TVte(_,)w(t, O) + TVt(_,)z(t, 0)]e2Ky,

where K =_ max [ Og

L

We know that K is finite from the expressions for the partial derivatives for g given
in (2.11) combined with the restricted variation of z and w in (2.7) and the fact
that we are bounded away from the umbilic point where w z. To show (3.68), we
pick any mesh si-1 i-1 8i Si 8i+1 Si+l with the property that

z(si, Y) > z(S, Y) < z(s+l, Y).... By virtue of (3.9), it suffices to consider only
meshes with z(s-, Y) z(si+, Y) and z(Si-, Y) z(S+, Y). Now define - to
be the (unique) backward l-characteristic emanating from (s, Y) and v to be the
(unique) backward 1-characteristic emanating from (S, Y). From Theorem 3.1, we
know that

z(si, Y) z(Si, Y) < z(Ti(0)-, 0) z(vi(O)+, O)

(3.69)
Y

+ (x); x)) x). (x).  ))dx

and

Z(Si, Y) Z(i_l, Y) Z(Ti(O)-- O) Z(Vi--1 (0)-’, O)

(3.70)
Y

+ g(z(7"i(x),x),W(7"i(x),x)) g(z(vi_l(X),X),W(Vi_l(X),x))dx.

Since forward characteristics are unique, we know that.., r(0) _< v(0)

__
+1 (0)....

Therefore, when we sum (3.69) and (3.70) for all and apply the chain rule to the
resulting equation’s integrands, we obtain

(3.71)
Y

TVz(Y) < TVz(O) + K(TVz(x) + TVw(x))dx,

where TVz(x) =_ TVte(_,)z(t,x) and TVw(x) =_ TVt(_,)w(t,x). We can
repeat this entire process for w(.,Y) and add the result to (3.71), yielding

Y

(3.72) TVz(Y) + TVw(Y) <_ TVz(O) + TVw(O) + 2K[TVz(x) + TVw(x)]dx.
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(3.68) follows from (3.72) by Gronwall’s inequality.
Now we perform a similar process on a. We pick any mesh ""yi-1 < i--1 < Yi <

oi < Yi+l ( i+1"’" with the property that z-(yi) > z_(i) < z-(yi+l). We redefine
Ti to be the minimum backward 1-characteristic emanating from (o’(yi), yi) and vi to
be the minimum backward 1-characteristic emanating from (a(i), i). From Theorem
3.1, we know that

z_ < 0) o)

y

+ g(Z(Ti(X),X), W(Ti(X),X)) g(Z(Vi(X),X), w(vi(x),x))dx

(3.73)

and

/ g(Z(Ti(X),X), w(’ri(x),x))dx

z--(yi) Z-- (i--1) Z(Ti(O)--, O) Z(Vi--I(O)-, O)

y

+ g(Z(Ti(X), X), W(Ti(X), X)) g(z(vi_ (X), X), W(Vi--1 (X), x))dx

(3.74) + g(Z(Ti(X),X), W(Ti(X),x))dx.

As before, we have that Ti(0) _< vi(0) _< Ti+l(0)..., SO when we sum (3.73) and
(3.74) for all and apply the chain rule, we obtain

(3.75) TVxe[o,.]z_(x) <_ TVz(O) + K(TVz(x) + TVw(x))dx + Yllgllno.

Now we use (3.68), yielding

1 (e2gY 1)[TYz(O) + TYw(O)] + YIIBIILo.(3.76) TYxe[o,y]z_(x) <_ TVz(O) + -Therefore, the total variation of z_ is bounded locally.
The proofs showing that z+, w_, and w+ have local bounded variation are similar

and thus will be omitted.
The proofs of the remaining assertions follow [2] closely and are thus omitted.

Again, the reader is directed to [6] for the exact form of these proofs..

4. Asymptotic behavior of the periodic case. With our knowledge of gen-
eralized characteristics and the structure of the solution from 3, we are now prepared
to establish the asymptotic behavior of the chemical concentrations. We will begin
by locating invariant regions of the (z, w) phase plane. Then we will show that these
invariant regions shrink exponentially to a single point located on the equilibrium
curve when the chemical components are cyclically fed into the chromatography re-
actor (i.e., periodic conditions at x 0). Finally, we use an integrated form of the
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mass balance to show which point of the equilibrium curve is approached under these
periodic conditions.

We start with the assumption that there exists some spatial location X where

supte(_o, w(t, X) < b/a. This assumption allows us to state that w(t, X) is in the
domain of the equilibrium curve function ze(w) given in (2.9). Once we establish the
invariant regions, this assumption will also imply that w(t, x) is also in the domain of
ze(w) for all x > X.

To determine these invariant regions, we will need the following lemma, which
states that as an extremal 1-characteristic passes through a spatial interval where
w is constant, the value of z on the 1-characteristic exponentially approaches the
equilibrium value associated with that constant state. An analogous result holds for
the 2-characteristic.

LEMMA 4.1. Define z(x) Z(T(X)--, X) and w(x) W(T(X)--, X), where T is the
minimal backward 1-characteristic which emanates from a point (T, X) in the upper
half plane. If 0 < y < Y < X and there is a constant W < b/a such that w(x) W
for all x E [y, Y], then there are positive constants c1 < c2 such that

z() >_ z(W)

implies

(4.1a) z(W)+(z(y)-z(W))e-(Y-y) < z(Y) < z(W)+(z(y)-z(W))e-1(-)

and

(v) <_ (w)

implies

(4.1b) ze(W)Nt-(z(y)-ze(W))-OI(Y-y) z(Y) ze(W)--(z(y)--ze(W))-OI2(Y-y)

The above equations also hold if we define z(x) Z(T(X)+, X) and w(x) W(T(X)+, X)
and if T is the maximal backward 1-characteristic which emanates from (T, X).

Similarly, if we define z(x) z(v(x)-,x) and w(x) w(v(x)-,x), where v is
the minimal backward 2-characteristic which emanates from (T, X), and if there is a

constant, Z, such that z(x) Z for 0 < y < x < Y < X, then

() >_ o(z)

implies

(4.1c) w(Z)+(w(y)-w(Z))e-(Y-) < w(Y) < w(Z)+(w(y)-we(Z))e-(z-)

and

() <_ (z)

implies
(4.1d)
(z) + (() (z))-(-) _< () _< (z) + (() (z))-(-)

As before, the above equations also hold if we define z(x) z(v(x)+, x) and w(x) =_

w(v(x)+,x) and if v is the maximal backward 2-characteristic which emanates from
(T,X).
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Proof. We establish (4.1a). From Theorem 3.1, we know that

+

and therefore, after substituting the definitions of g(z, w) and ze(w), we have

(a.3)
aW-b

ze(W)]dx.w
From the range of z and w given in (2.7) and the constraint that W < b/a, we know
that there exist positive constants C1 < C2, where-C. <_ (aW- b)/(z(x)- W) <_
-C1. If we differentiate (4.3), insert these bounding constants, and solve the resulting
differential inequality, we obtain (4.1a) with C and C instead of OZ and

We use this same method to obtain (4.1b)-(4.1d) (each with different C and C
values in place of OZ and c2). Finally, we define c as the minimum of the four C’s
and c. as the maximum of the four C.’s.

This same proof (with the same values for c1 and c.) holds for the maximal
characteristic cases.

Now we can establish the invariant region.
THEOREM 4.1. When there exists an X such that supt(_oc,oc)w(t,X) < b/a,

then we can define a closed rectangle I in the (z, w) phase plane which encloses the
solution at x X and is bounded by the lines

w W0 -min [ifw(t,X),we (ifz(t,X))],

z- Zo ze(Wo) min [ifz(t,X),ze (intfw(t,X))
This rectangle is invariant. That is, (z(t,x), w(t,x)) E I for all x >_ X.

Proof. We will prove the invariance of the open rectangles I {(z, w) z E
(Zo- 1/n,Z + l/n), w (we(Zo- 1/n),we(Z1 + l/n))}. The invariance of In
implies the invariance of I since I c I and I ’ln=l I.

If I is not invariant, then there is a point (T, Y), where Y > X, such that
(z(t,x),w(t,x)) In for x IX, Y) but (z(T,Y),w(T,Y)) Oil. Without loss of
generality, we will assume the case z(T, Y) Zo 1In. From Theorem 3.1 we know
that

(4.4) z(Y) z(X) + g(z(), w())d,

where r is the minimal backward 1-characteristic emanating from (T, Y), z(x)
ogz(r(x)-,x), and w(x) w(r(x)-,x). From (2.11a), we know that > 0; therefore,

decreasing w({) decreases the right-hand side of (4.4)"

/x’" ( (1))(4.5) z(Y) >_ z(X) + 9 z(),we Zo d.
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The right-hand side of (4.5) is equal to the value that Z(Y) would have to take if
Vx e IX, Y], w(x) we(Zo- l/n). Since Z(X) > Zo- l/n, we can apply Lemma 4.1
to the right-hand side of 4.5 to obtain

(4.6) z(Y) > Z-
1
+ z(X)- (Zo--nl ll -a(Y-X)e

Since, from entropy, we must have that z(T, Y) > z(T-, Y) z(Y), we conclude from
(4.6) that Zo- 1/n z(X). But this contradicts the fact that z(X) >_ Zo. Therefore,
In and thereby I are invariant.

The fact that I is invariant is not particularly surprising given the nature of the
vector fields g(z w) and dw (Z, W) shown in Fig. 2--x -g

We now consider the case where the conditions at x 0 are periodic in t with
period L, which, of course, induces a solution which is periodic in t for any fixed x.
We will show that over a fixed interval of space, the invariant region associated with
this solution shrinks in proportion to its own size, which implies that the solution
must exponentially approach a single point on the equilibrium curve.

We assume that at some location X, the solution is close enough to the equilibrium
curve so that supt(_,oo w(t,X) < b/a, and therefore, from Theorem 4.1, we can
define an invariant region bounded by the lines w W0, w W1, z Z0 ze(Wo),
and z Z1 z(W1). We also consider some arbitrary number x0 > X and define
the lines that bound the (smaller) invariant region at x x0: w w0, w
z zo ze(wo), and z z1 Ze(Wl).

In the beginning of 3, we assumed that the characteristic speeds have small
oscillations and are well separated. We reexpress this condition by defining s l, s2, s3,

and s4 as explicit bounds on the speeds:

82], ].t e [83, 84],

(4.7) where 0 < 81 82 < 83 84 and ,82 81// + ,s4 sa, << 1.
83 82

From this, we can define the spatial interval H =_ L/(s3- s2), which will be of
particular interest to us. H has the property that any backward l-characteristic ema-
nating from an arbitrary point (t, x+H) must intersect each backward 2-characteristic
emanating from the period of points between (t, x + H) and (t + L, x + H) as the
l-characteristic passes through the Ix, x + HI region.

We will show that as x progresses through the interval Ix0, x0 + 7H+ In 2/c2], the
invariant region must proportionally shrink. To simplify notation, we translate the
x-coordinate system so as to set x0 -4H. (Therefore, the original invariant region
is now located at x -(x0 + 4H X) and we wish to show proportional shrinkage
as we pass through the interval [-4H, 3H + in 2/oe2].)

Our proof is basically by contradiction. If there is no proportional shrinking,
then there is at least one backward 1-characteristic emanating from the line x 3H
that stays near the equilibrium point (z,, w,) on the phase plane as the trajectory
travels back to x -4H, and there is a second backward l-characteristic emanat-
ing from a later time on the x 3H line that stays near the equilibrium point
(z0, w0) as it travels back to x -4H. The value of w on a 2-characteristic will
not be able to change too drastically as the 2-characteristic progresses between these
l-characteristics. Therefore, the 2-characteristics with the property that w is near
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W --’We(Z

Zo Z

Zo Z
)l, z

FIa. 2. The vector fields for classical characterisic behavior. In (2a), we have the vector field
dz
"--dx g(z, w). In (2b), we have the vector field dw --g(z,w).

w0 as they cross the first 1-characteristic must significantly expand in measure be-
fore they reach the second l-characteristic. By comparing the slopes over the region
x E [-4H, 3HI of 2-characteristics where w is near w0 to 2-characteristics where w is
near Wl, we will see that this expansion cannot occur. We will conclude in Theorem
4.2 that the range of z values must proportionally shrink over the spatial interval 7H.
This shrinkage of z will induce a proportional shrinkage of the range of w values as we
progress through an additional interval of length In 2/c2, as will be shown in Theorem
4.3.
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We begin to formalize these ideas. First, we label the bounds on the range of
values that z takes on the line x 3H:

(4.8) ZM sup z(t, 3H), Zn if z(t,.3H).

We wish to show that there exists some constant e’ > 0 that depends only on the
period L, the bounds on the characteristic speeds s, and the reference invariant region
(i.e. Z0, Z1, W0, and W1)such that (ZM- z,)/(zl- Zo) < 1-

To select the appropriate backward 1-characteristics that we wish to analyze, we
first choose any two points t, and tM which satisfy the conditions

lira z(t, 3H) ZM, lira z(t, 3H) z,,
t--+t+M

(4.9) and t,- tM E (L, 2L].

Now we define rM as the maximal backward l-characteristic emanating from (tM, 3H)
and r, as the minimal backward l-characteristic emanating from (t,, 3H). We also
define Vm, the minimal backward 2-characteristic emanating from (tin, 3H), and
the (unique) forward 2-characteristic emanating from rM(O), 0). From this construc-
tion, we find that the location , where rM() Vm({) (i.e., the two characteristics

cross), must have the property that H. We also find that the location , which
corresponds to the x coordinate where the r and vM characteristics cross, must have
the property that 3H- > H. This implies that the measure of the space under
which rM is influenced by the 2-characteristics located between vM and v must be
no smaller than H; similarly, the measure of the space under which r is influenced
by the 2-characteristics between VM and v is also no smaller than H (see Fig. 3).

To investigate how requiring ZM to be close to z affects w(rM(z),z), we will
require a lemma whose result is dependent on the nature of the equilibrium curve.
Dom (2.10a), it is clear that there are constants E2 E > 0 that bound the
slope of the equilibrium curve" E, < az < E The values of these constants
depend only on Z0, Z, W0, and W1. Since w is the inverse of z, we also have that
1/E 1/E. Finally, it will be convenient to define E E1/Eu. Now we

present a lemma whose proof will be used to establish a number of useful results.
LMMA 4.2. If we define the function 7(x) [0, 1] by the relation W(rM(Z)+, z)
-()( o) dd z() z(()+, ),

(4.10) Zl z(X2)
1 (z)e-(X-z)dz,

Z Z0

where -4H XI X. This implies that if z(X) is near z, then the measure of x
va hr (M()+, )f o o o 1 a.

Proof. We begin by comparing the actual solution z(x) of (3.56), where M is
under the influence of 7(x), with the solution z(x) of (3.56) that would occur if
w de the i.c of fctio (), wh () (). f 5oth o.tio
start at the same point, z(X1) z(X) Z, then the fact from (2.11a) that > 0
implies that z(x) z(x) for all x k X. In other words, making 7(x) smaller makes
z(x) bigger as x increases.

With this in mind, we divide the region [XI,X] into pieces of length 5x and
define

(4.11) 7
j inf{7(x) x [X + (j 1)Ax, X + jAx]}.
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3H

t t + L t

FIG. 3. The characteristics 7M, Tin, VM, and Vm on the (t,x) plane. We will monitor the
variation of z in the regions of -M and "cm located between VM and Vm.

We also define

(4.12)

(4.13) zj z(X + j/x),

and cj c1 if Zj-1 ZJe O,
(4.14)

[ c2 if zj-1 z < 0,

where OZ and c9. are defined in Lemma 4.1 and depend only on Zo, Zi, Wo, nd
W. We use Lemm 4.1 combined with the fact that mking 7(x) smaller makes z(x)
bigger to obtain

e--(4.15) z ze + (Z- z) Ax

Using the fact that Z z, which follows from Theorem 4.1, and that z z
EJ(z1- ZO) W cn transform (4.15)into

(4.16) z Zl l(z1 z0)(1 e-lax).
Repeating this method and using (4.16), we can obtain an expression for z"
(4.17) z z E(z z0)[(1 e-Ax) + (1 e-A)e-Ax]
and, continuing in this fashion, we obtain an expression for z"

(4.1s) " 1 (1 0) (1 ---’)xp - (.-+1)
i=i j=l
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By using the definition of aj, we can simplify (4.18):
n

(4.19) z <_ z E(z zo) E [i(1 e-l.)exp[-Axa2(n -i)1].
i--1

By the nature of BV solutions, the number of 2-shocks is countable; therefore, (x)
can be discontinuous only on a set of measure zero, which implies that 7(x) is Riemann
integrable. Therefore, as Ax - 0, (4.19). yields the desired integral, and, after some
simple algebra, we obtain (4.10).

Now we are prepared to quantify the effect on w(M(X)+, x) when ZM is near z.
LEMMA 4.3. /f we define M - V/(z1- ZM)/(Zl- Zo) and define the region of

TM between VM and Vm where w is bounded away from Wl by AeM {x E [0, ]
W(TM(X)2C-,X) [W0, WI- EM(Wl- W0)]}, then the Lebesgue measure, m, of neM i8
bounded by M specifically,

(4.20)
e3Ha2
M >_ m(AM ).

Proof. From Lemma 4.2, we have that

3H

(4.21) (M)2 zl ZM >_ Ease-3H2 f 7(x)dx.
Zl ZO Jo

By the definition of AM, we have that f:H "(x)dx _> Mm(AM) and therefore,
(4.21) yields

e3H )2 (AM),(4.22) (M

_
MmEcI

and the result of the lemma is obvious.
Using a similar process, we can analyze the behavior on -m.
LEMMA 4.4. If we define =_ v/(Zm zo)/(Zl zo) and define the region of Tm

between VM and v, where w is close to wo by A. {x e [, 3H] w(-,(x)+, x) e
[wo, wo + m(W wo)]}, then the parameter m is bounded by ; specifically,

e,3Ha2
(4.23) Ea(H- m(A.)) ()2 _> m.

Proof. The proof is similar to the proof of Lemma 4.3. The method used to
establish Lemma 4.2 can be reemployed to verify the following analogous result:

(4.24) (e)2 Zm- zo :> Ele_3H (x)dx,
Z Z0

where 7(x) is defined by W(Tm (X)+, X) =-- Wo + 7(X)(W Wo). By the definition of
A., we have that

(4.25) /(x)dx >_ Sm(3H - m(A.)),

which, when combined with the fact that 3H- _> H, can be inserted into (4.24) to
yield the result of the theorem.
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With the above definition of M and , we see that our goal of finding / > 0
such that (ZM- z,)/(Zl- z0) < 1- ’ is equivalent to finding ’ > 0 such that

2 1.
Next, we use Lemma 4.1 to determine some bounds on the evolution of a Riemann

invariant as it progresses on an extreml characteristic of its own family.
LEMMA 4.5. Consider any maximal backward 2-characteristic v which emanates

from a point (T, X), where X > -4H. If we define w(x) w(v(x)+, x), then for
-4H K_ y <_ Y <_ X, we have

(4.26a) w(Y) >_ wo + (w(y) wo)e-2(Y-y),

(4.26b) w(Y) W -(w(y)- Wl)e-(2(Y-y).

(4.26) also holds if v is a minimal backward 2-characteristic and w(x) w(v(x)-, x).
Similarly, if we consider any maximal backward l-characteristic T which emanates

from the point (T, X) and we define z(x) =_ z((x)+, x), then for -4H <_ y <_ Y <_ X,
we have

(4.27a) z(r) >_ zo + (z(y) zo)e-"(Y-y),

(4.27b) z(r)

_
Zl q-- (z(y) Zl)e-a2(Y-y).

(4.27) also holds if T is a minimal backward 1-characteristic and z(x) =_ z(w(x)-, x).
Proof. We prove (4.26a). From Theorem 3.1, we know that

(4.28)
Y

w(Y) w(y) g(z(v(x)+, x), w(x) )dx.

From (2.11b) we know that Og < 0; therefore, decreasing z(v(x)+ x)in (4.28) de-GZ
creases the right-hand side of (4.28)"

(4.29)
Y

>  (z0,

Lemma 4.1 implies that

w(y) g(zo, w(x))dx >_ Wo + (w(y) wo)e-a=(Y-y),

which we combine with (4.29) to obtain (4.26a).
The remaining statements in the lemma have analogous proofs.
To prove the proportional shrinkage of the invariant regions (i.e., to find an

2I > 0 such that + Gn > /), we require only one more result, which will be
the goal of Lemmas 4.6 and 4.7: we need to show that if M and m are in a suffi-
ciently small neighborhood of zero, which we will call [0, ], then there is a constant
C such that m(AM) >_ Cm(A.). In other words, the measure of the x values where
w(M(X)+,x) is not near wl bounds the measure of the x values where w(-m(X)+,x)
is near w0.

The proofs of Lemmas 4.6 and 4.7 will make use of two new small-valued variables,
1 (which will be closely related to m) and 2 (which will be closely related to M).
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The proofs will also require the following construction, which divides the region of
the (t, x) plane bounded by -M, -,, x 0, and x 3H into a countable number of
"blocks."

We start with x -max{x x _< 3H and z E A.}. The point (-,(Ztl),Ztl)
is (generally) located near the top of the -, characteristic. We define v to be
the maximal backward 2-characteristic emanating from (-m(zt),ztl) and follow it
back until it intersects TM. Wi3 define the x coordinate of this point of intersec-
tion as X. Now we move down -M until we hit the point (-M(X),X), where

X sup{x x < X and z E the complement of AM }. Next, we follow v, the
forward characteristic emanating from (-M(X{),X), until it intersects -,, and we
define x as the x coordinate of the point of intersection. This completes the first
block. Now we define x max{x x < x and x A} and continue constructing
these blocks until we reach x 0. Because the variation of w on l-characteristics is
locally bounded, there can be at most a countably infinite number of these blocks.

Since x A., we can use (4.26a) of Lemma 4.5 to obtain

(4.31) w(zM(X)+,X:) < Wo + l(Wl Wo),

where el V@me3Hc2 The form of the construction also provides the following facts:

Xcc U[ c

(4.33) zi < xi, Xi < Xi.

< C(X X.). This will allowWe wish to find some constant C, where x x
us to use (4.32) to show that the measure of AM bounds the measure of A.. To
find C, we will need to add some additional elements to our construction. We define
X) sup{x x < X[ and w(’rM(X)+,x) <_ Wo + al(Wl W0)}. X/b has the property

bXi+ < Xb < X. We also define v (x) as the forward 2-characteristic emanating from
(’rM(X), xb) when x > X) and as the maximal backward 2-characteristic emanating
from (’rM(Xbi),xb) when x < Xb. The x coordinate of the point of intersection of
b Finally, we extend the previous definition of v byv (x) with -, (x) will be called x.

defining v as the maximal backward 2-characteristic emanating from (z-M(X.),X)
when x < X.

Note that in this construction, the capital letter X is used to denote locations
that are significant on the -M characteristic, and the lower-case letter x denotes
important locations on the -, characteristic. The superscripts t, c, and b refer to the
"top," "center," and "bottom" of a block. A constructed block along with some of its
properties is shown in Fig. 4.

b c -With theseBy analyzing v and vi, we will determine bounds on the slope of v.
and v. which will yield the desired relationship:bounds in place, we will analyze v ,

xit xC <_ C(X X). The bounds on the slope of v will come from the following
lemma.

LEMMA 4.6. If am and aM are sufficiently small, then v(x) cannot intersect

b(x) at any x [-4H, 3HI.V
bProof. We wish to show that the minimum possible value of vi (x) vi (x) is

bounded away from zero in the region x [0, 3HI. To accomplish this, we consider
the largest possible values for the slope (i.e., derivative) of v(x) and the smallest

bpossible values for the slope of v (x) in the region x E [-4H, 3HI
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X

M

x

C

Xi+l

t

FIG. 4. A constructed block in the region between -m and -m. w is bounded away from wl in
and v, whereas w is bounded away from wo in the region ofthe region of -M located between v

TM located between v and vb.. w is also bounded away from wo in the region of -m located between
v and Vi+l

First, we analyze v(x) in the region x E [-4H, X]. From (2.5) and (3.12), we
have

/_x 1
(4.34) v(X) v(-4H)

4H w2 (x)z(x)
dx,

where w(x)
_

w(v(x),x) and z(x)
_

z(v(x)d:,x). Adding and subtracting
1/(wzl) to the integrand of (4.34) and manipulating the result yields

1
.?(X) .(-4H) Wlz (Xg + 4H)
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X Wl 2t- W(X) /_X 1
(4.35) +

4H w2(x)w21zl (wl w(x))dx +
aH w2(x)z(x)z (zl z(x))dx.

We can use the reference invariant region to partially bound the integrals in (4.35):

f /x 1xf wl + w(x) (w w(x))dx + w2-4. (x)z(x)zl (z z(x))dx

(4.36) (wl w(x))dx +<
Wo4Zo (Zl z(x))dx;WgZ 4H

however, we still require bounds on the integrals which appear on the right-hand side
of (4.36).

Since W(TM(X)+,x) is left-continuous (from Theorem 3.2), we know from the
definition of X that

(4.37) w(v(X)q--, X) Wl M(Wl WO).

Therefore, Lemma 4.5 implies that

w(v(x)+, x) >_ wl e2(w w0), x e [-4H, X],

where e2 eM exp[7Ha2]. This allows us to bound the first integral on the right-hand
side of (4.36):

(4.39) F(w w(x))dx <_ g2(Wl wo)dx <_ 7He2(Wl w0).
4H 4H

The value of z(x) cannot be too small in the region x e [-4H, X] or (4.37) will
fail to be satisfied. By applying the logic used in Lemma 4.2, we can explicitly express
this bound on the behavior of z(x) as

(4.40) e----L-2 > "),(x)dx,
Eal 4H

where (x) is defined by the equation z(x) z -’y(x)(z zo). This allows us to
bound the second integral on the right-hand side of (4.36):

(4.41) fxg fx; e(Z1 z(x))dx (z zo) ",/(x)dx < (z zo)
J-4H -4H

We combine (4.39) and (4.41)with (4.35) and (4.36) and use the fact that (zl-
z0) _< E2(wl w0) to obtain the final form of the bound on v(x):

(4.42)
1

v(X) v(-4H) G
’wi-z (X + 4H) + K2(wl wo).

In the above equation--and throughout the rest of this paper--K will be used to
denote any positive constant that depends strictly on the period, the bounds on the
characteristic speeds, and the reference invariant region.
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bUsing analogous steps, we can establish a similar bound on v (x) in the region
x E [-4H, X]"

(4.43) b(xbi) b(_4H) >
1

v v Wzo.(Xbi + 4H) Kal(Wl W0).

Now we turn our attention to the region past the 7M characteristic. Because
c b(4.42) and (4.43) pull v and v so far away from each other, we can let the two

characteristics approach each other as quickly as possible in this region. From (2.5)
and (3.12), we have
(4.44)
v(z) v(X)

dy 1
.(z X.), x [X,

(4.45)
b b(xbi) dy 1

.(x- xbi);. (x) . o((). )z0(.() )
>
lZ

Xbx [ ,3H].

b throughout our region of interest. SinceWe now have bounds for vi and vi
C(x) and bbackward 2-characteristics cannot cross we know that vi vi (x) cannot cross

bin the region x e [-4H, X]. We now show that v(x) and v (x) cannot cross in
the region x e [Z, 3HI. First, we combine (4.42) with (4.44) and use the fact that

X _> 0 to obtain

v(x) v(-4H) < X + 4H x X + K2(Wl wo)
Wl2Z1 + w02z0

4H x
(4.46) <_

[wVz + whzo"-- + Ka2(Wl w0).

Similarly, we combine (4.43) with (4.45) and use the fact that Xb _> 0 to obtain

b b(_4H >. (x) . Xb + 4H x Xb

Kl(wl w0)oo +

4H x
K1 (Wl W0).(4.47) >-- wzo + wzl

b c(-4H) > 0 yieldsSubtracting (4.46) from (4.47) and using the fact that v (-4H)-v

(4.48)
1v(x) v(x) >_ wzo 1]WZl (4H-x)-K(wl-w0)(l+2).

Using the reference invariant region, the fact that x <: 3H, and the bounds on .the
slope of the equilibrium curve, we can rearrange and minimize the right-hand side of
(4.48) so as to obtain

(x) .(x) >_ 2WoH EIH
14zi wz K( + )] ( o)

(4.49) [K K( + )] ( 0).
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For sufficiently small c, and CM, 1 and e2 become small enough to cause the K(el +
e2) term in (4.49) to be small compared to the K term. Therefore, for sufficiently
small c, and eM, we have that

(4.50) vbi (z) (X) >_ K(Wl o), z [X=, 3HI.
b and characteristics never cross. This con-We conclude from (4.50) that the v v

clusion, of course, assumes that w > w0, but this is not a problem since wl w0
is just the trivial case where the invariant region is already a single point on the
chemical-equilibrium curve, leaving nothing more to prove.

From Lemma 4.6, we get the following useful fact.
COROLLARY 4.1. For sufficiently small , and eM, the limit of w from the right

of v is bounded away from w0; specifically,

(4.51) w(v(x)+,x)

_
wo + le-3Ha(wl WO),

x e
Proof. Consider any Y [X, x]. Define v as the maximal backward 2-character-

istic emanating from (v(Y), Y), and define y as the x-coordinate of the point where
v and -M cross. From Lemma 4.6, we have that X/b < y _< X. Therefore, the nature
of the construction implies that

(4.52) W(V(y)--, y)

_
W0 + Cl (Wl W0).

We can relate w(v(y)+, y) to w(v(Y)+, Y) by using (4.26a) of Lemma 4.5:

(4.53) w(v(Y)+, Y) >_ wo + (w(v(y)+, y)- wo)e-(Y-u).

Combining (4.52) and (4.53) with the fact that Y-y < 3H establishes the claim of
the corollary.

and characteristics canNow we analyze how wide the distance between the v v
c tobecome as x increases. Specifically, we wish to relate z zi Xi X.

LEMMA 4.7. There is a constant C > 0 that depends strictly on the bounds on
the characteristic speeds si such that

< C(X X).(4.54) z x
andProof. To obtain the lemma’s claim, we must consider the behavior of vi v

Xin three separate regions: x E i, Xi], x E [X, x], and x [x, x].
Since we have bounds on the characteristic speeds, it is straightforward to use

(4.7) to express explicit bounds on the widening of the characteristics in the regions
x [X, X] and x [x, x]"

(4.55) (X X )(84 81)

_
V (X:) v

(4.56) c<_

Now we consider the range x [X, x]. We can apply the method used to obtain
(4.43) in Lemma 4.6 to establish an analogous result for the backward characteristic

in this region:V

1>(4.57) v -vi ( X{) Ke(wl WO).
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The forward characteristic v(x) can propagate with either classical or shock
speed. Either way, we have from (2.3b) and (3.6) that

dx
(4.8) .(?)- .(x:)- z(.(x)+,x)(()- x)(.()+ )

Now we use Corollary 4.1 to obtain the bound

(4.59) v (x) fX dx
v (X) ZoWo(Wo + 1 (Wl W0) exp(-3Ha))

Using the reference invariant region, the bound in (4.59) can be manipulated into the
following form:

1
(x X) 1 (Wl W0)exp(-3Ha)(x x).(4.0) ,()-,(x:) zo wz

We claim that x-X cannot be too small. This comes from the requirement that 7M
and 7 be at least one period apart from each other. Since v(x) v(X) L, we
know that x- X[ L/s4. on Lemma 4.3 and (4.32), we see that X[-X 0 as

eM 0; therefore, x-X L/(2s4) and x-X cannot be too small for sumciently
small eM. This allows us to express (4.60) as

1
(4.) () ,(x:) i; (z x) (, 0).

We combine (4.57)with (4.61) to obtain

(x) (x) (x:) (1 0)( ).(.) () , , ,
Therefore, for el sufficiently small, we have

(x)(4.a) , (x)- , (x) ,
(4.63) can now be combined with the bounds in the other regions, (4.55) and (4.56),
to yield

%
84--81(4.4) x (x x),
83 82

which, by defining C (s4 s)/(sa s2), establishes the claim of the lemma.
We are now ready to show proportional shrinkage of the invariant region. We

begin by showing that the range of z values in the solution must shrink in proportion
to z z0 as the solution progresses through a spatial interval of length 7H.

THEOREM 4.2. There is a constant e’ > 0 that depends only on the period L,
the bounds on the characteristic speeds s, se, sa, and s, and the reference invariant
region Zo Z Wo and W such that

(4.65) ZM z 1 e’.
Zl z0

Pro@ om Lemmas 4.6 and 4.7, we know that there exists some sufficiently small
F > 0 that depends only on the period, the bounds on ’the characteristic speeds, and
the reference invariant region such that for all e g and eM g, we have that
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xit xiC _< C(X X.). We sum this relation over all the/-blocks and use (4.32) to
obtain

(4.66) m(A.) < E(x- x) <_ c-.(x:- X) <_ Cm(AM).

Therefore, the measure of the set of x values on -M where W(TM(X)+, x) is bounded
away from Wl bounds the measure of the set of x values on -, where WO-M(X)+ x)
is close to w0.

Now we set em . From Lemma 4.3 and (4.66), it is clear that eM >_ Km(Ae).
Therefore, there is a constant 5 E (0, g] that depends only on the period, the bounds
on the characteristic speeds, and the reference invariant region such that (eM)2 < 5
implies m(Ae) < HI2. This allows us to use Lemma 4.4 to conclude that (e)2 > Kf
whenever (M)2 <_ 6. Therefore, (eM)2 nt- (erh) 2 >_ et, where e’:-min[5, Kg]. However,
by the definitions of eM and e, we know that

(4.67)
Zl z0

1 (eM)2 -(ern)2,

which immediately implies (4.65).
Now we look at the shrinkage in the range of values of w as we proceed through

an additional interval of length In
THEOREM 4.3. There is a constant e > 0 that depends only on the period, the

bounds on the characteristic speeds, and the reference invariant region and there are
also constants wM and Wm such that

WM(4.68)

__
1 e,

Wl w0

(4.69) Wm

_
w(t, 3H + (ln 2)/a2) _< WM Vt (--(:X:),

(4.70) and ze(wm) < z(t, 3H + ln2/a2) < Ze(WM) Vt (--00, 00).

Proof. From Theorem 4.2, we know that there is an r [0, 1] such that Zl --ZM

__
re’(zl zo) and z, z0 _> (1 r)e’(zl zo). From Theorem 4.5, we know that if
x [3H, 3H + ln2/a2], then z(t,x) <_ ZM + (re’/2)(Zl Zo) and therefore z(t,x) <_
z-(re’/2)(z-zo). The method of the proof of Theorem 4.5 can also be used to show
that since z is bounded away from zl in the region x [3H, 3H+ In 2/c2], w must be
drawn away fi’om w as the solution progresses through this region. Specifically,

(4.71) supw(t, 3H + (ln2)/a2) < WM,

where

The definition in (4.72) can be transformed using the bounds on the derivative of
w(z) to yield

(4.73) (Wl WM > re’E
1 2-

wl wo 2
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Further, if we take zc of both sides of (4.72), we see that

(4.74) sup z(t, 3H + In 2/c2) _< zc(WM).

Similarly, we also have that z(t,x) >_ Zm ((1 r)e’/2)(Zl zo) >_ zo + ((1
r)e’/2)(Zl zo) for x E [3H, 3H + ln2/a2], and this leads to

(4.75) inf w(t, 3H + (ln 2)/a2) _> win,

where
(4.76)

Wm We Zo +
\ 2

(Zl z0) -- Wl We zo -- T(zI(1r)
z --a2 ln2

We also have that

((4.77) Wm wo > (1 r)’E
1 2-.

w Wo 2

and

(4.78) inf z(t, 3H + In 2/a2) _> z(w,).

Adding (4.73) to (4.77) and defining (e’E/2)(1- 2-al/2) establishes the
claim of the lemma.

Theorem 4.3 allows us to ascertain the asymptotic behavior of the periodic case.
COROLLARY 4.2. The invariant set containing the solution shrinks exponentially

to a single point on the equilibrium curve as x

Proof. First, we redefine our coordinate system so that x 0 corresponds to a
location where the solution lies within the reference invariant region. By-repeatedly
applying Theorem 4.3, we have that for any nonnegative integer n,

(4.79) sup w(t,x) inf w(t,x) <_ (W1 Wo)exp[nln(1-e)]
(t,x)xn (t,x)xn

and

(4.80) w | sup
\(t,)x z(t,x)) -w ( inf z(t x)) < (Wi-Wo)exp[nln(1-)]

\(t,)x

where Xn =- {(t,x) n(7H + ln2/a2) _< x < (n + 1)(TH + ln2/a)}. Therefore, the
solution lies in invariant rectangles that shrink exponentially in size to a single point
as x -- c. Further, since the lower left-hand corner and the upper right-hand corner
of the rectangle are on the equilibrium curve, we conclude that the point to which the
invariant regions shrink must also be on the equilibrium curve.

Finally, we determine which point on the equilibrium curve is approached as
x - c by using the form of the mass balance for the two chemical components given
in (2.35).

THEOREM 4.4. Under periodic conditions, the solution exponentially shrinks to
the point (Z, W) on the equilibrium curve defined by

M i2 bM-c
and W=-w(Z)(4.81) Z - +

a
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rt+L z(t, O) + w(t, O)dt, and to iswhere a, b, and c are defined in (2.3), M (l/L) Jto
any arbitrary number.

Proof. Combining the mass balance in (2.3b) with the fact that v z + w and
u zw yields

(4.82) Ooz (z(t, z) + w(t,z)) - z(t,z)w(t,x)
O.

We integrate (4.82) over the region {(t,z) "t0 t N t0 + , 0 z N z}. Since the
solution is periodic, the integral of the term in (4.82) with the partial derivative with
respec to t equals ero. If we let Z and apply Corollary 4.2, we obtain from
the integrated form of (4.82) hat

to+L

(4.83) [z(t, O)+ w(t, 0)]dt L(Z + W),
dto

where W we(Z). After substituting the definition of we(z) given in (2.9) into (4.83),
we explicitly solve for Z, which yields the result in (4.81).
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ON THE SOLUTION OF TIME-HARMONIC SCATTERING
PROBLEMS FOR MAXWELLS EQUATIONS*

CHRISTOPHE HAZARD AND MARC LENOIRt

Abstract. This paper deals with the scattering of a monochromatic electromagnetic wave by a
perfect conductor surrounded by a locally inhomogeneous medium. The direct numerical solution of
this problem by a finite-element method requires special edge elements. The aim of the present paper
is to give an equivalent formulation of the problem well suited for both easy theoretical investigation
and numerical implementation. Following a well-known idea, this formulation is obtained by adding
a regularizing term such as "grad div" in the time-harmonic Maxwell equations, which leads us to
solve an elliptic problem similar to the vector Helmholtz equation instead of Maxwell’s equation.
The numerical treatment of this new formulation requires only standard Lagrange finite elements.

A unified approach, which is valid for the equations satisfied by either the electric or the magnetic
field, is presented. It applies for a conductor with a Lipschitzocontinuous boundary surrounded by
a dissipative or nondissipative medium whose electromagnetic coefficients (permittivity and perme-
ability) may be irregular. A family of scattering problems is defined, that is, the classical problem
(which follows from Maxwell’s equations) and the so-called "regularized problem" obtained by adding
a regularizing term in Maxwell’s equations. These problems are shown to be well posed and to have
the same solution. An integral representation technique is described.

Key words. Maxwell’s equations, scattering by obstacles, integral representation

AMS subject classifications. 35C15, 35J55, 78A45

1. Introduction.

1.1. Motivation. Consider a perfect conductor surrounded by a medium whose
electromagnetic coefficients (permittivity and permeability) are assumed constant out-
side a bounded domain. We are concerned with the scattering of a time-harmonic
electromagnetic wave by this inhomogeneity of the space. (Let us mention that the
presence of the perfect conductor is not essential; the same holds for the scattering by
a dielectric obstacle.) The direct numerical solution of such a problem has been exten-
sively studied. In particular, the use of Ndlec’s curl-conforming finite elements [20]
seems to be widely held (see, e.g., Levillain [16]), although there remain some open
questions regarding the proof of the convergence properties of the numerical schemes
involving high-order Nedlec finite elements (see Kikuchi [12]). Our aim is to propose
an alternative approach that allows the use of standard Lagrange finite elements. It
consists of replacing the classical Maxwell equations by an elliptic problem that has
the same solution.

The main idea to construct this "regularized problem" is not new and may be
found, for instance, in the papers from Werner [25], Leis [15], Knauff and Kress [13],
or, more recently, Bamberger and Bonnet [3] and Mayergoyz and D’Angelo [17]. It is
based on the simple fact that a three-dimensional field U that is a solution to

(1.1) curl(curlU) k2U O, k # O,

in an open set of 3 satisfies div U 0. As a consequence, it is also a solution to the
vector Helmholtz equation

(1.2) -AU-U 0

Received by the editors July 18, 1994; accepted for publication July 26, 1995.
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by virtue of the relation curl(curl U) grad(div U) -AU. The converse is of course
wrong if no additional condition is given, but it becomes true in the context of the
scattering of electromagnetic waves by an obstacle with additional boundary condi-
tions on the obstacle and at infinity. This may be easily understood as follows. Let U
be a solution to (1.2) and assume that U satisfies the well-kndwn Sommerfeld radia-
tion condition at infinity. It is readily seen that its divergence div U satisfies the
scalar Helmholtz equation -A- k2 0 as well as the scalar Sommerfeld radiation
condition. Consequently, if we add a condition such as 0 on the boundary of the
obstacle (which has to be assumed regular), we deduce from classical results (Rellich
[21]) that vanishes everywhere outside the obstacle, which shows that U is a solution
to

Our purpose is to extend this result to the general case of variable (discontinuous)
electromagnetic coefficients and irregular boundaries for which this simple proof does
not apply anymore. In this situation, (1.1) is replaced by the time-harmonic Maxwell
equation

(1.3) curl((-1 curl U) w2 U 0.

Noticing that every solution to this equation satisfies divU 0, we will see that
instead of solving (1.3) we can equivalently solve its regularized form

(1.4) curl((-1 curl U) grad(T-1 div U) w2 U 0,

which has the advantage of involving an elliptic second-order differential operator.
To prove the equivalence between the classical and regularized scattering problems
(related, respectively, to (1.3) and (1.4)), we cannot study the equation satisfied by
div [U as described above. The method we propose consists of proving the well-
posedness of both problems and noticing that the solution to the classical problem
solves the regularized equations since it is divergence-free.

From a numerical point of view, the regularized problem has a twofold interest
compared with the classical problem. On one hand, its associated fundamental solu-
tion (Green tensor) has a weaker singularity (order 1 instead of 3), which is essential
as far as integral representations are concerned. On the other hand, we will see that
the regularized problem comes within the classical framework of approximation of
Fredholm operators, which allows us in particular to use a standard discretization by
Lagrange finite elements.

1.2. Outline of the paper. In 2.1, we present the classical equations that
model the scattering of a time-harmonic wave by an inhomogeneous medium. We
deal simultaneously with the equations satisfied by the electric or magnetic fields in
the cases of dissipative or nondissipative media. Then, in 2.2, we introduce the
regularizing term grad(--1 div U) mentioned above. By suitable modifications of
the boundary conditions as well as the radiation condition at infinity, we thus define
a "regularized problem." Section 2.3 is devoted to the description of the functional
framework associated with this problem. We finally state in 2.4 the main result of
this paper, which consists of the equivalence between the classical and regularized
formulations; the introduction of the regularizing term (which depends on the choice
of function ’) does not affect the solution to the problem. The proof of this statement
is the object of the remainder of the paper, where we develop a method that is well
adapted for the numerical solution to the regularized problem by means of standard
finite elements.
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Section 3 consists of the proof of the uniqueness of the solution to the scattering
problems (classical and regularized). The method we use is rather classical. The
treatment of infinity (which is assumed homogeneous) is based on the well-known
asymptotic behavior of the solutions to the scalar Helmholtz equation (Rellich [21]).
Then, the treatment of the remainder of the space (containing all the inhomogeneities)
follows by a unique continuation technique; here appear some restrictions concerning
the regularity of the electromagnetic coefficients. Indeed, we will see that these coef-
ficients have to be assumed piecewise Lipschitz continuous in the part of the domain
where the medium is not dissipative.

Section 4 is devoted to the proof of the existence of a solutio.n for the classical or
regularized problem. The technique we present is similar to integral equation tech-
niques [5]; it actually is an adaptation of the so-called "method of coupling between
variational formulation and integral representation" introduced by Jami and Lenoir
[9] in linear hydrodynamics. This method consists of replacing the initial problem by
an equivalent problem (set in a bounded domain) that is obtained by means of an
integral representation formula. We show that the existence and the uniqueness of
the solution to this latter problem are a matter for Fredholm alternative; by virtue
of the uniqueness proved in 3, the existence property for the initial problem follows.
Let us point out that for the regularized problem, the same results may be obtained
by a standard integral equation approach. Our method simply has the advantage of
leading to an integral operator that involves a nonsingular kernel.

Finally, we have postponed until Appendices A and B some technical but essential
results that concern, respectively, the statement of integral representation formulas
and compactness properties.

1.3. Notation. In this section, we recall some usual notation concerning the
function spaces that are used in the context of Maxwell’s equations; we refer, for
instance, to Girault and Raviart [8] for a detailed study of these spaces.

Let (9 be a bounded open set in 3. We define ((.9) to be the space of infinitely
differentiable functions with compact support in (9, T() {lco E (]13) }, and
:D’((.0) is the dual space of T((.0) (space of distributions). We use the notation
s E I, for the classical Sobolev spaces and H(d9) for the completion of :D(d0) in
H8((9). We denote by g(curl; (9) and H(div; (9) the Hilbert spaces

H(curl; O) {V L2(O)3 curl V L2(O).3 ),
H(div; O) {V L2(O)3 div V L2(O) ).

If (9 has a Lipschitz-continuous boundary 0(9, then for every function V E H(curl; (9)
(respectively, Y H(div; (9)), the quanti.ty (Y A n)loo (respectively, (Y.n)loo) is de-
fined by Green’s formula as an element of H-1/2(O(D)3 (respectively, H-1/2(0(.9)). Let
H0(curl; (9) and H0(div; (.9) be the completionsof T(O)3 in H(curl; (9) and H(div; (9).
We have

H0(curl; O) {V e H(curl; O) V A n 0 on 00 },
H0(div;O) {V e H(div;O) V.n 0 on 00}.

For an unbounded domain C 3, Hloc(curl; fl) (respectively, Hloc(div; fl)) denotes
the Frechet space of functions V e Loc( such that o e H(curl; (9) (respectively,
Yo H(div; (9)) for every bounded set (.9 C ft.
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inhomogeneous medium

2.1. Scattering by a perfect conductor.

2. The classical and regularized scattering problems.

2.1. Classical formulation. Let Ft C I3 be an unbounded connected domain
(the complement of a compact set of 3) with a Lipschitz-continuous boundary F.
We denote by n the unit outward normal on F. The domain t is filled by an isotropic
medium that may be inhomogeneous in a bounded part of t (see Fig. 2.1). Let us
mention that the assumption of isotropy is not essential; the same study may be easily
extended to anisotropic media.

2.1.1. Maxwell’s equations. For a given frequency > 0, the electric and
magnetic fields E and H satisfy in the time-harmonic Maxwell equations

-i H -- curl 0 H

where the functions and are, respectively, the electric permittivity and the mag-
netic permeability of the medium. By eliminating E or H, Maxwell’s equations turn
into the second-order equation

(2.1) curl(-1 curl U) 2U 0 in ,
where U denotes either the electric or the magnetic field, and

(2.2) - and =s if U=E,
(-s and = if U=H.

In the case of a nondissipative medium, these functions are real and positive. The
effect of dissipation is taken into account by adding to s or a positive imaginary
part that corresponds to the electric or magnetic conductivity of the medium (see,
e.g., [10]). In the present paper, we assume that and are L() complex-valued
functions such that

(2.3) e(x) a and 3m(x) O,
0

lmost everywhere in ( is real positive constant). Moreover, he medium is
ssumed homogeneous in a vicinity of infinity; we thus suppose that there exists ro
such that

(2.4) (x)=o and (x)=0 for I1 11  o>O.



SCATTERING PROBLEMS FOR MAXWELL’S EQUATIONS 1601

Note that outside such a ball, (2.1) simplifies to

(2.5) curl(curlU) k2U 0, where k8 w00.
We use the notation "ks" because of the similarity with the so-called S-waves in linear
elasticity that are characterized by a divergence-free displacement field (since solutions
to (2.5) are infinitely differentiable [18], every solution to (2.5) clearly satisfies div U
0).

Remark 2.1. Assuming the choice of the principal determination for the square
root in (2.5), assumptions (2.3)imply that

(2.6) 9e k > 0, rn k >_ 0, and

e +, e e

2.1.2. Boundary conditions. The behavior of U in the vicinity of the perfect
conductor depends on whether U represents the electric or the magnetic field. These
boundary conditions read classically as

(2.8) U A n 0 on F (electric boundary condition) or

(2.9) curl U A n 0 on F (magnetic boundary condition).
They will be denoted, respectively, by Bo and BH in what follows. (The index
refers to the classical Maxwell equation in this paper.)

Remark 2.2. It is well known that the boundary condition BE implies that the
quantity curl U. n vanishes on F. On the other hand, the boundary condition BH
together with Maxwell’s equation (2.1) implies U. n 0 on F.

2.1.3. Radiation condition. Since we are concerned with a scattering problem,
the field U actually represents the superposition of a given monochromatic incident
wave U (i.e., a solution to (2.5) in N3) and an unknown scattered wave Us, i.e.,

(2.1o) u + us.
The asymptotic behavior of Us at infinity is specified by means of a radiation con-
dition, which expresses that the energy associated with the scattered wave radiates
toward infinity (see 3.2). The expression of this condition depends on k (defined in

lim f Ilcurl Us A n ikUsll d7 0 if m k8 0,
(2.11)

lira
Ys
[ [[[curl Us An[[2+k[2[[Us[[2]d7-0 if mk>0,

where E {x 3l Ilxll- }. The first condition is the well-known outgoing
Silve--Maile radiation condition (see [10] or [18]); the second one is a decay condition
for Us at infinity. They will be referred to s in what follows.

2.1.4. The scattering problems. For a given incident wave UI (i.e., a given
solution to Maxwell’s equation (2.5) in the whole space R3), we consider the two kinds
of scattering problems, denoted, respectively, by 7)E or 7)H according to the choice
of the boundary condition on F:

curl((-1 curl U) wU 0 in gt,
U satisfies the boundary condition BE/H (i.e., (2.8) or (2.9)),

Us U U1 satisfies the radiation condition , (i.e., (2.11)).
The aim of the present paper is to show a practical method for solving these problems.
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2.2. The regularized formulation. When the medium is homogeneous, there
is a close connection between the equations of linear elasticity and Maxwell’s equa-
tions. If/(x, t) e (U(x)e-t) is the time-periodic displacement field in a medium
with Lam coefficients A and # and density p, it satisfies

-oij,j(U) -w2pU 0, where aij A(div U)5ij + #(Ui,j + Uj,i),

which can be written as

# curl (curl U) (A + 2#) grad (div U) w2pU O.

For A -2#, this is actually Maxwell’s equation (2.5), but even when A - 2#,
it is satisfied by any solution to Maxwell’s equation since it is divergence-free. For
# > 0 and A _> 0, the above equation is known to be strongly elliptic, which makes it
attractive for discretization instead of Maxwell’s equations provided that its solution
actually is divergence-free.

2.2.1. Regularized equation. The generalization of this remark to nonhomo-
geneous media leads to

(2.12) curl(-1 curl U) grad(--1 div V) w2U O,

where T is a given function (which has no particular physical meaning as far as elec-
tromagnetism is concerned). If T is assumed to be infinite in the whole domain gt

(i.e., _-1 0), this equation reduces to Maxwell’s equation (2.1). If T and T-1 are
bounded in , it will be referred to as the "regularized Maxwell equation" in what
follows. In the case of a real-valued function , it can be considered as obtained by
eliminating E or H in the first-order system

-iw
H _#-1 curl 0 0 gradu-1 H

div 0 0 0
0 div # 0 0

where T A if U E and T if U H.
We choose for T to satisfy conditions similar to (2.3)-(2.4), i.e., E L(gt) and

(2.13) fire T(X) >_ a > 0 and m-(x)
(2.14) -(x) ’0 for Ilxll :> r0 > 0.

with

For sufficiently large IIx]l, (2.12) thus simplifies to

(2.15) curl(curl U) t-1 grad(div U) k2U 0 with t T0-1 I0] -2

In what follows, we will assume that either T satisfies the conditions stated above or
T-1 0 in ft (in other words, T c). In this latter case, (2.12) corresponds to the
classical Maxwell equation, and the simplified form (2.15) is merely (2.5) (since t oc
for T0 O).

Just as the notation ks was related to S-waves in linear elasticity, we denote

(2.16) kp ks v/ wV/To/ o if TO oc,

which corresponds to the wave number of P-waves (i.e., the irrotational displacement
fields).



SCATTERING PROBLEMS FOR MAXWELL’S EQUATIONS 1603

Remark 2.3. As in Remark 2.1, if 70 is finite, the assumptions concerning - and
yield

(2.17)
(e.lS)

9ekp > 0, 3mkp > 0, and

kp E + , (0 E I+ and TO JR+).
2.2,2. Extended boundary conditions. Taking into account the regulariz-

ing term in (2.12) leads to an extended expression of the boundary conditions near
the perfect conductor. The fact that the regularized equation does not imply the
divergence-free condition requires us to complete the classical conditions as follows:

(2.19) UAn=0, 7-ldivU=0
(2.20) curlUAn=0, T-1U .n=0

on r (electric boundary condition) or

on P (magnetic boundary condition),

where the notation 7-1 divU 0 simply means that we add the condition divU 0
to the classical electric boundary condition only when the regularized equation is
considered (and the same holds for the boundary condition T-1U n- 0). These new
conditions are denoted in what follows by BE and BH, respectively.

2.2.3. Extended radiation conditions. Similar to elasticity, the radiation
condition associated with (2.15) (for t #- x) involves two relations, respectively,
concerning the behavior at infinity of the transverse and radial components of the
scattered wave. Their expressions, which depend on ks and kp, are

(2.21)

and

(2.22)

if 3m ks 0,

if 3m ks > 0

if 3m kp O,

if 3m kp > O.

The conjunction of these two conditions will be denoted by 7t in what follows.
Remark 2.4. Note that for t - , the radial radiation condition (2.22) may be

written as

(2.23)
if gmkp O,

if 3m kp > O,

and for t , it reduces to

(2.24) lim f Us.n]2d7=0.
R--*cx JR

By virtue of the relation IlVll 2 IIv + IV’hi 2, this latter condition together with
the transverse radiation condition (2.21) clearly amounts to (2.11). The formulation
(2.21)-(2.22) of TEt for t cx3 is thus consistent with the classical radiation condition
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FIG. 2.2.

2.2.4. The new scattering problems. For every function T that satisfies the
assumptions stated above, we thus consider the following problem instead of problem
)Eo/g

curl(-1 curl U) grad(--1 div U) co2U 0 in ft,
(’)TE/H) V satisfies the boundary condition BEt/H (i.e., (2.19)or (2.20)),

Us U Ux satisfies the radiation condition 74t (i.e., (2.21) and (2.22)),

where we recall that the incident wave Ux is a solution to Maxwell’s equation (2.5) in
the whole space 3. The two cases T Oe and - E L(Yt) correspond, respectively,
to the classical and regularized equations.

2.3. Functional framework. In this paragraph, we make the exact significance
of (2.12) precise as well as the associated functional framework in the classical or
regularized situation. The interpretation of (2.12) used in the present paper consists
of a Weak formulation that involves a function space containing a divergence-free
condition. This formulation is unusual as far as the classical Maxwell equation is
concerned; we will show that it actually is consistent with the usual interpretation (in
the sense of distributions). The main advantage of this formulation will appear in 4.
It allows us to express problem 7:’E/H as a Fredholm equation.

2.3.1. Weak formulation. Consider the Frechet spaces

$’E(t) {V e H,oc(curl; Ft) divVY e L2oc(gt),
divV=0ingtifT----, andVAn=0onF},(2.25) 9vy(f) {Y e H,oc(curl; gt) divVY e Loc(f),
divV=0infifT--_--c, andV.n=0onF}.

When there is no ambiguity about the domain, we will simply denote these spaces
by .TE/H (the case of a subdomain t of f is used in Definition 2.5 below). In these
spaces, the interpretation of the classical (r c)or regularized (r e n(f))Maxwell
equation is given by the following statement.

DEFINITION 2.5. Let E be a closed regular surface surrounding, the inhomogeneous
medium and delimiting a bounded domain t C t (see Fig. 2.2). A function U
yzE() (respectively, U e H(f)) is said to satisfy (2.12) and the electric boundary
condition 13E, i.e., (2.19)(respectively, the magnetic boundary condition BH, i.e.,
(2.20)) /f the following conditions hold.

(i) In the region where the coefficients , , and T are constant (in particular
outside E), U satisfies in the sense of distributions the simplified equation (2.15).
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(ii) For every field V e J:rE/H (), we have

(2.26) Jn -l curi U cur’ V + ]- divU divV w SaU
+ -1 Jx: curl U. (V A n)d7 t- J div U (V" n)d7 0.

This definition requires some comments in particular about the boundary integrals
in (2.26). Let us first recall the following property about the regularity of U.

PROPOSITION 2.6. flU /H() satiCes (i), then U is infinitely differentiable
in the region where the coefficients , , and T are constant and satisfies in the strong
sense the simplified equation (2.15).

Proof. This follows from standard results of imericr regularity for elliptic equa-
tions.

Remark 2.7. In (2.26), the integrals on should be written duality products
between H1/2() and H-1/2() since V An H-1/2()3, Y.n H-1/2(), and U is
regular in the vicinity of (by virtue of Proposition 2.6). For the sake of simplicity,
we keep the integral notation.

At first glance, Definition 2.5 may seem intricate. As we will see below, the
regularized equation cannot be interpreted in the sense of distributions when is not
regular enough (simply because () is not contained in /H). This explains why
we need a weak formulation such as (2.26). The remainder of this section shows that
Definition 2.5 agrees with the other possible interpretations of the problem.

2.3.2. Usual formulation in the classical case. The classical Maxwell equa-
tion (2.1) is usually interpreted in the sense of distributions. Indeed, for every function
U e Hloc(curl; fl), we can define the distribution curl(-1 curl U) e ,()3 by setting

(curI(- cuI u), v) fn- curl U. cul Y W e (n).

As a consequence, by considering the echet spaces

E(fl) {Y e Hoc(curl; fl)] Y A n 0 on F },
’(n) Hoc(cul; n)

that contain (fl) and (), respectively, defined by (2.25), we are led to a
definition that is different from Definition 2.5.

DEFINITION 2.8. A function U E() (respectively, U H()) is said to
satisfy the classical Maxwell equation (2.1) and the electric boundary condition B
(respectively, the magnetic boundary condition B) if

cur 0

for ever field V () (respectively, V ()) with compact spport.
Remr 2.9. A funcgion U /() that satisfies (2.27) obviously satisfies

he divergence-free condition div (U 0 in the sense of distributions. Indeed, taking
V grad for (a) in (2.27) yields

(2.28) [ U. grad 0 V (a)
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(which can be extended by density to every function 99 E H0(t)). Note that in the
case of the magnetic field, this relation is also valid for every 99 E 7:)(t) (since grad 99
.fi’H(")). By Green’s formula, this implies that (U. n 0 on F. In short, a function

U e j:E/H () that satisfies (2.27) belongs to .E/H (t).
Let U. 7:E/H (-) satisfy (2.27). As in Proposition 2.6, we know from interior reg-

ularity results that outside the inhomogeneous medium, U is infinitely differentiable.
Equation (2.5) is thus satisfied in the strong sense. Consider then the subdomain
of gt defined in Definition 2.5. Using Green’s formula outside E in (2.27) shows that
relation (2.26) (with T ) is valid for every field Y e .E/H().

We can now show in the classical case the equivalence between Definitions 2.5
and 2.8, which is a straightforward consequence of the following proposition.

PROPOSITION 2.10. If T =_ oc, the following statements are equivalent:
(i) U e .E/H(a) satisfies (2.26) for every V e jzE/H();
(ii) U E/H (t) satisfies (2.26) for every V E/H().

Proof. The fact that (i) (ii) is obvious. If (i) is satisfied, then U clearly belongs
to z.E/u (Ft) (see Remark 2.9). The proof of the converse is based on a decomposition
of vector fields given in Appendix B. Suppose that U E/H(Ft) satisfies (2.26) for
every function V’ z.E/H(). Let V .E/H(); by Lemma B.6 (taking O t and
F0 F U E, F1 if U T’E(’), or F0 E and F1 F if V .-’H(-)), we have

V grad 99 + V

where

99 E/H with

and V’ e z.,E/H (). Since relation (2.26) is assumed to be satisfied for V’, we deduce

curl U. curl V w2U. + -1 curl U. (V A n)d/

-w2 U. grad 99 + -1 curl U. (grad 99 A n)d’y.

In the right-hand side of this equality, the integral on E vanishes since grad 99 A n 0
on E (see Lemma B.6). The integral on also vanishes; indeed, by Green’s formula,

Sa U. grad 99 S(divU) + jfr (U.n)d’,
E

where divU 0. Moreover, in the case of the electric (respectively, magnetic) field,
we have 99 0 on FtE (respectively, U.n 0 on F and 99 0 on E). This completes
the proof.

2.3.3. Some remarks about the regularized situation. Unlike the quantity
curl(-1 curl U), the term grad(T-1 divU) cannot be interpreted in the sense of
distributions unless the coefficients are regular enough. In particular, if is assumed
Lipschitz continuous in t, then for every function U Hloc(div; gt), we can define the
distribution grad(r-1 div U) ),(,-)3 by the relation

(grad(T-1 div U), V} T
-1 divU divV VV e 7:)(a) 3
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In this case, Definition 2.5 agrees with this interpretation: since every field V E )()3
belongs to E/H()), relation (2.26) implies that U satisfies the regularized Maxwell
equation (2.12) in ft in the sense of distributions.

Remark 2.11. Definition 2.5 implies some transmission conditions on a surface
of discontinuity of the coefficients. Indeed, the quantities U A n and .U. n must be
continuous across this boundary for curl U e Loc(ft and divU e Loc(ft). Moreover,
if this boundary is C1’ and if is Lipschitz continuous on both sides, it is readily
seen that the quantity {- curl U A n + n 7-1 divU (defined in H-/2 by means of
Green’s formula) is also continuous.

2.4. Equivalence between the classical and regularized problems. Let
U .E/H be a solution of the classical scattering problem _’r)E/H. For every function
7 that satisfies the assumptions stated in 2.2, U belongs to .E/H and satisfies in
the sense of Definition 2.5 the regularized Maxwell equation as well as the boundary
conditions BE/H (see Proposition 2.10). Moreover, the associated scattered wave

Us U- UI clearly satisfies the transverse and radial radiation conditions 74t since

div U 0. This shows that every solution to the classical scattering problem 7)E/H
is also a solution to problem "r),E/H (for the same incident wave).

The aim of the present paper is to prove the converse of this statement and to
present a convenient method for its numerical solution. More precisely, by adding
some suitable conditions on the coefficients , {, and - (which ensure the uniqueness
of the solution to 79E/H (see 3.1)), we will prove the following result.

THEOREM 2.12. Let , , and - be chosen such that TE/H admits at most one
solution. Let Ux be a given divergence-free incident wave, i.e., a solution to Maxwell
equation (2.5) in the whole space N3.

(i) The scattering problem 7)E/H has exactly one solution in E/H.
(ii) This solution does not depend on 7.

The last statement actually amounts to saying that the solution to pE/H satisfies
the divergence-free condition divU 0 in ft. It is a straightforward consequence of
the well-posedness of pE/H (i.e., point (i)) and the fact that a solution to 7)E/H is

also a solution to z),E/H The remainder of the paper consists of proving (i)

3. Uniqueness. The aim of this section is to prove that for every function 7,

problem 7)rE/H has at most one solution. By linearity, this amounts to proving that
if the incident wave vanishes, the only solution to 7)E/H is 0.

3.1. Some restrictions for uniqueness. Thus far, we did not make any as-
sumption regarding the regularity of the coefficients , , and - (they were just as-
sumed bounded). In this general framework, the uniqueness of the solution to problem
7)E/H cannot be ensured. We thus have to add some restrictive conditions-that allow
us to prove uniqueness. These assumptions depend on whether the coefficients are
real-valued or not.

More precisely, we will suppose in this section that the domain f can be de-
composed as shown in Fig. 3.1 into several disjointed (and nonempty) open sets
{ft In 0, N} with piecewise C1’ boundaries; f then appears as the interior of

[-J=0,N ft (where f denotes the closure of ftn). For the convenience of the presen-
tation (and because of the particular role of infinity), we define one of these sets, say
t0, to be the exterior of a ball containing all the inhomogeneities. In addition to
the hypotheses stated in 2, we will assume that in every subdomain f, each of the
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FIef. 3.1. Decomposition of f into subdomains.

coefficients , , and - satisfies one of the following conditions.

1. Its restriction to Ft is real-valued and defines a Lipschitz-continuous function
in Ftn.

2. Its restriction to Ftn is a Lipschitz-continuous complex-valued function whose
imaginary part is positive almost everywhere in Ft.

3. An exceptional condition for - only: - -= oc in the whole domain Ft.
Of course, these conditions can be satisfied independently by each coefficient; in

a given subdomain Ft, may satisfy 1 whereas satisfies 2 and 7 satisfies 3.

Let us mention that the assumption concerning the Lipschitz regularity in the
second condition may be removed for the coefficients and - but not for (since it

is involved in the definition of the function space E/H).
Our purpose now is to prove the following uniqueness result.

THEOREM 3.1. Let , , and - satisfy the hypotheses stated above. If U E a/H
is a solution to 79E/H with no incident wave (i.e., UI =- 0), then U =_ O.

The main tools for the proof of this statement are on one hand the energy con-
servation law presented in 3.2 and on the other hand some results concerning the
unique continuation principle for elliptic (or subelliptic) equations. The detailed proof
is given in 3.3 and 3.4.

3.2. Energy flux and radiation conditions. Let R > 0 be chosen such that
the coefficients , , and - are constant outside ER {x E ]3 Ilxll -/: }. We denote

R {x Ft Ilxll < R}. Let U E/H satisfy (2.12) and the boundary condition

B/H (in the sense of Definition 2.5). By taking the imaginary part of (2.26) with
V , E- ER, and )R, we obtain

(3.1) .T’R(U) + fiR(U) O, where

(3.2) .T’R(U) 9r(U) + 9r(U) with

(3.3) :(U) . {jZ f crl U (U ) d}
R

(3.5) R(U) ’ma [:IIUI - curl ul
R
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For the classical Maxwell equation (- oc), 9oR(U) and TR(U), respectively, represent
(up to a factor (2o) -1) the mean outgoing energy flux^(per time period) through the
boundary ER and the energy loss by Joule effect in . Equation (3.1) stands for
energy conservation. We keep the same terminology for the regularized formulation.

The radiation conditions allow us to express the energy flux at infinity as follows.
LMMa 3.2. If U satisfies the outgoing radiation conditions (2.21) and (2.22),

then the outgoing energy flux at infinity is given by

lim (U) (U) + (U),

where if 3m k 0 is defined as

1
lim f {llcurlUAn[+lkllnA(UAn)ll}d22(u)

0
and (U) 0 otherwise. Similarly, if t 0 and 3m kp O, then (U) reads

L(U
1

lim ] {I divUI2+ kpl 2 [U. nl 2} dT;
2tkp@ R

otherwise, (U) O.
Proof. If k is real (respectively, t and kv R+), this follows from the

radiation conditions and the formulas

II,,l U A i A (U A )11 curl U A 11 + I1 A (U A )11
+ e;{lu. (u s )},

Idiv U ie U. 1 div UI + levi IU. 1 ep m{div U (U. )}.
If gm 0 (or gm k # 0, or t ), this result readily follows from the rdiation
conditions using the Schwrz inequality.

POOSTON .3.3. I U /H is a solution o roblem /H with Uz
then

(3.6) li (U) li (U) 0.
R R

Pro@ First notice that J(U) is nonnegtive nd nondecresing function of
oreover, by Lemms 3.2 lim(U) is lso nonnegtive. The conclusion follows
from relstion (3. ).

A straightforward, consequence of this result nd of the definition (3.5) of
follows.

COROLLARY 3.4. For every open subset 0 C , w have the properties

(3.7) gm O a.e. in O UIo =O,
(3.s) 0 a.. 0 (cl u)o -o,
(3.9) m 0 .. o (diU)lo 0.

3.3. First step of the proof of Theorem 3.1 The particular case of o.
We prove in this prgrph that i U /H is a solution o p/H wih U
thn U vanishes in o.

Recall that 0 is the exterior of bsll containing 11 the inhomogeneities. In this
subdomin, the field U s&tisfies (see Proposition .6)

(3.10) curl(curl U)- t- grd(div U).- kU O.

[irst, notice tSt if m@ 0, the result follows from propery (3.7).
follows, e thus ssume that 0 is
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3.3.1. A scalar result. Let us prove that div U 0 in Ft0. This is obvious if

-0 (since the condition divU 0 in is contained in the definition of the space

9%E/H). Moreover, if m ’0 : 0, this results from property (3.9). Consequently, we
suppose below that -o E +.

Setting div U and taking the divergence of (3.10) yields

2A + kv 0, where kv wV/-o/o +.
The fact that vanishes is based on the following lemma (due to Rellich [21]), which
concerns the asymptotic behavior at infinity of the solutions to the Helmholtz equa-
tion.

LEMMA 3.5. Let be a solution to equation A +k 0 outside a sphere E
of radius Ro (where k is a positive constant). If satisfies the condition

(3.11) lira f d7 0,

then 0 outside Ro.
From (3.6) nd the expression of lim given in Lemm 3.2, we see that

condition (3.11) is stisfied. As a consequence, div U vanishes in 0.
3.3.2. Back to the vector problem. If m@ 0, property (3.8) implies

moreover that curl U 0 in 0. By (3.10), we deduce that U vnishes. On the other
hnd, if 0 +, the fct that div U 0 llows us to replace t- by ny other vlue in

(3.10). In particular, by choosing t 1, we see that U satisfies the vector Helmholtz
equation

AU+kU=O, where k=w0+.
And here again, using (3.6) and the expression of limR-/PR given in Lemma 3.2,
we have

lim f ]]UII2d’ 0
R--*cx JER

by virtue of the relation IIV]] 2 ]In A (e A n)[I 9 + IU" n]e. (Note that if 0 , the
fact that lim.R_ f. IU. nl2d/= 0 is contained in the radiation conditions.) We can
thus apply Lemma 3.5 to each component of U. The conclusion follows as U 0 in

0.
3.4. Second step of the proof The other subdomains To prove that U

vanishes in every subdomain n, n > 0, we will use either the results of Corollary
3.4 or a unique continuation technique, which is the object of Proposition 3.6 below,
depending on whether the coefficients , 4, and - are real-valued or not.

3.4.1. The unique continuation principle. Consider a given subdomain
(n > 0) of , and suppose that in n the coefficients , , and - all satisfy condition
1 given in 3.1. These are Lipschitz-continuous real-valued functions. In this case, we
have seen in 2.3 that a solution U E/H to 7)E/H satisfies

(3.12) curl(-1 curl U)

in the sense of distributions. Our aim is to prove the following statement.
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PROPOSITION 3.6. Let , , and T all satisfy condition 1 of 3.1. If a solution
U E .TE/H to (3.12) vanishes in a (arbitrary small) ball B C fn, then U 0 in the
whole domain ft,.

Proof. We first prove that divU 0 in Ftn, from which we will be able to deduce
that U

_
0.

(i) Consider the scalar function 99 T-1 divU E L2(fn). By taking the diver-
gence of (3.12), we see that 99 satisfies

div( grad 99) + W2T 99 0 in Ftn

in the sense of distributions. From interior regularity for (very weak) solutions to
elliptic equations (see, e.g., Neas [19]), we infer that in every open set (9 such that

c gtn, we have 991o H2(O) The classical results of unique continuation for
second-order elliptic scalar equations (see, e.g., Kenig [11]) then show that if 99 0
in a ball B C Fin, then 99 vanishes everywhere in flu. We have thus proved that
divU 0.

(ii) This result implies in particular that U is a solution to the classical Maxwell
equation

(3.13) curl((-1 curlU) w2U 0 in n.
To see that U vanishes, we use the strong unique continuation principle proved by
Vogelsang [23], who deals with the original first-order system Of Maxwell’s equations
instead of (3.13). By setting, for instance,

H =U and
-1

E curl U,

we clearly have

curlE=iwH and curlH=-iwE,

where both fields E and H obviously belong to H(curl; n),. To apply [23], we simply
have to check that E and H actually belong to H (0)3 for every open set (.9 such that
O c ftn. From [23], we know in this case that if E and H vanish in a ball B C O,
then they vanish in the whole domain O. To prove that (E, H) H(O)3, note that
divE 0 and divH 0, which shows that E and H also belong to H(div;
since and are Lipschitz continuous. The conclusion follows from the H interior
regularity of functions of H(curl) C H(div) (see [8]).

3.4.2. End of the proof of Theorem 3.1. We now come back to the general
situation where , , and - satisfy one of the three conditions stated in 3.1. Let ’n
(n > 0) be a given subdomain of ft. We prove below that if a solution U to pE/H
vanishes in some subdomain fin’ adjacent to fn, then it also vanishes in fin. The
statement of Theorem 3.1 follows, for we already know that U 0 in f0 (3.3) and
ft is assumed connected (every subdomain fn is linked to ft0 by a path contained in

(i) First, note that if satisfies condition 2 of 3.1 in ’n (i.e., its imaginary
part is positive almost everywhere), the result obviously follows from property (3.7).
We assume now that is a real-valued and Lipschitz-continuous function (condition
1).
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(ii) If - satisfies condition 2 in tn, we know that divU 0 in gin (property
(3.9)) and, consequently, U satisfies the regularized Maxwell equation (3.12) in t2n
for any other function T. The same holds if - is infinite (condition 3). Therefore, it is
enough to deal with the case of condition 1 for -.

(iii) Similarly, if 4 satisfies condition 2, we know that curl U 0 in t2n, which
shows that we can modify (3.12) by replacing. ( by any other function; U will always
be a solution to the modified equation. Here again, we can suppose that 4 satisfies
condition 1.

(iv) We are finally in the context of Proposition 3.6. Assume that in one of the
subdomains adjacent to t2, say ft,, the field U vanishes. To apply Proposition 3.6,
consider the domain tn fin U B, where B is a small ball centered at a point of a
regular part (i.e., C1’1) of Ogtn Cl Otn,. Let , , and "Y denote, respectively, Lipschitz-
continuous (and real-valued) extensions of la, (la, and -Ian in t (these extensions
are built for instance by the standard reflection technique). It is then clear that if we
replace in these three functions by , , and ", the field U still remains a solution
to (3.12) in tn in the sense of distributions (see Remark 2.11). The statement of
Proposition 3.6 then applies in the new subdomain n. This completes the proof.

4. Existence of a solution.

4.1. The method of coupling by integral representation. We present in
this paragraph the so-called "method of coupling between variational formulation and
integral representation," which consists of reducing problem T)E/H to an equivalent
problem set in a bounded domain. This will allow us to use the Fredholm alternative
to prove the existence result. The cases of classical or regularized equation are dealt
with simultaneously.

Let F be a closed regular surface surrounding the perfect conductor and located
in the region where the coefficients , , and 7 are constant (see Fig. 4.1). If U is a

solution to "DE/H we know (see Proposition 2.6) that outside F, the scattered wave

Us U- Ux satisfies the simplified equation

(4.1) curl(curl Us) t-- grad(div Us ksUs02

as well as the radiation condition 7t, i.e., (2.21) and (2.22). We prove in Appendix A
(Proposition A.7) that Us consequently satisfies the following integral representation
outside F:

(4.2)

Us(x) =/F Gt(x y) {curl Us(y) Any + t-lny div Us(y)} dTy

-/s (curly t(x y)) {Us(y) Any} d/y

t-1J(divy (t(x y))T {Us(y). ny}

where Gt is the outgoing Green tensor associated with (4.1) (see Proposition A.1). In
what follows, this formula will be written in the form

(4.3) Us 2:t[F; Us] outside F.

Notice that since Uz is a solution to

curl(curl U!) k2sUI 0 in 3,
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FIG. 4.1. Reduction to a bounded domain.

it satisfies in particular (4.1) inside F. We deduce from the integral representation
formula in a bounded domain (Proposition A.5) that

(4.4) 0 :t[F; U] outside F.

As a consequence, the integral representation (4.3) can be written in terms of the
total field U as

(4.5) U U + Zt[F; U] outside F.

Consider then a closed regular surface E surrounding F (and which has no point
in common with F). We denote by the bounded part of ft delimited by E, ti and
to the parts of located, respectively, inside and outside F and finally the exterior
of E. The orientation of the unit normal on the surfaces F, F, and E is shown in
Fig. 4.1. Let us define two boundary operators on E that involve, respectively, the
tangential and normal components of the field as

TU-{curlUAn+.knA(UAn)}, and
(4.6) NU= {div U +, U. n},

where and are complex parameters. If U is a solution to p/H, it clearly satisfies
TU T (Uz + Zt[; U]) and NU N, (U + Zt[F; U]) by virtue of (4.5). It follows
that the restriction U of U to is a solution to the problem (set in the bounded domain
)

curl(- curl 5) grad(7- div 5) w2 0 in ,
(4.7) satisfies nE/Hr on F,

T(O t[F; 0]) TU and t-N.(O ,[F; 0]) t-NU on E.

Note that in the condition on E, called the "coupling condition," the relation that
involves N is tken into ccount only if t # .

The ntural function spce associated with this problem is obtained by tking
the functions of I/H() that are regular enough in the vicinity of E (because of the
coupling condition on this surface). We thus define the Hilbert spaces

{V 6 H(curl;)[divV e n(), divVY 0 in if T ,
(v n) 0, (v ) e L:(): nd t-(V.) e L()},

(a.S) n7 {V e H(.r;) diV e L:(), diV 0 in fi f ,
(V. )r 0, (V ), e L(): .d t-(V.) L:(r)}.
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To write a variational formulation of problem (4.7) in these spaces, we have to
modify the coupling condition on E and, more precisely, the expression of the integral
representation Zt[F; -]. Indeed, the quantity Zt[F; V] is not defined for every function

V E TIE/H because of the term (curl V A n + t-lndiv V)IF whose definition requires
an additional condition such as curl(curl V) t-1 grad(div V) E L2(to) (see Remark
A.6). To remove this term, consider a regular right inverse R of the trace operator
from to to F, i.e., a linear operator that maps every regular function defined on
F onto a regular function R defined in to that satisfies (R)IF . Suppose in
addition that R vanishes on E (i.e., (R)I 0 for every ). Integrating by parts the
embarrassing term in (4.2) yields

gGt(x, {curl Us A n + t-ndivUs} d

jf RGt(x, .) {curl curl Us t- grad div Us }

+ (curlRt(z,.))curlUs + t- (div Rt(z, .))r divUs

for x located outside F, where we have denoted Gt(x,y) Gt(x- y). Using the
fact that Us satisfies (4.1) in to, the integral representation (4.2) can be written
equivalently as Us ztR[F; Us] outside F, where

(4.9)

More generally, for every field U that satisfies (4.1) in to, we clearly have

(4.10) Zt[F; U] Zt[F; U] outside F.

Substituting this relation in the coupling condition on E in (4.7), we are now able to
define the reduced problem, denoted by E/H in what follows, as

Find .E/H such that
curl(- curl ) grad(T--

satisfies ]E/H on F,
T( ZtR[F; ]) TaUx and t-N,(O ZtR[F; ]) t-N,-Ux on X,

where we recall that the classical or regularized equation in has to be understood
in the sense of Definition 2.5.

4.2. Equivalence between the initial and the reduced problems. The link
between the initial problem pE/H and the new one 75E/H may be stated as follows.

PROPOSITION 4.1. Let ) and be two complex parameters chosen such that
m(Ak-2) < 0 and m(k-2) < 0 (if t c). Problem 7)E/H admits at least (respec-
tively, at most) one solution if and only if the same holds for rE/H. Moreover,

(i) if U is a solution to pE/H then UI( is a solution to E/H
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FIG. 4.2.

(ii) if is a solution to f-)E/H, then the field U defined by

(4.11) U f in and U Ux + Zt[F; ] in

is a solution to 7rE/H.
Proof. First, note that it is enough to prove the equivalence of pE/H and /H

for the existence of a solution. The equivalence for the uniqueness readily follows
using the uniqueness of the continuation of U outside F. (A solution to p/H that
vanishes in a vicinity of F must vanish everywhere outside F by virtue of the integral
representation (4.2).)

(i) If U is a solution to p/H, it satisfies by construction the coupling condition
on E, and consequently U is a solution to ,/H (for every pair (A,

(ii) Conversely, let be a solution to /H. If matches analytically the
function U + Zt[F; ] defined in , then the field U given by (4.11) is clearly
solution to p/H To prove this analytical matching, we show below that

=U+Zt[F;] into.
The integral representation of in o reads (see Proposition A.5)

=Zt[F;]+Y ino, whereY=Zt[E;];
we thus have to verify that V U in o. The expression.ZtiE; ] (which is nothing
but Z[E; ] by (4.10)) actually defines a field in the.whole domain ’ located inside
E (see Fig. 4.2). This field is obviously a solution to

curl(curl V) t-1 grad(div V) kY 0 in.’,
TAV TAUI and t-NV t-NUI onE.

To see that U is the only solution to this problem, note that its solution for UI 0
satisfies

fa, [lcurlV]]2+t-l fa, ldivVl2 -k fa, [[Vl[2

A j’[[V A n]]2d7 + t-uj IV. n2d7 O,+

from which we deduce

3m k:2 fo, curl VII 2 + 3m k;2 fo, div VI2

+ 2m(Ak/2) f [IV A n[[2d7 + 3m(k;2) [ IV. nld7 O,
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where the terms that involve kp have to be removed if t oc. We know that mk-2 _<
0 and Dn k-2 < 0 (see 2). Consequently, if I and are chosen such that Dn(Ik;-2) <
0 and Dn(k2) < 0, we have VAn 0 and t-lV.n 0 on E, and thus curl VAn 0
and t-1 div V 0 on E (for TV 0 and t-IN,V 0). It follows that V vanishes in
ft’ (since V :It[E; V]), which completes the proof. []

4.3. Fredholm alternative: An existence result. Our aim now is to show
that problem 75E/H can be written as a Fredholm equation, from which we will be
able to deduce that it is well posed. Let us first write a variational formulation of
5,E/H. By Definition 2.5, it may be easily seen that this problem is equivalent to

Find E 7-tE/H such that
v)

q._[E/H q.4E/Hwhere a(., .) is the sesquilinear form defined on x by

a(O, V) i( (-1 curl . curl V + i m-1 divU divV

and l(.) is the semilinear form given by

t,(v) V+ t- N,U 

q_IE/HConsider then the operators Jr and ]K defined on by

(J-O, V)f/i -1 curl 0. curl V + m-1 div .U divV

and

(4.14)

and let L be the vector of _[E/H associated with the semilinear form Iv(.) by the
relation

(4.15)

In these definitions, (., .)f/ denotes the natural scalar product in q-lE/H- as

(U,V)nf/u {curlU’curlV + U’} + [t-ll divU divV
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The variational formulation (4.12) clearly amounts to the equation

(4.17) ( + ]14) L in ?-tE/H.
We are now able to state the main result of this section.
THEOREM 4.2. Suppose that the coefficients , (, and T satisfy the conditions

given in 3.1. Let (A, u) E C2 be chosen such that m()k-) < 0 and m(k2) < 0

(if t ). The reduced problem /H has a unique solution in /H.
Proof. We prove in [4.4 that and are, respectively, an automorphism and

a compact operator in /H. The edholm alternative shows that if the only solu-
tion to (4.17) with L 0 is the trivial solution 5 0, then (4.17) has exactly one

solution for every L /H. And the required uniqueness property simply follows
from the uniqueness of the solution to problem p/H (Theorem 3.1) and the equiva-

lence between this latter problem and /H for this uniqueness property (Proposition
4.1).

Remark 4.3. This theorem together with the equivalence between p/H and
/H for the existence property (Proposition 4.1) complete the proof of (i) in Theorem
2.12. Problem P/ is well-posed, which implies that its solution is independent of
7 (since divU 0, see 2.4). This shows in particular that the same holds for the
solution to /H.

4.4. Two technical lemmas. We prove below that operators and given
by (4.13) and (4.14) define, respectively, an automorphism and a compact operator
in /H.

LEMMA 4.4. Let (A, ) (C*)S be chosen such that m(Ak;) < 0 and m(k)
0 (if t ). Then is a bounded invertible operator in /H with bounded

inverse.

Proof. By virtue of the Lax-Milgram theorem, it is enough to prove that the
sesquilinear form associated with ff in (4.13) is coercive in /H i.e.

for some positive constant a. Intuitively, this results from the fact that the functions
(-, T-, w20, (, and t- involved in the different integrals in (4.13) take
their values in a sector of the complex plane (with vertex 0) whose opening angle is
less than . More precisely, by dividing these functions by 0, we infer that there
exists 0 ]- , 0[ such that

0 arg(0)- 0 a.e. in,
0 arg(w20w)- 0 a.e. in,

0arg(Ak;2) 0 nd 0arg(uk;2) 0 (ift).

The two former statements follow from hypotheses (2.3) and (2.13), and the latter
from the choice of the parameters A and u. By noticing moreover that functions 4-1
and 7

-1 are bounded from below, we deduce that there exists a positive constant C
such that

{(W20) -le-0/2} C a.e. in,

(20T)--1--i0/2 C a.e. in,

Ne{k2e-/} C and Ne{uk;e-/} C (ift).



1618 C. HAZARD AND M. LENOIR

Hence we have

e {(o)-

and consequently

q:e {(w2o) -1 e-i/2(rV, V)7.t/g } > min(C, cosO/2)[[V[[ 2
TI E H

for every V /H. The coerciveness of the form follows..
LEMMA 4.5. Kr is a compact operator in./H.
Proof. We study separately the two terms that define operator K in (4.14) by

writing it as Kr -w2K K, where

(u, v)/. .1( + o) u V,

(KU, V)f/, f {TZg[F; U] + t-NZ[F; U] V n} dr.

(i) To see that Kfi is compact, first notice from the Schwarz inequality that

[(KU, v)/.[ CIIUIIL()IIVIIL()
since E L (). As a consequence, we have

sup
](U’V)/HI < CllUllL<)

for every U /H. Thus appears as continuous operator from L() into

/H. The conclusion follows from the compactness of the canonical injection from
/ into L() (ee Coronary B.).

(ii) Lt provott i compact. otaitio (4.) of[; U],
it is easy to see that this function is infinitely differentiable in a vicinity of , and if
D denotes any deriwtive operator on (of any order), we have

at every point x (CD is a positive constant which depends on D). We thus have

]D[;U](x)[ CDllUII/H X

This implies in particular that for every s 0,

u]lIH <  CIIU[I/H,
as well as the same inequality for N[F; U]. We deduce from these properties that
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Hence the adjoint (IK)* of operator IK satisfies

for every s 0. As & consequence, ()* appears as a continuous operator

-(s) ito /". trc ortor V ( (V ) + t-’(V ))= is obvi-

ous continuous omn/" into (S);t compactness o ()* (dconsuet
the compactness of) then results from the compactness of the cnonicM injectio
rom (r)into -(S) (wit > 0). U

5. Conclusion. Let us first notice that bom a theoreticM point of view, the
method of "coupling between vritionl formulation nd integral representation" de-
scribed above provides direct proof for the existence of solution to the classical
scattering problem. Indeed, the separation between the boundary F (on which the
integrM representation is written) nd the boundary E (where this integrM representa-
tion is used) leads to the compactness of the corresponding operator nd, consequently,
Mlows us to write the problem as edholm equation. This diers from usual inte-
gral techniques (see, e.g., [5], [13]) that deduce the existence result for the classical
problem from the existence of solution to the regularized problem by studying the
equations satisfied by the divergence of the field (this requires sucient regularity
of the electromagnetic coecients as well s of the boundary of the obstacle). Let us
mention two other methods for proving the existence of solution, which both consist
of introducing sequence of well-posed scattering problems, and studying the limit
of their solutions. First, the so-called "limiting bsorption principle" pplies in the
nondissiptive case, which actually is considered as the limit of dissipative problems.
(BendMi [] presents this method for the vector Helmholtz equation outside regular
boundary, but it is probably easy to extend it to the case of xwell’s equations
nd for irregular boundaries.) Second, the original proo o Abboud [1] is based on
sequence of regular boundaries, which tends to an irregular one.

To certain extent, our method of regulriztion of Mxwell equations cn be
compared with the work of Abboud and Ndlec [2], who obtained &n H-formultion
of the problem (using a series expansion of the field by means of spherical hrmonics
instead of an integral representation). Their "regularized problem" (which lso comes
within the Context of the edholm Mternative) is, however, dierent; in particular,
its vritionM formulation involves boundary sesquiliner form on every surface of
discontinuity of the electromagnetic coecients (this form depends on the curvature
tensor of the surface, which requires regular enough boundaries).

bom numericM point of view, let us recall the two main advantages of the
regularized problem compared with the clssicM one.

(i) On one hand, the integrM representations involve less singular kernel (order
1 instead of 3); our pproach agrees with the inegrM equation technique developed
in the case of regular boundary by BendMi [4]. (The singularity of the kernel is also
of order 1 in its integrM equation.)

(ii) On the other hand, the pproximion o the function spaces ppering in
the regularized formulation is matter for & standard discretiztion by Lagr&nge finite
elements. Note, however, that one must be careful if the coecients of the medium or
the boundary of the obstacle are irregular. Indeed the spaces to be discretized contain
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transmission conditions on the surfaces of discontinuity of the coefficients (following
from the condition divU E L2), which leads us to "split" the degrees of freedom
located on these surfaces. Moreover, the solution to the scattering problem may be
singular in the vicinity of the singularities of the boundary (for instance, the corners
and edges for a piecewise regular boundary). More precisely, this solution can be
decomposed (see Costabel [7]) as the sum of a "regular" part (which belongs to H
and can thus be approximated by Lagrange finite elements) and a "singular" part
(which is orthogonal to H and must be taken into account explicitly).

The numerical implementation of our method is in progress and will be presented
in the near future.

Appendix A. Integral representation. We have pointed out in 2.2 the anal-
ogy between the regularized Maxwell equation and linear elasticity. Actually, part of
the results given in this appendix comes within the classical framework of potential
theory in elasticity (see, e.g., Kupradze [14]). However, for the sake of consistency, we
present below a complete and concise method of working out the integral representa-
tion formulas that are used in the present paper. In A.1, we exhibit the expression
of the Green tensors associated with the classical and regularized equations. Then,
in A.2, we prove an integral representation formula in a bounded domain, using ele-
mentary properties of distributions. We finally generalize this formula in A.3 to the
case of an exterior domain.

A.1. The Green tensors. A 3 3 matrix of distributions Gt is said to be a
Green tensor (or a tensor of fundamental solutions) of the classical (t ) or the
regularized (0 < t < c) Maxwell equation if

(A.1) curl(curl Gt) t-1 grad(divGt) k2Gt 5][ in N3,
where 5 denotes the Dirac measure at point x 0 and ][ is the identity matrix. In
other words, if we denote by Gi) for 1,...,3 the column vectors of Gt, this
amounts to the relations (to be understood in the sense of distributions)

(A.2) curl(curl Gi)) t-1 grad(divGi)) k2G) 5x(), i- 1,..., 3,

where (x(),x(2),x(3)) is the canonical basis of R3. Such a Green tensor Gt is said

to be outgoing if each column vector C@ satisfies the outgoing transverse and radial
radiation conditions:

lim / IlcurlCi) An iksnA(Ci) An)ll 2
d’), 0 if mk 0,

R
"

lim [lcurli)Anll 2
Iks, 2 II (i) II J+ if >0.

(A.4)

where we recall that

if Ym kp O,

PROPOSITION A.1. The outgoing Green tensor Gt associated with the classical
(respectively, regularized) Maxwell equation is uniquely defined by

(A.5)
Go gksl[ + k-2 Hess gk,

Gt gks][ + k-2 Hess(gk gp) if t

0 if mkp > O,
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where ]I is the identity matrix, Hess stands for the Hessian operator, and gk denotes
the function defined on I3 by

(A.6) gk(x)
4 -Ilxll

Remark A.2. For every k such that Re k > 0 and 3m k _> 0, function gk is nothing
but the outgoing Green function of operator A-k2 (see, e.g., Wilcox [26]), i.e., the
only function that satisfies

(A.7) --/kgk k2gk 5 in ]3,

and the well-known Sommerfeld outgoing radiation condition

(A.8)
if 3m k 0,

if 3m k > 0.

Remark A.3. By (A.7) and noticing that Hessg graddiv(ga]I), we see that
(A.5) can be equivalently expressed as

C k-2 (curl curl(gk]I)- 5]I),
(A.9) Gt k-2 (curl curl(gk]I)- grad div(gkp]I)-

k-2 curl curl((gk gkp))

where the two first formulas may be seen as the decompositions of G and Gt into
"S" and "P" waves.

Remark A.4. The singularity ofG in the vicinity of x 0 is of order 3 (i.e., it
has an asymptotic behavior such as Ilxll-3). The singularity of Gt is only of order 1;
this is obvious in the particular case t 1 since G1 is simply the diagonal operator
g]I).

Proof. We first show that (A.1) has at most one outgoing solution and then that
the tensor Gt given by (A.5) is this solution.

(i) The uniqueness of Gt follows from the same arguments as those developed
in 3.3 for the proof of Theorem 3.1. Indeed, if U is a solution to the homogeneous
equation

curl(curl U) t-1 grad(div U) k2sU 0

.in the whole space N3 and satisfies the radiation conditions (A.3) and (A.4), it may
be readily verified that the energy flux at infinity vanishes, which implies U 0. Note
that the uniqueness ofC results from that of Gt (t c).

(ii) It may be easily seen that

(A 10) curlG curl(gaI[)
curl Gt curl(gaI[)

(and div Gc -k-2 div(SlI)),
and div Gt t div(gkp]I).

These relations together with the expressions (A.9) show that G and Gt are solution
to (A.1).
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(iii) It remains to verify that the column vectors of G and Gt satisfy the ra-
diation conditions. Let ER {x E II(3 Ilxll R }, and let n denote the outer unit
normal on ER. From (A.10), we deduce that on ER we have

(A.11) curlG( A n d,.g n A (x() A n)
curlGi) A n d.gk8 n A (x() A n) and

(and div G( 0),
divG) t drgkp x() n.

Moreover, by noticing that for large R

drgk(R) O(R-1) and 2drgk(R) -k2gk(R) + O(R-),
we see that

grad div(gkx(i)) --kgk (x() n)n + O(R-2).
Hence, we infer from (A.5) that

G( g8 n A (x(i) A n) + O(R-2),(A.12) Gi)
gk n A (x(i) A n) + t gkp (x() n)n + O(R-2).

The conclusion follows from these formulas together with (A.11) and the fact that gk

satisfies the radiation condition (A.8). For instance, if k8 E N+, we have

curlG) A n iks n A (G) A n) (drgk --iksgk) n A (x() A n) + O(R-2)

for t oc or t oc, which shows that each Gi) satisfies the transverse radiation
condition (A.3). El

A.2. Integral representation in a bounded domain. Let (9 be a bounded
open set of ]3 with Lipschitz-continuous boundary F. We denote by n the unit
outward normal on F and by (D the exterior of (9, i.e., 59 3 \ . Let U
H(curl; (9) C H(div; (9) be a function that satisfies (in the sense of distributions) the
classical (t oc) or regularized (t oc) Maxwell equation

(A.13) curl(curl U) t-1 grad(div U) k2sU 0

in (9. Consider the function b/ L2(N3) defined by L/- U in (9 and b/- 0 in (9t.
PROPOSITION A.5. In (.O [3 (.O, the function bt satisfies the integral representation

IA(x) =/ Gt(x y) {curl U(y) Any + t-ny div U(y) } dTy

-/,(curly Gt(x y)) {U(y) Any}(A.14) dTy

t-1 ] (div {U(v). d%

(where the exponent T denotes the transposed of a matrix).
Note that by virtue of (A.10), this integral representation can be expressed in the

form

bl(x) =/ Gt(x y) {curl U(y) Any + t-lny div U(y) } dTy

(A.15) -/2 gradv gk8 (x y) A {U(y) Any} dTy

[ gradv gk, (x y) {U(y). nv} dTv,
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where the last integral has to be removed in the case t oc.
Remark A.6. In these formulas, all the integrals should be written as a dual-

ity product between H-1/2(F) and HI/(F). Indeed, we know from the hypoth-
esis U E H(curl; (9)N H(div; (9) that the quantities (U A n)]F and (U. n),F are

defined as elements of H-/2(F) (see, e.g., [8]). Moreover, with the additional con-
dition curl(curl U) t-1 grad(div U) E L2((9) that follows from (A.13), the quantity
(curl U A n + t-ln.div U),F also appears as a distribution of H-1/2(E). However, for
the sake of simplicity, we retain the integral notation.

Proof. We show below that the integral representation (A.14) is nothing but the
convolution between the Green tensor Ct and the distribution

(A.16) S curl(curl/g) t-1 grad(div/g) ks2/g
whose restriction to (9 and (9 is obviously 0 by construction of/g; the support of S
is thus contained in F.

(i) Let us first prove that

(A.17) lg Gt * S,

where the convolution is defined similarly to the corresponding matrix product, i.e.,
3

j--1

With this definition, it may be easily seen that the operators curl, grad, and div can
be expressed as

curl V (curl 5]I) V, grad v (grad 5) v, and div V (grad 5)T V,

and we have the transposition relation (A B)T BT AT (note that (curl 5]I)T
curl 5]I). We deduce

GtT. {curl(curlb/) t-1 grad(div/g) ks2L/}
{curl(curl Ct) t-1 grad(div Ct) k2sCt}T bl,

where the right-hand side is nothing but(5]I) b/=/g by virtue of (A.1). Property
(A. 17) follows.

(ii) The second step consists of calculating the distribution S. For every V
’(R3)3, we have

(S, V Jo U. {curl(curl V) t-1 grad(div V) k2sV}.

Integrating by parts and using the fact that U satisfies Maxwell’s equation in (.9 yields

(S, V} =/ {curl U A n + t-n div U}. V d/

+ /{.U An}. curl V d/- t-1/{U. n} div V d/,

which can be expressed in the form

(A.18) S {curl U A n + t-in div U} 5F +curl {(U A n)SF} +t-1 grad {(U. n)5F},
where we denote by fS the distribution of D(N3) given by
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(iii) Substituting the expression (A.18) of S in (A.17), we finally have

b/= C-t * {curlU A n + t-lndivU}
+ (curlCt) * {(U A n)SF} + t-l(divC,t)T {(U. n)SF}.

Each term of the right-hand side is a convolution between a function that is infinitely
differentiable outside 0 and a measure with compact support (on F). Outside the
support of thismeasure, it thus defines an infinitely differentiable function that can
be expressed in an integral form (see, e.g., Schwartz [22]); this form is simply the
integral representation formula (A.14).

A.3. The case of an exterior domain. Let , (9, and F be defined as in
the previous section, and let n denote now the unit normal on F oriented toward (9.

Consider a function U E H1oc(curl; (9) f)H1oc(div; (9) that satisfies (in the sense of
distributions) the classical or regularized Maxwell equation (A.13) in (9. Define the
function b/E L2(IR3) by b/= 0 in (9 and b/= U in (.9.

PROPOSITION A.7. If U satisfies the outgoing radiation conditions (A.3) and
(A.4), then the statement of Proposition A.5 holds; formulas (A.14) or (A.15) are
still valid.

The main ingredients of the proof are the integral representation in a bounded
domain (Proposition A.5), the uniqueness of the Green tensor (Proposition A.1), and
the following lemma.

LEMMA A.8. Let A, B, and c be three functions defined on the boundary F of
(where A and B are vector-valued and c is scalar-valued). Then the function bl given
by

ld(x) [ C.t(x y) A(y)
(A.19) JF

/(curly Ct(x y)) B(y) d’v t- f(divv C,t(x y))Tc(y).d7v,

satisfies Mazwell’s equation (A.13) separately in 0 and 0 as well as the radiation
conditions (A.3) and (A.4).

Proof. To see that Maxwell’s equation (A.13) is satisfied, just notice that as in
the proof of Proposition A.5, the definition (A.19) of b/can be expressed equivalently
as

b/- t * (A@) + (curlC.t) (B@) + t-(divC.t)T (c@),

from which we deduce

curl(curl/,/) t- grad(div b/) k2/d
(SlI), (A@) + (curl 51I), (B@) + t-1 (div 5]I)T (c@)
A@ + curl(B@) + t- grad(c@).

This distribution vanishes outside F.
To see that b/ satisfies the radiation conditions, we simply have to exhibit the

asymptotic behavior of (A.19) when IIll tends to infinity. The conclusion follows
from the fact that the. columns of Ct and curl t, as well as (div (t)T if t -/- oc, satisfy
the radiation conditions (the proof of this result, which does not raise any particular
difficulty, is left to the reader). [:]

Proof of Proposition A. 7. Let E be the boundary of an open ball B whose radius is
chosen large enough so that it contains F. Using the simplified notation b/= Zt[F; U]
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for the integral representation (A.14), we deduce from Proposition A.5 (applied in the
bounded domain O’ffl B) that

(A.20)
U in O A B,:Z-t[F; U] + :Zt[E; U] 0 in (.9 U (IRa \ ).

We thus have to prove that Zt[E; U] 0 in O ffl B. First notice that from Lemma
A.8, Zt[E; U] defines a function that satisfies Maxwell’s equation separately in B and
IR3 \ as well as the radiation conditions. Consider then the function V given by

V Z-t[E; U] in B, and V U Zt[F; U] in I[{3 \ .
Noticing that in O’ AB we have V U-Zt[F; U] by virtue of (A.20), we infer that V
is regular in the vicinity of E. Hence V satisfies Maxwell’s equation in the whole space
IR3 and the radiation conditions. The uniqueness of C-t (Proposition A.1) ensures that
V=0. [1

Appendix B. Compactness results. For the sake of completeness, we sum up
in this appendix the compactness results that are available to our knowledge regarding
the embedding of

H(curl, div ; O) {U E L2(O)3 curl U E L2(O)3 and divU L2(O) }
into L2(O) for a bounded open set O C IR3 and a bounded function .

B.1. Statement of the results and consequences. Let us first point out
that the embedding of H(curl, dive; O) into L2(O) is not compact; we have to add
some boundary condition to ensure compactness. In this paragraph, we assume that
(9 is a bounded simply connected open set in ]1{3 with Lipschitz-continuous boundary
00. The following result may be found in Costabel [6]; it is related to the case of a
constant function .

PROPOSITION B.1. The embedding of each of the following spaces into L2(O) is
compact:

(B.1) {U H(curl, div; (9) U A n L2(00)3},
(B.2) {U H(curl, div; (9) U.n L2(O0)}.

These properties can be readily extended to the case of a bounded function with
bounded gradient. Indeed, we have in this case H(curl, dive; (9) H(curl, div; (9).
The case of a function that is only assumed bounded has been dealt with by Weber
[24] for homogeneous boundary conditions, which may be summarized as follows.

PROPOSITION B.2. Let L((9) such that gle > c a.e. in (9 (c > 0 fixed).
The embedding of each of the following spaces into L2((9) is compact:

{UeH(curl, div(;C0) UAn:0 on 0(9},
{UeH(curl, div(;O) U’n:0 on 0(9}.

In view of these propositions, it seems natural to wonder whether these latter
compactness properties hold if we replace the homogeneous boundary conditions by
U An L2(OO)3 or U.n L2(00). The answer is given in the following proposition,
which is proved in the next paragraph.

PROPOSITION B.3. Let L(O) such that 9e > c a.e. in (9 (c > 0 fixed).
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(i) The embedding of the following space into L2(O) is compact:

(B.5) {U e H(curl, div ; (.9) U.n e L2(OO) }.

(ii) Suppose that O0 is regular enough so that the following a-regularity condition
is satisfied for some > O. The solution to

A99 0 in O,
On= f on 0(9

belongs to H3/2+(0)/I for every f e H1/2(O) such that roof d7 O. Then the
embedding of

(B.6) {U E H(curl, div ; 0)[ U A n L2(O0)3 }

into L2 ((9) is compact.
Remark B.4. In case (ii), the boundary 0(9 must be more regular than Lipschitz

continuous. For instance, we can choose a surface of class C1’1 since a solution to the
Laplace equation with a H/2(0(9) normal derivative belongs in this case to H2((9).

As we will see in the proof of Corollary B.5, we can manage without these latter
properties for the problem studied in the present paper. However, they become neces-
sary if the boundary condition on the perfect conductor is replaced by an impedance
condition.

COROLLARY B.5. Let E/H be the Hilbert spaces defined in (4.8), where the
domain is assumed to have a Lipschitz-continuous boundary F U E, and L(t)
satisfies assumptions (2.3) and (2.4). The embedding ofT-lE/H into L2(t) is compact.

Proof. Let {,S(i) 1 <_ i <_ I } be a finite family of regular open sets that covers

=-ft (i.e., =-ft c [,Jl<<x ,S()) such that each O() S() VI D is a simply connected
domain with a Lipschitz-continuous boundary. Suppose that this family is chosen
so that no O(i) contains simultaneously a part of the boundary E and a part of the
inhomogeneous medium (which is possible because of the assumptions on E; see Fig.
4.1). Consider then a partition of unity {a(i) 1 _< _< I } associated with this family,
i.e., a family of functions a() that satisfy

I

a()eT(S()), 0_<a()_<1, and E a()=l in.
i--1

Let {Uk[ k N } be a bounded sequence of "I’IE/H, let us prove that there exists
a subsequence of Uk that converges in L2().

We clearly have Uk <i<x c(i)Uk Let rr(i) denote the restriction of c(i)Uk
to 0(i). By virtue of the assumptions stated above, it is readily seen that each

{U(ilk N} defines a bounded sequence in one of the spaces given in Propositions
B.1 or B.2. Starting for instance with U(), we can extract a subsequence (still de-

noted by U(1)) that converges in L(O(1)). Going on with the associated subsequence
of U(), we can extract from it a subsequence (still denoted by U()) that converges
in L(O()) and so on, in a finite number of steps; the resulting subsequences rr(i)

respectively, converge in/.,(O(i)), which shows that Uk converges in L().
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B.2. Proof of Proposition B.3. The presentation of the proof follows the lines
of [24]; however, it is shorter since we use some classical decomposition results (given,
for instance, in [8]).

We denote by Uk a bounded sequence in (B.5) or (B.6). Our aim is to prove that
some subsequence of Uk converges in L2(O).

B.2.1. Normal boundary conditions. First consider the case of (B.5), that
is, Uk" n is bounded in Lg(O0). From Lemma B.6 (with F0 and F1 0(9),
we see that Uk has the decomposition Uk grad Pk + Wk where Pk E HI(O)/N is
defined by

gradk grad fo Uk grad

and Wk is such that

curlWk=curlUk, divCWk=0, and (Wk.n)loo=O.

Let us prove separately that some subsequenees of grad k and Wk converge in L2(O).
(i) Set Ut U Uk and tk k. From the definition of k, we readily

have (integrating by parts)

; Ilgrad q)kl]2= ; Utk.gradqotk=- div(Utk)-+ ]2o(Utk.n)-dT.
As k is bounded in HI(O)/R, we can extract a subsequence (still denoted k)
that converges in L2(O)/N and whose trace on 00 converges in L2(OO)/R. The
convergence of grad k in L2(O) follows. (Note that we use here the fact that Uk" n
is bounded in L2(O0).)

(ii) To deal with Wk, we apply [8, Thm. 3.6, p. 48], which shows the existence
of k in H(curl; O) such that

curlk=cWk, divk=0, and (kAn)10o=0.

From Costabel [6, Thm. 2], we deduce that k H1/2(O)3 and IIkllH1/.(o)3 <_
C II WkllL .<O> and thus deduce the existence of a subsequence, still denoted k,
converging in L2(O)3. Since

; curl q2k Wk ;k curl Wk

(where Wtk Wt Wk and tk gk), Wk converges in L(O)3.

B.2.2. Tangential boundary conditions. Consider now a sequence U bounded
in (B.6) (Uk An is bounded in L2(O0)). From Lemma B.6 (with F0 0(9 and F1 0),
we have the decomposition Uk grad Pk + Wk, where k H0 ((9) is now defined by

grad qok" grad ; Uk. gradV H(O),

and Wk is such that

curlWk=curlUk, divCWk=0, and (WkAn)loo=(UkAn)loo.
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FIG. B.1.

(i) To see that some subsequence of grad 99k converges in L2(O), we proceed
exactly as above (no boundary term appears in the integration by parts since 99k 0
on 00).

(ii) For Wk, we apply [8, Thm. 3.5, p. 47] which shows the existence of k in

H(curl; (9) such that

curl(I)k=cWk, divk=0, and (bk.n)loo=O.

Provided 0(9 satisfies the e-regularity condition, we deduce from Lemma B.8 that
E H1/2+(0)3 and IIkllH1/.+(O)a <_ C IIWklIL.(o)3. Consequently, there exists

a subsequence k converging in L2(O)3 such that (k A n)loo converges in L2(O0)2.
Since

Ok curl Wk + fOo Ok Wk A nd/,

the convergence of Wk in L2(O)3 follows.

B.3. Auxiliary lemmas. The following lemma concerns a decomposition of
vector fields that allows adding the divergence-free condition in the function spaces
related to the classical Maxwell equation (see 2.3). It is also used for the compactness
results shown above.

LEMMA B.6. Let be an open set of N3 with a Lipschitz-continuous boundary
that consists of two disjointed parts Fo and F1 as shown in Fig. B.1 (where one of
them may be ). Let L(O) such that e > a a.e. in 0 (a > 0 fixed). Then
every function V L2(O)3 has the decomposition

(B.7)
V=grad99+V where

99 H1(0), 99 O on Fo, and
V’GL2(O)3, divV/=0 in O, and V n O on F1.

Moreover, curl V curl V and grad 99 A n 0 on Fo.
Remark B.7. Note that cV. n and grad 99 A n are defined, respectively, in

H-1/2(O(C)) and H-1/2(00)3 since div V’ 0 and curl(grad ) 0.

Proof. Let 7-/ denote the Hilbert space { Hl(O) llgo 0} if Fo and
TI HI(O)/I if F0 . Let V be a given function of L2(O)a. First, notice that there
exists a unique function 99 E 7-/such that

grad 99. grad V. grad



SCATTERING PROBLEMS FOR MAXWELL’S EQUATIONS 1629

This follows from the Lax-Milgram theorem (by virtue of the assumptions on , the
left-hand side of this relation defines a continuous and coercive form in 7-/). In other
words, a is formally the only solution to

div( grad ) divV in (9,
=0 onF0,

Ono= V’n onF1.

Consider then the function V’ (V- grad) E L2(O)3 that satisfies by construction
of the divergence-free condition div (V 0 (in the sense of distributions) as well
as the boundary condition V. n 0 on F1. We readily have curl V curl V. It
remains to prove that grad A n 0 on F0, which amounts to showing that

ograd

curl W 0

for every W e :D()3 whose support is localized in a vicinity of F0 (W 0 near F1).
This property simply follows from Green’s formula:

; grad, curtW ; qo div(curl W),

where the boundary integral vanishes since
The following regularity lemma is derived from Costabel [6].
LEMMA B.8. Let 0 be a simply connected bounded open set satisfying the

regularity condition stated in point (ii) of Proposition B.3. Then the space

12={UH(curl;O)l divU=0 and (U n)loo O }
is embedded in H1/2+(O)3. Moreover, there ezists a constant C > 0 such that for
every U , we have

Proof. We proceed exactly as in [6].
(i) Let U e 12. From [8, Thm. 3.4, p. 45]., we deduce the existence of e S (O)3

such that

curlO=curlU and divO=0.

Let U ; we have I/E L2(O)3 with curl 0 and by the Stokes theorem [8,
Thm. 2.9, p. 31] the existence of q HI(O) such that grad q. It follows that q
satisfies

Aq=O in (9,
Onq =-(ffp’n’)lO0 e H1/2(O0).

By the e-regularity hypothesis, q H3/2+s(O), and consequently U HI/2+(O)3.
(ii) The estimation follows from the closed graph theorem. We denote by I

the identity in L2(O)3 and by J its restriction to 12 considered as an application
between 12 and H1/2+s(O)3. Let (Un, JUn) be a sequence that converges in 1) x
H1/2+e(O)3, say to (U, Y). Considered as a sequence in L2(O) x L2(O), (Un, JUn)
(Un, IU,) converges to (U, IU), from which we deduce that Y IU JU; that is, the
graph of J is closed. As a consequence, the natural embedding 12 H/2+s(O)3 is
continuous.
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SPECTRAL ANALYSIS OF A MULTISTRATIFIED ACOUSTIC
STRIP PART II: ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR A

SIMPLE STRATIFICATION*

ELISABETH CROCt AND YVES DERMENJIAN
Abstract. We consider the acoustic propagator A -V.c2V in fl { (x, z) E 2 / 0 < z < H}.

The velocity c, which describes the stratification of the strip f, depends only on the variable z: it is
assumed to be a function in L((O,H)) bounded from below by Cm > 0. Let A be the self-adjoint
operator associated with the Neumann or Dirichlet condition at z 0 and z H; let be a real
number in the spectrum of A; and let u be the solutions of the equation (A- II)u f locally
in the domain of A, which are determined by the limiting absorption principle in [E. Croc and .
Dermenjian, SIAM J. Math. Anal., 26 (1995), pp. 880-924] and mad explicit with trace operators.
Thanks to accurate H61der properties for the trace operators, we control the asymptotic behavior of
u with so-called "zero-trace" conditions for f.

Key words, stratified medium, acoustic waves, self-adjoint operator, resolvent, limiting absorp-
tion principle, bootstrap theorem

AMS subject classifications. 35L05, 35P, 47A70

1. Introduction. This article is the continuation of [CD95a]. Let us recall the
problem: the modeling of a particular seismic problem leads to a scalar wave equation
written as

(Ot)2v + Av S

in the strip

f- {(x,z) e 2 / 0 < z < H}.

The unknown function v(t, x, z) is the displacement in the medium: it is a real-
valued function defined for t in and (x, z) in .

The spatial operator is the differential operator A -V.c2V -0x (c2 (x, z)Ox)-
Oz(C2(X, Z)Oz) acting in f. The coefficient c(x, z) characterizes the medium celerity:
it is a measurable function in f which satisfies 0 < Cm <_ c(x, z)

_
CM for almost

every (x, z) in f and with some real numbers Cm, CM > 0. Our goal is to deal with
media stratified differently according to whether x < 0 or x > 0: it means that the
celerity function is such that c(x, z) c_(z) if x < 0 and c(x, z) c+(z) if x > 0.

The right-hand side, S(t,x,z), is a given source. It is a function in L2(), the
Hilbert space of complex-valued functions defined on f which are Lebesgue measur-
able and square integrable.

The boundary conditions (BC) for the displacement v(t, x, z) are the Neumann
or the Dirichlet conditions in z 0 and z H. For instance, geophysical problems
lead to the following boundary conditions:

(1.1) C2OzV[z=o 0 and V[z---H O.

Choosing a constructive stationary approach, we intend to obtain the spectral
and scattering theory for the acoustic propagator, that is, the self-adjoint operator

Received by the editors July 18, 1994; accepted for publication July 24, 1995.
U.F.R. Mathmatiques Informatique Mcanique, Universit de Provence, Case V, 3 Place Victor-

Hugo, F-13331 Marseille cedex 3, France (ecroc@gyptis.univ-mrs.fr, dermenji@gyptis.univ-mrs.fr).
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(D(A),A) acting in L2(ft) that we associate with the problem. The domain D(A) is
included in the Sobolev space

Hl(ft) {u e L2(f) / Oxu, OzU e L2())

and is equal to

(1.2) D(A) {u E H(ft) / V.cVu L2(ft), u satisfies (BC)}.

We call free or unperturbed problem the case where the strip is only stratified in
the z direction. Therefore, the celerity c is a function of the single variable z in (0, H)
such that c_ (z) c+ (z) c(z). The free differential operator is written as

(1.3) A -c2(z)(Ox)2 Oz(C(Z)Oz).

A particular case that could serve as a typical problem is the case of a two-valued
function

(1.4) c(z)=c if0<z<h and c(z)=c2 ifh<z<H

with 0 < h < H and 0 < Min(c,c2). More generally, we consider a celerity c(z)
which satisfies the assumption

(H) c L((O,H)) and Minc(z) > Cm > O.

In [CD95a], we developed an explicit spectral analysis of the free operator (1.2)-(1.3)
with boundary conditions (1.1) or (BC), and then we deduced a limiting absorption
principle for the resolvent operator RA(# + ia) (A (# + ia)i)-i when e goes to 0
and # is in the spectrum of A.

In this article, the results concern u+ R(#)f, the solutions of the equation
(A- #I)u f which are obtained with an appropriate f by this limiting absorption
principle. The article is organized as follows.

In 2, we fix our notation and recall the results of [CD95a]. Then we present our
main results. These are the so-called division or bootstrap theorems (Theorems 2.1
and 2.2) for the free operator (1.2).-(1.3) under assumption (H). Under some assump-
tions on the function f, these division theorems specify the asymptotic behavior of
u+ when (x, z) tends to infinity in ft. Moreover, the stated and used results allow us
to again visit the limiting absorption principle at thresholds (Theorem 2.3).

In 3, we look for the basic estimates needed to prove the previous theorems.
These estimates are essentially derived from Agmon’s results, specifically from Lemma
B.2 of [A]. They concern the terms that arise in the explicit formula of the resolvent
and rely on a thorough study of trace operators. On one hand, we state Sobolev
properties and differentiability (see Propositions 3.2-3.5) of the generalized Fourier
coefficients (equation (2.5) in 2) of a function in L2(f). These coefficients are asso-
ciated with the spectral representation of A obtained in [CD95a]. On the other hand,
we collect some Hhlder estimates (see Propositions 3.8 and 3.9) scattered throughout
[CD95a] and based on Theorem 3.7. Finally, we use [A, Lem. B.2] and Corollary 3.1
to state new estimates (see Propositions 3.10 and 3.11).

In 21, we complete the proofs of Theorems 2.1 and 2.2. We use the limiting
absorption principles from [CD95a], called LAP1 and LAP2.

In 5, we prove Theorem 2.3, also called LAP3. The thresholds are the eigenvalues
/(0, m), m >_ 1 (see equation (2.2) in 2), of the transverse operator B -dz(c2(z)dz)
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on (0, H)with domain D(B) {u e Hi((0, H)) / Bu e L2((0, H)), u satisfies (BC)}:
The statement of LAP3 is the convergence in the space L2_8(t) {f / (l+x2)-8/2f e
L2(t)} of RA()f when , -+-Im > 0, tends to a threshold.# A(0, m). Sufficient
conditions for such a convergence are as follows: s > 3/2 and f is in the space
E,(>) NL(m, 1). This space, appearing in Theorem 2.2 and considered in Propo-
sition 3.6, has codimension 2 in L().

We now call the perturbed problem the case of the strip where the celerity is such
that c(x, z) c_(z) if x < 0 and c(x, z) c+(z) if x > 0 with two distinct functions
c_ and c+ satisfying the assumption (H). With the limiting absorption principles and
division theorems for the both free operators associated with the celerities c_ and
c+, we are in a position to deduce a limiting absorption principle for the associated
perturbed operator. There are many examples of such a path from free operators
to perturbed operators with short range perturbations (see, for example, [A], [DG],
[HI, IV], and [We]) or long-range perturbations (see, for example, [T81a] and [T81D]).
The particularity of the problem under consideration is the radical difference between
the behavior of the celerity when x goes to - and when x goes to +. It will be
studied in a third paper.

2. Notation, review, and results. The operator (D(A), A)is defined by (1.2)
and (1.3). The celerity c is a function of z and satisfies assumption (H).

We now present some notation and useful results from [CD95a].
For any real number s, let L() be the weighted space n() {f / (1 +

x2)S/2f LU()} equipped with the Hilbertian norm

II/llLT(a) I1(1 + xa)’lafllh.(o)= (1 + xa)Slf(x,z)ldxdz

The dual L(Q)’ and the space L() are isometric. They are identified through the
duality bracket

(f g)LT(a), L(a) j .f(x, z)g(x, z)dxdz.

Let u u() (2)-1/2 f e-iXu(x)dx be the Fourier transform on n2(). The
partial Fourier transform with respect to the variable x on L2(Q) is also denoted .

For any real number , let (V(, n, .))nkl be an orthonormal basis of the space
na((0, H)) which satisfies the eigenvalue problem

(2.1) -(c2V’)’ + c22V Y on (0, H), V satisfies (BC).

This problem is studied in 4.2 of [CD95a]. The eigenfunctions V(, n, .) can be chosen
real. The eigenvalues are simple and strictly positive. For each real number , they
define an unbounded real sequence ((, n))nkl, increasingly ordered with n.

The operator (D(A), A) is self-adjoint in the space n2(). The spectrum a(A) of
the operator A is the half-line [(0, 1), +) E [(/4H2)c, +). The eigenvalues
of (2.1) for 0 appear as exceptional values or thresholds, and we set

(2.2) F(A) {(0, n) / n k 1}.

The properties of the dispersion curves

{HA({,n), n_>l,
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are described in Theorem 4.5 of [CD95a]. They are strictly increasing on [0, +c) and
even and analytic on N, and there exist functions H an() such that

(2.4) 2 < a()< IIc]] 2A(, n) A(O, n) + 2an() with cm L((O,H))"

Looking at the restriction of A(, n) to the interval [0, +c), A H (A, n) is the
monotone inverse function which maps [A(0, n), +c) onto [0, +c).

For any function f in the space L2(t), any integer n _> 1, for j 1 or 2, the
generalized Fourier coefficients are the complex-valued functions defined for almost
every real number and for almost every real number A in the interval (A(0, n),
by

(2.5) f(, n) (2)-1/2 f(x, z)e-ixV(, n, z)dxdz .T’f(, z)V(, n, z)dz,

(2.6) fJ(A,n) (O(,,n)) 1/2 ]((-1)J(,k,n),n).
The coefficients (2.5) and (2.6), respectively, are associated with the spectral repre-
sentation of the self-adjoint operator (D(A), A), which is made explicit in Theorems
3.1 and 3.2, respectively, of [CD95a]. The functions f(., n) and fJ(., n) satisfy

(2.7) E If((, n)12d(
n>l n> j--1 (0,n)

The function S in the space L2(a) and the scalar product (f g)L(a) with a function
g in L2() can be written as

(2.8) f(x, Z) E(27)-1/2 f(, n)eiXV(, n, z) d,
n>l c

(2.9) (f f(, n)(, n) d ff (, n)gY (, n) d).

n_ cx) nk j=l (0,n)

Let s be a real number such that s > 1/2.
For any real number and any integer n >_ 1, the trace operator n(), defined

by

f e L(a) ()f (, n) (2) -1/2 ] f(x,z)e-ixv(,n,z)dxdz,

is a continuous linear form on Ls2(gt) with Hhlder properties in the variable stated
in Proposition 3.2 of [CD95a]. Specifically, for a real number 5 in [0, 1], 5 < s- 1/2,
there exists a function M(, ’) Mn(S,6,,’), continuous with respect to and ’,
such that

(2.11) Vf e Ls2(a), M(5,5’)I5- 5’lellfllL (a).
The space

NL2(n) {f e L2(a) / ,(0)f 0}
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is a closed subspace of L2() with codimension one. Referring to Proposition 3.3 of
[CD95a]), the space

(2.13) W(n) NL(n)
is dense in Nn2(n) and therefore not dense in n2(Ft). However, the space W(n) is
dense in nt2(t) for t _< 1/2.

For any real number A in a(A), any integer n _> 1, and j 1 or 2, the trace
operator -nJ () is then defined on Ls2(t) by

(2.14a) -J(A)f 0 if A A(0, n),

(2.14b) -(/)f fJ(),n) (Ox(),n))l/2n((-1)J(,,n))f if A > A(0, n).

The function A - -J()) maps [A(0, n), +) in L()’ L(). Its properties are

stated in Proposition 3.4 of [CD95a]. Far from A(0, n), the function A (0x(A, n))/2
is analytic, and the function A 7(A) has Hhlder properties identical to those of
the function () (see (2.11)) and, in particular, the same Hhlder order 5. Due
to the vanishing of 0A(., n) in 0, the function A 7(A) fails to be continuous
in A(0, n). However, there exists a function C(A) C(s, A), continuous with respect
to A A(0, n), such that

(2.15) Vf L(), w()f] C()[- (O,n)[-1/4[fL]().
In the neighborhood of A(0, n), to get Hhlder conditions for A 7(A), we have to
consider the restriction of 7(A) to NL(n) and to assume that s > 1. Specifically,
for s > 1 and for a real number 5 in [0, 1/4], 5 < (s- 1)/2, there exists a function
M(A, A’) M(s, 5, A, A’), continuous with respect to A, A’ A(0, n), such that

(2.16) Yf NL:(n), 7(A)f 7(’)fl M(,’)]- A’]5]f]]L](n).
The following useful formulas are derived from (2.4) and are used in the proof of
Proposition 3.4 of [CD95a]"

(2.17a) 0(, n) b(),

(2.17c)

(2.17d) zJ (A)f (,- /(0, n)) -1/4 Hn()1/2 ((-1)j )f,

where _> 0 and the functions b, G, and H are strictly positive and analytic on

[0,
The limiting absorption principle is valid when the real number # is in a(A), that

is, we can determine

lim i)-1(2.18) RA(#)
--*t, +/-Im>0

(A

Then the function RA defined on C+ {( e C / +Im( > 0} by ( RA(()
(A- (I) -1 can be continued on or(A). Theorem 3.4 of [CD95a] claims the following
results, called LAP1 and LAP2.
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LAP1.

(2.19) If t r(A)= {A(0,n) / n _> 1} and s > 1/2,

then the limits in (2.18) exist in the uniform-operator topology on the space B(L2(Ft),
L2_..s(Ft)). Moreover, each function RA is locally Hhlder continuous on \ F(A) with
order 5 in [0, Min(1, s 1/2)).

LAP2.

(2.20) If # A(0, n) and s > 1,

then the limits in (2.18) exist in the uniform operator topology on the space B(NL2(n),
NL2s(n)’). Moreover, each function RA is locally Hhlder continuous on Jn=e {( e

/ A(0, n 1) < Re( < A(0, n + 1)} with order 52 in [0, Min(1/4, (s 1)/2)).
Let us recall that NL2s(n) is not dense in L2(t), s > 1/2. Therefore, L28(gt) cannot
be identified with a subspace of NL2s(n) ’.

With the above definitions and notations, we have the following statements.
THEOREM 2.1 (division theorem outside of r(A)). Let m >_ 2 be an integer, Im

be the interval (A(0, m- 1), A(0, m)), and # e Im. Let s > 1/2 be a real number and
f be a function in L2() such that

(2.21) Tgn(#)f=O, j=lor2, l<_n<m.

Then R(#)f R(#)f u, which is in L2_s() by LAP1, belongs to L2() with
Max(0, 1 s). Moreover, there exists a function C Cm(#, s), continuous with

respect to the variable # on Im, such that for every f in L2s() satisfying (2.21), we
have

(2.22)

THEOREM 2.2 (division theorem at thresholds). Let m >_ 1 be an integer and
# A(O, m) be the corresponding threshold of A. Let s > 3/2 be a real number and f
be a function in i(n) satisfying (2.21) and such that

(2.23) fa f(x, z)V(O, m, z)dxdz ] xf(x, z)V(O, m, z)dxdz O.

Then R(#)f R4 (#)f u, which is in NL2(m) by LAP2, belongs to L2() with
Max(0, 2 s). Moreover, there exists a constant C C(#, s) such that for every

f in n2() satisfying (2.21) and (2.23), we have.

Remark 2.1. The space L(t) is a strict subspace of NLs(m). Indeed, the real
number . Max(0, 2- s), s > 3/2, is in the interval [0, 1/2). Therefore, the space

NL ( n)a C (a) is dense in the space 5](a), injective
maps

c 5](a) c_ 5 (a) c_ c

For s > 3/2, according to condition (2.23), we define the space

(2.25) NL2s(m, 1)= {f NL2s(m) / xf(x,z)V(O,m,z)dxdz=O}.
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We consider this closed hyperplane of NL2(m) in Proposition 3.6 in 3. There we get
some properties of nullity and HSlder continuity in ), A(0, m) for the trace functions. fJ (), m), j 1 or 2. They are sufficient to get the following "strong" limiting
absorption principle in L2_s(t).

THEOREM 2.3 (LAP3). Let m >_ 1 bean integer and It )(0, m) be the corres-
ponding threshold of A. We set Jm (,(0, m 1), (0, m. + 1)) with (0, 0) < (0, 1).
Let s > 3/2 be a real number and NL2s(m, 1) be the Banach space (2.25) equipped with
the norm of L2(). Then the following hold:.

(i) For It in J,, the limits in (2.18) exist in the uniform operator topology on
the space B(NL2(m, 1), L2_s(t)).

(ii) Each function - RA(); defined on J = { e C-- / Re e Jm} and
valued in B(gn2(m, 1), L2s(gt)), is locally HSlder continuous with order in [0, 1/2],
5 < (s 3/2)/2. Specifically, there exists a function Cm(, ’) Cm(s, 5, ; ’), con-
tinuous with respect to and in J.+ such thatm

vf e (m, 1),

The same properties hold for the functions VRA ().
(iii) Let f be a function in gn2(m, 1) and

U+ R+A(It)f lim RA()f.
---*tt, +/-Im >0

With the notation in (2.10) and (2.14), we have

(2.27) U+/- g}L (), L]()

The distributions OxU+/- and OzU+/- are in L2_s(). Each function U+/- R+A(It)f is in

D(A)loc and satisfies the differential equation

(2.28) (A- ItI)U+/- f in D’().

Remark 2.2. The restriction of U+/- to NL2(m) is u+/- RA+/-(It)f, the limit form
on NL2(m) defined by LAP2. When s > 3/2, NL2s(m)is not dense in Ls2(t). Thus
the identification of U+/- and u+/- through R+A(It)f is not valid. To be more precise, U+/-

is the particular continuation of u+/- on L2(Ft) given by formula (2.27).
Remark 2.3. Theorem 2.3 improves LAP2 since R+A(It)f is a form defined on

L2(gt), a larger space than NL2s(m). However, we have to choose larger s and f in an
hyperplane of NL2(m). In a future paper, we will examine the question of whether
there exist functions f in the space NL2(m) with s > 1 such that

(2.29) lira _IIRA(C)-f",IIL()- -+-C.
---*1,
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Remark 2.4. The Hhlder order in [0, 1/21, < (s- 3/2)/2, obtained in LAP3,
has to be compared with the order 52 in [0, Min(1/4, (s- 1)/2)), obtained in LAP2. In
the case where s > 3/2, Corollary 3.4 together with Theorem 3.7 (both in 3) allows
us to increase the order . in LAP2 up to (see Remark 3.1, also in 3).

3. Basic estimates. For any real number s, HS(N) denotes the Sobolev space
with exponent s, the space of tempered distributions v such that ’v is in L(N). It
is a Hilbert space with the norm IIVH,(e) I]VIL](e).

3.1. Agmon’s result. We return to a basic result of Agmon. We use it in
dimension one.

LEMMA B.2 FROM [A]. Let s > 1/2 be a real number. Let v be a function in HS(N)
such that v(O) O. Then the function Y({) (v({)/{) is in H*-I(N) Lo(N), and
there exists a constant C C(s), independent of v in HS(N), such that

(3.1)

Proof. We refer to [A, pp. 209-211].
COROLLARY 3.1. Let s > 3/2 be a real number. Let v be a function in HS() such

that v(O) v’(O) O. Then V() (v()/) is a function in H-()n Lo(),
and there exists a constant C C(s), independent of v in H(), such that

Proo Lemma B.2 gives the function v() (v()/) in the space
Sinc (0)  im_0 (0) 0,

B.2 can be applied to v. This yields the corollary.

3.2. Accurate properties of the trace operators. First, we give results
about the Sobolev regularity, with respect to the variable , of the generalized Fourier
comci.ts (, n) dnd by (e.) or f.nctions . L(n).

PROPOSITION 3.2. Let s 0 be a real number. Let n 1 be an integer, M be
a a, ad a fntion i CF() ith ot in th itva I-M, M].
Th th coto afo L:(n) i L:(S) dnd @ (.,) at th
inequality

(3.3) II(., n)IIH-(s)

where the constant C Cn(s, () is independent of u in L2(a). Moreover, if u is in
L(), we have

(3.4) ((., n) e H() and

The constant C Cn(S, ).can be chosen continuously dependent on M and on the

Proof. Using the eigenfunctions V(, n, z) introduced in (2.1), we define

(3.5)

Thanks to the C regularity of V(, n, .) from in L((0, H)), for every integer
k, the function w satisfies

k 2

/=0
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Therefore, for every real r >_ 0, we have

(3.6) IlwllL < > -- n(r, ) Max{cn(k, if2) / k e 1, 0

_
k

_
r + 1}.

Let u be a function in L2(t). With the definition (2.5) of and with the property of
the Fourier transform $" with regard to convolution, we have

()(, n) oo Y:u(, z)()V(, n, z)dz (2r)-1/29 u(., z) w(., z)dz

and

o

H
u(., z) w(., z)dz

Let us set t :ks. From (1 + x2) <_ c(s)(1 + (x X)2)t(1 + X2)8, the Schwarz
inequality, and the Fubini theorem, we deduce the following estimates:

Using (3.6) with r s + 1, we obtain the estimate

Vu e L2(ft), CllullL < )
with a constant C C(t, ) _< (S)n(S + 1, ). The dependence of the constant
C appears in the constant dn(S / 1, ) of (3.6). The proof is then complete.

Choosing a larger s, we can improve the description of (., n) with the help of
Lemma B.2.
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PROPOSITION 3.3. Let s > 3/2 be a real number. Let n >_ 1 be an integer, f be
a function in gL2s(n), and be a function in C(1). Then there exists p p,f in
Hs-l(]) N nl() such that

o()f(, ) p(), e .
Moreover, there exist constants c(s), C C, (s, ), e [0, 1] and < s 3/2, and
M Mn(s, , ), independent of f in NL(n) and of the real numbers and ’, such
that

(3.9)

(3.10)

The constants C Cn(s, b) and M Mn(s, b,’6) can be chosen with the same
dependence on (b as in Proposition 3.2.

Proof. Let us recM1 (2.12)" NL(n) {f L() / f(0, n) 0}. Using
Proposition 3.2, the function ( v() O(()f((, n) is in HS() and is compactly
supported, and ]VH() Cn(S, )f]L](a). Then we pply Lemm.a B.2 to get p()
(v(()/() in Hs-I()LI() and [IplIH-() 5n(8, )]]fIIL](). Estimates (3.9) and
(3.10) are then derived from classical ones for functions in Ht(). Specifically,

p(x)eXdx

()-’ ( + x)-’dz (x)’( + x’)’dx ith > /e

[P() P(’)I (2)-/ P(x)(e eX’)dx

(2) -1/2 Ip(x)l 2-5[(- ’[Slx[dx with 6 [0, 1]

so that ]p()- p(’)l c(t, )1- ’lllpll.() with 6 < t- 1/2. 71

Precise results follow about the behavior of the trace functions near thresholds.
COROLLARY 3.4. Let s > 3/2 be a real number, n >_ 1 be an integer, and j 1 or

2. Let f be a function in NL(n). Then there exist locally Hb’lder continuous functions
F(., n)= Ff(., n) defined on and FJ(., n)= F](., n) defined on In --[A(0, n),
such that

(3.11) f-(, n) (, n) and fJ (A, n) (A A(0,/t)) 1/4 ej (/, n).

Specifically, for 5 in [0, 1], 5 < s-3/2, there exist a function M(, ’) M(s, 5, , ’),
continuous with respect to and ’, and a function M(A, A’) M(s, 5, A, A’), contin-
uous with respect to A, A’ _> A(0, n), such that

(3.12a) Vf G NL2s(n), I(, n) (’, n)l <_ (, (’)l ’lllfllL(a)

(3.12b) Vf e NLe,(n), IFJ(A,n)- F(A’,n)I
_
M(A,A’)IA-’l/llfll().
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Proof. Note that we already have the Hhlder continuity (2.11) for f(., n). From
Proposition 3.3, we deduce f(, n) F(c, n) and (3.12a) with 5 in [0, 1], 5 < s- 3/2.
Let A, A’ _> A(0, n) and , ’

_
0 be connected by (A, n) and ’= (A’, n). From

(2.6), (2,17c), and (2.17b) and setting sj (-1)j, we get

fJ(A,n) (O(,,n)) 1/2 (ej,n)= ()-,(O,n))-l/2Hn(()l/2ej (ej,n)
( (0, rt))-l/4Hn() 1/2 j(/ -/(0, n))l/2cn()(j n).

Thus fJ (, n) ( (0, rt))l/4Fj (), n) with

(3.13) FJ(A,n) (-1)JHn()l/2Gn() /((-1)J,n).

The analyticity and strict positivity of Hn and Gn and the Hhlder continuity (3.123)
of F(., n) imply

Again with (2.17b), we get (3.12b).
Propositions 3.2 and 3.3 imply particular differentiability properties for the func-

tions f(., n) n(.)f. Such properties are made explicit in the next proposition.
PROPOSITION 3.5 (derivatives of the trace operators and the spaces NL2(m, k)).

Let s > 1/2 be a real number and n >_ 1 and k k 0 be integers with k < s- 1/2. Then
the function n() defined on l and valued in L2s() has a derivative (dkn/dk).
There exists a function C() Cn(S, ), continuous with respect to , such that

(3.14) Vf e L2(t), <.

This derivative is locally HSlder continuous with order 5 in [0, 1], 5 < s- 1/2- k.
Specifically, there exists a function M(, ’) Mn(s, 5, , ’), continuous with respect
to and , such that

(3.15) Vf e L2(t), dk dk$n
a"--’77V ()f -d (’)f

The space

(3.16) dl }NL2s(n,k)= feLs(a)/-d(0)f=0, 0_<lk

is a closed subspace of L(t) with codimension k + 1. in particular, we have

(3.17) NL2s(n,O) NL2s(n) {f E L2s(f) / fff(x,z)V(O,n,z)dxdz O}
Proof. The existence and continuity of the trace operator n() and estimate

(3.15) with s > 1/2 and k 0 have been proved in Proposition 3.2 of [CD953]. Let us
now assume that s > 3/2. Let k be an integer such that 0 < k < s- 3/2. We consider
a function f in L2(t) and its Fourier transform 9vf with respect to the variable x.
Since k < s- 1/2, the function f(.,z) is in the space Ck() for almost every z in
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(0, H). For any integer in [0, k], we have

]0(:’f)(, z)l (271") -1/2 xle-iXf(x, z)dx

< ()-/ ( + x)-+dx If(x, z)l( +

The differentiability of the trace function f(, n) ($’f(, .) / Y(, n, .))L2((0,H))
follows from the differentiability of V((, n, .). Therefore, the trace map 7n has a
derivative of order k such that

(3.18) dkn
dk()f=

k o(:)(, z)O-y(, , )z.

As in Proposition 3.2 of [CD95a], estimates (3.14) and (3.15) re deduced from

IIoy(, , .) ov(’,n, .)10,-)) c(, , ’)] ’and from

Now the forms (dtn/dt)(O), 0 <_ <_ k, are continuous on NL2(m), and the properties
of the spaces NL2(m, k) are clear.

When f is a function in NL2(n), s > 3/2, we can determine Hhlder continuous

functions /(., n) and Fj(., n), j 1 or 2, through f(., n) and fJ (., n) with the help
of (3.11). When f is in NL2s(n, 1),..these functions have supplementary properties of
nullity.

PROPOSITION 3.6 (the space NL2(n, 1)). Let s > 3/2 be a real number and n >_ 1
be an integer. Then the space gL2s(n, 1) defined by (3.16) is a closed hyperplane of
NL2s (n) such that

gL2s(n, 1)= {f e NL2(n) //f(0, n)= 0}
(3.19) {f e yL2s(n) / F:(O,n) 0, j 1,2}

{feNL2s(n)/ ]2xf(x,z)V.(O,n,z)dxdz= 0}.
Moreover, for in [0, 1/2], 5 < (s- 3/2)/2, there exists a function C(;) Cn(s, , ),
continuous with respect to ; >_/(0, n), such that

(3.20) Vf e yn2s(n, 1), Ifj (,, n)l _< C(,)(A -/(0, n))l/4+5llfllL](a).

Proof. When f is in gL2s(n), s > 3/2, we have f(O,n) 0, and Ff(,n)
f(,n)/ is locally Hhlder continuous with respect to (. Therefore, F/(0, n)
lim(_..0 f(, n)/ (dn/d)(O)f. Since -. Y(, n, .) is even, O(Y(O, n, .) 0. From
this and from (3.18) with k 1, we derive- (O)f O(.f)(O, z)V(O, n, z)dz -i(27r) -1/2 xf(x, z)V(O, n, z)dxdz.

The description (3.19) of NL2(n, 1) follows. Estimate (3.125) yields (3.20).
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3.3. Investigations of the terms of the resolvent. Let # be a real number
in a(A) [A(0, 1), +oc). We fix (0, 0) 0. Let m _> 1 be the integer such that #
is in the interval (A(0, m- 1),A(0, m)] and let n >_ 1 be an integer. The following
quantities Bn and rn are defined in [CD95a]"

_> 1

(3.213)

(3.21b) with f and 90 in L2(gt).

If n > m (which is equivalent to A(0, n) > #),

(3.22a)

with f and 90 in L2 (fl) ifn>m (andA(0, n) >#)

(3.22c) with f and 90 in NL2,(m), s > 1, if n-m (and # (0, m)).

If n < m (which is equivalent to A(0, n) < it),

(3.233)

S- L+ fj(An) 90j(An)dA’+oo f(, n) (, n)
d p.v.Bn (it, f, 90) p.v.

({, n) ) = (0,n) A it

2

(3.23b) r (it, f, 90) E fj (it’ n) 90J (it, n)
j=l

(3.23c) with f and 90 in LU,(ft), s > 1/2.

The existence of the following limits B is used in [CD953]"
If n _> m and if both f and 90 satisfy (3.22b) in the case where n > m or (3.22c)

in the case where n- m,

B+ (it, f, ) B- (it, f, 90) lim Bn(, f, 90) Bn (it, f, 90).
-+#, 4-Im>O

If n < m and if both f and 90 satisfy (3.23c),

(3.25) B (it, f, 90) lim B(, f, 90) B (it, f, 90) +/- r r (it, f, 90).
-+tt, =kIm>O

For C+ { E C / +/- Im _> 0}, a(A), with f and 90 L2(ft), we set

(3.26) B(, f, 90) B(, f, 90).
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The limiting absorption principle and the properties of the resolvent on C+ are based
on a detailed study of the functions H B(, n, ) near the spectrum or(A). This
study is presented in Propositions 3.6 and 3.7 of [CD95a] and consists of proving
particular properties for the Hilbert transform of a Hhlder continuous function. The
main result--namely, the Hhlder continuity of the Hilbert transform--is also proved
by Muskhelishvili [Mu] in a theorem on the behavior of a Cauchy integral near the
boundary. We now give these properties in the form which we use for the proof of
Theorem 2.3.

THEOREM 3.7. Let a, b (a < b), and 5 E [0, 1) be three real numbers. Let
h be a function that is Hhlder continuous on [a, b] with order 5. We suppose that
h(a) h(b) 0 and that there exists a constant A(h) such that

(3.27) VA, ;’ [a, b], Ih(A) h(A’)l <_ A(h)l; -.;k’[.
For in C+ { C / 4-Im > 0}, we set 7-th+() f:(h(ik)/(A- ))dA.
the following hold:

(i) For a real number # in [a, b], the following limits exist:

Then

h(,) g 0,

(3.29)
i
b

h+(#) lim T/h+/-(() p.v. dA 4- iTrh(#);, +/-Im>O A #

b h(A)
lim T/h+ () dA.if h(#) 0, Hh+(#) -h-(#)

---tt, +/-Imp>0 /

(ii) The extended functions h+/- on V+/- { C+/- / a <_ Re _< b}, are
Hhlder continuous on V+/- with order . Specifically, there exist functions C(, )
C(a, b, , , ’) and D() D(a, b, , ), continuous with respect to and ’ and inde-
pendent of h, such that for and in V+/-, we have

(3.30) _< ’)1 ’1,
(3.31) 17-th+/-()] <_ A(h)D(().

Proof. We refer to [Mu, Chap. 2, 22] (see also [G, Chap. I, 5]). Note that the
use of the maximum-modulus theorem allows us to increase the Hhlder order for
up to 5 < I and not only to any 5, 5 < 5. An attentive reading of the proof shows
the precise dependence on h in (3.30) and (3.31), as in our proofs of Propositions 3.6
or 3.7 of [CD95a].

The next two propositions collect estimates that can be found more or less ex-

plicitly in 3 of [CD95a].
PROPOSITION 3.8 (Hhlder continuity and bounds for B and rn outside of F(A)).

Let m >_ 2 be an integer, I. be the interval (A(0, m- 1),A(0, m)), and Im
(E+/- / Re Ira}. Let s and be real numbers such that

(3.32) s>1/2 and 5 [0, Min(1, s-1/2)).

Then there exist functions C(, ’) C, (s, 5, , ’) and D() D, (s, 5, ), continu-
ous with respect to and , such that for any functions f and in L2(f),



ASYMPTOTIC BEHAVIOR OF SOLUTIONS IN A STRIP 1645

(3.33)

(i) for any complex numbers and in Im, we have

E IB(, f, 99) Bn(" f’ 99)1 -< C(, ’)1 ’1 [[fllc2(a)
n>_m

(3.34)
n>rn

(3.35)
l<_n<m

IB(C, f, 99) Sn=k(’, f, 99)1 < C(, ’)l

(3.36)
l<n<m

(ii) for any real numbers ; and ’ in I,, we have

(3.37) E
l<_n<m

Ir(A, f, 99) r(A’, f, 99)1 <- C(ik, A’)IA ’lllfllL<a)llllL<a>,

(3.38) E Irn()’ f
l<_n<m

Moreover, in (3.37), the order, can go up to 1 /f s > 3/2.
PROPOSITION 3.9 (Hblder continuity and bounds for B and rn near F(A)). Let

m > 1 be an integer and )(0, m) be the corresponding threshold of A. Let Jm be the
interval ((0, m 1), (0, m + 1)) and J { e - / Re e Jm}.

(i) Let s and be real numbers satisfying (3.32). Then there exist functions
C(, ’) Cm (s, , , ’) and D() D, (s, , ), continuous with respect to , ’,
such that for any functions f and 99 in L2(f) and for any complex numbers
in Jm, we have on the one hand

(3.39) E
n>m

(3.40) E IB(, f, 99)1 < D(C)llfllL.(a)llllL(a),

and on the other hand, for 1 <_ n < m, estimates (3.35) d (3.36) d estimates

(3.3z) d (3.38) fo y eZba d ’ &.
(ii) Let s and be real numbers such that

(3.41) s > I and e e [O, Min(1/4,(s- 1)/2)).

Then. there exist functions C(, ’) Cm(s, , (, (’) and D(() D(s, , (), continu-
ous with respect to ( and , such that for any complex numbers ( and in J and

for any functions f and in NL(m), one has

(3.42) IB(, f, ) B(’, f, )l C(, ’)l ’lllfllLN(a)llilLN(a),

(3.43)
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Remark 3.1. If s > 3/2, we prove in Theorem 5.2 in 5 that the Hhlder order in
point (ii) can be improved up to 5 in [0, 1/2], 5 < (s- 3/2)/2.

We now use Agmon’s result from 3.1.
PROPOSITION 3.10 (a new estimate for Bn). Let m >_ 2 and n >_ 1 be integ.ers

such that n < m. Let # be a real number in a(A) such that (0, m- 1) < # <_ (0, m).
Let s > 1/2 be a real .number. Then for any function f such that

(3.44) f e L2(7), f-(+(#, n), n) 0

and for any function 99 e L2(I-I), the principal-value integral (3.23a) is an ordinary
integral written as

(3.45)

With a constant C C(it, s) independent of f and o, it satisfies the estimate

(3.46) IB(, f, o)l _< CIIflIL(a)IIIIL(a) with < Max(0, 1 s).

Moreover, if s >_ 1, for any function f satisfying (3.44) and for any function o in

L(I), the integral (3.45) is still defined and the estimate (3.46) holds with O.
Proof. When n < m, the equation A(, n)-# 0 hs two roots -t-(#, n)

which are of order 1. We fix a rel number 77 5(#, n) > 0 such that -#-(#, n) is the
only root for ,(, n) # 0 in the interval J (-t-(#, n) 277, +(#, n) + 25). Then
we choose a function , in C() equal to 1 on (-t-(#, n)- 77, +(#, n)+ 5)
with support in J and valued in [0, 1]. In order to study the integral in (3.23a), we

rewrite it in the form Bn (#, f, o) bn (it, f, o) + Sn (#, f, O) with

bn(#, f, o) (1 () )f(, n) (, n)
d,

(I)()f(, n) (I)()(, n)
(3.48) 8n (it, f, o)

oo (, n) it
d.

The integral in the right-hand side of (3.47) is well defined when f and o are in L:().
om (2.9), we get a bound for b with a constant C C(p),

(3.49) lb,(v, f, )1 C If(5, n)(5, n)ld cIIfll(a)llll(a).

Let us now consider the term s(V, f, ;). Usinl Proposition 3., we hve the function

@f., ) i, H"(S) nd th stimt II@f., n)ll,() C(, , @)Ilfll(). Moreover,
s.c f((v, ), ) 0, with th hlp of Lmm B.2, we get the function

(@f., ))/((., ) v) in H"-I() m LI(s) nd t Cstimt

(3.5o) I1!1-,() c(, )ll@f(., )11.() c(, , @)llfll(a).

When is i. LT(n), > 1/, the uctio, 7(., n) is cotiuous. om this and om
our conditions on s, f, nd ;, it follows that the function V17(., n) is in L(I). Then
the integral in the right-hand side of (3.4S) is well dened, nd (3.45) is vlid.
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Moreover, as belongs to L](ft) C_ L_s(ft), again from Proposition 3.2, it follows
that (., n)in H1-8(R) and

When is in 3(R), the integral in (3.48) can be written as the duality brackets

8n([_1,, f, ) <V, (., n)>s,(), s() <grV, ’- (((., n))>Ls_l (a), L_

By ,a density argument, for any in Ls2(Ft) if 1/2 < s < 1 and t 1 s or for any
in L2(ft) if s _> 1 and t 0, we get

with C C(#, s). Estimate (3.46) follows from (3.49) and (3.52). rl

PROPOSITION 3.11 (a new estimate for Bm at the threshold # A(0, m)). Let
m >_ 1 be an integer, # IX(O, m) be the corresponding threshold of A, and s > 3/2 be
a real number. Then for any function f in NL2(m, 1), the integral

(3.53) I,(tt, f ) i,-m = fft
is defined for any function in L2(a) or, if s >_ 2, for any function in L2(ft). It
satisfies the estimate

(3.54) IIm(,f,)l CIIfllL(a)llllLN(a) with g Max(0,2- s)

with a constant C C(#, s) independent of f and . Moreover, if is a function in

NL2 (m), we have I, (#, f, ) B,(#, f, ).
Proof. We proceed in the same way as in the proof of Proposition 3.10. We have

(2.4), that is, A(, m) # 2a,(() with a,() an analytical function on ]R which
does not vanish. With the help of a function , in C(]R) equal to 1 in a
neighborhood of 0 and valued in [0, 1], we again represent the integral in the form
of the sum

(3.55) Bm(p, f, W) b,(tt, f, W) + Sr(tt, f, W)

with b, and s, defined by (3.47) and (3.48). Estimate (3.49) is still valid for b,. Since
s > 3/2 and f is in NL2s(m, 1), according to the definition of NL2(m, 1) in (3.16),
the function f(., m) and its first derivative vanish at 0. With the help of Propo-
sition 3.2 and Corollary 3.1, we get Of(.,m)in HS(N), V (f(.,m))/(2a,()) in

Hs-2(]R) LI(N), and the estimate

IIVIIH - < > m)llOf(., m)llH < ) C(s, m, o)llfllLs(a).

The end of the proof is similar to the end of the proof of Proposition 3.10.

4. Proofs of the division theorems. These theorems concern the operators
RA(#) defined by LAP1 or LAP2. We refer to Proposition 3.8 of [CD95a] for their
explicit calculations. We recall that they are obtained by studying the limits of

(4.1) (RA()f )n(a) ((A I)-1 )L(a) E B(, f, )
n>l
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when E C+ { e C / =i= Im{ > 0}, {6 a(A), and tends to # r(A). Here the
quantities B are given by (3.26) and (3.21).

Let p be a real. number in a(A) [A(0, 1), +). We set A(0, 0) 0. Let m k 1
be the integer such that p is in the interval (A(0, m- 1),A(0, m)]. Let s be a real
number and Es(p) be the space of functions defined on such that s > 1/2 and
E(p) L() ifp # A(0, m), s > 1, andEs(p) Nn(m) if p= A(0, m). With
such a , m, ands and with f and in E(p), we have

lim (R(()f[)L(a)

(4.2) B(,,I,) i r(p,/,),
n>l n<m

where the quantities B and rn re given by (3.22)-(3.23b). When the zero-trace
conditions (2.21) re fulfilled, we have the simpler formul

(4.3) (R(,)f,)E(,),,s(,) (R(,)f,}Ei(,),, E(,) B(,, f, ).
n>l

Proof of Theorem 2.1. Let p be in Im (A(0, m- 1),A(0, m)). Let s and f
sstisfy the assumptions of Theorem 2.1. The function f is in L() and satisfies
the zero-trce conditions (2.21). Formul (4.3) defines u R()f nd holds in
particular with in C(). We apply Proposition 3.8 and Proposition 3.10 with

Max(0, 1 s). We get

(4.4)
n>l

with C C(#, s) independent of f in L2(f), with in C(t), and continuous with
respect to # in Ira. Therefore, u is in L2(f) and satisfies (2.22). []

Proof of Theorem 2.2. Let # A(0, m) and let s and f satisfy the assumptions
of Theorem 2.2. The function f is in NL2(m, 1), a closed hyperplane of gL2(m),
and LAP2 is valid. With the zero-trace conditions (2.21), formula (4.3) defines u

R(#)I and holds in particular with in W(m) NL2s(m) C(). We apply
Propositions 3.9, 3.10, and 3.11. The last of these requires f to be in NL2(m, 1). We
get

(4.5) (U, -) NL2s (m),,NL2 (m) E
n>l

< CllflIL]()IIllL(),

where Max(0, 2- s) and C C(#, s) independent of f in NL2(m, 1) and W in
W(m). A density argument ends the proof: as s > 3/2, we have in [0, 1/2), and the
space.W(m) is dense in L(t). Therefore, u is in L2_(Ft) and satisfies (2.24).

Remark 4.1. The density argument about W(m) can be omitted. Let us consider
the form U() n>l B(p, f, ) occuring in the right-hand side of (4.3). We apply
point (i) of Proposition 3.9 if n > m, Proposition 3.10 if n < m, and Proposition 3.11
if n m. With f in NL(m, 1) nd in C(Q), we get

The form Uand therefore uis in L2
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5. Returning to the limiting absorption principle at thresholds. Let m _>
1 be an integer and # A(0, m) be the corresponding threshold of A. For s > 1 and
f in NL(m), the limit form u+ RA(#)f in LAP2 is not defined on L2(). The
trouble is caused by the following fact: when is in L2() \ NL2(m) and when is
not in er(A) and tends to #, the modulus of B,(, f, ) defined by (3.22) can tend to

Let us consider the form Bin(#, f, .) defined by (3.22) on NL,(m) when s > 1
and f is in NL(m). On the basis of Proposition 3.11, this form can be extended to
L(Ft), g Max(0,2- s), when s > 3/2 and f is in NL2,(m, 1). On the subspace
Ls2(Ft) of L(t), this continuation is given by the integral in (3.53).

Let us now fix s > 3/2, f in Nn2,(m, 1), and o in Ls(t). The question with
respect to the prospect of a "better" limiting absorption principle at, thresholds is
whether the limit in (3.24) is still valid and if this limit is equal to I,(#, f, ). A
quick answer can be obtained. For 4 not in a(A), we consider

_coo f-(, m) (, m)
d.(5.1). B,(, f, W) g2a,(g’) ( #)

As seen in Proposition 3.11, the function H (f(, m))/(:a,()) is in Loc(P), and
the function c H (c, m) is continuous on . Then with the condition Re _< #, we
may apply the Lebesgue dominated-convergence theorem and get

lim B,(, f, W) I, (#, f, W).-,, Re _< v, t(A)

In fact, the restriction Re
_
# in (5.2) can be raised. To do this, we have to use

the finer properties of the trace functions, which are contained in Corollary 3.4 and
Proposition 3.6. They allow us to apply Theorem 3.7.

5.1. Analysis of the term Sm near A(0, m). It is more convenient to use the
spectral variable A in order to study the integral (3.22). For j 1 or 2, for not in
(A), and for f in NL(m, 1) and o in L,2(Ft), s > 3/2, we consider

+oo fj (. m) J (, m)
d.BJm(, f o)

(o,,) A

In view of (3.11), for A EIm --[A(0, m), +), we set

(5.4) hj () fJ (., m) J (, m) ( (0, m))l/4Fj (, m)J (, ).
It follows from Corollary 3.4 and Proposition 3.6 that the function FJ (., m) is locally
HSlder continuous on I with order 5 in [0, 1/2], < (s- 3/2)/2, and vanishes at

(0, m). We now specify the behavior of J (, m) ( (0, m))/4j (A, m).
PROPOSITION 5.1. Let m 1 be an integer. Let s > 1,/2 be a real number and

be a function in L(). Then the function oJ (., m) defined on Im [(0, m), +) by

(5.5) oJ (, m) ( (0, m))!/4j (, m)

is locally Hhlder continuous with order in [0, 1/2], 5 < (s-1/2)/2. Specifically, there
exists a function C(A, ’) C, (s, 5, , A’), continuous with respect to A, A’ >_ (0, m),
such that
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In particular, if s > 3/2, (I)J (., m) is locally Hhlder continuous with order 1/2.
Proof It is similar to the one concerning FJ (., m) in Corollary 3.4. Let A, A >_

A(0, m) and let ,’ >_ 0 be connected by (A, m) and (A’, m). Estimate
(2.15) already shows that oJ (., m)is bounded. From (2.17d), we get

(I)J (/, m)-- Hm()l/2((-1)J,m).
The analyticity and strict positivity of Hm, the Hhlder. condition (2.11) of (.,m),
with order 5 in [0, 1], 51 < s- 1/2, imply

With (2.17b), we get (5.6). El
We are now in a position to state the main result that will allow us to prove

Theorem 2.3. This result has to be compared with point (ii) of Proposition 3.9.
First, we recall and fix some notation. According to (3.26), (3.24), (3.25), and

(3.53), for a function f in NL2(m, 1) and a function 99 in L2(ft), we can define the
function Bm (., f, 99) on by

Bm+(,f, 99) Bm(,f, 99) ir +Im > 0,

(5.7b) B(A, f, 99)= B,(i\,f, 99) if A < A(0, m),

(5.7c) B(A,f, 99) B,(k,f, 99) + r r,(A,f, 99) if A > k(0, m),

Bm(A(O, m), f, 99) In (A(0, m), f, 99).

THEOREM 5.2 (Hhlder continuity and bounds for Bm near (0, m)). Let m > 1
be an integer and A(O, m) be the corresponding threshold of A. Let Jm be the interval
(A(0, m-1),A(0, m+l)) and Jm { e C+ / Re e Jm}. Let s and be real
numbers such that

(5.8) s>3/2 and E [0,1/2], 5<(s-3/2)/2.

Then there exist functions C(, ’) C, (s, , (, ’) and D() D,(s, 5, ), continu-
ous with respect to and , such that for any complex numbers and in Jm and
for any functions f in NL2(m, 1) and 99 in L2(t), we have

In particular, we have

(5.11) lim Bm(, f, 99) Im (A(0, m), f, 99).
--A(0,m), :klm_>0

Proof. Let be in J and be not in a(A). We have B(, f, 99)-- B(, f, 99)=+ BJm(, f, 99) with BJm defined in (5.3). We fix A > 0 and set K [A(0, m), A(0, m)
First, using (2.9), we easily get estimates similar to (5.9) with 5 1 and to (5.10)
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for the quantity J(, f, Ej=I J(0,m)+AJ (A,m) J(A,m))/(A )dA. Second,
for j 1 or 2, we study

f(a’ ! (A’ m)
dA dA.IJ (, f ) =

Our comments preceding Proposition 5.1 and the proposition itself imply that the
function hj is Shlder continuous on K with order 5 in [0, 1/2], 5 < (s- 3/2)/2, and
there exists a constant Cm Cm(S, , A) such that

(.)
’v’A,,V E K, V e L(), IhY(A) hY(A’)I . CIA-

Moreover, the choice of f in NL](m, 1) implies FJ ((0, m), m) 0 so that hi(A(0, m))
0. Theorem 3.7 is then valid and gives the needed results to end the proof.

5.2. Proof of Theorem 2.3. Let (0, m) and let s and f satisfy the as-
sumptions of Theorem 2.3. Since f is in NL](m), s > 3/2 > 1, LAP2 is valid and
formula (4.2) defines u R()f in the dual NL](m)’.

We proceed as in 3.2 of [CD95a].
Using Proposition 3.9 and Theorem 5.2, we get the limits in (2.18) in. the norm

topology on B(NL(m, 1), ns()) and the Hhlder conditions in (2.26) for R under
condition (5.8) for s and 5.

Formula (2.27) for (R()f, )LL,(n),L](a), is a consequence of formulas (3.53)
and (5.11) for Ira, (3.22) for Bn if n > m, and (3.23) and (3.25) for Bn and rn if
n < m. When is in NL(m), we again find (u, )gL](m)’, NL](m)"

Let us now look at the gradient of R()f. First, we recall a property already
used in [CD95a] concerning Vv when v in D(A). Let t be a real number and v be a
function in D(A)L() such that Av is also in n(). Then there exists a constant
C C(t, A) such that

IlVvll() _< c (I]vll() / IIAvll()).
Therefore, when is not in a(A), with t= -s and v RA()f- .RA(’)f, we get an
estimate similar to (2.26) for VRA() since Av RA()f- ’R(’)f.

Finally, the fact that U+ belongs to D(A)loc and the differential equation (2.28)
follow from V. c2VRA() I + RA().

We are now ready to study the perturbed operator presented in the introduction.
We shall develop a perturbative method with ingredients adapted from Majda [Ma].
Preliminary results are presented in [BCD] and detailed and completed in [CD95b].
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Abstract. This work is devoted to the existence and uniqueness of almost periodic solutions
in RN of the equation -Zku - jN__ cjOju t_ g(u) h(x). We also prove the existence of solutions
with the same growth as some unbounded forcing terms. Under a local monotonicity assumption,
the method of upper and lower solutions is used.

Key words, semilinear elliptic equations, almost periodic functions, upper and lower solutions,
unbounded forcing term
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1. Introduction. Let us consider the problem

N

+ + x e
j----1

Many papers are devoted to semilinear elliptic problems of this type; see, e.g., [10]. If
h has some additional properties, one may look for solutions of (1.1) which also have
such properties. In particular, if h is almost periodic, the existence of almost periodic
oscillations for (1.1) is a natural problem (see [2], [5], [7], [12]). The method of [1]-[4]
and [7] in treating (1.1) is to use minimization on a Besicovitch-Sobolev space of
almost periodic functions. It is then a delicate (and in most cases unsolved) problem
to show that the minimizing Besicovitch-Sobolev class contains a function which is
a solution of (1.1) in the usual sense. Moreover, in [1]-[5] and [7], only ordinary
differential equations are considered, and the variational approach there excludes the
possibility of having first-order terms in (1.1).

In this paper, we use the method of upper and lower solutions. In 2, we prove
the existence of a locally bounded solution of (1.1) and obtain a basic estimate. In
3, we show that (1.1) has a unique almost periodic solution if g is increasing and
h almost periodic. We would like to emphasize here that while in [1]-[5] and [7] it
is essential that one has an ordinary differential equation without first-order terms,
our method makes it possible to also treat problems with first-order terms (like the
pendulum with friction--see Example 3.3 below--with x t and N 1) and partial
differential equations with almost periodic forcing.

In 4, we consider equation (1.1) with forcing term h having polynomial or subex-
ponential growth. Using appropriate upper and lower solutions, we prove the existence
of solutions, with the same growth rate as h.
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2. Upper and lower solutions. We first consider the Dirichlet problem

-Au+Ey cjOju + f(x,u) h(x) x ej=l(2.1) u(x) /(x), x e F,

where t is an open-bounded domain in g, F "= 0 is smooth submnifold, the
cj’s are real constants, f e C( ), h e L(), and e H/(r).

DEFINITION 2.1. The function H()L() is a lower solution of (2.1) if,
for every v

N

j=l

and, for almost every x F,

()

Th[to Z g()(a) a ppoton o (e.1) , ow. e V(a),
N

j=l

and, for almost ever z r,

( (.

Remark 2.2. It is easy to verify that (2.2) and (2.a) hold for every v H(a) if
is a lower and an upper solution.
The following result is contained in a theorem of Deuel and Hess [8]. We give

sketch of the proof for the sake of completeness.
TOaM 2.a. Assume that is a lower and an wper soltio of (2.1)

that . Then problem (2.1) has a wea solution H() sch that
Moreover, C

Pro@ 1. Consider the modified problem

(.4) () n(), e

where F is defined on flx by

F(, ) .-/(, ()) ir < (),
=/(, ) ir () ; (),
=/(, ()) ir () < .

Since the linear operator in (2.4) is invertible, (2.4) is equivalent to the fixed-point
problem

(e.5) -, eK={e()’lr=}.
Since A is completely continous and hs bounded range, problem (2.8).has solution
by the Schuder fixed-point theorem. Moreover, W’(fl) for 1 < p < . In

prCir, e C() for 0 .
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2. It remains only to prove that a

_
u

_
on t. Since v (a- u)+ E H(),

we obtain, from (2.2)and (2.4),
N

j=l

so that

N

/(o(- )/) 0.
j=l

Hence (a u)+ is constant on Ft and, necessarily, (a )+ 0 on Ft. Similarly, we
have that (u- )+ 0 on f.

We now consider the problem

N

(2.6) -Au + E cjOju + f(x, u) h(x), x E NN,
j’-i

where f e C(Ng x N) and h e Lloc (NN).
DEFINITION 2.4. The function a Hloc(IN) LloCc(NN) is a lower solution of

(2.6) if, for every v 7P(RN), (2.2) holds with ft RN.
Th ftion e Hoc() e Loc( i an pp otio of (.) if, fo

v E 7P(RN), (2.3) holds with Ft RN.
THEOREM 2.5. Assume that a is a lower and/ an upper solution of (2.6) and

a <_ . Then equation (2.6) has a weak solution u CI(RN) such that a <_ u <_ .
Proof. 1. Let n >_ 1 be a fixed integer. Theorem 2.3, applied to ftn B(0, n),

implies the existence of a solution un Hl(ftn) CI(Ft) of

--AU -- EN
j=l CjOjt "Jr" f (x, ) h(x),
(x) (x), Ixl , IXl % n,

such that a _< u < on Ftn.
2. By construction, (u)>2 and (Lu)>2, where L -A + NEj--1 CjOj, are

bounded in LC(Ft2). Inequality (4.6)in [11]-implies that (un)_>2 is ounded in
H (ft). Thus there exists a subsequence (uln) such that, in g (al),

By a repeated selection of subsequences, we obtain a sequence (u) such that in
H (Ftk),

k tktn ---It is clear that Uk-1 ,/k on Ft_. Since by the Rellich theorem, in L2(Ftk),
k uk

it is clear that a

_
uk <_/ and uk is a weaksolution of

N

-zx + o+ :(x, ) h(x)
j=l
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on t/. Let us define u E Hlloc(RN) by u uk on Ft/. Then u is a weak solution of
(2.6), u E CI(]N), and a _< u _</. []

Remark 2.6. The above result generalizes Theorem 2.10 in [10], where it is as-
sumed that cl cN 0, f is a locally Hhlder continuous function which is
locally Lipschitz continuous in u, and h 0.

We shall now prove a basic estimate.
THEOREM 2.7. Let hl,h2, a, L(RN). Assume that there exists 5 > 0 such

that

(2.7) ((x) <_ s <_ t <_/3(x) => f (x, t)- f(x, s) >_ 5(t- s).

If, for j 1,2, uj cl(]N) is a weak solution of

-Au +

such that a < uj

__ , then

N

+ f(x,
j--1

]ul u2]oo <_ (5-1[hl h2].

Proof. Let us define c (5-]h h2[oo, v u ul -c, and := {x Ng

v(x) > 0}. It follows from (2.7) that on Ft,

-Av + 5v +

Let w v/b, where (x) HY=I cosh (xj, c > 0, and

N

j=l

A simple computation using (2.8) shows that on [,

(2.9) -Aw +
N ( N )E Ojw(cj 2(tanhaxj) + 5 c2N + E (cj tanhcxj w _< 0.
j= j=l

Assume that # 05 and let n N B(O,R). Since v L(NN), w(x) --+ 0 as
-+ oc. Therefore, for R large enough, there exists e > 0 such that

maxw < e < maxw.

Multiplying (2.9) by h (w- e)+ E H(R) and integrating by parts, we obtain

(h + e)h dz < O.
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Hence h 0 and w _< e on R--a contradiction. Thus u2 u <: c. Interchanging u
and u2 gives u -u2 _< c.

Remark 2.8. The growth-damping factor has been used to study linear elliptic
equations on ]Y (see, e.g., [9, p. 187]).

COROLLARY 2.9. Suppose that f(x, t)- f(x, s) >_ 5(t- s) for some 5 > 0 and
all t >_ s. Then equation (2.6) has at most one weak solution u E C(N) which is

subexponential in the sense that u(x)/ l-I;= cosh (xj is bounded for each > O.
Proof. In the proof of Theorem 2.7, we now have c 0 and v u2 u. Since v

is subexponential, w(x) v(x)/(x) 0 as Ixl and the argument of Theorem
2.7 gives u2 ul _< 0. Similarly, u u2

3. Uniformly almost periodic solutions. Let us recall that the translate of
a function is defined by %u(x) := u(x c).

The following definition is due to Bochner (see, e.g., [6]).
DEFINITION 3.1. A function u BC(N) is uniformly almost periodic (UAP) if

for every sequence (Cn) C N, (Tcn U) contains a uniformly convergent subsequence on
]N.

We now consider the problem

f -An + E=I c.Oyu + g(u) h(x), x e IN,
u

where 9 (]() and h L(N).
THEOREM 3.2. Assume that

L (S of <_ > 0
such that

inf ess c <: s _< t <_ sup ess g(t) g(s) >_ 5(t- s),

then problem (3.1) has a unique weak solution u I(]tN) such that c <. u <_ .
Moreover, if h is UAP, then u is also UAP.

Proof. Theorem 2.5 implies the existence of a solution u C1(IN) of (3.1) such
that a <_ u _< . Uniqueness follows from Theorem 2.7.

Now assume that h is UAP and consider a sequence (cn) C Ig. For simplicity,
we write

hn :- Tcn h, Un ’U.

Going if necessary to a subsequence, we can assume that (hn) converges uniformly on
]1(N. It is clear that

N

--Atn " E cjOjtn -- g(tn) hn.
j=l

Theorem 2.7 implies that

Hence (un) converges uniformly on IN and u is UAP.
Example 3.3. Consider the equation

(3.2)
N

-An + E cjOju sin u h(x),
j--1
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where h is UAP. If Ilhll < , then equation (3.2) has a unique UAP solution such
that r/2 < u < 3r/2. Indeed, for e and 5 positive and small enough, r/2 + e is a
lower solution, 3r/2-e an upper solution, and

sin s sin t >_ 5 (t s)

for r/2 + e _<.s _< t _< 3r/2 e. The particular case

-ii sin u + h(x)

is treated in [7]. Assuming that Ilhll < 1, uniqueness is proved there for every h
and existence for a dense set of h. See also [1]-[4] for the existence of generalized
solutions.

Ezample 3.4. Consider the equation

(3.3) -An+
N

+ +
j=l

where h is UAP. Using Theorem 3.2, it is easy to verify that equation (3.3) has a
unique UAP solution. The particular case

-ii + u + u h(x)

is treated in [5].
4. Unbounded forcing term. In this section, we consider problem (2.6) with

a measurable function h having polynomial or subexponential growth.
DEFINITION 4.1. A function h is said to be of polynomial growth if there is an

integer m > 0 and a constant C such that

(4.1) Ih(x)l <_ C 1 + E IxJ]’ for almost all x E NN,
j=l

and h is of subexponential growth if for each 7 > O, there is a C. such that

N

Ih( )l _< II co h
j=l

for almost all x ]N.

THEOREM 4.2. Suppose that there are 5 > 0 and R > 0 such that f(x, t)t >_ 5t2

whenever Itl > R. If h is a measurable function which satisfies (4.1) for some integer
m > O, then (2.6) has a weak solution u e CI(RN) which also satisfies (4.1) (with the
same m).

Proof. Let (x):= O(1 + 7 JV=l Ixjln), where > O, D > R, and m _> 2. Then
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Choosing 7 small enough, we obtain

(4.2) -A +E cjOj + S(x, ) _> eD 1 + E I1
j=l j=l

for some e > 0. Hence c := - is a lower and/ := an upper solution if D is large
enough. Therefore, the conclusion follows from Theorem 2.5.

If rn 1, let 0(x)"= D(1 + 7 EV=l IjI), where D _> , and let be obtained
from P0 by "rounding off the corner" in each Izj]. Then it is easy to see that (4.2)
is satisfied (with rn 1) whenever 7 is small enough. Finally, if rn 0, there is a
constant lower and a constant upper solution.

THEOREM 4.3. If f satisfies the hypotheses of Theorem 4.2 and h is a measurable
function of subexponential growth, then (2.6) has a weak solution u E CI(RN) which
is also of subexponential growth.

Proof. Let (x)"- DIlJ_lcoshTxj, where 7 > 0 and D k R. Choosing 7
sufficiently small, we obtain

N

j=l

for some e > 0, and again we can take c - and/ with D large enough.
THEOREM 4.4. Suppose that f(x, t) f (x, s). >_ 5(t s) for some > 0 and all

t >_ s, x RN. Then the solution of (2.6) which was obtained in Theorems 4.2 and
4.3 is unique in the class of all functions u C(RN) having subezponential growth.

Proof. This is an immediate consequence of Corollary 2.9.
Remark 4.5. (i) Under the hypotheses of Theorem 4.4, equation (2.6) may have

many solutions as is demonstrated by the example -u" + u 0, but only one solution
is subexponential.

(ii) In [13], it was shown that if f(x, t)t > 5[tlp+i for large Itl and h E Loc(IiN),
then (2.6) has a solution u Loc(RN). Moreover, this solution is unique in Loc(RN)
if f satisfies a suitable monotonicity assumption.
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WHAT IS THE SUBDIFFERENTIAL OF THE CLOSED CONVEX
HULL OF A FUNCTION?*

J. BENOIST AND J.-B. HIRIART-URRUTY$

Abstract. Given a function f IR (-c, +eel and its closed convex hull -df, we consider
the question of expressing the subdifferential of g-df in terms of the subdifferential of f. Under
a fairly general assumption on the behavior of f at infinity, we obtain an explicit formula of the
subdifferential of -6f from that of f and its asymptotic function.

Key words, convex hull, subdifferential, asymptotic function
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1. Introduction. Let f :JRn - (-, +] be any function. The closed convex
hull (or closed convex envelope) 6f of f can be defined in various ways such as the
following: -6f is the greatest closed convex function maximized by f on ]Rn; or (when
f is minimized by some aifine function) -6f is the Legendre-Fenchel biconjugate of
f. In view of the generality of the class of functions f that we are considering,
the calculation of (-C6f)(x) is, as a general rule, extremely complicated. However,
we should be able to derive qualitative properties on cof from the corresponding
properties of f without having to compute (-C6f)(x) for all x. For example, is -6f
differentiable whenever f is differentiable? The answer is, in general, no: there are
C functions f ]R2 - ]R whose closed convex hulls are not (even once) differentiable.
However, the answer is yes under a fairly general assumption on the behavior of f
at infinity, as will be shown in 4. One of the key ingredients for studying such
differentiability properties is a formula linking the subdifferential of f and that of
6f. To derive such an explicit formula is precisely the aim of this paper. This paper
is organized as follows. General assumptions on f and properties of --6f as.well as
preliminary results from subdifferential theory are presented in 2. The case where f
is 1-coercive (i.e., f satisfies limllxll_+ f(x)/llxll +x)is recalled in 3 from [9,
Chap. X, 1.5]. This is motivated by the importance of 1-coercive functions f in the
context of calculating -6f as well as by the necessity of preparing the more general
situation treated in 4. When f is no longer 1-coercive, to calculate -6f, the behavior
of f at infinity must somehow be taken into account. This is done via the so-called
asymptotic function f of f whose essential properties are displayed at the beginning
of 4. Under a general assumption on f, in 4, we give an explicit formula of the
subdifferential of -6f in terms of the subdifferentials of f and f.

2. Preliminaries.

2.1. From a function to its closed convex hull. We assume throughout
that IR is equipped with the standard inner product denoted by (., .}, and f :IR --(-oc, +oc] satisfies (at least)

(1) domf := {x E lRlf(x) < +oc} is nonempty;

(2) there is an affine function minimizing f on ]R.
Received by the editors April 6, 1994; accepted for publication (in revised form) June 9, 1995.
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Such an f is convex if and only if its epigraph epif {(x, r) E ]Rn ]R f(x)

_
r}

is convex. If not, a natural way to "convexify" f is to take the convex hull co(epif)
of epif. This gives a convex set, which is not necessarily an epigraph (consider
x e ]R - f(x) ), but which can be made so by "closing its bottom"; we thus
define the convex hull cof of f by

x e ]Rn (cof)(x)= inf{r e ]R (x,r) e co(epif)}

(inf 0 +oc by convention).
There are several ways of getting at (cof)(x) (el. [14], for example); statements

(4) and (5) recall them. By the unit simplex of ]Rn+l, we mean

An+l :-- (Ol,...,On+l) ]pn+l O 1, ai __> 0 for 1,...,n + 1
i=1

For all x E ]R, we have

(4) (cof)(x) --sup{g(x)[g" ]R -, (-c, +] convex, g

_
f}

(cof)(x)

--inf{ n+ i--1 ci f(x) (cl,...,c+l An+l, }xi dom f, E aix x
i--1

Instead of co(epif), we can take the closed convex hull -6(
epif) of epif; we obtain a closed set, which is now always an epigraph. The so-cMled
closed convex hull-e-df of f is thus defined by

(6) x e ]Rn (-C-6f)(x)= min{r e ]Rl(x,r e -6(epif)}.

Similarly to (4), for all x IR, we have

(7) (-e--df)(x) sup{g(x) g" ]R (-oc, +eel closed convex, g <_ f}.

More interesting to note is the following:

(8) (-df)(x) sup{ (s, x} b (s, y) b <_ f(y) for all y e ]pn},

or, equivalently, -6f is the Legendre-Fenchel biconjugate of f:

(9) 6f- f**

(Recall that the Legendre-Fenchel conjugate f* of f is defined by s ]Rn f* (s)
supx[(s,x f(x)] and that f** stands for (f*)*.)

In view of (5), it is clear that dom(cof) co(dora f). By construction, the closure
of the convex function cof is precisely -6f. Thus both functions coincide at least on
the relative interior of co(dom f). In many cases, we have col -6f (cf. 3 below,
for example), but there are important instances where col is not a closed function.

The convex-hull and closed-convex-hull operations are global in the sense that
they require to knowma priori--the behavior of f on the whole of IRn. That is the
main source of difficulties in the calculation of (-e-6f)(x). Actually, the calculus rules
on the closed-convex-hull operation rely mainly on (9), twice using the transformation
rules for the Legendre-Fenchel conjugacy.
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2.2. The subdifferential theory. At a point x where f is finite, the subdiffer-
ential Of(x) of f at x is the set of s E ]Rn satisfying

(10) f(y) >_ f(x)-F (8, y-x) for allyElRn.

From this definition and the construction (8) of U6f, it is clear that O(-6-df)(x) Of(x)
whenever (U6I)(x)= f(x).

The following are classical results (cf. [14, Part V] or [9, Chap. X, 1:4]) and will
be used in what follows. First,

(11) Of(x) nonempty ==> (e-6f)(x) f(x);

(12) (U6f)(x) f(x) and
f finite in a neighborhood of x ===> Of(x) is nonempty.

In particular, if f is Ggteaux differentiable at x, having a nonempty Of(x) is equivalent
to having (-e-6f)(x) f(x), and in such a case,

(13) Of(x) 0(-6f)(x) {Vf(x)}.

Consider the example x e ]R H f(x) e-x2 and realize that one may have (U6f)(x) <
f(x) (i.e., Of(x) ) for all x.

If f is convex, Of(x) is nonempty for (at least) all the x’s in the relative interior
of dom f. When f is not convex, Of(x) occurs at very peculiar points x of dom f
(as seen from (11)and (12)).

An equivalent way of expressing (10) is

(14) s e Of(x) if and only if if(s) + f(x) (s,x} 0 (or

_
0).

This is a very useful characterization of the elements of Of(x), especially since-(g6f)*
f*. Concerning the minimization of f and U6f, we recall that

(15)

inf f(y) inf (e-6f)(y) and
yEIR yEIR

Argmin(g6f) {x e ]Rl(e-6f)(x)= infn(g6f)(y)}
yEIR

{x E ]a 0 e O(f)(x)}.

Finally, for differentiability purposes, we keep in mind the following:

col and U6f coincide on the interior of co(dom f), and cof is

(16) differentiable at x int(co(dom f))if and only if O(cof)(x)
contains a single element (which is therefore V(cof)(x)).

3. The subdifferential of g6f for 1-coercive f. In this section, we assume
that f" ]Rn -+ (-oo, +oo] satisfies (1) and

(17) f is closed on ]Rn(i.e., epif is a closed set of

(18) f is 1-coercive on ]R that is, lim
f(x)

,,x,,-+ Ilxi]

As far as the closed-convex-hull operation is concerned, assumption (17) is not se-
vere" indeed, both f and its closure f yield the same closed convex hull (U6f -6f).
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Assumption (18) (which, in particular, implies (2) for closed functions) is more re-
strictive and will be removed in the next section. There are, however, many situations
where it holds.

Example 3.1. Let S be a nonempty compact subset of IRn and f S - IR a
continuous function. Then the function f, extended to the whole IRn setting f(x)
+ if x S, satisfies (17) and (18). This is actually the most frequent case in
applications where -6f must be explicitly calculated (see [10, Chap. IV, 4.3] and

Example 3.2. Let f satisfy only (1) and (17). Then the "restricted" function

fk x e n f(x) ifllxll<:k, +ocifnot,

verifies (for k large enough) assumptions (1), (17), and (18). Indeed, C6fk (= COrk
as will seen below) is an approximation of cof since (’dfk)k is a decreasing sequence
of closed convex functions converging to col when k +oc (cf. (5)). The first
important property of l-coercive functions is the following.

LEMMA 3.3. Let f satisfy (1), (17), and (18). Then the following hold:
(i) co(epif) is a closed set.
(ii) For any x E dom(cof) co(domf), there are x dom f and (al,..., cn+l)

An+l such that

n+l n+l

(19) x Ex and (cof)(x) E ( f(x).
i=1 i-’1

Part (i) of the lemma is due to Valadier [17, p. 69]; a more readable and detailed
proof can be found in [9, Chap. X, 1.5]. Part (ii) is simply a consequence of (i): it
suffices to express (x, (cof) (x) )--which lies on the boundary of co(epif)--as a convex
combination of n + 1 elements (x, y) in epif and to realize that the y’s have to
be f(Xi). To directly prove that the infimum in the definition of (cof)(x) in (5) is
achieved may be arduous, as exemplified in [8, Thin. 2.1].

We are thus in a situation where -6f cof. Given x dom(cof) co(dom f),
we dub "called by x" the subfamily {x}ex of the family {Xl,..., Xn+} as described
in Lemma 3.3(ii) corresponding to strictly positive a’s (i I whenever a > 0).
Where do the x’s called by a given x lie? As a general rule, this is very difficult to
answer. In view of their definition, however, we can say that

(20)
the x’s called by x belong to dom f

and
to the smallest face of co(dora f)containing x.

For example, if x is an extreme point of co(dom f), then x dom f and the smallest
face containing x is {x}; hence the only possibility for x is to call itself. Consequently,
(cof)(x) f(x).

Note also that, due to the 1-coerciveness assumption on f, the x’s called by x
remain in a compact set when the x’s lie in a compact set.

Remark 3.4. Evenif the original function f has a very "regular" behavior on (a
convex) dom f(:= C), the resulting cof may not be continuous on C. To see this,
let us recall the counterexample by Kruskal [12]. In ]R3, let C be the convex hull
of the circle {(a,b,c) c 0 and a2+(b-1)2 1} =" F and the line segment
{(0, 0, c) l-1 <: c _< 1} =" n (see Fig. 1). Now let f’(a, b, c) e ][:3 f(a, b,c) -c2

if (a, b, c) C and +oc if not. Clearly, f satisfies all the assumptions invoked in this
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section. What is (cof)(x), x (a, b, c)? If x E r \ {(0, 0, 0)}, (cof)(x) f(x) 0; if
x (0, 0, 1) or (0, 0,-1), (cof)(x) f(x) -1. Let x (0, 0, 0). The smallest face of
C containing x is the line segment L, and the xi’s called by such an x are xl (0, 0, 1)
and x2 (0, 0,-1); whence (cof)(x) (1f(x2)] -1. Thus coX is not
continuous on F (contained in the boundary of C). We know that cof, being a convex
function, is continuous on the interior of C. As for the differentiability properties, the
answer will be provided by a subdifferential relationship linking Of to 0(cof).

FIG. 1.

LEMMA 3.5. For a given x co(dom f), consider a family {xi} called by x.
Then the following hold:

(i) f(xi) (cof)(xi) for all e I;
(ii) cof is affinc on the compact convex polyhedron co{x e I}.

Proof. See [8, p. 697] or [9, Chap. 10, 1.5].
The fact that cof is atone on co{x } is easy to imagine and visualize (for

n 1 or 2). The coincidence property (i) shows that the points xi that are called
are very particular: not all the points xi, even those satisfying (20), are going to be
called.

We now are ready to obtain the subdifferential formula of cof from that of f.
THEOREM 3.6. Let f satisfy (1), (17), and (18). For a given x co(domf),

consider a collection of {xi}iz called by x. Then

(21) O(cof)(x) Of(x).
iI

For any s O(cof)(x),

(s, x} -(cof)(x) (s, xi} f(xi) for all I.

Pro@ See [9, Chap. X, 1.5]; a proof of a different kind and covering a more
general situation will be given later (the proof of Theorem 4.6in 4).

Relation (22)expresses an "equilibrium property" achieved between (cof)(x) and
the f(xi)’s at the xi’s that the point x calls; it reminds us of the affinity property
of col on the convex compact polyhedron generated by the x’s (cf. Lemma 3.5(ii)).
Actually, the following explains (22): if cO(cof)(x) is nonempty and s cO(cof)(x),
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then (x, (cof)(x)) belongs to the subset of epi(cof) that maximizes the linear form
((s,-I},

Comment 3.7. 1. It is surprising that f enters the subdifferential formula (21) via
its subdifferential in the sense of convex analysis (i.e., the stringent condition (10))
since we know that for a nonconvex function f, this subdifferential is empty more
often than not. However, the xi’s considered are "called points," and at such points f
and cof coincide, so there is a good chance that the Of(xi)’s are nonempty (cf. (12)).

2. If x lies in the relative interior of co(dom f), the subdifferential of cof at x is
nonempty, which implies (by (21)) that the subdifferential of f at the x’s called by x
is necessarily nonempty. This again restricts the set of possible candidates x E dom f
to be called.

3. In view of subdifferential theory as recalled in 2.2 (especially (16)), the differ-
entiability of cof at x e int(co(dom f)) is secured whenever Of(x) contains a single
element for just one of the x’s called by x. In fact, all of the conditions on the
geometry of dom f near x and the behavior of f around xi, which have been care-
fully studied by Griewank and Rabier in [8, 3] to ensure the differentiability of col
on int(co(dom f)), are sufficient for 0(cof) to, be single valued; formula (21) clearly
shows what to expect about O(cof)(x) from information about Of(x) at points x
called by x. To illustrate, consider f (satisfying (1), (17), and (18)) such that

(23) Of(x) is empty for all x on the boundary of dom f, and Of(x)
is a singleton at any x int(dom f) where Of(xi)is nonempty

(for example, if dom f is open and f is Gteaux differentiable on dom f). Then it
immediately follows from (21) that c0f is differentiable (and, therefore, continuously
differentiable) on the interior of its domain.

4. For f satisfying (1), (17), and (18), the set Argmin/of its minimum points is
a nonempty compact set. It then follows from (15) and (21) that

(24) Argmin(cof) co(Argminf).

5. Even if we impose greater regularity on f (say Ck, k >_ 2), cof as a rule
is not C2. However, if f is locally C1’, 0 < a _< 1, then so is col .(under some
additional technical assumptions on f that are explained in detail in [8, 4]). See also
[13, Prop. 3.1] ibr an ellipticity condition on K6f when f is C2 on IRn and [11, 5] for
a study of what regularity (between C and C2) col must have.

Remark 3.8. In connection with the end of Comment 3.7(3), let us note that even
if C is a compact convex set and f a C function on intC, the resulting U6f need
not be differentiable on intC. The following is a counterexample in that respect. Let
C be the convex hull of the five points (1, 0), (1,2), (0, 3), (-1, 2), and (-1, 0) in IR2

and let f’(a, b) IR2 f(a, b) 1- a2, if (a, b) C and + if not. Then -6f is
not differentiable on the line segment L joining (1, 2) and (-1, 2). The reason is that
for any x lying in the relative interior of L, the points called by x are Xl (1, 2) and
x2 (-1,2) so that Of(xl) (= O(-Udf)(xl)) and Of(x2) (= O(U6f)(x2)) have more
than one element in common. The situation would be different if X and x2 were
"smooth" boundary points of C. See Fig. 2.

4. The subdifferential of KSf for epi-pointed f. If we assume only (1) and
(17) for f, can we express the subdifferential of KSf in terms of that of f only (as in

(21))? The answer is, in general, no, as shown by the next example.
Example 4.1. Let f :JR2 ]R be defined by

(a, b) e ]R2 f(a, b) v/a2 + e-b
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(-1,2)

(0,3)

FIG. 2.

f is C on 2, and it is easy to verify that

(cof =) -6f: (a, b) (-6f)(a, b) lal.

Should a formula like (21) hold true, the differentiability of f would induce that of
-6f, which is not the case.

To obtain a formula similar to (21)--at least for a large class of functions that we
call "epi-pointed" (the definition comes later) we must somehow take into account
the behavior of f at infinity. This is done via the asymptotic function of f.

4.1. The asymptotic cone of a set and the asymptotic function of a
function. Given a nonempty closed set S (the closedness is not so important since
the proposed concepts are blind to the closure operation on sets), the asymptotic cone

S of S is defined as follows:

S := {d E ]Rn 13(Xk)k in S, 3(tk)k in JR+ with
limk_+ tk 0 such that d limk_,+ tkxk}.

S is a closed cone (with apex 0), and, moreover, if S is convex, S coincides with
the asymptotic cone (or recession cone or characteristic cone) of S used in the context
of convex analysis (cf. [14, 8] or [16, p. 107]). If K is already a nonempty closed
cone, then clearly K K; in particular, (S) S. Before going further, we
comment on the introduction and use of asymptotic cones for nonconvex sets. To our
knowledge, it is Debreu [3, p. 26] who first proposed the current definition (under
a different but equivalent form) of the asymptotic cone and gave (without proofs)
some of its uses for example, sufficient conditions for the sum of closed sets to be
closed. Later, the concept was proposed again by Dedieu [4, 5, 6], who studied it
in full detail (and even in a more general setting--that of a real topological vector
space). The definition has been rediscovered several times since then, and it has
proved useful in various areas such as nonconvex optimization, existence theory in
variational problems, mathematical economics, etc.
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DEFINITION 4.2. A closed cone K of ]Rn i8 said to be pointed if

m E lXI*,

(26)
ci E K for all l,...,m,- ==, (c =0
Ec --0
i--1

for all -- 1,...,m).

Note that as in Carathodory’s theorem (and its proof), we might well limit
ourselves to the integers m < n + 1 in (26). Indeed, suppose that there is a family
{ci }ei C K \ {0} with card/> n + 1 and eI c 0 and that property (26) holds

with Carathodory’strue with 1 _< m _< n + i. From the equality 0 ie card ci,

theorem, we deduce that there exist J C I and (j }jej such that

l_<cardJ<n+l, /j >0 for alljEJ,

E/j=I and E/jcj=o.
jJ jJ

Now, however, the {c} := jcj}jej’s form a family of at most n + 1 elements of K,
=0 --and hencecy =0for allj E J. Thisand property (26) would induce that cj

contradicts the initial assumption on cj, namely, cy e K \ {0}.
It is also easy to check that a nonempty closed cone K is pointed if and only if

(27) (coK) fq (- co K) {0};

this expresses the pointedness property of the convex cone coK.
The following result plays a key role in what follows.
PROPOSITION 4.3. Let S be a nonempty closed set and assume that So is pointed;

then
(i) cos + co(S ) (= co( +
(ii) co(So) (-6S)o and thus co(So) is closed.

To our knowledge, this statement first appeared in McFadden [7]; see the appendix
for an alternate proof.

It is now natural to consider closed functions f and define their asymptotic func-
tions via the asymptotic cones of their epigraphs. Let f ]Rn (-cK), q-(:x:)] satisfy
(1), (2), and (17) (although all these requirements are not necessary for the definition
to hold); then epif is a nonempty closed set in ]Rn+l and we can define (geometrically)
the asymptotic function fo of f by

(28) epi(f)- (epif)o.

Clearly, f is a positively homogeneous closed function satisfying fo (0) 0. Indeed,
if f is minimized by the affine function (s, .) -r, the asymptotic function fo of f is
minimized by the linear function (s, .). In fact, we have an analytical definition of
(suggested in [5, p. 943]) as follows.

PROPOSITION 4.4. For all d ]R,
(29) f(d)= liminf tf,-7-:,,.

t-.0+ ,d’-.d

Proof. See the appendix.
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At this stage, one may wonder what class of positively homogeneous closed func-
tions one obtains when taking asymptotic functions. Actually, one obtains all of them
since (f) f. The following result, whose proof relies on specific approximation
and regularization techniques from [i], goes even further: if g:pn

__
(_, +cx] is

a positively homogeneous closed function with a nonempty domain, there exists a C
function f :]Rn - ]R such that f g.

4.2. Epi-pointed closed functions. We say that a function f ]Rn --+ (-c,
+oc] satisfying (1), (2), and (17)is epi-pointed (or asymptotically epi-pointed) when
(epif) is pointed. The following gives various characterizations of epi-pointed func-
tions.

PROPOSITION 4.5. Assume that f satisfies (1), (2), and (17). Then the epi-
pointedness of f is equivalent to one of the following properties:

(i) f is minimized by n + 1 ajfine functions (si, .) ri with a]finely independent
slopes si

(ii) dom f* has a nonempty interior;
(iii) there exist s E IRn, a > O, and r such that

(3o) f(x) >_ (s, x) + a]lxl] r for all x e Rn

(iv) there exists s Rn such that

lim inf f(x) (s, x

Proof. See the appendix. [:]

The following are easy consequences of the characterizations above (the functions

f and g below are assumed to satisfy (1), (2), and (17)):
If f is epi-pointed, so is f + <s, ./+ r, where s e ]Rn and r JR.
If f _> g and g is epi-pointed g all.II + r with a > 0, r E JR, for example),

then f is epi-pointed.
If f or g is epi-pointed and if dom f dom g is nonempty, then max(f, g) is

epi-pointed .(use characterization (iii)).
In spite of the exact formula h min(f, g) for h :- min(f, g), the epi-

pointedness of f and g does not ensure that of h; however, note that if f is 1-coercive
and g is epi-pointed (resp. 1-coercive), then h is epi-pointed (resp. 1-coercive).

Consider f and g with g epi-pointed and dom f N dom g nonempty. Then

f + g is epi-pointed (use characterization (iii)).
If S is a nonempty closed set and is its indicator function (Is(x) 0 if x S,

+x if not), then (is) Is, whence S is pointed if and only if Is is epi-pointed.

4.3. The main result. The theorem below gives an explicit formula for the
subdifferential of 6f in terms of those of f and f for the class of epi-pointed
functions.

THEOREM 4.6. Assume that the closed function f :JRn (-,+x)] is epi-
pointed. Then the following hold:
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(i) For all x E dom(K6f), there are points Xl,... ,xp in domf, real numbers
al,..., ap (p e ]hi*), and possibly points yl,..., yq in domf \ {0} (q e lg) such that

(32)

for all i = 1,...,p,
p

Eci= 1;
i=1

p q

i=1 j=l
p q

+
i=1 j=l

Moreover, one may choose a decomposition of the above type with

(33) q<_n and p+q<_n+l.

(ii) For any decomposition of the type described in (i), we have

(34) O(Kgf)(x)

Proof. See the appendix, rl

In the above statements, q 0 means that there is no yj in the decomposition
of x. In accordance with our earlier appellation, we term "called by x" a family
{xi, yj} of points as described in (i). We exclude the null yj’s because they add
nothing in (32) (since f(0) 0) or (34) (since, as seen in the course of the proof,
Of(xi) C Ofc(O) for any x e domf and Of(yj) C Of(O) for any y e dom f).
A given x dom(K6f) may call only x points or both x and yj points-for (32) to
hold.

The 1-coercive case, recalled in 3, falls into this more general one. Indeed, if f
is closed and 1-coercive, then f is epi-pointed (use Proposition 4.5(iv) with s 0 or
Proposition 4.5(ii) since dom f* ]Rn in that case) and f I{0}, i.e., f d -f(d) 0 if d 0, +oc if not. Thus epi(K6f) co(epif) + {0} x R+ co(epif),
whence we recover K6f col. The points x E dom(cof) are necessarily of the xi
type. Before going further, let us illustrate Theorem 4.6 with a simple example.

Example 4.7. Let f :It t be defined as follows:

v/Ix+l ifx_<-l,
f(x)= 1-Ix if -l<_x<_l

(x- 1)(1 + e-x) if x >_ 1.
(see Fig. 3),

Then f(d) d+, and (-d-df)(x) 0 if x _< 1 and x- 1 if x _> 1. The assumptions
of Theorem 4.6 are obviously satisfied by f. The point x 2 can call only Xl = 1
and yl-- I; as a result (see (34)),

({1} =) O(K6f)(x) Of(x1) N Ofx(Yl) [0, 1] Cl {1}.

This also shows that the bounds in (33) are sharp. On the other hand, x 0 can call
onlyxl=l and x2 -l; then

({0} --) O(-d-f)(x) Of(Xl) N Of(x2) [0, 1] FI {0}.
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-1 0 1

FIG. 3.

Comment 4.8 (under the assumptions of Theorem 4.6). 1. Since (-6(epif))
equals co((epif)) (cf. Proposition 4.3(ii)), its "functional" counterpart is:

(35) (f) co(f) (= (f)).
It goes without saying that f itself satisfies the assumptions of Theorem 4.6" it is
closed and epi-pointed.

2. Similarly to the 1-coercive case (cf. Lemma 3.5), we note the following prop-
erties of -hf: if Xl,...,Xp and yl,...,yq are points called by a given x E dom(-6f),
then

(36)
f(xi)--(-5f)(xi) for all/-- l,...,p

and
f(yj) (cof)(yj) for all j 1,...,q;

(37) -hf is affine on the closed convex polyhedron
P co{x1,... ,Xp} -Jr JR+y1 +’" + R+yq.

To prove (36), we first note that

(38)

(This is a property of asymptotic functions for convex functions; see [14, p. 66].)
Second, Uhf is convex and (-hf) subadditive, so

P q

(39) (f)(x.) < c, (f)(x) + E(-ffhf)(yj).
i=1 j=l

Now -6f (resp. (--6f) (- cof from (35))) minimizes f (resp. f); hence the right-
hand side of (39) is maximized by P q-= aif(xi) + Ej= f(Yj) (’6f)(x). Combin-
ing this with (39)yields (36).

To prove (37), we let P co{x,...,xp} + ]R+y + + ]R+yq; x lies in
qthe relative interior riP of P. (Recall that riP {iP= aixi + j= jyj

Ei=I Oia > 0 for all i, p ’= 1 / > 0 for all j}.) Consider g(x)= (-6f)(x)if x e P
and +c otherwise, it is a closed convex function whose domain is P; indeed,
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Since x E ridomg, we can choose s in the nonempty 09(x) and define e(x’)
(-d-6f)(x) + Is, x’-x}.

Step 1. The affine function g minorizes (U6f) on P and coincides with (-6f) at x.
Step 2. Since g < -6f on P, we easily deduce that

g()<f(x)
goo(yj) is, yj) < (Udf)oo(yj)

for all E {1,... ,p};
for all j {1,...,q}.

Step 3. From the following chain of equalities and inequalities,

U6f(x)
p q

E aig(x{)+ E<s, yj} [since e is affine]
i=1 j=l
P q

<_ ai(-Cdf)(xi) + E(-d-6f)oo(yj) [see Step 2]
i=1 j=l
P q

E aif(xi) / E fo(Yj) [from (36)]
i=1 j=l

E--6f (x) [from (32)],

we deduce that

g(xi) =-d-df(xi)
(s, yi (-d-6f) (yi

for all 6 {1,...,p};
for all j {1,...,q}.

q /,Step 4. Let x’ EiP=I ogix / Ej=I jYj P. We have

i=1 j=l
p q

i=1 j=l

=e(’)
<-d-df (x’).

[see Step 3]

[since g is affine]

Then all of these inequalities are equalities and, in particular, g e-6f on P.
3. Concerning the comparison of Argmin(e-6f) with similar sets associated with

f and foo, we have the following:

(40) Argmin(g6f) co(Argminf) / co(Argminfoo)
(= co(Argminf + Argminfoo)).

For this, it suttqces to combine the characterization (15) of Argmin(Udf) with formula
(34). When f is i-coercive, argminfoo {0} and we obtain (24).

4. The "equilibrium property" (22) of Theorem 3.6 has also its counterpart: if
xl,...,Xp and yl,...,yq are points called by a given x E dom(e-6f), then for any
s e O(Udf)(x),

(41) fo() (,, v) for n ,..., q
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and

(42) (8, x -(-df)(x) (s, xi f(xi) for all i-- 1,...,p.

To see that, observe that s E Of (yj) (= 0(cof)(yj)) implies

(43) s e/)fo(0) (= 0(corot)(0)) and f(yj) (s, yj} for all j 1,...,q.

(This is due to the fact that cof (= (Kdf)) is a closed positively homogeneous
function.) Next, s O(-d-df)(x) (resp. s Of(x))is characterized by the equality
(-Cdf)(x) Is, x} -(-Cdf)*(s) (resp. f(xi) Is, xi} -f*(s)), whence we have (42)
since (g6f)* f*.

COROLLARY 4.9. In additio.n to the assumptions of Theorem 4.6 on f suppose
the .following:

The subdifferential of f is empty on the boundary of dom f;
f is Gdteaux differentiable ori the interior of dom f.

(A Frdchet-differentiable epi-pointed f IR IR satisfies all these requirements).
Then g-dr is (continuously) differentiable on the interior of its domain.

Indeed, the xi’s called by x int dom(Kdf)--and there necessarily are such xi’s
(see Theorem 4.6(i))--lie in the interior of domf and, at these points, Of(xi)
{Vf(xi)}. It then follows from (34) that

(44) X7(Kgf)(x)-- Vf(xi) for all/-= 1,...,p.

The function f exhibited in Example 4.1 is not epi-pointed. It is minimized by
(at most)two affine functions with affinely independent slopes, while three would
be necessary to make it epi-pointed (cf. Proposition 4.5(i)). Should the result of
Theorem 4.6 hold, the differentiability of f would induce that of Kdf, which is not
the case. Thus the epi-pointedness assumption on f cannot be completely removed
in Theorem 4.6.

Remark 4.10. This is also the place where the extended subdifferential calculus
for nonconvex functions [2] can be useful. Suppose, for example, that we want to
convexify the restriction of some Closed function g IRn (-oc, +oc] on a closed
subset S, i.e., convexify f g/ Is :x - f(x) g(x)if x S and /oc if not. Various
conditions on g or S guarantee that f is closed and epi-pointed (the assumptions of
Theorem 4.6). At a point xi called by x, under fairly general assumptions on g and
S [2, pp. 95-109],

Of(xi) C Og(xi) + N(xi)

(Og (resp. N}) denote the generalized subdifferential of g (resp. normal cone to S)
i. wh n of Of( )
included in Of(xi)) in terms of the behavior of g around xi (via OZg(xi)) and the
geometry of S around xi (via N}(xi)).

Remark 4.11. As is clear from the proof of Theorem 4.6 (see the appendix), all
the conclusions of Theorem 4.6, especially formula (34), hold provided that

(45) -6(epif) co(epif) + co(epif)

for the function f considered. To ensure this, the epi-pointedness of f was specifically
a general assumption. However, a function like x E ]Rn -+ V/II satisfies (45) without
being epi-pointed.
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5. Appendix.

5.1. Proof of Proposition 4.3.

Proof of (i). Let x E S, d E S; then for some (xk)k in S and (tk) in l+ with

limk-+o tk O,

x+d= lim (x+tkxk)= lim ((1--tk)X+tkXk),
k--,+cx k--+oo

whence x + d --6S. Therefore, S + So C -6S and

(46) cos + coSo co(S + S) c -6S.

For the converse inclusion, consider v -6S; then v limk--.+o vk with

(47) n+l n+l
Vk Xk + + k Xk

(Ifor somek k,.. 6 An+landx,...,x+I inS.
Subsequencing if necessary, we may assume that, for MI i, when k +.

Since (,...,n+) 6 n+, we set I := {i > O} and J := {i] 0}. Suppose
i Xthat one of the sequences k k)k is unbounded. Without loss of generMity, we may

consider that

kxk mxi= n+ kXk for MI &;
(b) x] +wh k +.

According to (a), ech sequence (ax/ax) is bounded and may thus be ssumed
to converge to some d whichdue to (b)lies in S. Again from (b), dividing both
sides of (47) by Edaxk and letting k + yields 0 However, since

ld 1, this contradicts the pointedness property of S.
Thus M1 of the sequences (ax)k re bounded and, subsequencing in an appro-

priate way, we cn ps to the limit in (47) nd obtain

coS+co  ,
iEI jEJ

whence the converse inclusion in (46) is proved.
Proof of (ii). Since the asymptotic cone of -6S is the same as that of coS, what

we have to prove is actually co(S)= (coS)o.
From S C coS, we infer that So C (coS)o, and since the latter is convex, we

have co(S) c (coS).
Conversely, let v (coS)o. According to (25) and the definition of coS, there

exist sequences (t) in JR+, (/k)k in An+l with/3k (,. t-’kn+l), and (Xk)k,...,1
(X+l)k in S such that

lim tk O, v lim n+lx+lt(x +... + ).

t n+lx+lSetting a kk and vk axk +.." + a we continue the same reasoning
as in the proof of (i) above (I O here) to get v z_,j=l

dy with dJ S for all
j J. Whence v co(S).

As the asymptotic cone of -6S, co(S) is closed. This can also be viewed as a
direct consequence of (i): apply the result of (i) to S and the relation -6(S)
co(So) results. []
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5.2. Proof of Proposition 4.4. Define

g d E Rn + g(d) lim inf
t-+0+ ,d’-+d

To prove f g, it suffices to verify that epi g (epif).
First, let (v,#) e (epif); there exist sequences ((Xk,#k))k in epif and (tk)k

in {+ converging to 0 such that (v,#) limk-++tk(Xk,#k). Therefore, v
limk_++ tkxk and # limk_.+ tk#k with f(xk) < # for all k so that

g(v) < limk++inf tkf \( tktkXk )_"7--- _< lim inf tk#k #.

We thus have proved that (v, #) epi g.
Conversely, let (v, #) epi g. Following the definition of g(v), there exist (tk)k in

_
converging to 0 and (vk)k converging to v such that (tkf(vk/t))k converges and

limk_++ tkf(vk/tk) <_ . Given e > 0, we have tkf(Vk/tk) <_ #q-e for k large en.ough.
Then (v, # + e) limk_+ tk(Vk/tk, ( q- e)/tk) with (vk/tk, (# q- e)/tk) e epif for k
large enough. This means that (v, # + e) (epif), and since this holds true for all
e > 0, we have (v,

5.3. Proof of Proposition 4.5.
(f is epi-pointed) => (i). We make use of the following classical result on closed

convex cones (deduced from [14, Cor. 14.6.1] or [16, 2.10], for example): if K is a
nonempty closed convex cone,

(48) (K pointed) =# (polar cone Kof K has a nonempty interior);

(49) (v e intK) ==> ((v, d} < 0 for all nonnull d of K).

Set K co(epifo); K is a pointed closed convex cone (cf. Proposition 4.3(ii)). Since
intK # q) and since we know that K c ::{n X :{_, we may choose n + 1 affinely
independent si’s such that (si,-1) e intK (a similar device was used in [17, p. 59]).
We want to show that si is the slope of some affine function minimizing f. For a
given i, suppose that for all k there exists uk epif such that

(0) ((,,-), u) > k.

Subsequencing if necessary, we may assume that (Uk/llUkll)k converges to an element
d which by construction lies in (epif)oo \ {(0, 0)}. Dividing (50) by I[uk[] and letting
k -+ +oc yields ((si,-1), d _> 0, which contradicts (si,-1) e intK (cf. (49)). Thus
for all i, there exists ri ]R such that

sup ((si,-1), (x, f(x))} sup ((si,-1),
xEIR uEepif

This is written as

(si, x)- ri <_ f(x) for all x R.
(i) v (ii). From the definition of f*, f is minimized by the atone function (s, .)- r

if and only if the slope s lies in dom f*. (i) expresses that there are n + 1 affinely
independent points in dom f*; this means that int(dom f*) is nonempty.
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(ii) (iii). Let s e int(dom f*); we take a > 0 such that the compact ball
B(s, a) is contained in int(dom f*). Since f* is continuous.on int(dom f*) [14, 10],
it is bounded above on B(s, a); we choose an r E ]R for which

f*(s’) r for all

or, equivalently,

-r + (s’, x) <_ f(x) for all x e P and s’ e/(s, a).

By considering s’ s + a(x/llxII) if x 0 (and any s’ e B(s, a) if x 0), we conclude
that

-r + <s, x) +  llxll f(x) for all x e ]Rn.

(iii) = (iv). This is clear.
(iv) = (f is epi-pointed). There is a > 0 such that for I[x[[ large enough,

The function x -, allxll + (, x) is epi-pointed; hence so is f.

5.4. Proof of Theorem 4.6.
Proof of (i). Since (epif) is pointed by assumption, it follows from Proposition

4.3 (i)that

(epi(-6f) ----) --6(epif) co(epif) + co(epif).

For x e dom(6f), the point (x, (-df)(x)) lies in the epigraph of (--6f); according to
the decomposition (51), there exist real numbers al,..., ap, points (xl, r),..., (Xp, rp)
in epif, and points (y, p),..., (yq,, pq,) in epif such that

(52)

p

as>0 for alli--1,...,p, Zas-1;
i=l

p q
(x, +

i--1 j=l

(remember that epif is a cone). Actually, due to the definition of (-6f)(x) as the
infimum of those r such that (x, r) e epi(-6/), each r (resp. each pj) has to be f(xi)
(resp. f(yj)). Now since f(0) 0, all the null y’s can be removed in (52); there
are thus real numbers (,... ,ap (p IV), points xl,... ,xp in domf, and possibly
points yl,..., yq in domf \ (0) (q e ll) such that

(53)

p

ai>O for all i --1,.. ,p, ai--1;
i--1

P q

(x, (-df)(x)) a(x, f(x)) / (yj, f(yj)).
i--1 j=l

Hence the first part of Theorem 4.6(i) is proved.
To continue, we need the following variant of Carathodory’s theorem.
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LEMMA 5.1. Let xl,..., xr be r points of ]Rn, and let x be on the boundary of
the closed convex cone l:t+xl +... + l=t+xr. Then there exists F(x) C {1,..., r} with
cardF(x) < n- 1 such that x E er(x)l+x.

Proof. Because x lies on the boundary of K := ]R+x + + ]R+xr, there exists
a hyperplane Hs,r supporting K at x: for some s #- 0 and r E JR,

(54) (s, x r 0,

(55) (s,d)-r<_0 for alldK.

Relabelling the indices if necessary, we may assume that x is a positive combination
of the first 5 elements x,... ,xb"

x=clx+...+cbxb, ci>0 for alli=l,,..,bandb<r.

Setting d xi successively .in (55), using (54), we obtain

0 <, z> [<,> 1 <_ 0,
i=1

SO each {s, xi} r is actually O" each xi is in Hs,. Then Carath6odory’s theorem for
cones tells us that

x (R+xl +... + ]R+x) N H,

can be described as positive combination of only n- 1 elements
We begin with a decomposition of (x, (-6f)(x)) as in (53),

p q

(x, (f)(x)) (x, f(z)) + (,f()),
i=1 j=l

and we set (in ]Rn+2) X (x, (-C6f)(x), 1), Xi (xi, f(xi), 1) for i 1,... ,p, and,
possibly, Xp+j (yj, f(yj), 0) for j 1,..., q. It is clear that X lies on the boundary

v’P+q ]R+X (ofof the closed convex cone z_,i=l ). Thus according to Lemma 5.1, there
exists an index set F(X) I U J (I C {1,...,p} and J .C {p + 1,...,p + q}) with
cardF(X) <_ n + 1 such that

This yields

X -R+Xi +ZR+Xj.

iEI jEJ

(x, (C6f)(x)) ci(xi, f(xi)) + j(yj_p, f(yj-p))
ieI jJ

with ai=l, ai>_0 for alliI, /j_>0 for alljJ.
iI

However, since f is positively homogeneous, we can rewrite
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where y jyj_p for all j e J.
As for the bound on q, it suffices to note that jej(y, f(y)) lies on the bound-

ary of co(epif) and again apply Lemma 4.12.
Proof of (ii). Recall that for a nonempty S C ]Rn and u E S, the normal cone

Ns(u) to S at u is defined as the set of d such that (d, v- u} < 0 for all v E S. Its
relationship with the subdifferential of a function is as follows:

(56) s e Og(x) if and only if (s,-1) e Nepig((X,g(x)).
For normal cones, the following cMculus rules re useful.

LEMMA 5.2.
(i) If tl 1 and u2 $2, then

+
(ii) For u cos (u r Ei=I O/i Oii=l aiui with 1 > O, and u S for all

i= 1,...,r),

Ncos( )
i--1

(iii) For a closed subset S and any u e S, we have

Ns(u) C Nsoo (0).

Proof. (i) This is immediate from the definition of normal cones.
(ii) First note that Ncos(U) Ns(u). If d e ni=l Ns(u), we infer from the r

inequalities

(d,v-u}_<0 for allveS (i=l,...,r)
that (d, v u} <_ 0 for all v E S, whence d Ns(u).

Conversely, let d NcoZ(U). Fix io {1,..., r} and for an arbitrary w S, set
V OioW + Ei#io OiUi" Since v E co S,

aio(d,w-uio)=(d,v-u)_<0;
that is, d Ns (uio).

(iii) Let d Ns(u) and consider d’ So. For sequences (xk) in S and (t)k in

JR+ that give rise to d’ (cf. the definition in (25)), we have

(d, taxk tu) t(d, x u} <_ 0 for all k.

Then passing to the limit k -- +oc yields (d, d
In a decomposition like (53), we set yq+l 0 if q 0 (i.e., there is no nonnull yj

involved). We have

N-d-d(epif)((x (f) (x)))

=Nco(epii)+co(epiI)(Eci(xi,f(xi))+E(yj,foo(yj)))ij

__[Nco(epif)(Ei(xi, f(xi)))lN[Nco(epif)(E(yj, fo(yj)))
j

(according to Lemma 5.2 (i))

[NiNepi$((xi,/(xi)))] n [NNepi$ ((yy,
(according to Lemma 5.2(ii)).
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According to Lemma 5.2 (iii), we can now remove all the null yj’s. With (56), we
then have

-1) e Nepi(-6f)((x (-6f)(x)))
(s,-1) e Nepif((xi, f(xi))) for all/
and

e No,i  for y
Of(xi) for all/ and s Of(yj) for all j.

Acknowledgment, The authors would like to thank the referee for his careful
study of the script and for pointing out that our original proof of (37) was somewhat
questionable.
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INVERSION DE CERTAINS OPÉRATEURS ELLIPTIQUES
À COEFFICIENTS VARIABLES*

PHILIPPE TCHAMITCHIANt

Abstract . We consider elliptic operators in divergence forrn with variable coefficients defined
through an accretive sesquilinear form on the whole space. The coefficients of leading order are
supposed to be lipschitzian . We show how wavelets bases allow us to explicitly compute the inverse
of such operators . The first main ingredient is a detailed study, of independant interest, of the
convergence of the usuel Galerkin approximations . The second main ingredient is the notion of
paraproduct, suitably adapted to ouf context .

Key words. elliptic operators, wavelets, Galerkin approximation, paraproducts

AMS subject classifications . 35A35, 35C10, 35J15, 65M60, 65M70

1. Introduction et exemples . Cet article présente une analyse de certains
opérateurs aux dérivées partielles à coefficients variables, à l'aide des analyses mufti-
résolution et des bases d'ondelettes qui leur sont attachées .

Les opérateurs que nous traitons sont de la forme

L= -divAV+b,

vérifiant les hypothèses suivantes :
. ils sont définis sur lR (le traitement de problèmes avec conditions au bord étant

l'un des principaux problèmes ouverts à l'emploi des ondelettes) ;
•

	

ils sont associés à une forme sesquilinéaire continue sur H' (1R') et strictement
accrétive ;

•

	

enfin A est lipschitzienne, ce qui implique que le domaine de L soit l'espace
H2 (IR) .

Notre but est de calculer le plus explicitement possible l'opérateur L -l , au sens
de la meilleure topologie possible, c'est-à-dire en tant qu'opérateur continu de L2 dans
H2 et d'une façon qui soit utilisable en analyse numérique .

Nous avons proposé une première solution à ce problème dans [8] . Mais, reposant
sur l'emploi de bases d'ondelettes trop particulières, elle n'était pas très utile et nous
ne l'avons pas publiée . Néanmoins, certains ingrédients en sont repris ici .

Une deuxième solution a ensuite été proposée par Bénassi, Jaffard, et Roux, qui
consiste à construire une famille de "vaguelettes" orthogonales pour la forme associée à
l'opérateur. Mais, bien que constructive, la preuve présente de nombreuses étapes qui,
à notre avis, rendent difficile la transposition de ce résultat en situation numérique .

D'un point de vue plus directement algorithmique, on peut penser à partir des
idées développées par Beylkin, Coifman, et Rokhlin (BCR) pour la résolution de
problèmes intégraux ou différentiels . Cependant, une hypothèse essentielle dans leurs
travaux nous fait défaut .

En effet, pour que les algorithmes BCR donnent de bons résultats, ils doivent
être appliqués à un opérateur dont le noyau est régulier en dehors de la diagonale, et
d'autant plus décroissant à l'infini qu'il est dérivé . L'exemple typique est K(x, y) =
x - YHN+2 Avec un opérateur du type que nous considérons, une telle hypothèse

* Received by the editors April 16, 1994 ; accepted for publication July 31, 1995 .
t L aborato i re APT, Facu l té d es S c iences et Techn i ques de Sai nt Jér ôme, Uni versi t é d'Aix-

Marseille III, Avenue Escadrille Normandie Niemen, 13397 Marseille cedex 13, France .
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n'est satisfaite que si les coefficients sont suffisamment réguliers, bien plus que ce que
nous voulons supposer .

La question des hypothèses faites sur la régularité des coefficients n'est pas gra-
tuite, même pour le numéricien . Car, outre son intérêt mathématique intrinsèque,
elle est directement liée à la stabilité des algorithmes . Par exemple, dans notre calcul
de L_1 , les quantités importantes sont le conditionnement de A, celui de la forme
associée à L, et enfin la norme lipschitz de A . Cela implique que tout algorithme
dérivé de nos résultats dépendra de ces constantes, et sera d'autant mieux condi-
tionné qu'elles seront d'un ordre de grandeur raisonnable, et ce indépendamment de
la taille des dérivées d'ordre supérieur des coefficients .

Les deux approches, de Benassi, Jaffard, Roux et de Beylkin, Coifman, et Rokhlin,
utilisent la forme associée à L et les opérateurs de Galerkin qui approchent L_1 . Notre
solution repose en partie également sur ces opérateurs, que nous sommes ainsi amenés
à étudier. Nous prouvons que ces opérateurs permettent d'approcher L' pour la
topologie forte de H2 , et non pas seulement celle de H 1 : c'est là un premier résultat,
qui montre que, même si la précision est du même ordre, la méthode de Galerkin
converge plus finement dans des espaces associés à une analyse multi-résolution qu'en
situation générale .

Ce résultat repose sur des inégalités a priori précisées,' que nous établissons en
imitant, à l'intérieur de chaque espace d'approximation donné par l'analyse multi-
résolution, le calcul fonctionnel de Calderén . Nous définissons en particulier une no-
tion adaptée de transformées de Riesz, et étudions les commutateurs entre ces trans-
formées et les opérateurs de multiplication ponctuelle par les fonctions lipschitziennes .

Il faut cependant souligner, comme nous l'a fait remarquer D . Gottlieb, que nous
remercions, que le même résultat est vrai pour les méthodes spectrales, dans le cadre
périodique . En revanche, alors que la multiplication par des coefficients variables est
peu agréable en Fourier, les bases d'ondelettes permettent de presque diagonaliser les
opérateurs de multiplication ponctuelle par des fonctions un peu régulières . C'est là
le deuxième ingrédient de notre construction, le paraproduit, issu du calcul paradif-
férentiel de J. M. Bony, sous la forme simple qu'on peut lui donner avec une base
d'ondelettes, qui a été explicitée par Y . Meyer [7] .

Combinant les approximations fournies par la méthode de Galerkin et par le calcul
paradifférentiel, nous inversons L, en suivant un schéma abstrait qui est expliqué dans
la première partie de l'article . Nous y énonçons à la suite notre résultat principal .

Dans la deuxième partie, nous démontrons les inégalités précisées dont nous avons
besoin dans la troisième . Celle-ci est consacrée à la preuve de nos résultats sur
la qualité de l'approximation par la méthode de Galerkin dans une analyse multi-
résolution et sur le calcul de L'

L'ensemble de l'article utilise, en plusieurs points cruciaux, les propriétés essen-
tielles des ondelettes. C'est pourquoi nous rappelons, à la fin de la première partie,
le lemme fondamental qui régit (jusqu'à présent) l'emploi de ces bases en théorie des
opérateurs .

2. Le schéma d'inversion .

2.1. Généralités. Nous le présentons d'abord de manière abstraite, avant de
considérer des opérateurs plus concrets .

1 Ce sont ces inégalités qui nous permettent de généraliser le théorème écrit dans [8] à toutes les

analyses multi-résolution raisonnables de L 2 (IR?), et en font ainsi un résultat à notre avis intéressant .
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Soit L un opérateur non borné sur un espace de Hilbert N, de domaine dense
D(L), réalisant un isomorphisme de D(L) sur 7-( .

Soit également une suite (V) d'espaces d'approximation, fermés dans N,
emboîtés (V3 C 1/ + ) et définissant une approximation de l'identité : V est
dense dans 7-(, et dans D(L) muni de la topologie du graphe . On note

N -* Vj

l'opérateur de restriction par projection orthogonale (pour le produit scalaire sur N),
et l'adjoint ir, de V dans N, est l'opérateur d'extension naturel . On note également
In- la projection orthogonale de N sur V .

On suppose que sont satisfaites les hypothèses suivantes .
Hypothèse (H1) . Pour tout j e , l'opérateur

inLin :

est inversible .
On note alors 11' l'opérateur inverse prolongé à N:

Tj = rn (rnj L In * )_1 ?nj .

Les opérateurs F sont appelés opérateurs de Galerkin .
Hypothèse (H2) . Les opérateurs L F sont uniformément bornés .
Remarquer que, par définition, on a

(1)

L'hypothèse porte donc en réalité sur les opérateurs 7n± L F : ils mesurent le résidu
associé à la résolution approchée d'une équation Lu = f, où f e V, par u = F f .

Enfin, on suppose qu'on sait approximativement inverser L sur V, au sens suiv-
ant

Hypothèse (H3) . Pour tout j, il existe un opérateur Pj , continu de N dans D(L),
tel que, si R est défini par la relation

(2)

	

LP=-R,

alors on a

lim ~~ RI=O.
3-*-Q

Par exemple, si L admet une parametrix P, c'est-à-dire un opérateur continu de
N dans D(L) tel que

(3)

	

LP=I-K,

où K est compact, alors P3 = P ir - convient . On aura en effet R = K 7n±, et la
compacité de K entraîne lim + IR = O. Naturellement, si la relation (3) est
satisfaite, il suffit d'inverser I - K pour inverser L . La portée de cette remarque
est cependant limitée, premièrement parce qu'il est souvent à peu près aussi ardu de
construire une parametrix que de calculer L, et deuxièment parce que l'inversion
d'une perturbation compacte de l'identité n'est pas, en pratique, facile a priori .

Le schéma que nous proposons, plus flexible, est fondé sur l'emploi conjugué des
opérateurs de Galerkin F et des parametrix généralisées P3 .
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THÉORÉME 2.1 . Avec les notations précédentes, et sous les hypothèses (H1),
(H2), et (H3), si on définit les opérateurs U3 par

L (I' j + Pj ) = .I -- Uj ,

alors on a

lim IIUII=O .
~ j-4+00

Par conséquent, la série de Neumann Epô Up est normalement convergente pour j
assez grand, et on peut écrire

L-1 -(F ~ + Pj ) ~ UP .
P=~

L'argument repose sur une relation d'orthogonalité . On commence par calculer
L(I j + Pi ) . Utilisant (1) et (2), il vient

L (F j + Pj) _ irj L Fj + ire L I' j +7r± -- R j

= I + 7r~ L I' j -Ri,

c'est-à-dire

Uj = Rj- ire L r j .

L'opérateur Uj n'est pas petit, il est seulement contrôlé uniformément en norme,
grâce à (H2) . Mais il faut se rappeler que I'j est nul sur

	

autrement dit que
h j = I' j 7r~ 7rj . Par conséquent, rr L Fj est de carré nul . On a donc

U~ =R~ - R j ire L F

	

L I' j Rj .

On conclut alors grâce à (H2) et (H3) .

2.2. Enoncé des principaux résultats . Ce schéma sera utilisé dans le cas des
opérateurs

L = -div AV + b,

définis sur 1Rn, sous les hypothèses suivantes :
•

	

A = A(x) _ (aaj(x)),<a,<n, ,C3 et b = b(x) sont bornées .
•

	

La forme sesquilinéaire

B (f,g)= f AVf . V+fbf,g g

continue sur H 1 (IRn), est strictement accrétive . Cela signifie qu'il existe S > 0 tel que

V f E H', Re B(f, f) ~ 5 JJf J~H1
ou encore, de façon équivalente,

dx,e E IRn, Re A(x) . >_ 6 I I 2 .
Re b(x) > &



1 684

	

PHILIPPE TCHAMITCHJAN

•

	

La matrice A est lipschitzienne .
L'espace de Hilbert 7-1 est naturellement L 2 (1R) . On note simplement

	

sa
norme, ainsi que la norme d'opérateur induite .

Les espaces d'approximation Vj seront fournis par une analyse multirésolution
tensorielle (AMR) 2 de régularité r > 3 .

Cela signifie que :
•

	

les espaces V sont engendrés par les fonctions ÇOj(X) = 2 ?2 / 2 ço(2ix - k), k E
, orthonormales entre elles, déduites par translation et dilatation d'une fonction

(p ;
•

	

cette fonction p est construite par produit tensoriel à partir d'une fonction
d'une variable, notée q :

ço(x) = q5(x) . . . (xn ) ;

•

	

la fonction çb est au moins de classe C'_ 1 et à dérivée d'ordre r -1 lipschitzienne,
avec r > 3, chaque dérivée de ç étant à décroissance rapide ;

• pour tout e E {0,1}n, e O, il existe une fonction de sorte que l'ensemble
des 2jn/2 (i x - k), k E forme une base orthonormée de W, le supplémentaire
orthogonal de V dans Vj+1 ;

•

	

chaque be , comme p, est au moins de classe Cr _ l , chaque dérivée d'ordre r - 1
est au moins lipschitzienne, et chaque dérivée de 'est à décroissance rapide .

• On aura besoin de la description plus précise suivante . Il existe une ondelette
d'une variable, W, ayant les mêmes propriétés que ç, et telle qu'il existe un entier
N > r pour lequel on a

(4)

	

Vk N, f t k W(t) dt = O .

En convenant de noter / o = çb et

	

= W, et si e = (et, . . . , e,), alors on a

2~~(x) = b1(xi) . . . e (Xn )

On écrit

2jn/ 2 (2 3 x - k) = 2%~ (x),

où À = (k + âe) 2i, et on désigne par D l'ensemble des a . La correspondance

a

	

(j, k, e)

est biunivoque, et on notera parfois j(À), k(À), e(À) les indices associés à À .
La collection des

	

À E A, est une base orthonormée de L2 (R), et une base
inconditionnelle des espaces de Sobolev H5 (1R'), s <3.

Nous renvoyons le lecteur à [3] et [5] pour les connaissances de base sur les on-
delettes . Nous nous contenterons d'indiquer que l'intuition avec laquelle on peut com-
prendre ce qui suit est que les fonctions p j k et se comportent comme si elles étaient
supportées dans le cube dyadique k2 + 2 [O, i]n, et, dans l'espace de Fourier, dans

2 Une remarque de P. Auscher, que nous remercions, a permis de généraliser notre preuve au cas

des AMR de régularité r 3 quelconques . Cependant, ces analyses sont, à notre connaissance, peu
utilisées. Nous nous contenterons donc d'indiquer rapidement les modifications à apporter, sans les
détailler . Ces modifications sont, de toute façon, de nature technique et s'insèrent dans la stratégie
générale de la preuve .
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la boule Iwi

	

2 pour ce qui concerne Wj k, et dans la couronne 2j-1 < Iwi < 2j+ 1
pour ce qui concerne

Nous démontrerons le théorème suivant .
THÉORÈME 2.2. L'opérateur L et l'AMR (Vi) satisfont aux hypothèses (H1),

(H2), et (H3), et avec les notations du Théorème 2 .1, on a plus précisément

(5)

	

II U1I

où C est une constante indépendante de j .
Remarquons que, L étant associé à une forme strictement accrétive, l'hypothèse

(H1) est classiquement satisfaite . La difficulté est de prouver (H2) et (H3) . Si la
preuve de (H3) emploie des ingrédients plus ou moins déjà connus, celle de (H2) va
nécessiter quelques développements assez nouveaux, croyons-nous, et qui conduisent
à un résultat intéressant par lui-même, que nous énonçons maintenant .

THÉORÈME 2.3. Reprenant les notations du paragraphe 2.1, on a

VfEL2,

	

lim (IL!1 f - FjfMH2=O .
i-++oo

Autrement dit, les approximations u de la solution du problème Lu = f, données
par u = I' f convergent non seulement en norme H1 vers u, mais aussi en norme
H2 .

Les AMR conduisent donc à des schémas de Galerkin plus précis, au sens que la
convergence a lieu pour une topologie plus fine que la topologie habituelle, même si
l'ordre de précision est inchangé .

Ainsi que nous l'avons annoncé, ces théorèmes sont une conséquence de l'existence
des bases d'ondelettes . La base des Ç0j k, k e T n, dans V, nous sera de faible utilité,
et nous utiliserons presque constamment les ondelettes

Rappelons donc de quelle façon on emploie ces fonctions en théorie des opérateurs,

2.3. Le lemme fondamental . Jusqu'à présent, les bases d'ondelettes ont servi
à prouver la continuité de certains opérateurs, le plus souvent sur L2 . La démarche
suivie consiste, à partir d'une analyse adéquate de l'opérateur étudié, à se ramener
à une classe d'opérateurs définis à travers les images de chaque ondelette de base,
qui soient des fonctions imitant le comportement des ondelettes (et qu'on appelle
vaguelettes pour cette raison) .

Or, la continuité des opérateurs de cette classe est entièrement caractérisée .
LEMME FONDAMENTAL . Soit U un opérateur linéaire défini par U('bÀ) = f,, où

les fonctions fj satisfont aux hypothèses suivantes :

(6)

	

Vx TR, I .fa (x ) I C2 2 (1+ 2x -

(7)

	

Vx TR, ~V fa (x) l <_ C2

	

2 (1 +2Ix - ~~~ -n-s ,

où s est un réel > O indépendant de À, ainsi que la constante C .
Alors, U est continu sur L 2(1R) si et seulement si les scalaires f f, satisfont à

la condition de Carleson :

C>O, VÀED
QcQ f

2
< C2 IQÀ1,

où Q est le cube dyadique contenant a dont le côté est de longueur
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Si cette condition est satisfaite, la norme d'opérateur de U est contrôlée par la
meilleure constante C possible dans les trois inégalités précédentes .

Le lecteur intéressé pourra trouver une preuve de ce résultat dans [6], sous une
forme d'ailleurs un peu plus générale (c'est-à-dire avec des hypothèses (6) et (7) plus
faibles) . L'énoncé que nous en donnons est celui dont nous avons besoin . Signalons
enfin qu'un argument court, mais sophistiqué, qui démontre le lemme fondamental
est de remarquer que U est un opérateur d'intégrale singulière, dont le noyau est de
Calderôn-Zygmund, puis d'appliquer le critère de David et Journé, autrement dit le
théorème T(1) . On vérifie alors que tout se ramène à savoir si la fonction

(ffÀ) ~GÀ= U*(1)
a

appartient ou non à BMO (bounded mean oscillation) . Or, cette appartenance est
équivalente à la condition de Carleson .

On convient, dans toute la suite, d'appeler estimations standard de paramètre s
les estimations (6) et (7) . On dira parfois qu'une famille (f)~,vérifie les estimations
standard, ce qui voudra dire qu'il existe s > 0 pour lequel les estimations de paramètre
s sont vraies .

L'exemple le plus caractéristique d'emploi du lemme fondamental, et qui est le
prototype de l'usage que nous en ferons, est donné par la preuve suivante du célèbre
théorème du premier commutateur de Calderôn, dont nous rappelons la teneur .

On se donne a(x), x E IR,, une fonction lipschitzienne d'une variable ; on note H la
transformée de Hilbert . Il s'agit de montrer que le commutateur [a, H] est régularisant
d'ordre un, c'est-à-dire que l'opérateur [a, H] d est borné sur L2 .

Calculons l'image d'une ondelette a par cet opérateur . Elle s'écrit

a(x) 2~ (H 1')À(x) -- H{2~a ('l/J)À} (x),

avec (H')À(X) = 2j/2 (HO') (2x~ -- k), et de même pour ('/Y)À .
Mais on peut soustraire à a(x) n'importe quelle constante sans changer l'image

de a : on remplace donc a(x) par a(x) -- a(a) .
Soient alors U1 et U2 les deux opérateurs définis par

U1 À(x) _-_. 2~ [a(x) -- a(a)] (H')À(X),

U2 bÀ(x) T 23 [a(x) -- a(~)] (b')À(X),

de sorte que

a H d= U H U .
[ '

	

] dx

	

1 ---

	

2

Il suffit de prouver que U] et U2 sont continus sur L2 pour prouver le théorème de
Calderôn. Pour cela, on applique le lemme fondamental .

On vérifie aisément que U1 et U2 en satisfont les hypothèses . On calcule donc :

U1(À)=-

	

~â (Hb)a

- f(Ha') ~a

et
J

UZ (À) ~_ - fa' ~a .
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Les deux conditions de Carleson sont remplies, parce que a' E L°° par hypothèse, ce
qui entraîne que H a' E BMO, et permet de conclure .

Nous en venons maintenant à la preuve des Théorèmes 1 .2 et 1 .3, et commençons
par la démonstration de quelques inégalités a priori .

3. Une inégalité précisée .

3.1 . Enoncé du théorème. Soit B = B(x) = (ba,~(x)) une fonction à valeurs
matricielles, supposée bornée et lipschitzienne. On notera ((B(( le supremum des
normes IIB(x)M 2 , 2 , induites par la norme euclidienne sur IRE, et IIBlI i la quantité
Ia,@ II Vbat3IIoo .

L'opérateur bap 8 Lj (où la sommation sur tous les indices a et 3 est sous--
entendue) est bien défini de H 2 dans L2 , et il existe une constante C telle que

Vf E H2 , Ilbaaaaaafll<_Cllofll

(où II II désigne la norme L2 ) .
Dans le cas où B est en fait constante, la meilleure constante C est exactement

I(B(( . Dans le cas général, cette observation reste vraie, à un terme d'ordre 1 près .
LEMME 3 .1 . Il existe une constante absolue C = C(n) telle que

VfEH 2 ,

	

Ilbai5a5ifII <_ IIBII IIAfII+CIIBIIi IIVfII .

La preuve de ce résultat est très simple, mais repose sur le résultat profond
de Calder6n que nous avons déjà mentionné : si b est lipschitzienne et si Ra est
une transformée de Riesz, alors le commutateur [b, Ra ] est régularisant d'ordre 1
(exactement, c'est la généralisation à plusieurs dimensions du théorème de Calder6n
que nous utilisons) .

Soit f E H 2 . On a

baç D l3 f = b açj R R13 (0f)

= Ra ba13R13(Af)

+ [bal, Ra] R13 (Qf) .

Le deuxième terme est celui auquel on applique le résultat de Calder6n : il se
majore par CIIBII i IIVf II . Pour estimer le premier, il suffit de se donner g E L 2 ; on
a alors

(8)

	

((Raba13Rç3&f, g) =
1/2

	

1/2
I(b ap R,Q Of Ra g)i

-

	

(

	

Rçj fI 2)

	

(~ IRag()

IIBII 1 fg .

(Remarquons que le choix de la matrice B, définissant l'opérateur bai aa 0, n'est
pas unique. Si B est réelle, c'est en imposant à B d'être symétrique qu'on minimise
la norme II BII .)

Le but de cette deuxième partie est d'établir une version plus forte du Lemme
3.1, où l'espace de départ est un espace d'approximation V, au lieu de ff2

THÉORÈME 3.2. On désigne par lrj la projection orthogonale de L 2 sur l'espace
V3 . Alors, il existe une constante C, ne dépendant que de l'AMR, telle que

()

	

VjE, VfEV,

Illrjba1 Da a fil Ç IIBII "r 'fii + CilBlii iiVf ii .
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Noter que le passage à la limite j - +00 permet de retrouver le Lemme 3 .1 .
L'uniformité par rapport à j dans l'inégalité précédente résulte simplement de

son invariance par scaling . Ce théorème est donc en réalité un résultat sur l'espace
V0 . Néanmoins, la structure d'AMR sera utilisée dans la preuve, de sorte que nous
ne savons pas pour quels espaces V, en toute généralité, ce résultat reste vrai .

Remarquons cependant que, suivant D . Gottlieb, dans le cas des approximations
de Fourier, on a rrLf = /f si f V3 . Le Lemme 3 .1 implique alors aussitôt
l'inégalité (9), puisque rr est une projection orthogonale .

Pour prouver le Théorème 3 .2, nous nous plaçons dans V0 . La démonstration suit
alors à peu près le même schéma que celle du Lemme 3 .1 . Elle repose sur l'emploi
de transformées de Riesz adaptées à l'espace V0 , qui permettent de passer de rr 0 i2f
à ir 0 3 3 f, pour toute f Vo . En particulier, nous éviterons entièrement le recours
aux commutateurs de la forme [7r0, Da] .

La section suivante est consacré à l'étude de ces transformées, avant de donner la
preuve du Théorème 3 .2 .

3.2. Transformées de Riesz adaptées à l'espace V0 .

3.2.1. Opérateurs à coefficients constants et transformées de Riesz adap-
tées. On oublie ici, et jusqu'à la fin de cette deuxième partie, l'indice 0, et on note
V, rr au lieu de V0 , rr 0 . On rappelle que rr est défini comme étant un opérateur de L2
dans V, et son adjoint ir* de V dans L2 .

V étant invariant par translation selon 2Z, les calculs se font, dans cette section,
avec la transformée de Fourier . Rappelons que ([3], [5]) tout élément f de V est donné
par

f(w) = m(w) (w),

où m est 2rr -périodique et de carré intégrable (il suffit d'écrire f(x) c (x -
k) pour le voir). De plus, l'orthonormalité des fonctions p( . - k) est équivalente à la
relation

I ~ cp(w+2irk ) 2=1,
kE7

qui est vraie en tout w E IRE . Finalement, si f est quelconque dans L2 , sa projection
orthogonale sur V est donnée par

(11) (f)A(w ) = m (w) (w ) ,

m(w) =

	

.f (w + 2nk) (w + 2k) .
k E

Soit maintenant P(D) un opérateur aux dérivées partielles à coefficients constants,
d'ordre 2 pour fixer les idées, et de symbole a(w) :

(P(-D) f)A (w) = a(w) J(w) .

Il résulte de (11) que, si f E V, avec f(w) = m(w) ç(w), alors on a

(12)

	

( P(D) f)A (w) = aV (w) m(w) (w),



où

et
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~V (w) _ -i

w + 2rrk) kp(w + 2rrk) 2

(l'hypothèse de régularité sur assure l'existence de o")
En d'autres termes, l'opérateur rr P(D) ir est l'opérateur de convolution associé

au symbole crV .
En particulier, on a, si f E V,

( f)A(w ) = - (

	

w + 2k2
(~(w

+ 2k) 2 J(w) .

k E 7Z

On définit alors l'opérateur Av, de V dans lui-mÊme, par

1/2

Vf e V, (AV f)^ (w) = (

	

w + 2k 2 (cp(w + 2k) 2)

	

J(w),
k

de sorte que

(AV)2 =

On définit ensuite les transformées de Riesz adaptées Ê V, notées R et R 3 ,
par les formules

R = -2(~ âa ~`* ) (AV)
-1

= (n aa a~ ~r* ) (~r O~r* ) _ 1

Si on pose

+L~Wa 2rrk) ~cp(W + 2irk) 2

(

	

w + 2k 2 ~cp(w + 2~rk)~2

)1/2

~(wa + 2ka) (wa + 2k) Isô(w + 2k) 2

w + 27rk 2 ~cp(w + 2rrk) 2

(ces fonctions sont 2rr-périodiques, définies en tout w çt 2ir

	

et bornées par 1),
alors R et R

	

sont les restrictions Ê V des opérateurs de convolution de symboles
.

e
v
a/3

(RV f) A (w) = k(w) J(w),

(Ra„~ f) A (w) = k(w) J(w) .

Par construction, si f E V, on a

(13)

	

rr0a 3 f

	

(7rLf) .
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Dans L2 (IRn), on a l'identité algébrique

R«,,~ = R« R,3 ,

qui, toute élémentaire qu'elle soit, est essentielle dans la preuve du Lemme 3 .1 . Ici,
on n'a pas a priori la même relation entre RV,a, RV , et R~ . Cependant, la structure
de produit tensoriel de V nous donne le lemme suivant .

LEMME 3.3. Si a 8, Râ,~ = RV R~ .
Cela provient des identités

~(W) - ~(W~) . . . ~(Wn)

et

d'où

i(W« + tir k«) I2 = 1,

~(Wa + 2lTk«) (Wa + 27rka) (ç(w + 27r k)i2
k

a=1, . . .,n,

(wa+27vk«)I~v(W+z7v k)i2

	

~(w,~+27vka)I~P(w+27v k)~2
k

	

k
En termes de dérivées partielles, le Lemme 3 .3 signifie que

da ,Q, d f E V, 7r a« D f = (7r a« 7r*) (7v D f) .

En revanche, quand a = ,3, l'identité du Lemme 3 .3 est fausse. Il en subsiste
cependant une forme plus faible .

LEMME 3.4. L'opérateur RV « -- (R)2 V est positif .
En effet, de (10) et par Cauchy-Schwarz, on a l'inégalité

k« (W )2 < k,«().
On peut donc poser

S« r R« « (R)2)'/2,« qui est le multiplicateur de symbole

««(W)-k«(w)2 V2 .

On a alors le lemme suivant .
LEMME 3 .5. Pour toute f E V,

f

> iR'« fi2 +	

IS« fi2
«

	

«
=fifi2

C'est une conséquence directe de la définition de SV , chacun des deux membres
de l'égalité étant égal à f > « I1a f123

s (P. Auscher) Dans le cas où l'AMR n'a pas une structure de produit tensoriel, la construction
précédente doit être modifiée en définissant la matrice des opérateurs (Si) comme étant la racine
carréé de la matrice (Rv,p) . Tous les résultats que nous prouverons sur les RV seront également
vrais pour les SV Q, et ce jusqu'à la preuve du Théorème 3 .2 . Nous laissons au lecteur l'écriture du
cas général, ne traitant en détail que le cas tensoriel .
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3.2.2 . Images des ondelettes . Après l'étude algébrique précédente, venons-en
à l'analyse des opérateurs adaptés à V . Ils sont les restrictions à V d'opérateurs de con-
volution, dont les symboles sont des fonctions bornées 2rr?.Z-périodiques Faire leur
analyse signifie pour nous en calculer les images des ondelettes,, avec j(À) -1, qui
forment une base de V : ces opérateurs présentent alors trois types de comportement .

L'opérateur AV, de symbole

1/2
2V (w) _ ~ ~w + 2~kI 2 ~cp(cv + 27rk1 z

s'apparente à l'opérateur de Calder6n A = \/-L~, de symbole ~w~, parce que LV (w) est
équivalent à Iwi au voisinage de 0 .

Les opérateurs RV et Ra s'apparentent aux transformées de Riesz, parce que
leurs symboles vérifient

%£a (W) ^+ -2 IWI

et

V

	

W« wljICa

	

^+ IWIZ

au voisinage de 0 . Quant aux opérateurs SV, leur symbole n'est pas singulier, comme
on le verra, et leur action est triviale .

Les opérateurs A ou Ra agissent d'une façon bien connue sur les ondelettes, et
nous allons démontrer que les opérateurs adaptés à V agissent de façon équivalente .
La difficulté provient du caractère périodique de leur symbole : par exemple, kV est
singulier en tout point de 2ir71n, et pas seulement en l'origine. C'est pourquoi il faut
comparer AV à lrA7r* et RV à it Ra lr* : la projection ir a pour effet de périodiser les
symboles de A et de Ra et ainsi d'imiter les symboles LV et kV .

A cet effet, nous définissons les opérateurs To et T', c = 1, . . . ,n, agissant dans
V, par les relations

(14)

	

AV = Tô 7rA1r*,

où, rappelons-le, A = ~/-0, et

(14')

Ta(w) = ka (w) -

RV = Tâ + 7r Ra 1r * .

Ce sont des opérateurs de convolution, de symboles respectifs

(w + 2~ k~ 2 I(wcp + 2~rk)~ 2

+ 2ir/cI k(wp+ 2ir k) 1 2

et

wa + 27rka
~w + 2irkl

)1/2

cp(w + 2irk) 1 2 .



1692

	

PHILIPPE TCHAMITCHIAN

L'opérateur S a un symbole du même type, noté a(w), égal à (k(w) - k(w) 2 ) h/2 .
Tous ces symboles sont des fonctions 2i -périodiques de classe au moins C 2N* 1 ,

où N est défini par les propriétés d'oscillation des ondelettes : voir (4) . On démontre
en fait le résultat suivant .

LEMME 3 .6 . Pour chacun des symboles r0 , r, o, notés génériquement r, il
existe une constante C telle que

Vk E

	

, ft ( k) C	
C

1+ fk±2'

Nous ne faisons qu'en esquisser la démonstration, de nature technique sans être
difficile .

Il suffit de prouver que & r est intégrable sur [-ir, ir] pour tout a de longueur
inférieure ou égale à n + 2N - 1, et pour cela, il est également suffisant de montrer
que

(15) r(w) r(O) + O(fwf 2N)

au voisinage de O, puisque r est C°° en-dehors de O. Finalement, tout se ramène à
connaître le comportement de k(w + 2rrk)f 2 au voisinage de O, pour tout k E Z .

On écrit alors

(w) = (w) . . . ~(Wn),

et il est connu que

+00

~() = [J mo(2),
j=1

pour une certaine fonction C°° 2rr-périodique m 0 , satisfaisant entre autres à l'identité

(mo()( 2 + (mo( + 7r)1 2

Par définition de çL et de N, on a

mo( + ) = Q( N+1 )

au voisinage de O, d'où on déduit que

(~()f 2=1 + Q( 2N+2 )

et que

k(w)I 2 =1 + O(fw (22 ) .

Si maintenant k E

	

k O, il existe m > O tel que k E 2 ZZ et k $ 2m+1
Le lecteur intéressé pourra montrer qu'on a alors

(ç (w + 2rrk)f 2 C C2_(22)m (w (2N+2 (~(2_m-1 [w + 2irk])f 2 ,

uniformément par rapport à k E et w dans un voisinage de O. Cette formule
implique que, si a-(w) est une fonction homogène de w, d'ordre strictement inférieur à
2N + 2, et telle que

f a(w 2rrk f kp (w 2irk f 2 E L00
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alors, au voisinage de 0, on a

~(W f 2~r1~) ~cp (c.~ -}- 2~r1~)(2 = a(w) + 0(1w 2N+2) .
k

Puisque, dâns l'application au Lemme 3 .6, o n'est jamais de degré supérieur à 2, on
en déduit l'estimation (15) .

L'action des opérateurs SV , To , et Tâ s'analyse alors simplement grâce au lemme
suivant .

LEMME 3.7. Si fa est une fonction satisfaisant les estimations standard (6) et
(7), avec un paramètre s, une constante Co, et j (À) < -1, et si (ck) est une suite de
scalaires tels que

dk E Î n c<	
1

I k I- 1+kIn+s 'I

alors la fonction

ga x) -

	

ck fa(x - k)

satisfait également à (6) et (7), avec le même paramètre s, et une constante C ne
dépendant que de Co .

Notant j --= j7), on décompose g~, en

ga -
k <2--i

	

Iki>2

Le premier terme est majoré par

Co

	

~ckl2jn/2(1+2~Ix-k-
IkI52-'
C(n + s) Co lickUl2jn/2 (1+ 2~ fx - .\I)_fl_S

Le second se majore par

2j(n+s)
2C0

	

j n+S jn/2 (1 + 2~ (x - % -
Ikl>2-j 1 + 12 ~I

C'(s)C02js2jn12(1+2j Ix -ÀI)-n--s .

Puisque j < -1, ce terme est du même ordre que le premier, voire négligeable devant
lui .

Les estimations sur V ga se prouvent de la même façon .
Il nous faut maintenant étudier l'action de nAlr* et de 7r R~ lr* sur une ondelette

a appartenant à V. Rappelons d'abord comment agissent A et Ra, en partant du
résultat classique suivant {6J .

LEMME 3.8. Soit G(x) une fonction C°° sur 1R\{0}, telle que, pour tout multi-
indice •y, il existe une constante C7 vérifiant

(16)

	

dx E IRn\{o}, l 3 ~ G(x) I <_ c7 I xI _n~-m-I7I ,
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pour un certain entier m > 1 . Il existe alors, si N > m, une constante C telle que,
pour tout a E D, on ait

Vx E 1R, IG *

	

(x)I < C2

	

2jn/2 (1 + 2 Ix - ~I)-`nl-m--N-1~

et plus généralement, pour tout multi-indice y, I1 < m + r - 1,

Vx E IRE, Ia~ G * bÀ(x)I ç C; 2-im+iVI 2 n / 2 (1 + 2 Ix - aI)-n+m
-- N-1-- ~ y ~ .

Pour la commodité du lecteur, nous en donnons une démonstration, puis nous en
déduirons les estimations sur R

	

et AbÀ .
On commence par se ramener au cas j(À) = k(À) = 0, par homogénéité et in-

variance par translation, de sorte qu'il s'agit de décrire la décroissance à l'infini de
G *

Celle-ci provient des oscillations de l'ondelette
En effet, on se rappelle que

	

est un produit tensoriel W (x 1 ) . • '1' (x), où
= 1 ou 0, W

	

W et Wo = ç, l'un au moins des j étant non nul .
Traitons en détail le cas = (1, 0, . . . , 0), les autres cas se traitant de même. Par

définition de N, il existe W_(N+l), primitive d'ordre N+1 de W, qui soit à décroissance
rapide . Soit O la fonction

0(x) = W_(N+1) (x1) çb (x2) . . . çb(x) .

Par construction, a +l o = ~, et o est à décroissance rapide .
On se donne maintenant une fonction x régulière engendrant une partition de

l'unité : X est C°°, Supp X C [--10, 10], et Ekezn X(x - k) = 1 pour tout x E 1R
On découpe o en

o=

	

Ok,
kEZ

où Oi(x) = 9(x) X(x - k) . Ainsi, on a

G*= >(a'ok)*G.
kE

Soient x E 1R', k E 71 ' . Si Ix - kI < 20, on écrit

la"+1 0k * G(x)I <_ f I0' 0k(Y)I IG(x - )I dy

< C(1 +IkI)

pour tout p E IN, puisque G est localement intégrable .
Si Ix - kI > 20, alors fx - yI> 2 Ix - kI quand y E Supp 0k • On en déduit

lai
1 9 k * G(x) I <_ f lOk(y)I I5' G(x - )I dy

C (1 + I%CI) Ix -

Finalement, on obtient pour tout x

1G * (x)I < Cp ~ (1+ IkI) -~ ( 1 + Ix - k~~-~+m-N-1 .

kEZ
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Choisissant p > n - m + N + 1, et pourvu que N > m, il vient

G * ~(x) I <- C (1+ IxI) _n+m_N_1 .

Les estimations sur les dérivées de G * ~ s'obtiennent de façon analogue, quitte
à remplacer G par l'une de ses dérivées partielles . Un examen attentif de l'argument
montre que l'ordre maximal autorisé de dérivation est égal à m + r - 1 . Ceci achève
la preuve du lemme .

On l'applique alors à G(x) = IxHn1 ,+ 1 ce qui permet d'estimer A -1 ~, . Puisque
Ra = -aa A-1 , et A = ~a aa Ra = -O A-1 , on retrouve les estimations bien
connues sur Ra bÀ et A bÀ, qui s'écrivent

(17)

	

si I 'y I < r - 1, il existe C,y telle que

Vx E IRE, IaY Ra i, (x)I < C,y
2jn/2 2iV I (1 + . 2~ Ix _

(18)

	

si I ry I < r - 2, il existe C,y telle que

dx E IRE, I aY A bÀ (x) I <C.y 2jn12 2j(1+I yI) (1+ 2~ I x -

Pour finalement obtenir les estimations sur ir (R a À) et rr (A

	

on utilise le
lemme suivant, qui décrit l'action de la projection ir sur des fonctions "basses fréquences

LEMME 3.9 . Soient fÀ, où a E D et j (À) < -1, une famille de fonctions telle que
pour tout I 'yI < q, où q est un entier < r, il existe une constante C.y et un réel s .y >
0 vérifiant les estimations :

Vx E IRE , IIP fÀ (x) I <C2 12 2 1y ~n~I r(1 +2xI x -

Alors, la famille des projections lr(fÀ) vérifient des estimations analogues, où seules
les constantes C.y sont changées .

On commence par montrer l'estimation sur lr(fa), qu'on écrit

~(fÀ)(x)-

	

f .fÀ(y) ~v(y- k) dy ~(x - k) .

Le noyau intégral de la projection, > k So (y - k) cp (x - k), est majoré en module par
Cp (1 + Ix - y I ) -p, quel que soit p > 0 . On a donc, choisissant p = n + s0,

C 2 ~E 12 f (i + 2~ ly - al)-fl-So (1 + I x - yl)
-n-

s 0 dy

<C2''2,I

	

(1 + 23I x -

puisque j < -1 .
Pour montrer l'estimation voulue sur â~ 7r (f a ), où f'y I < q, on utilise le résultat

de commutation de Lemarié [4], qui s'écrit

(19)

où ir.y est une projection sur un sous-espace V.,, non orthogonale . Plus précisément,
il existe c,o et cp, y , deux fonctions à décroissance rapide (et qui engendrent deux AMR
biorthogonales), telles que

f(x) _ ~, ff(Y)(Y~P7- k) dy cp .y(x - k) .
k
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Ceci permet de reproduire les estimations précédentes, et ainsi de terminer la
preuve du Lemme 3 .9 .

Partant des décompositions (14) et (14'), et appliquant les Lemmes 2.6, 2 .7, 2 .8,
et 2.9, on obtient le lemme suivant .

LEMME 3 .10 . Les familles de fonctions RV ~ et Av bÀ, avec j (À) < -1, vérifient
les estimations (17) et (18), respectivement. La famille des fonctions SV 'ba, aveç
j (À) < -1, vérifie les estimations suivantes :
(20)
pour tout -y, ('yI <r, il existe une constante C.y telle que, pour presque tout x E 1Rn ,

D S~ 2/~a (x) I <C y 2jn12 2iH (1 + 2~ I x - ~ I)_fl_ 2N+ 1 .

On obtiendrait un résultat analogue sur les RV À, que nous n'utiliserons pas .
Remarquons, pour terminer cette section, que les opérateurs étudiés étant des convo-
lutions, les fonctions images des ondelettes bÀ annulent les mêmes moments, sous la
condition que ces moments existent .

3 .2.3. Commutateurs . Les commutateurs dont nous avons besoin sont [R',
~n b n*]et [S', n b n*] . Comme ce sont des opérateurs de V dans lui-même et que V

est inclus dans H1 (et même H2), affirmer qu'ils sont régularisants d'ordre 1 n'a pas
un sens très clair . C'est pourquoi l'analogue du théorème de Calderôn prend la forme
suivante .

LEMME 3 .11 . Les opérateurs [R',ârr b n*] Av et [SX[, 7r b n*] AV , agissant de V
dans V, ont une norme majorée par C II VbII , où C est une constante ne dépendant
que de V .

(Noter que, par scaling, ce lemme se transpose à V~ , pour tout j, avec la même
constante C.)

La stratégie de la preuve est la même que pour étudier le premier commutateur
de Calderôn . On munit V de sa base d'ondelettes (fia), où j (À) < -1 . Si h =
[T, n b n*] Av est le commutateur considéré, T = RV ou Sâ , on calcule l'image de
chaque bÀ

T(nbn"(~a))-nbTn`'(~a) .

Remplaçant b par b - b(À), on obtient

P(~a ) = Tn([b - b(~)] Av (h))
- n[b - b(~)] T AV

Soient alors les opérateurs U et UT définis par

U(À) _ [b - b(e)] n`' (fia)

et

UT(À) _ [b - b(e)] 7'n`' (~a)

L'estimation sur la norme de I, résultera de l'estimation analogue sur les normes de
U et de UT, obtenue en appliquant le lemme fondamental .

Commençons par vérifier les estimations standard .



Grâce à la majoration

(21)

	

b(x) - b(À) < Vbl oo Ix

celles-ci découlent, pour la famille des U(bÀ), des inégalités (18) sur les Av (/),
démontrées au Lemme 3 .10 .

Si T = R, on a T Av = -i 9 q * et les estimations standard sur les UT ('L)
proviennent de (21) et du Lemme 3.9 .

Si enfin T = S, on applique les Lemmes 3 .6 et 3 .7 aux fonctions Av (/») •
Il faut maintenant estimer les intégrales des fonctions U(') et UT (fia) , et les

constantes de Carleson associées .
Avec T = Id, R ou S, on calcule donc

f bTA() .

Utilisant (14) et le fait que T, T" et ir rr* commutent, cette intégrale se réécrit

(22)

	

f A(b) Tv T() .

Or, des relations (19) de Lemarié, on déduit que irb est lipschitzienne, de norme
lipschitz contrôlée par celle de b . Comme on a

A(7rb) =) Ra 3a 7rb,

A(irb) appartient à BMO, de norme majorée par 7Vb, où C ne dépend que de V.
D'autre part, grâce aux Lemmes 3.6, 3 .7, et 3 .10, les fonctions T T(bÀ) vérifient

les estimations standard, et sont de plus d'intégrale nulle .
Il est alors très classique de montrer que les intégrales (22) vérifient l'inégalité

de Carleson requise par le lemme fondamental, avec une constante contrôlée par la
norme de A(7rb) dans BMO (voir [5]) .

Ceci permet d'achever la preuve du Lemme 3 .11, et conclut notre étude des trans-
formées de Riesz adaptées à V.

3.3. Preuve du Théorème 3 .2 . Considérons maintenant f E V (= Vo), et
estimons la norme de n

	

D 0i f . Elle se laisse trivialement dominer par
mais nous voulons comparer à irLf au lieu de f d'une part, et d'autre part obtenir
la meilleure constante C, c'est-à-dire quitte à ajouter au majorant un terme
d'ordre 1 .

On commence par échanger la projection et la multiplication, en écrivant

nba8yj3f = nbar* qDcDjf
Fi.

	

1
Wai3,7r* 7r] c /3

Le second terme se traite facilement .
LEMME 3 .12 . Pour toute fonction b lipschitzienne et pour tout c, l'opérateur

[b, n*n] l3 est continu, de norme contrôlée par C Vb 0 , où C ne dépend que de V .
Ce résultat se démontre exactement comme le Lemme 3 .11, avec d'ailleurs un peu

moins de complications techniques . Nous en laissons donc l'écriture au lecteur .
On a ainsi

Ill~an ~'*1 &.aafll ç CBI i HvfM .
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Le terme principal rr b

	

rir 3 D f s'écrit en utilisant les transformées de Riesz
adaptées à V:

= rbo rr*R(1rLf)

= b*RR(7rLf)

+ r b

	

(S)2 (f)4

Comme dans la preuve du Lemme 3 .1, on a maintenant

= R (7r be7r*)R (7rzf)

+ s[ (ir bca *) S ('î Lf)

+ [7r bair * , R]R(irf)

+ [7r ba7r*, Sa]S(irLf) .

D'après le Lemme 3.11, les deux derniers termes sont majorés en norme par
CIBI i llVfll .

Pour estimer les deux premiers, on définit la matrice B, dans Men (C), par

B o bnn

o

B)

On démontre, exactement comme dans (8), que l'opérateur

R(7rba 1r*)R + Sa (7r baa 7r*) Sa

est de norme majorée par IIBII : on utilise pour cela le Lemme 3 .5, et le fait que
la projection ir, étant orthogonale, est de norme 1 . A ce stade, nous avons obtenu
l'estimation

rb50 afM <

	

I f r/Xf +CBlli MVffl .

Pour conclure, il ne reste plus qu'à remarquer le résultat amusant suivant .
LEMME 3 .13 .

llBll = IIBII

Le Théorème 3 .2 est maintenant complètement démontré. Remarquons qu'il se
généralise directement au cas où les coefficients bai sont de régularité s > O . On
obtient alors

Ilirbnaa0ajfM <

	

Ilirofll +CMBllc IISIIx=- . .

où f[2 désigne l'espace de Sobolev homogène d'ordre 2 - s .

Dans le cas des AMR non tensorielles, l'algèbre est légèrement plus compliquée, mais sans que
la preuve change de nature .
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4. Inversion des opérateurs strictement accrétifs du second ordre à
coefficients dominants lipschitziens. Revenons à l'opérateur L = -divAV + b,
satisfaisant toutes les hypothèses exposées à la première partie : nous devons prouver
que sont également satisfaites (H2) et (H3), afin d'appliquer le schéma d'inversion du
Théorème 1 .1, et démontrer les Théorèmes 2.2 et 2 .3 .

Rappelons que la stratégie générale d'inversion de L que nous suivons consiste à
découpler les basses et les hautes fréquences, en écrivant

L 2 = V3o ® ® w,
j >_jo

et en approchant l'opérateur L par la méthode de Galerkin sur V0 , par une parametrix
sur V ..

Nous étudions d'abord les approximations Galerkin, prouvant notamment le Théo-
rème 2 .3, puis nous construisons la parametrix . Nous supposons donnée une AMR
(Vj ) satisfaisant aux hypothèses du Théorème 2.2 .

4.1. Action de L sur V3 et opérateurs de Galerkin . Reprenant les notations
du Théorème 2.1, nous désignons par rr~ : L 2 -* Vj et : V~ -* L 2 les opérateurs
de restriction (par projection orthogonale) et de prolongement associés à V3 . Par
hypothèse, l'opérateur 7T L ire , de V~ dans lui-même, est inversible : nous notons F
l'extension naturelle à L2 de son inverse (lrj L rr~) -1 . I' est l'opérateur de Galerkin
associé à L et à V~ .

On a classiquement

df E L2,

	

lim IIL-l .f - F f IIx1= O,

et le Théorème 2.3 affirme que la même relation est vraie pour la norme H 2 . Ce
résultat est plus fort que l'hypothèse (H2), qui affirme seulement que les opérateurs
L F sont uniformément bornés .

Ces propriétés vont résulter du corollaire suivant du Théorème 3.2 .
THÉORÉME 4.1 . Il existe une constante C, ne dépendant que de L et de l'AMR

(Vi), telle que pour tout j E

	

et pour toute f E V~ , on ait

(23)

	

IILfII<_C(IIir;LIII+IIIIIH')

En termes plus intuitifs, cette inégalité signifie que la régularité des coefficients
est suffisante pour que l'action de L sur V~ n'induise pas un "éclatement" incontrôlé
par ire L f, c'est-à-dire sa projection basses fréquences .

Pour démontrer ce résultat, on commence par l'établir dans le cas où les coeffi-
cients sont constants, qui se réduit à l'observation suivante .

LEMME 4 .2 . Si A est constante, j E ZL et f E V~, alors

~~Lo ,f M <_ c~~rrjLo ,f U,

où Lo = - divA V, et où C ne dépend que de A et de l'AMR
Il suffit de faire le calcul avec la transformée de Fourier, en utilisant les résultats

du paragraphe 3.2 .1, pour prouver ce lemme .
Dans le cas général, on commence par renormaliser A : si

b

	

52

	

1/2
t = fA2'

	

I
III - tAII <_ 1-	 A2) ,

II

	

II

	

II
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où 6 est la constante d'accrétivité de A . On peut donc se ramener au cas où A = I-B,
avec IIBII < 1 .

Notant toujours L0 l'opérateur -divA V, le Théorème 3 .2 donne l'inégalité

II7r~ L 0 fM ? (1 - IIBII) II 7 r~ L fM - C IIBMiip IIo fM .

Comme on a d'autre part

IILOfff _<Cffzfff < C'ffirL .fff,

on obtient le Théorème 3 .2 pour L 0 , et donc pour L . Une version précisée en est
d'ailleurs

IIAII 2
IILofII < C -- (II 7r~ L 0 fff + IIAlliIlVflI),

où C ne dépend que de l'AMR. Si A est auto-adjointe, sli n'est autre que le con-
ditionnement de A, K(A) = f Aff f A' , à condition bien sûr que 6 soit la meilleure
constante d'accrétivité, et dans le cas général, on a seulement l'inégalité I4t > K(A) .

Enfin, comme le Théorème 3 .2, le Théorème 4 .1 se généralise au cas où L s'écrit

L= -a3+b a +b,

avec aa E C, E > 0 .
Le Théorème 4.1 implique immédiatement que les opérateurs L F sont uniformé-

ment bornés . Si f e V, on applique l'inégalité (23) à gj = F f : on sait que II gff H1
C ( f f f f, où C ne dépend que de L, et on a d'autre part ir L gj = f, d'où finalement
II L gj II

	

C f f f f, qui est le résultat désiré .
La démonstration du Théorème 2 .3 est à peine moins difficile. On se donne

f e L 2 , on pose g = L' f, g = F f et il s'agit de montrer que

lim IIg-gffH2 =0.
3- +OO

Décomposons g - g en rr± g + irg - gj , où 7r~ est la projection orthogonale sur
v .

Puisque g e H 2 et que les ondelettes choisies sont base inconditionnelle de H 2 ,
on a

(24)

	

• lim II7r~gff H 2 = 0 .
3 -*+oc

Il reste à estimer la norme H 2 de rrg - gj , qui est équivalente à la norme L 2 de
L(rrg - gj ) ( nous laissons au lecteur la preuve de cette remarque) . Mais l'inégalité
(23) nous donne

f L(7rjg- g)ff

	

C(ffrrL(7rjg - g)ff + 17rjg- gffHi ) .

On a

lim 117r~g-gff H'

	

0 .
3-*-Q

D'autre part, par construction, rr Lg = lrj f = rr Lg, d'où

j L (7rjg - gj) = -ir L 7r~ g .

On déduit alors de (24) que

lim 117r~L(rrg-g)ff =0,
3 -*+QQ

ce qui termine la preuve du Théorème 2 .3 .
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4.2 . Construction d'une parametrix. Pour conclure, c'est-à-dire démontrer
le Théorème 2.2, il faut établir (H3), sous une forme suffisamment précise pour pouvoir
en déduire l'inégalité (5) .

La parametrix que nous allons construire est définie sur V~ô , où jo est fixé, en
associant à chaque ondelette de base, j (À) > jo, la fonction Ba, définie par

-d iva(a) v ea = fia .

THÉORÉME 4.3. Si jo est fixé, l'opérateur Pr o (dépendant de j 0 ), défini par

Pro (1'À) = 9a

	

si j(À) > j0,
Pro(f)=0 si f E Vjo ,

est une parametrix à droite de L, au sens suivant.
(i) L'opérateur Pro est continu de L 2 dans H2 , et sa norme est uniformément

majorée par rapport à jo ;
(ii) l'opérateur L P 0 se décompose en

où ~râ est la projection orthonormale sur V~ô , et où l'opérateur R io est borné sur L 2
en norme par C 2j0 , la constante C ne dépendant pas de jo .

Ce théorème implique que L vérifie l'hypothèse (H3), l'inégalité (5) provenant de
l'estimation sur la norme de R 0 , et de la preuve du Théorème 2.1 .

La définition de Pro est fondée sur l'idée classique du gel des coefficients domi-
nants. On tire ici partie de la localisation des bÀ, qui permet de bien adapter le point
de collocation des coefficients .

Il est cependant important de comprendre que la seule localisation des ondelettes
dans l'espace physique IR' n'est pas suffisante . En effet, pour que le Théorème 4 .3
puisse être vrai, il est au moins nécessaire que chaque 0À approche la fonction L -1 (b) :2
c'est le cas, comme on va le voir, grâce aux propriétés d'oscillation des bÀ . (En
d'autres termes, le même procédé appliqué aux fonctions cpj0 k ne donnerait pas du
tout le même résultat .)

Enfin, soulignons que Pro est une parametrix en un sens plutôt faible . En l'absence
de régularité des coefficients âa aa~ et b, le reste Rio n'est pas régularisant. Néanmoins,
nous verrons qu'il se décompose en

Rj0 = Rj0,0 + Osa (aa~)Rjo,Q + bP3o ,

où les opérateurs R~ o ,o et Rio , sont régularisants d'ordre 1, et Pro, d'après le théorème,
est régularisant d'ordre 2 .

Démontrons maintenant le Théorème 4 .3 et, pour commencer, décrivons les 0À
(soulignons que, dans cette notation, À a la signification usuelle d'un indice, et ne
signifie pas qu'il existe 0 e telle que 0À (x) = 2jn/2 0~ (2i x - k)) .

LEMME 4.4 . Il existe une constante C telle que, pour tout a et pour tout x,

IOÀ(x )) < C2'2 4~n-3 (1 + 2~ I x -

et plus généralement, pour tout multi-indice -y,

	

r + 1, il existe C.,, telle que

I0 OÀ(x) I < C~, 2jn12 2j(171-2)
(1+ 2~ (x -
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Ce n'est qu'une conséquence directe du Lemme 3 .8, puisque 0À = G,\ * bÀ, où GÀ
est la fonction de Green de l'opérateur -divA()) V, qui vérifie, uniformément en a,
les estimations (16), avec m = 2 .

En utilisant le lemme fondamental, on en déduit sans difficulté la continuité de
l'opérateur P30 de L2 dans H2 , uniformément par rapport à jo .

Calculons alors L

	

Si , est une ondelette, telle que j(À) > jo (parce que
sinon 13

	

= 0), on a

L P À = L O)
=

	

- R 0 (b),

avec

R 0 ('b,) = [aa ,~ _ aa (À)} aa c9 6
- aa (aa ) 5j3 0À + bOÀ .

Les opérateurs qui à associent, respectivement, 0j O et O sont continus sur
L2 et majorés en norme par C 2 0 et C 4jo (appliquer le lemme fondamental et les
estimations du Lemme 4.4) .

Quant à l'opérateur qui à associe [a(À) - aaç ] aa £ O,,, il est régularisant
d'ordre 1, et continu sur L2 de norme majorée par C 2jo : ceci se démontre à nouveau
grâce au lemme fondamental, en suivant la même démarche que pour l'étude des
commutateurs . Nous laissons au lecteur l'adaptation des arguments utilisés à ce cas
particulier .

Finalement, l'opérateur R 0 est borné, et de norme majorée par C 2^j0 , ce qui
achève de démontrer le Théorème 4 .3, donc le Théorème 2 .2. Le Théorème 2 .1
s'applique, et permet d'inverser L, au sens de la meilleure topologie possible .

5. Conclusion. Quelques considérations orientées vers les applications numé-
riques pour conclure .

Les méthodes spectrales, très précises, sont d'un emploi mal commode dès qu'il y
a des coefficients variables à contenu spectral assez riche dans les équations à résoudre .
Même s'il est possible, en théorie, d'utiliser une méthode de Galerkin, le calcul effectif
de la matrice associé à l'opérateur irLrr pose de sérieux problèmes .

C'est pourquoi nous pensons que, remplaçant les fonctions spectrales par les on-
delettes, il est peut-être possible de tirer partie de la double localisation des ondelettes
d'une façon numériquement efficace .

La formule d'inversion du Théorème 2.1 peut servir de base à un algorithme,
de nature itérative à cause de la série de Neumann qui intervient . Les résultats
d'une première tentative dans ce sens seront ultérieurement publiés . Nous voudrions
souligner ici quelques points qui justifient a priori l'intérêt numérique de cette formule :

(i) le seuil de séparation jo est indépendant du second membre de l'équation à
résoudre et de la précision cherchée ;

(ii) de plus, le nombre d'itérations nécessaires à atteindre un gain donné en
précision ne dépend pas de la taille de la grille ;

(iii) à cause de la forme de la paramétrix Pj0 , une version adaptative d'un algo-
rithme d'inversion est possible en principe ;

(iv) enfin, la formule d'inversion étant fondée sur un calcul perturbatif, il ne
sera pas nécessaire de calculer avec une grande précision les opérateurs F et P30 :
l'opérateur

L( 0 + Pro),
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où le tilde désigne les opérateurs effectivement calculés, reste une perturbation de
l'identité .

Malgré d'évidentes différences géométriques, ces quatre propriétés rapprochent
notre méthode des méthodes multi-grilles : nous espérons pouvoir prochainement
développer la comparaison .
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ON QUASI-PERIODIC PERTURBATIONS OF ELLIPTIC
EQUILIBRIUM POINTS*

NGEL JORBAt AND CARLES SIM(t

Abstract. This work focuses on quasi-periodic time-dependent perturbations of ordinary dif-
ferential equations near elliptic equilibrium points. This means studying

c (A + sQ(t,e))x + eg(t,) + h(x,t,),

where A is elliptic and h is (.9(x2). It is shown that, under suitable hypothesis of analyticity, nonres-
onance and .nondegeneracy with respect to , there exists a Cantorian set $ such that for all E $

there exists a quasi-periodic solution such that it goes to zero when does. This quasi-periodic
solution has the same set of basic frequencies as the perturbation. Moreover, the relative measure
of the set [0, 0] \ $ in [0, 0] is exponentially small in s0. The case g 0, h 0 (quasi-periodic
Floquet theorem) is also considered.

Finally, the Hamiltonian case is studied. In this situation, most of the invariant tori that are near
the equilibrium point are not destroyed but only slightly deformed and "shaken" in a quasi-periodic
way. This quasi-periodic "shaking" has the same basic frequencies as the perturbation.

Key words, quasi-periodic perturbations, elliptic points, quasi-periodic solutions, small divi-
sors, quasi-periodic Floquet theorem, Kolmogorov-Arnold-Moser (KAM) theory

AMS subject classifications. 34C27, 34C50, 58F27, 58F30

1. Introduction. In this work, we will consider autonomous differential equa-
tions under quasi-periodic time-dependent perturbations near an elliptic equilibrium
point. The kind of equation with which we shall deal is

ic (A + eQ(t, e))x + .q(t, ) + h(x, t,),

where A is assumed to be elliptic (that is, all the eigenvalues are purely imaginary
and nonzero), h is of second order in x, and the system is autonomous when 0.
At this point, we recall the definition of a quasi-periodic function.

DEFINITION 1.1. A function f is a quasi-periodic function with basic frequencies
al,... ,c if f(t) F(01,... ,0), where F is 2r periodic in all its arguments and
Oj Cdj t for j 1,..., r.

We assume that the quasi-periodic functions appearing in our equations are ana-
lytical. For definiteness we give the following definition.

DEFINITION 1.2. A function f is analytic quasi-periodic on a strip of width p
if it is quasi-periodic and F (see Definition. 1.1) is analytical for IIm Oil <_ p for
j- 1,...,r. In this case, we denote by Ilfllp the norm

with IIm Ojl <_ p, 1 <_ j <_ r}.

This kind of equation appears in many problems. As an example, we can consider
the equations of the motion near the equilateral libration points of the earth-moon
system, including (quasi-periodic) perturbations coming from the noncircular motion
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of the moon and the effect of the sun. See [13], [5], [111, [12], [10], and [15]. In
these works, some seminumerical methods were applied to compute a quasi-periodic
orbit replacing the equilateral relative equilibrium point (which means that, when
the perturbation tends to zero, quasi-periodic orbit tends to the libration point),
but there is a lack of theoretical support to ensure that the methods used are really
convergent and the computed quasi-periodic orbit really exists. In 2, the existence
of that dynamical equivalent is shown for a Cantorian set (of positive measure) of
values of . Another problem related to this is the study of the stability of that quasi-
periodic solution. In order to do this, a kind of Floquet theory is available (see [16])
which now can be obtained as a result of the more general study presented here (see

We Mso wnt to note that the Floquet theorem for the quasi-periodic cse has
already been considered in mny ppers. An pproach similar to ours (bsed on

Kolmogorov-arnold-Moser (KAM) techniques) cn be found in [3]. There the re-
ducibility to constant coefficients is studied for the case in which A is a hyperbolic
mtrix. For the case in which A is elliptic, some bounds are given on the mesure of
the set of matrices Q for which the system can be reduced to constant coefficients.
The bounds on that measure, however, are not as good as those that can be derived
from the work presented here.

Another approach to the reducibility of quasi-periodic linear equations can be
found in [14]. The methods used there are not based on KAM techniques, and the
results can be applied to systems that are not close to constant coeiicients. The main
drawback is that the hypotheses used are quite restrictive and are very difficult to
check in a practical example.

Finally, it is interesting to consider the Hamiltonian case. In 3, we show that
most of the KAM tori of the autonomous system still persist when the quasi-periodic
time-dependent perturbation is added.

Studies of this kind for the case of the one-dimensional SchrSdinger equation can
be found in the literature--see, for instance, [6], [18], [4], or [8J--and some of the
methods and ideas used here are already contained in these papers. Note that since
the "unperturbed" problem is a harmonic oscillator, it is possible to obtain better
results (see, e.g., [8]). Some of the ideas of this paper could be already found in [17]
and [7], although they deal with slightly different problems.

2. A dynamical equivalent to elliptic equilibrium points. In this section,
we focus on the equation

(1) (A + eQ(t, e))x + eg(t, e) + h(x, t,

where the time dependence is quasi-periodic with vector of basic frequencies co

(col,..., co) and analytic on a strip of width p0 > 0. The reader should recall that h
is of second order in x. We want to stress that the equations are not required to be
Hamiltonian. (The Hamiltonian case will be considered in 3.)

2.1. The inductive scheme. To study (1), let us perform some changes to
simplify it. First of all, we shall try to eliminate the independent term g(t) by means of
quasi-periodic changes of variables. To do this, we shall need a scheme with quadratic
convergence. (Otherwise, the small-divisors effect would make the method divergent.)
This kind of scheme is based on the Newton method, that is, to linearize the problem

For instance, the system ic (A + Q(t,))x, where A is elliptic and is small, does not satisfy
the required hypothesis.
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in a known approximation of the solution, solve this linear problem, and take this
solution as a new (better) approximation to the solution for which we are looking.
These algorithms can overcome the effect of the small divisors and ensure convergence
on certain regions. To apply this method to our problem, we must consider the
following linearized problem. (We take as an initial guess the zero solution, and we
linearize around this point.)

(A + Q(t, ))x + g(t, ).

We are looking for a quasi-periodic solution z_(t, s) whose basic frequencies are those
of g and Q such that lim0 z_(t, e) 0. At this point, we note that we do not need to
know x_(t, e) exactly because an approximation of order e is enough. This is another
property of the Newton method; we do not need to know the Jacobian matrix exactly
but just some approximation of it, and it is enough that this approximation be of the
order of the independent term that we want to make zero. In our case, this can be
easily done by considering the linear system

(2) & Ax + eg(t ).

Here we need a nonresonance condition. The usual one is

where Ai are the eigenvalues of A and Ikl Ikll +... + Ikrl. Condition (3) as well as
condition (7), an additional diophantine condition needed later, will be discussed in
detail throughout 2.2.

Let us call x_(t,e) the solution ’of (2) that is quasi-periodic with respect to t
(and whose basic frequencies are those of g) and of order e. The existence of this
solution will be shown by Lemma 2.10. Now we can perform the change of variables
x x_(t, e)+ y to (1) to obtain

(4) i) (A + eQ1 (t, e))y + 2gl (t, ) q- hi (y, t,

where if e 7 0,

Q (t, e) Q(t, e) + Dh(x(t, e), t, e),
11

h(z_(t,e) t e)+-Q(t,e)z_(t e)]l(t,)- j
hi (y, t, ) h(x_(t, e) + y, t, ) h(x(t, e), t, ) Dxh(x(t, e), t, e)y.

Note that this process cannot be (successfully) iterated. Now we need a solution of

(5) ) (A + aQl(t, a))y + g2g (t, )
with an accuracy of order e; and if we take the kind of approximation given by (2)
(that is, dropping Q), we will have a divergent scheme. This is because, in this
way, one obtains linear convergence in e, which is overcome by the effect of the small
divisors.

To deal with this difficulty, we perform a new change of variables to get something
like e2Q2 instead of eQ1. This can be done as follows. Let us define the average of
Q1 as

I(E) lim
1 fIT Q1 (t, e) dr.

T-*ec J--T
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For the existence of the limit, see, for instance, [9]. Now consider now (5) after
averaging with respect to t and some rearrangement"

9 (() " ()1 (t, ))y -- 2g (t, ),

where 1 (t, e) Q1 (t, e) l(e), (e) d + el(e). Now we need to find a quasi-
periodic solution of

(6) P P P+

with the sme bsic frequencies s Q. This cn be done if the eigenvMues of A satisfy
diophantine condition. The one used in [16] was

C
+ >

Then, making the change of variables y (I + eP)z (I denotes the identity matrix)
to (4) (these changes of variables have already been considered in [3], [16], and [15]),
we obtain the equation

(8) k ((e) + 2Q(t, e))z + e2g(t, e) + h:(z, t, ),

where Q2(t,e) (I + P(t,e))-P(t,), g2(t,) (I + eP(t,))-g(t,), and
h2(z,t,e) (I + P(t,e))-h((I + P(t,))z,t,e). Now, using z + :g:(t),
we are able to find an approximate solution of (8) with an accuracy of order 2 that
allows us to proceed with the Newton method. In this way, after n steps (each step is
composed of the two changes of variables as explained above), the equation will look
like

Then if the norms of A, Qn, gn, and hn do not grow too fast with n, the scheme will
be convergent to an equation like

A(e)y + h(y, t, ).

This equation has the trivial solution y 0, and this shows that in the original system
of equations, the origin is replaced by a quasi-periodic orbit whose basic frequencies
are those of the perturbation. Note that we have also obtained the linearized flow
(given by the "Floquet" matrix A) around this quasi-periodic solution.

2.2. The resonances. We recall that the small divisor conditions needed at
each step (to compute the changes of variables) are

C C
(9)

The first condition is needed to solve equations like (2) and the second one to solve
equations like (6). Note that the eigenvalues ,i are changed at each step of the process
(because A is changed), and this implies that we do not know in advance if they will
satisfy the diophantine conditions for all the steps.

To deal with this problem, we need to have some control on the variation of
the eigenvalues at each step. To explain the main idea, let us focus on (2). Since
we are assuming that the eigenvalues of A verify condition (3), at the first step,
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we can solve the equation and proceed. In the second step, when we need to solve
the same equation, we find that the matrix has been (slightly) changed. Now it is
A() A + QI (). Therefore, since the eigenvalues of A are different from those of
A, we cannot assure that they satisfy condition (3).

To explain how to overcome this difficulty, let us denote by A(), i I,..., d,
the eigenvalues of the matrix (). Let us write (6) as

+ + +...,

where A is an eigenvalue of the unperturbed matrix A. If we look at A(6) as a
function of 6, we can avoid the resonant values of A() by avoiding the corresponding
values of 6. This implies that taking out a (Cantor-like) set of resonant values of
(this set is the usual union of smail intervals centered in the values (k, w)) is equi:valent
to taking out the corresponding (by (10)) values of 6. To bound the measure of the
"resonant" values of 6, we will require that relation (10) be Lipschitz from below with
respect to 6. We also want to note that we need to take out values of 6 at each step of
the inductive process, so we need to have this condition at each step. Let us examine

this. At first sight, it seems enough to ask for AI) # 0 because this value is produced
by the first averaging. Therefore,

1. it is left unchanged by all the others steps of the inductive procedure;
2. it can be computed easily at the beginning (it is a verifiable hypothesis).

The problem is that if we take out a Cantor-like set at each step, the dependence
of/\i(6) on is not differentiable (because ,i() is defined only on a set with empty
interior), and we do not even know if it is continuous. Therefore, it is not obvious
how to derive the Lipschitz condition that we need.

To deal with the latter difficulty, we will show explicitly that at each step, relation

(10) is Lipschitz. (Note that the definition of Lipschitz holds perfectly on sets with
empty interior.) This will allow us to control the measure of the set of 6 that we are
taking out.

Finally, we want to note that this technique has to be applied twice at each
step--once for equations like (2) and once for equations like (6).

2.3. The measure of the resonant set. Another important point is to bound
the measure of the set of values of 6 too close to resonance. To do this, we will assume
that e belongs to an interval [0, 60], where 60 is small enough. We will show is that
it is possible to bound the measure of the set of resonant values of 6 by a quantity
exponentially small in 60. To simplify the discussion, we will againfocus on (2), so
the corresponding small denominator is (k, w)-- Ai.

The usual procedure is to use the bound given by (3) because it is good enough
to produce convergence and to give a positive measure set of admissible frequencies.
(This has been done in [15] and. J16].) Note that the size of the set of resonant values
of A is given by the bound of the small divisors. This implies that we should try to
choose that value as small as possible. On the other hand, however, this value will
appear in the denominators of the Fourier series. Therefore, if it is too small, we will
not be able to prove convergence.

2 For instance, in the case of (3), the set of resonant values of A is

CU
I1#o

where B(a, r) denotes the ball (in the complex plane) centered in a with radius r.
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The condition that we have used is

c Ikl D(k,n),>

where 7n has been taken to be equal to 7oZn (1 < z < 2) and vn is (n+l)2. Here
n denotes the actual step of the inductive process. To begin the discussion of this
expression, let us remark that the measure of the resonant set of , at each step rt is
given by k-0 2D(k, rt), k Z, and the total measure is

c Ikl(11) E E 2 II,T, e-""
>0 kz\{0}

Therefore, a first condition that we need is that those sums are convergent.
Before continuing with the discussion of D(k, n), let us first .explain where the

exponentially small character (of the set of resonant values of ) comes from. This
will (hopefully) make clear the reasons to choose an expression like D(k, n).

As we stated before, the eigenvalues of the matrix A move at each step of the
inductive process by an amount of (.9(e). Let us call I() the interval (with diameter
(9()) where the eigenvMue number moves. This implies that if the eigenvalues of
the unperturbed matrix satisfy a condition like (3), the values (k,w) are outside Ii()
if Ikl < N() for a suitable value N(). (Another way of saying this is that the values
(k, w) cannot approach Ai too fast because of (3).) For that reason, we do not need to
take out resonances with ]k < N(e); and this leads to the fact that in (11) it is enough
to start the sum in k when Ikl >_ N(). This in turn implies that if the expression
D(k, n) decays exponentially with Ikl, we will obtain something.exponentially small
with 0.

This is the reason for putting something like exp(-lkl) in D(k, n). Since this
value will appear in the denominators of the corresponding Fourier series, we will have
the factor exp(lkl) multiplying the coefficients of those series. This will produce a
reduction of the analyticity strip of the series; the width will go from p to p- . Of
course, after a few steps, the functions will not be analytic. Thus the entire inductive
process will be over. To avoid this problem, we have chosen depending on the

t0actual step (n+1)2 in such a way that the total reduction on the analyticity strip
remains bounded. (Of course, other selections of n are possible, but they do not
change the final result.)

The next step is to realize that with this selection of , the exponential goes to 1
when n goes to infinity. Thus we need to add some factor in front of the exponential
to ensure that the sum with respect to n is still exponentially small. For this reason,
we have added the factor c/Ikl"n The selection n ’ToZn is not the only one (one
can use, for instance, , "fort

y for some j), but the results with the present choice
seem to be better than for other choices. Finally, the value z has to be taken between
1 and 2. If it is taken equal to 2, then the divisor is too small and we are not able to
guarantee convergence. This is seen more clearly in the proofs.

Finally, this entire procedure is applied (at each step) in the same way for (6)
using the same exponential bound for the denominators.

2.4. Some remarks. Before finishing the overview of this paper, it is interesting
to remark that since the equations with which we deal are not necessarily Hamiltonian,
it is possible that in some step of the inductive process, the eigenvalues of the matrix
A leave.the imaginary axis. In this case, we do not need to worry about resonances
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from this step onward. Since we cannot know in advance if this is going to happen,
we have considered the worst case during all of the proofs; that is, the eigenvalues are
always on the imaginary axis. On the other hand, if the initial matrix A is partially
elliptic and partially hyperbolic, the results are still valid. In the hyperbolic case,
they are of course much better; that is, they hold for a full interval [0, 0].

In some cases, it is possible that at the first step of the inductive process the
eigenvalues leave the imaginary axis. (This is really the general case.) Theorem 2.4
ensures that this case can be detected when averaging the original system and looking
for the new equilibrium point of this autonomous system. The linearized equations
around that point and the "Floquet" matrix (A) of the quasi-periodic orbit differ
in

Another interesting point is to compare what we are doing here with the proof of
the KAM theorem. In the proof of the KAM theorem (see, for instance, [1]), we use
the action variables as parameters to avoid resonances. Here we use the eigenvalues
of the matrix A, but since we cannot move them directly, we move them by means of
the single parameter e. Note that the nondegeneracy condition of the KAM (nonzero
Jacobian of the frequencies with respect to the actions) says basically that we can
control the frequencies through the actions. Here we want to control the eigenvalues
by means of e, so we ask for a suitable Lipschitz condition. As is well known (see, for
instance, [2]), the nondegeneracy condition of the KAM theorem can be relaxed to a
second-order condition. Here it is possible to do something similar (instead of asking
for A}) # 0 in (10), we can allow/1) 0 but ask for A) - 0 or even a higher-order
condition), and the estimates on the measure of the Cantorian set of e are obtained
in a similar way. (In fact, the estimates can be even better.) It is also remarkable
that the scheme of the proof that we are using is quite similar to that of the KAM
theorem [1].

Finally, note that if the nonlinearity h and the independent term g of the initial
equation (1) are both equal to zero, we have a Floquet theorem. Now-the result
obtained is better than that contained in [16]. There it was shown that the measure
of the set of "resonant" e E [0, e0] is o(e0), and here it is proved to be exponentially
small with e0.

2.5. Theorems. From now on, if x e ]R, we denote by IIx[[ the sup norm of x.
If A is a matrix, IIAII denotes the corresponding sup norm.

THEOREM 2.1. Consider the differential equation

(2) ic (A + eQ(t, e))x + eg(t, ) + h(x, t,e),

where Q(t, ), g(t, ), and h(x, t, ) depend on time in a quasi-periodic way with basic
frequencies (Wl,... ,ar)t, r >_ 2, and I1 < o. We assume that A is a constant d x d
matrix with d different eigenvalues hi and det A O. Let us suppose that h(x, t, )
is analytic with respect to x on the ball B(0), h(0, t,e) 0 and Dxh(O,t,e) O.
Moreover, we assume the following:

1. Q, g, and h are analytic with respect to t on a strip of width po > 0, and
they depend on in a Lipschitz way.

2. ]]Dxxh(x,t,e)l <_ K, where Ilxll <_ -, lel e0, and t belongs to the strip

defined in 1.
3. The vector t ae, lw lw sati4es the nonresonance con-

ditions

2c 2c
(,)1 > o’ I(,) a + > 1
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for all l _< i,j_< d, k EZr\{0}, c> 0, and To >_ r-1. As usual, Ikl is taken as

4. Let us denote by x_(t, e) the unique analytical quasi-periodic solution of ic
Ax + eg(t, e) such that lime__,o_x(t, e) 0 (the existence of this solution is shown by
Lamina 2.10), and let us define

A(e) A + eQ(e) + Dxh(x(t, e), t, e).
oLet Aj(e), j 1,..., d, be the eigenvalues of A. We require the existence of-, 5 > 0

such that

o olel e2[ [/\/O(el) /\j (el) (/\/O(e2) /\j(e2)){ 25[el e2[ > O,

for all i, j, and k satisfying 1 <_ < j <_ d and 1 <_ k <_ d and provided that [Eli and
le21 are less than some small value

Then there exists a Cantorian set $ c (0, co) with positive Lebesgue measure such
that (12) can be transformed by means of a change of variables into

I A(e)y + h(y, t, e),

where A is a constant matrix and h(y, t, e) is of second order in y. If eo is small
enough, the relative measure of (0, co) \ $ in (0, Co) is less than exp(-c/e) for
c > 0 and c2 > 0 (independent oleo), where c2 is any number such that c2 < .’o
Furthermore, the quasi-periodic change of variables that performs this transformation
is analytic with respect to t, and it has the same basic frequencies as Q, g, and h.

Remark 1. In hypothesis 3, we use 2c instead of the usual c in the diophntine
condition to simplify the notation inside the proofs.

Remark 2. During the proof of this theorem, we will suppose that Po _> 1 +
-. This condition can be achieved by introducing a new time r st, where

1 + --- 1s max
Po

This scaling may change the constant c; therefore, the set is scaled by the same
factor.

Renark 3. For fixed values of A, I,..., d, A - A if j, hypothesis 3 is
not satisfied for any c only for a set of values of of zero measure if 0 r I.

Remark 4. If r I, that is, if the perturbation is periodic, no small divisors
appear if e is small enough and the results hold for all e E (0, e0). The proof is
classical. We shall assume without explicit mention that r

_
2 in what follows.

COROLLARY 2.2. Under the hypothesis of Theorem 2.1, there exists a Cantorian
set c (0, e0) with positive Lebesgue measure (and with the complementary being
exponentially small) such that (12) has a quasi-periodic solution x(t) with basic fre-
quencies (wl,...,wr) such that

lim IIx ll- O.
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COROLLARY 2.3 (a Floquet .theorem). Consider the linear differential equation

(13) (A + Q(t, ))x,

where Q(t,) depends quasi-periodically on time with basic frequencies (wl,... ,w)t,
r >_ 2, and I1 < o. We assume that A is a constant d d matrix with d different
eigenvalues )i and det A O. Moreover, we assume the following:

1. Q is analytic with respect to t on a strip of width po > 0 and depends on
in a Lipschitz way.

2. The vector (A1,..., id, V/-Lwl,..., V/-A-w) satisfies the nonresonance con-
dition

2c

for all l <_ i, j <_ d, kEZ\{0},c>0, and 70 >_ r-1.
3. Let us define

A(e) A + Q(s).

Let A(), j 1,..., d, be the eigenvalues of A.
such that

We require the existence of 5, 5 > 0

> e6l  - > o
2

for all i, j, and k satisfying 1 <_ i < j <_ d and 1 <_ k <_ d and provided that I11 and

121 are less than some small value o.
Then there exists a Cantorian set $ C (0, So) with positive Lebesgue measure such

that (13) can be reduced to a system with constant coefficients

] A(z)y

by means of a change.of variables x (I + sP(t, ))y, where I is the identity matrix
and P is analytic and quasi-periodic with respect to t with w as a vector of basic
frequencies. If o is small enough, the relative measure of (0, o)\ $ in (0, o) is less
than exp(- for cl > 0 and c2 > 0 (independent of 0) where c2 is any number

such that c2 < .
Remark.Tis corollary is the result of tking g h 0 in Theorem 2.1. We

hve lso weakened the nonresonnce condition. This fact becomes clear by looking
into the proof for that theorem.

THEOREM 2.4. Let us con.sider (12), and let us assume that all the hypotheses
of Theorem 2.1 hold. Moreover, let us assume that the nonlinear part h(x, t, ) is of
class C with respect to and h(x, t, O) h(x). Then if is sufficiently small, the
averaged system

) (A + Q)y + - + h(y, )

has an equilibrium point Xo () such that
I1 o( )11 0;

2. the matrix Axo of the linearized system around Xo() and the matrix A
obtained in Theorem 2.1 satisfy llAno -AII (9(2).
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COROLLARY 2.5. Let us define i, 1 <_ <_ d, as the eigenvalues of the matrix

Axo defined in Theorem 2.4. Then, under the hypothesis of Theorem 2.4, an equivalent
version of hypothesis 4 in Theorem 2.1 is obtained if o are replaced by )o.

The proofs of the results above have been split into several parts to simplify the
reading. Section 2.6 contains lemmas needed to show the convergence of the iterative
scheme used to obtain Theorem 2.1. Section 2.7 presents the convergence proof.
Up to this point, we do not worry about the measure of the set of values of that
must be taken out. Section 2.8 includes the lemmas used to prove that matrix A
depends on in a Lipschitz way at each.step of the procedure. The lemma used to
bound the measure of the Cantorian set where Theorem 2.1 holds is given in 2.9.
Section 2.10 actually states the bounds for that measure, and, finally, 2.11 is devoted
to Theorem 2.4.

2.6. Convergence lemmas. In what follows, we will use the fact that an an-
alytic quasi-periodic function f(t) on a strip of width p with w (wl,... ,wr) as a
vector of basic frequencies has Fourier coefficients defined by

F(OI, O,.)e-(’):-- dO

(F is defined in Definition 1.1) such that f can be expanded as

f (t) E fke(k’)-L--t
kEZ

for all t such that IIm t < -. Moreover, the analyticity of f implies that

LEMMA 2.6. Let 5 E ]0, 1], c >_ 1. Let us define the function

x/s- 1.

Then

20r

kEZ

Pro@ We shall use the fact that #{k e Z / m} 2rmr-1. This is checked
immediately for m 1 or for r _< 3. Then we use induction with respect, to r for
m > 2. We then obtain

kEZ m=0

Since the unique maximum of g(x) xr+a-le-6 is reached when x
can bound the sum above by this maximum plus the integral as

r+c--I
6 we

r+c-I



1714 /kNGEL JORBA AND CARLES SIM6

5r+a e r + a 1

2r (r + a -1)
r+a-l

lOv/r + a l<

r+a-1 1
LEMMA 2.7. Let h U C Id

---* Id be a function of class C2 on a ball B(O)
that satisfies h(O) O, Dxh(O) O, and IIDxxh(x)l <_ K, where x E B.(O). Then
IIh(x)]l <_ -llxll 2 and IIDxh(x)ll <_

The proof follows from Taylor’s formula.
LEMMA 2.8. Let M be a diagonal matrix with d different nonzero eigenvalues,, j 1,... ,d, and a min(mini,j;ij pi- pj[,mini ]pi[}. Let g be a matrix such

that (d + 1)[[N] < a. Let aj, j 1,..., d, be the eigenvalues of M + N, and let B
a suitable matrix such that B-(M + N)B D diag(aj) with condition number
C(B). Then the following hold:

1. Z min{mini,j;i#j Iai aj],mini ai} k a 2]N]].
2. C(B) < -+(d-a)llNI! In particular, g IlNll < then C(B) < 2

P oo . proof found
LEMMA 2.9. Let Ao be a d d matrix such that Spec(Ao) {A,..., A},

2, - > 2, j, where > O. Let Bo be a regular matrix such that

Bg AoBo Do Zo m  {llBoll, I1  111},
a be a value such thatO < a < (3d-)Z" Then ifA verifies [[A-Ao < , the

following conditions hold:
1. Spec(A)= {AI,...,Ad}, and ] > , ]- Aj > , j.
2. There exists a nonsingular matrix B such that B-AB diag(Al,... ,Ad),

which satisfies B]] and IB- , with 2o.
Proo Let A be a mtrix, nd we write A Ao + (A- Ao). Then .BABo

Do + N, where N B(A- Ao)Bo. Here we can apply Lemm 2.8 to obtain 1 if
2,,[A- Ao]] (d+)Z]" Note that Lemm 2.8 states that the condition number of the

2matrix C that diagonMizes Do + N is less thn 2 provided that [A- Ao] < (3d-)Z
In this cse, the matrix that diagonlizes A can be obtained by multiplying Bo by C.
Hence its norm can be bounded by 2o.

In the next lemmas, the parameters and re ssumed to be positive.
LEMMA 2.10. Let us consider the equation 2 Ax + g(t), where A is a d .d

matrix belonging to the ball B(Ao) C (d,d) with a as given by Lamina 2.9,
g(t) (g(t))<<d, and g(t) is an analytic quasi-periodic function on a strip of
width p and is expressed as

gi

Let us assume that I(k,w)x/L-- A[ > _e-,Ikl VA E Spec(A). Let p2 be such that
0 < p2 < pl and 5 pl p2 ’ <_ 1. Then there exists a unique quasi-periodic
solution of Ax + eg(t) that has the same basic frequencies as g and that satisfies

where L1 4[_ + o (+)
/ aria # and o are defined in Lamina 2.9.

Remark. In this and forthcoming lemmas, we consider A, Q, g, and h depending
also on (see Theorem 2.1), but, for simplicity, we do not write this explicitly.
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Proof. Let B be the matrix found in Lemma 2.9. Making the change of variables
x- By and defining h(t) B-lg, the equation becomes

Dy + eh(t).

Since D is a diagonal matrix, we can handle this equation as d unidimensional equa-
tions, which can easily be solved. If y (Yi)l<i<d and

kEZ

the coefficients must be yk (k,)J-- and they can be bounded by

lYI <
.,h]] if k=0,

[[hllo--e- if k 0.

Now we need to bound the norm Ilyllo. Let t be a complex value such that IIm wtl
P2 (for all i). Then

[kl (pl-u)lklePlklY(t)l lYI le(k’t)l e
[[hllpl + ellhllole-

Setting 5 p p: u, we can use Lemma 2.6 to bound the sum above as

lyi(t)l llhllpl + 3c+

Since Ilhol IIB-l]]lglll and Ilxllo IIBllllylI, the result follows.
LEMMA 2.11. Let us consider the equation AP-PA+Q, where A B(Ao)

and Q (qj), where qj(t) are analytic quasi-periodic functions on a strip 4 width
p and are expressed as

k e(k,w)tqiy(t) qij
kN

We also assume that Q has average equal to zero and that [(k,w)x/-2-- Ai + AI >
Ik e-’lkl vAi E Spec(A). Let p2 be such that 0 < p2 < pl - and 5 pl -p2- <_ 1.

Then there exists a unique quasi-periodic soluti,on of AP PA + Q that has the
same basic frequencies as Q and that satisfies

where L2 16g 20rx(r+) and o is defined in Lemma 2.93c6r+
Proof. Let B be the matrix found in Lemma 2.9. Making the change of variables

P BSB- and defining R B-1QB, the equation becomes

DS- SD + R,

where the matrix R has zero average. Since D is a diagonal matrix, we can handle
this equation as d2 unidimensional equations, which can be solved easily. If S (sij)
and

ks(t)= E siJ
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rj and they can be bounded bykthe coefficients must be 8ij

Now we need to bound the norm IlSll.. Let t be a complex value such that IIm wtl <
p. (for all i). Then

kEZ

e--

Now we can use Lemma 2.6, setting 5 pl p2 g, to bound the sum above as

c 35r+

Since IIPIIp. [[BIl[[Sllpll-ll[, we cn use IIRllp II-lllllQIIp IIBII to obtain the
result. I-I

LEMMA 2.12. Let us consider c (A + eQ(t))x + eg(t) + h(x,t), where the
time dependence is assumed to be analytic quasi-periodic on a strip of width pi. We
also assume that h(x, t) is analytic with respect to x on the ball B(O) and satisfies
llDxh(x,t)l] K Vx e Br(O). Moreover, A e Ba(Ao) and ](k,w)- Ail >
le-c"lkVAiSpec(A). Let p2 be such that O < p2 < p and 5 p p2 1.

Then there exists a change f variables x y+(t) that transforms the initial equation
into

( -- el)Y -- 2gl (t) - hi (x, t),

where Q has zero ’average and the following bounds hold.
1. IQlllp,. < 211QI11 + 2KLlllgllm, where L1 was defined in Lemma 2.10.
2. Igl liP2 -- KLIIg[[I/2 + L11[Q, Ilpl IlgllPl"
.3. IAII _< IIAII + s(llgllpKL1 + IIQ[[pI).
4. IDh(y, t)l K.
5. Illp= llglloZl

H y .(0, 1 -Ilmll,, and i maZg nogh.
Proof. Let be such that A + e9. In Lemma 2.10, we obtained

Ilxlb _< allglllL1.

Making the change of variables x y + x(t), we get

1 (A + eq + Dxh(x(t), t) )y + h(x_(t), t) + eqx(t) + hi (y, t),

where hi (y, t) h(x__,(t) + y, t) h(z__(t), t) Dxh(z_(t), t)y. Defining ql
Dh(z_(t) t) and g h(x(t) t)+7 7 7Qx(t) (e :/: 0), the equation is then

2(A + eq (t))y + gl (t) + h (y, t).

To finish, the terms of this equation must be bounded. Let us start with Q. Using
Lemma 2.7, we get
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Now let us bound Ilglllp., again by means of Lemma 2.7, as

P / IIQII, IlgllpL1

Now it is Dyyhl(y, t)’s turn, that is,

IIDh I1. [IDh(x(t) + y, t)II K,

To do this, we must require that y e By (0), where T1 7- ]lxll.. ( is assumed to
be small enough.) Now, using that Q (t) Q + Q (t) and defining A A + eQ1,
we obtain

9 (A + Ql(t))y + gl (t) -}- h (y, t).

Finally,

and taking into account that I1 I1,. _< ,IIQIIIp and that IIQ(t) ll,. _< 2IIQIlI. the
proof is finished. El

LEMMA 2.13. Let us consider ic (A + eQ(t))x + e2g(t) + h(x,t), where the
time dependence is assumed to be analytic quasi-periodic on a strip of width p and
Q has zero average. We also assume that h(x, t) is analytic with respect to x on
the ball By(O) and that it satisfies IIDxxh(x,t)llp < K Vx E By(O). Moreover, A

c e-lkl , ;kj Spec(A) Let P2 be suchB(Ao) and I(k,w)VrZ-1 ,i + "jl - lK
that 0 < p2 < p-u and 5 p-p2-u <_ 1. Then there exists a change of
variables x (I + eP(t))y, where I is the identity d x d matrix and P(t) is analytic
quasi-periodic on a strip of width p2, which transforms the initial equation into

where Q1 has zero average and the following bounds hold.
1. II(}lil. < =llPll,..l-,IP,,= llIIl, h IIPII. IIIIL= ad L2 a ded

Lemma 2.11.

(+ellPIIp)

4. II]l < IIAII + a

Proof. Using Lemma 2.11 we can solve AP PA + Q. The solution that we
have found verifies

Now, by means of the change of variables x (I + P)y and introducing the notation
QI (I + P)-QP, g (I + p)-g, and h(y,t) (I + eP)-lh((I + eP)y,t), we
obtain the equation

9 (A + a2Ql(t))y + 82g (t) - hi (y, t).
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Next, we are going to bound the terms of this equation. For this purpose, we need
the bound of IIPIIp provided by Lemma 2.11 and displayed above, that is,

1

KIII + ePII e < K (1 +
1  IIPII  

Of course, we require y e Br, (0), where ’1 T/(1 + ellPll.), and e is small enough.
To finish this, we rewrite the equation using Q1 (t) 1 + Ql(t), and A + e21
and we obtain

( + 2) )y -[- 2g () q- h (y, t),

and we only need to bound A as

Thus far, we have the main tools to carry out one step of the inductive process.
Now we present a lemma that will be used to show the convergence.

LEMMA 2.14. Let ln be a sequence of real positive numbers such that

for all n k O, where.>O, l < z < 2. Then

_< (z) no

Proof. Taking logarithms, we have

log r/,+ _< (zn) log(zn) + 2 log ?n
< (zn) log(zn) + 2zn- log(zn-

_
4 log ?’In-- ’’"n

<_ " E 2Jzn-J (log’ + (n j) log z) + 2’+1 log 7o
j=O

n zl n zl
"-’if2n+l logff E2-T -t’-if2n+l logz E 12-T + 2n+l log r/o

/=0 /=1

<: 2n+l 1
1og +2n+l Z 2n+l2---z (2 z)------ log z + log r/o.

The result follows by exponentiation.
LEMMA 2.15. Let {an}n be a sequence of positive real numbers that satisfies

an e ]0, 1], YIn__oan a e ]0, 1]. Let {bn}n be another sequence of positive real
numbers that satisfies n=o bn b < +oc. Consider the new sequence {Tn}n defined
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by Tn+l anTn --bn. Then the sequence {Tn}n converges to a limit value T that
satisfies T >_ ao b.

Proof. It is easy to see that

7"n+l-- flai TO-- E I aj bi --bn
i=0 i=0 j=i+l

As all the terms appearing in this expression converge, so does Tn. Moreover, using
that

n

II aj_<l
j=i+l

for all n, the result follows.

2.7. Proof of Theorem 2.1 (part I). Here we will present the proof without
worrying about resonances, and then in 2.10, we will take out the values of e for
which the proof fails.

First of all, let us denote by A0 the initial matrix A (see Theorem 2.1) corre-
sponding to the averaged linear part of the differential system. Let # be a real value
such that if Spec(A0) {,0,..., ,}, then I,1 > 2# and I, ,1 > 2# for all j.
Then Lemma 2.9 can be applied to obtain values a and/ such that all the matrices

A O} be diagonalized. Moreover, thecontained inside the ball B(Ao) { IIA-AOII < can

matrix B of the diagonalizing change of variables satisfies IIBII < and lIB-1 < ft.
During the proof, we shall see that if e is small enough, all the matrices An that
appear during the inductive process are inside that ball.

Since we assume that the dependence of Q, g, and h with respect to e is Lipschitz,
every time we compute some norm, we mean without explicit mention that we look
for the maximum not only with respect to t in the suitable strip but also with respect
to e in the allowed range.

To begin the proof, we suppose that we have applied the method presented pre-
viously up to step n, and we will see that we can apply it again to get the n + 1 step.
In this way, we shall obtain bounds for the quasi-periodic part at the nth step and
for the transformation at this step, and this allows us to prove the convergence.

We note that in the first step (that is, when the current data are the initial ones)
the index n is equal to 0.

Now suppose that we are at the nth step. This means that the equation we have
is

(14) 25on (An(e) + e2nQn(t,e))xn + e gn(t,e.) + hn(xn,t,e),

where An belongs to B(A0); its eigenvalues ,i verify the nonresonance condition

where /n 3,0zn (1 < z < 2) and Un (n_t:l)., with 0 < u0 < 1/4. Since we need
to reduce the width of the analyticity strip of the quasi-periodic functions, we define

with P0 1 + -g-. During the proof, wePn+l Pn (nnl) 2’ and an Pn- 2(n+1)2,
shall see that the analyticity ball (with respect to x) of h(x, t) must be reduced at
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each step of the inductive process; and we shall find that by selecting small enough,
the limit radius of this lall is positive. Let us define n as this radius at step n. Now
we can apply Lemma 2.12 to transform (14) into

(5)

where the width of the analyticity strip has been reduced to cry. Now, assuming that
the nonresonance condition

holds for all ,i, ,kj e Spec(An(e)), we can apply Lemma 2.13 to (15) and get

(16) +l (A+I () -}- 2n+l Qn+l (t, ’))Xnnc -}- "C2n+lgn.Zr. (t, ) hn+l (Xn+l, t, ).

Now the width of the analyticity strip has been reduced to pn+l. The next step of the
proof is to obtain bounds of the terms appearing in (16) depending on the bounds of
the terms of (14).

In what follows, L,n and L2,n denote the values of L1 and L2 as introduced
1/2--uoin Lemmas 2.10 and 2.11, where /, u, and 5 are replaced by %, u, and (4i),

respectively.
(see below) we getUsing Lemma 2.13 and the condition nl]Pllo+ <_ -

Here we need Lemma 2.12 to bound the expression above, but the bound provided by
this lemma has a "still unknown" term, that is, the bound of the second derivative of
hn. Let us call. this value K. Note that it is "modified" at each step by Lemma 2.13.
In order to bound it, we shall assume that is small enough to ensure that e IIP I1+
is less than 1/2. This implies that the value of e will be reduced at each step, if necessary,
to guarantee that condition. We will see that this condition is achieved from a certain
step onward, without modifying e anymore. Therefore, we assume that K <_ (-)K0
(when the convergence is proved, we shall give a more realistic bound of K that
converges to a real number), and Lemma 2.12 states that

Now we bound the norm of gn+l as

and, from. Lemma 2.12,

IIgn+l I1+ < KnL2 2
/O

For simplicity, let us denote an IIlip nd ]lgllp, This means that we
have obtained the bounds

a+ 16La, an + L,
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To bound Cn and/n, we define, r/n max{cn,/n}. Since L2,n < 4Ll,n, after some
rearranging, we get

an+l < 64L,n 1 + LI,n

9 L2 2L:n .Z+I , +

Since we can assume c 1 without adding any additional constraint on the small
divisors, we have Ll,n > 1. Hence

,.+1 < lS t,.,.

It is immediate to check that there exists (depending on 7o, r, o, c, u0, and z) such
that

9 L3 )Sz28 , < (z Vn 2 0.

Using Lemma 2.14, we have n Mn, where M1 (z)U0. With this, we
have proved that

2 2

Note that this bound allows us to ensure that if e < e M, then

lira e llello lim 0.

The next step is to bound I]P On+" For this purpose, we first use Lemma 2.13 and
then Lemma 2.12 to obtain

Now it is not difficult to prove that LI,, M" and L2,n M for a suitable
constant M. (This is easily shown by taking logarithms.) Hence we can derive

IIPll+l M
for a suitable constant M3. This means that if e < el min{M, M1}, we have

lim e" IIP + 0.
n

without reducing the value of a at eachThis allows the condition ee"l Pll+ < 5
step. Now we will bound IImll as

IlmnIl L,llgIIn <M
for a suitable M4. When the changes of coordinates have been bounded, we can
estimate the decrease of the radius , of the ball where h is analytic with respect to
x. It has been shown that
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Now we define

It is easy to prove that I-InC=o an converges by

N

In H an
n’-O

N N

n=0 n=0

Because bn is also convergent, we can apply Lemma 2.15 to get T >_ aTo-b, which
is positive if e is taken small enough.

Now let us bound IIAnl] as

IIA.+lll < IIAII + e’

_< IIAnll / ’ I1.11,,. / 1 ’ IIP.II..+
Using the bounds found above we can write that

IIA,+lll < IIAnll / n,

where n <_ 2nM for a suitable Mb. Because n is convergent we can ensure
that if s is selected smll enough, the matrices A are always inside the ball B(Ao)
defined before.

Now consider the value Kn. Above we have used the pessimistic bound K
()Ko. Note that this bound does not allow us to guarantee the convergence of the
functions hn(xn, t) to an nalytic function h(x, t) with respect to x. Now we cn
use a more accurate bound of that vlue to get this. om Lemm 2.13, we know that

gn+l < gn (1 + e IIPll,+)

by means of the inequality 1 + 2x if 0 x , we get

+ g.

And, using the bounds of Pllo+l that we already know, it is easy to see that the
(bound of the) value K converges.

Hence we have obtained the convergence proof for all lel < e0 for a suitable e0
without taking into account the "bad seC of values of e for which the diophantine
conditions at some step are not satisfied.

.8. Lpscht lemmas. In this section, we present the lemmas needed toshow
that at each step of he inductive process, the dependence on e of the eigenvalues of
the matrix A is Lipschit.

LMMA 2.16. et f [-e,e] C be a ipschitz fnctio from above (with
coestant ) ed from below (with coestet /), that is,

II()- I()l 1-, II()- I()l 1- 1.
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Let g [-, ] C be another Lipschitz function from above with constant a < l, that
is,

Then h f + g is Lipschitz from above with constant L + c and from below with
constant , that is,

Ih(x) h(y)l <_ (n + a)lx Yl, Ih(x) h(y)l >_ (1- a)lx

Proof. The proof is elementary.
Remark. Henceforth, all Lipschitz functions appearing in the text will be Lipschitz

from above unless otherwise stated. Moreover, we will sometimes use (f) to denote
the Lipschitz constant (always with respect to ) of a Lipschitz function f. The set on
which this constant is taken should be clear from the context. For instance, if f(t,
is known to be defined for IIm t _< p and E E C ]R and is Lipschitz with respect
to in E, then If(t,2) f(t,l)l _< (f)l2 11 for all t, 1, and 2 in the allowed
domain.

In what follows, we shall denote by N the set of nonnegative integers, that is,

LEMMA 2.17. Let us define

f(z,) E ak()zk’ k d,

and assume that the sum is convergentz D D1 x x Dd C Cd, where Dj are

fixed disks of C. Moreover, we suppose that f depends o in a Lschitz way with
Lipschit constant L. Let us take D C D such that D D Dd and satisfying
radius(Dj) _< a radius(Dj) ar, 0 < a < 1. Then if z D, it holds that

1. [f(z, al)- f(z, a2)[ <_ g2(a)n[al- 2[02,
2. [[Dzf(z,l) Dzf(z,2)ll <_ Kl(a)n[l 21a,

where both Ki(a), 1, 2, defined for a < 1, are continuous and increasing func-
tions.

Proof Let OoD be OD1 x... ODd, where 0 stands for the boundary of the
corresponding sets. Since

a (e) (2r/"L’-)d oD
+1 dzl dzd,

we have that

1 If(Z,lzlllak(l) ak(2)[ _< (2r)h Idzl"" .dZd

L[I- 21 z
On the other hand,

[f(z,l)--f(z,2)l_ E [ak(l)--ak(2)[]Zk[
[k[_>2

[k[>_2 rd
k
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NdNow, using z e D (that is, Izjl < arj) and #{k e / Ik[ m} <_ dmd-1 if m >_ 1
(which can be obtained by induction with respect to d), we obtain

[k[_>2 m=2

where K2(a) dE= me-ar-. Finally, it. is not difficult to see that K2(a) is
convergent if Icl < 1. This completes the proof of 1.

Since

0---f (z’)= E kjak()zk-J
Oz

we can proceed in the same way as before, that is,

Of (z El) Of (z,2) <- E kJ lak(l)-

rj[k[_>2

LII 21<- Z_, dmdam- <- KI(a)LIa
?J m=2

where Kl(a) __d y,: mdam-2 and is a lower bound of the values rj (see 2.7).
Here, we note that K(a) is convergent if [a < 1. To complete the proof, we only
need to take the sup norm of the vector of components

Of (z,)- Of

LEMMA 2.18. Let us suppose that P(t, e) is a matrix depending on in a Lipschitz
way with constant L. If IIPII <_ 1/2, then (I + P(t,s))- is Lipschitz with respect to
with constant 4L.

Proof. It is known that

(I + P)-I I-- P + P pa +...,

and then it is easy to see that

((I + P)-I) <_ (P) + (p2) + (p3) +... _< E nllPl[n-L]
1

(1 -IIPII)n <- 4L.

LEMMA 2.19. Let q(t,) be an analytic quasi-periodic function on a strip of width
p. We write

q(t,e) E qk(e)e(k’)zz-ft
kEZ
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and we assume that all the coefficients qk(e) depend on in a Lipschitz way with
constant Lk. Moreover, we suppose that Lk <_ Llkle-pllkl if k 7 O, where L is a
positive constant. Let us take p2 E]0, pl[. Then if q(t,) is restricted to a strip of
width p2, it depends on in a Lipschitz way with constant

20rL’= Lo + L36+aX(r +
where Lo L=o, 5 pl -p2, and X is as defined in Lemma 2.6.

Proof.

kEZ

Here we can apply Lemma 2.6 to obtain the desired result. D
LEMMA 2.20. Let q(t, ) be an analytic quasi-periodic function on a strip of width

P,

q(t,) E qk()e(a’)-ft"
kEZ

Let us assume that q(t, ) depends on in a Lipschitz way with constant L. Then the
coefficients qk() depend on in a Lipschitz way since

Iqk(l) qk(e2)l _< Lklgl

where La Le-11.
Proof. Let us fix e and e2 and define p(t) q(t,e)- q(t, e2).

LI 21, the Fourier coefficients of p satisfy
Since IIPlIo -<

Ipkl <_ L]I- e21e-plkl,

and using the fact that Ipkl- Iqk(l)- qk(2)l, the result follows.
LEMMA 2.21. Let us define

f()

where la A(e)l >_ u and g and are Lipschitz functions with constants Lg and L,
respectively. Then f is Lipschitz with constant

Lf L L+ Ilglloo

Proof. The proof is straightforward. D
LEMMA 2.22. Let Ao be a d x d matrix such that Spec(Ao) {o,..., }, i/ol >

2#, I -AI > 2#, j, where # > O. Let A(e) be a matrix-valued function such that
IIA(e)- Aoll < a if I1 < so and dependent on e in a Lipschitz way, with constant LA.
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Let B(a) be the change of variables that diagonalizes A(a) (see Lemma 2.9). Then
there exist -1 1 (Ao, c, ) and -2 -2(Ao, c, ) such that

where () are the eigenvaiues of A(a) and the definition of values c and/ can be

found in Lemma 2.9.
Proof. This result is essentially contained in [19, pp. 66-67], but for an analytic

dependence on a. The result for a Lipschitz dependence on can be obtained as
follows.

1. Let us consider the matrix A as a function of all its elements aij. This implies
that if the elements are close enough to those of A0, the eigenvalues and eigenvectors
depend on aij in an analytic way. Hence in any compact set inside the domain of
analyticity, they also depend in a Lipschitz way.

2. The elements aij() of A() also depend on in Lipschitz way with the same
constant since

n

<i<n
j--1

IIA(el)- A(e2)ll _< Lle
3. Finally, we compose the Lipschitz dependence (of the eigenvalues and eigen-

vectors) on aij with the Lipschitz dependence of aij on . [:]

LEMMA 2.23. Let us consider the equation

ic A()x + g(t, )

under the same hypothesis as in Lemma 2.10. Let P2 be such that 0 < p2 < pl 2,

and 5 pl p2 2, <_ 1. Moreover, we assume that A() and g(t, ) depend on in
a Lipschitz way with constants LA and Lg, respectively. Then the solution x(t, ) of
this equation (see Lemma 2.10) depends on in a Lipschitz way for belonging to the
strip of width p2 with constant

n < x(r + 2)(ELAg + E2L)

where E1 and E2 are positive constants that do not depend on the actual step of the
inductive process of 2.7.

Proo First of all, let us make the change of variables x B(a)y (the matrix

B() is given by Lemma 2.22) in order to diagonalize the matrix A(). With this, the
equation becomes

D(a)y + h(t, ),

where D(a) is a diagonal matrix and h(t,a) B-()g(t,a). Lemma 2.22 ensures
that LD (D) maxn T2LA and nh (h) LAIg + ZL. Moreover,
since

kEZ
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we have by Lemma 2.20 that Lhk :_ (hk) Lhe-pllkl.
As shown in Lemma 2.10, the solution in which we are interested is given by

() ()
(k, w)-I A(a)

Now let us compute Ly =_ (y). We distinguish two cases and use Lemma 2.21 in
both.

Case1" k O.

Ly Lho IhlL wlLAIIgIp + Lg w2LAp2+ ,..0, < + IIIIZ

where has been defined in Lemma 2.9 and C and C do not depend on the step of
the iterative process.

Case 2: k : 0.

e-pIT2LAnhe
C C2

=--Ikl2"e-(pl-2)lkl [C31]glIplLA + C4Lg],

where now C3 and C4 do not depend on the step of the iterative process.
Now we can apply this to bound the Lipschitz constant Lu corresponding to

y(t, a) yk y()c(’)4=-ft. From Lemma 2.19, we obtain

20r
Lu CILAIIglI.1 + C2Lg + (CLAIIglI,, + CnLg).hr,2x(r + 27),

where 0 < p2 < p 2u such that pl p2 2u 1. To simplify the following
steps, we note that

n < x(r + 2)(ChLA]]g]p + C6Lg)

for suitable constants C5 and C6, both independent on the actuM step of the inductive
process.

Since x B()y, we have L (x) LA]y]] + Zny, which allows us (using
the bound on ]y] given inside the proof of Lemma 2.10) to establish the bound

+;)]L ILA + 3chr+; 5r+2; P

This can esily be rearranged to

n < x(r + 2)
+ (E1nA]g]]p + E2L),

where E and E2 are suitable constants not dependent on the actual step of the
inductive process.
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2.9. Measure lemma. Here we give the basic lemma used to bound the measure
of the resonances.

LEMMA 2.24. Let w E Ir and v -] such that

2c
Iv v/K-l(k,w)l >_

for all k Z{0}, where c > 0 audio > O. We define the nth resonant subset
()=, ()as

) { , < / ’ z {0}

.sch that + v (k’, )1 < ]Me-

o 0 < uo < n 7oz
n 1 < z < 2, and Vo > r- 1 Letwhere n (n+), Unko(n)’, and (p) m(ne)..

2, where m denotes the Lebesgue measure. Then

provided(p) exp(-cl/pc) for some positive constants Cl and c, where c < ,
is small enough.
Proof. Let k and 9 be such that

Since

we have

2c c c. > I1 > i,lo I’lx(-l’l)
>

I’1o’

and hence Ik’l >_ [()1/o M(,), where for a R, [a denotes the lowest integer
greater than or equal to a. Now let us add for all [k’[ k M(p) and all n k 0 to have
an upper bound on m(g). Adding for all I’l M() and for a fixed n, we obtain

2c 2rj-k’l’ exp(lk’])2c je
-y

k’M(>) jM(p)

e-M(>) 5at
< M(,)--(n + 1)e-M(")< 4crM(p)r--

1- e- o

because r 1 n 0 and 1 e-a > 0.8a if 0 a . Adding for all n, we have

m(n,) 5 5CM(p)r-1 (n + 1)2M(,)-z exp -(n + 1)2M(p)P0 n>0

For our purposes, a rough bound is enough. Let n. log(zoM(#))/logz. We split
* and assume # small enough so that

(n + 2)2M(#)-zn+l 1<-
(n + 1)2M(#)-oz 2

gn > 0.,
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Then

((+ )M(,)-oz ( + )------M(,)
n>0

_< ()-o xp -(, + 1/.(/ + (, + 1)(/-o*

To finish the proof, after selecting any value of cl and c2 < , we want to show

exp(--x-) To this end, we take logarithms We havethat each term is less than ,c.
to prove

logA- log () uo

log z

)
+1log A + 2 log

log z.

log(u0(X)@0 ) 2r-112
< --log4

,c2’

u0 log < log 2
#c.

Cwhere A 5c__z ()(-)/o Both inequalities are true if # is small enough or
/0

equivalently, for # in a fixed range if c is big enough.

2.10. Proof of Theorem 2.1 (part II). Thus far, we have shown the con-
vergence of the iterative scheme provided that some nonresonance conditions hold at
each step n (see 2.7). Now our purpose is to show that all the matrices An(e) are
Lipschitz (with respect to e) from above and below and that their Lipschitz constants
are bounded (from above and below, respectively) by constants that do not depend
on n. As we shall see later, this allows us to take out a dense set (with small relative
measure) of vMues of e for which the resonance conditions assumed during 2.7 might
not hold at some step (i.e., for some n) of the proof.

To prove that An (e) is Lipschitz from below, we shall proceed in the following way.
Since A0(e) is Lipschitz from above and below (by hypothesis), it is enough to show
that An(e) is Lipschitz from above and (Ao)- (A) O(e) since Lemma 2.16
implies that if e is sufficiently small, An(e) is also Lipschitz from below. For this
reason, we will focus on Lipschitz constants from above, which for simplicity will
simply be called Lipschitz constants. The notation used will be

(A(e))- Ln,
(e2g(t, e)) Lg,
(hn(x, t, e)) Lh,

(e2Q(t, e))
(e2nn (t, e)) Lgn,
ff"(hn(x, t, e)) Lh

Our purpose now is to bound the Lipschitz constants of the equation terms at
step n + 1 as a function of the Lipschitz constants at step n. Let us assume that
the scheme of 2.7 has been applied up to step n. Then the following bounds can be
established:

2IIQII _< N
2IIP,ll,n/ --< Nx
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where N1 is a positive constant and e0 is as defined at the end of 2.7 and is also
assumed to satisfy 0N1 < 1. Using the bounds given in 2.7, the proofs are not
difficult.

We shall also use the bounds IlQnl]p <_ P and Ilgnllp <_ N (see 2.7) when
needed. The constant N1 can be easily obtained from the constants M, 1,..., 4,
introduced in 2.7.

Now let us bound LQ+. It is easy to obtain

2n+lQnq_ (I + 2npn(t,))-l(2On(t,))(2Pn(t,))

and this implies

2 2 2LQ+ < 4Lpo IIQnll0 [IPII.+ / 1I(I+2P)-IIIp+IL6o IIPnll.+
2+ II(Z + 2P)-111o+1o II0 II  LP .

Using the fact that [[(I + 2nPn)-lllpn+l _< 2 (see 2.7), we obtain

LQ,+ 4Lpn (coN1)2" (aoN1)2" + 2L6, (soN1)2" + 2(aoN1)2"Lp.
< 6(O/l)2nLp + 2(oN1)2nL.

Now we consider Lx_. From Lemma 2.23, it is not difficult to obtain

Lx <_ x(r + 2n)(E1LAn 2

5+2. eo [[gnllp + E2Lgn),

1/-2o x(r+2) max{E1, E2} we can writewhere 5n is now (n+1)2 Introducing L3,n +..,

(17) Lx_,
__

i3,n (iAr (0N1)2’ )+Lgn

Let us consider now L. We recall that Qn was defined as

On Qn (t, ) + Dzh(x_n (t, ), t,

This allows us to write

Ln <_ LQ + IlDxzhn(xn(t,e),t,e)llL_ + (Dxhn(x,t,e)).

Here we can use the fact that IIDzzhn(x(t,e),t,e)ll <_ K (see 2.7), Lemma 2.17,
and (17) to write

L6n <_ LQ + KL3,n (LA (e0N1)2 + + (c )Lh 

where c 11_11. Moreover note that c goes to zero when IlX_nll does. This
T.x

implies that if e is small enough, we can assume that K1 (a) is less than, for instance,
KI(1/2).
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Now we focus on Lpn. The definition of Pn is

2n/)n(:, n(2npn(t, )) -(s2pn(t, s))n +
Since this is a linear system of differential equations, we cn apply lemma that
is essentially like Lemm& 2.23 but for the ctuM system of equations and with new
constants E nd E2 to get

X( + 2n)(l(ONl)2nLn ++2nn) n3,n ((ogl)2nnn + nn)
where L3,. has been redefined as L3,n x(+2.) max{E1 E,I 2}

Let us consider Lye+1. om

2n+1 .+l(t.) ( + p.(t.))-("+.(t.)).
it follows that

2n+l

4Lp. (a0gl)n+ + 2..
Now consider now LX.. Since we have

A(a) A, (a) + a".
it follows that

L LA +

Moreover, since An+l An, we also have

LAn+I LXn.
Now let us bound L Recall that

2+ln(t, ) h(x (t, e), t, e) + eQ(t, e)z_ (t, e),

which implies

Lg
_

[IDxhn(xn(t,),t,)llanL_ + Lh(x,t,)
+ LQn IlXn (t, )Ilan + g2n Qn (t, )]loLx

+K: ().l.(t )[I Lh.+II(t,s)I[.LQ.

where we have used the fact that Lhn(,t,e) K()Lh.lmll and, as before, that

Ke() Ke()if e0 is small enough. On the other hand,

Kll(t,)ll + IIQn(t,)llpn (K + 1)(0N)2.
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This implies

L < K3L3,n (soN1)2 (LA + Lg + Lh + LQ),

where K3 max{K + 1, K2()} and we have used oN1 < 1 and La,n > 1.
Let us follow with Lh,+l. Since

hn+(Xn+l,t,) (I + e2"Pn(t,e))-l*n((I + 2pn(t,g))Xn+,t,),

we have

Lh.+l < 4Lp. IIn((I + 2npn)xn+l, t, )11+,- I[(I q- E2n pn)-l llpn+l {{Dxn[Ipn+l LPn -]-{l(I q- 2npn)-i l{pnq_
K< 4Lp.---ro + 2Koo%oLp + 2Lgh.,

which allows us to write

Lhn+l < 4KrLp. + 2Lgh..

Finally, let us consider Lh. We recall that

hn (Yn, t, ) hn (x_n (t, e) + Yn, t, ) hn (x_n (t, ), t, ) Dxhn (x_ (t, e), t, a)y,

which implies

Lgh < IIDxhn (xn (t, e) + yn, t, e) llLx + Lh +
q-Lhn -k IIDxxhn(xn(t,e),t,)llllynllLx_ +

Furthermore, if is small enough, we have %Kl(a)a _< 1, and the following bound
can be obtained:

Lh < 3Koo’rL_, + 3Lh.

Thus far, we have stated some bounds on the Lipschitz constants. The next step
is to relate (in closed formulas) the bounds of step n + 1 with bounds of step n.

Let us define an LA, bn max{LQn, Lg}, and cn Lh; and let en
(e0N1)2n. Furthermore, let Ln,n L3,n max{Koo, 6, 2K3, 6K%o}. After some rear-
rangement, we can write the bounds on the recurrences as

(18)
an+ <_ an + bn + L4,n(anen -}- bn) + Kl(O)enCn,
bn+

_
5L24,nea + 8L2,nenbn + (4K(a)+ 1)L4,nenCn,

Cn+l <_ 3L24,nenan -+-4L24,nbn q-(6 + 2KI(o)L4,n)Cn.

Let d. max{an, bn, c.}. It is immediate (recalling that e, < 1 and L4,n > 1) to
obtain

dn+l <_ RL24,ndn,
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where R 14+4K1 (c). As before, it is easy to obtain RL,n <_ M for some suitable

M6 independent of n. Therefore,

n
2nnUl< II M3 0 < 0.

j=O

Going back to (18), we have

bnnu --Mn (oNl )2n Mn+l do - Mn (oN1)2nMn+l d0

2n+l 2 2n+M (0Yl); e0 e0 (XMg) 0 (0S),
where S is a constant independent of n and e0. Taking e0 < S-, we have b 0 as
n 0. Furthermore, we also obtain

a+- a < (e0T)

for a suitable constant T independent of n and eo. We also require e0 < T-. Then

n--1

an- ao < (0T)2# < 2Te0
j=0

for all n provided that e0 < min{S-1,gT-}.
This is the bound we were looking for; it shows that A(e) is a Lipschitz function

of e and that (A) (Ao) O(e). This means that, using Lemmas 2.16 and 2.22,
the eigenvalues A2 and the differences A -Aj are Lipschitz from above and from
below if e is small enough.

To complete the proof, we take into account the resonances. Since we want to
skip the possible resonances due to A2 and Ay -j at the nth step, we have to apply
Lemma 2.24 for each one of the eigenvalues and couples. This amounts to skipping
measure at most d times that we skipped in the frequency space. To go back to the
parameter space, that is, to e, we use the Lipschitz constant from below. In this way,
we obtain the Cantorian with the desired properties.

2.11. Proof of Theorem 2.4. Since det A 0, the contraction lemma ensures
that if e is small enough, there exists a function x0(e) such that

(d + )x0(e) + + h(xo(), ) O,

and it verifies that x0(e) O(e). Let us define

Ao A + eQ + Dh(xo(e),

and let (t, e) be such that

(19) A + eg(t, e).

(The existence of this solution was shown in Lemma 2.10, and we recall that it
was proved to be C0(e).) The terms of order e of the matrix A are provided by
Lemma 2.12 at the first step of the inductive process. This modified matrix A is

A A + eQ + Dxh(x, t, e).
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Then

IIAxo All IIDxh(xo(e), ) Dh(x(t, ), t, )II.

However,

Dxh(x(t, ), t, ) (C + eR(t))x(t) + 0(2) C + 0(2),

1Dxh(O, t 0) is a constant matrix by hypothesis. Moreover, it is alsowhere C
easy to obtain that

Dx-(xo(s), ) (C + e)xo() + O(2) Cxo() + O(2).

We have obtained that

liAr0 11 C(xo() ) + 0().

Now, averaging (19), we get that AZ +e 0, and using Axo(e) + - -(eQxo(e) +
(x0(e), s)) O(s2), we obtain Ilxo(e)-ZII O(2), which completes the proof. [:]

3. The neighborhood of an elliptic equilibrium point of a Hamiltonian
system. Let us consider the Hamiltonian

H (p, q, t) Ho (p) + H1 (p, q, t),

where IHI is small and depends on time in a quasi-periodic way, with (1,...,
as a vector of basic frequencies. To obtain an autonomous system we define q2 q,

P2 p, and q t. Therefore, the Hamiltonian takes the form

H(Pl, P2, ql, q2) (, Pl -- H0 (P2) -- H1 (P2, q2, q ),

where p are the actions corresponding to q. (Obviously, they are not relevant in this
problem and have only been added to obtain a Hamiltonian form.) We are interested
in the invariant tori that the unperturbed system H Ho(p2) had. Note that the
KAM theorem (see [1]) cannot be applied directly due to the degeneracy of this case.3

We have considered this case in Theorem 3.1, and we have found that the proof of
the classical KAM theorem (see [1]) still works because the perturbing frequencies are
not modified in any step of the inductive process, and we only have to worry about
the proper frequencies of the Hamiltonian, which can be controlled .provided that the
nondegeneracy condition

OHodet (0(p,2),2)#0
holds. The result obtained is that there exist invariant tori near the origin for e small
enough. The frequencies of these tori are those of the unperturbed tori plus those
of the perturbation. This can be described by saying that the unperturbed tori are
"quasi-periodically dancing" to the "rhythm" of the perturbation. The tori whose
frequencies are in resonance with those of the perturbation are destroyed.

Finally, in the case where the origin is not a fixed point of the perturbed Hamil-
tonian, we can reduce to this case by performing a change of variables, transforming

3 However, see the comments in [2, pp. 193-194] for a related result.
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the quasi-periodic orbit that replaces the equilibrium point (we recall that this orbit
exists for a Cantorian set of values of e) in a fixed point.

THEOREM 3.1. Let us consider the Hamiltonian

H(pl,p2, ql,q2) (,Pl) + Ho(P2) + eHl(p2,ql,qg.),

where ql are the angles of the perturbation, pl are the corresponding actions, q2 and
p2 are the angles and actions of the unperturbed system, and (1,..., 1) is a
constant vector of frequencies that satisfies the nonresonance condition

C

I(,)l> v\{o}, >nl-1.

Let G be a compact domain of nl, let G be a compact domain of I2, and let G
be G G. Now suppose that this Hamiltonian function H(pi, p9., ql, q2) H(p, q)
is analytic on the domain F {(p, q)/p (Pl,P2) E G, IIm ql <- P} and has period
27c with respect to the variables q. Let us assume that in the domain F,

det OHo
0(p2)2

Then if is small enough, the motion defined by the Hamiltonian equations

(20)

OH
Oql

(tl ,
OH OH
Oq2’ (t2- Op2’

has the following properties.
1. There exists a decomposition Re F F1 + F2, where F1 is invariant and F2

,aU: ms _< ()ms , h () o().
2. F1 is composed of invariant n-dimensional analytic tori I, defined paramet-

rically by the equations

p =v+ + f+(Q), q=Q+g(Q),

where f and g are analytic functions of period 27c in the variables Q and dp is a pa-
rameter determining the torus I. In fact, consists of all the frequencies, i.e., those
of the external excitation and the proper frequencies, (1,...,,wl,..., w2).

3. The invariant tori I differ little from the tori p pc, namely,

If(Q)l < 2(e), Ig(Q)l < (),

where a2(e) is o().
4. The motion (20) on the invariant torus I4 is quasi-periodic with n frequencies

1,...,, Wl,...,w (n nl + n2), namely,
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3.1. Sketch of the proof of Theorem 3.1. The proof of this theorem is es-
sentially the same as that of the KAM theorem contained in [1], and its technical
details can be found in [15]. Here we show the idea of this proof.

Let us define p and q as the vectors pl,p2 and ql,q2, respectively. Now the
Hamiltonian that we have is

(21) He (,p) + H0(p2) + H(p2) + H(p2,q),

and let us consider the generating function S(P, q) Pq + -ko Sk(P:)e(k’q)/-:--" If
we perform the canonical change of variables

on (21), we obtain

(1 ql,

0S

Oq2

0S

He (, P) + Ho(P) +1(P2) L_ F + 2/i(P2, q)

where F- (p Sql)+(a(P Sq2)+t(P2 q) and c(p) OHo(p) Let (P) be the
vector ,w(P2). We require F 0, namely,

((P2), Sq) - H(P, q) 0.

Now, using the fact that I (P, q) -o hl(P)e(k’q):-, the coefficients of the
Fourier expansion for the generating function S can be obtained easily as

To ensure the convergence of this series, it is sufficient to use the usual nonresonance
condition

(ee) _>

which allows us to prove the convergence in a smaller strip than that on which H1 is
analytic. With this, the Hamiltonian takes the form

H Pl)+ + + #).

This new Hamiltonian is very similar to (21) but with instead of . Note that the
difference between this proof and the one in [1] is condition (22). Due to the fact that
the first components of (P2) are those of , which are constant throughout the induc-
tive process, we only have to worry about the last ones, w(P). These components are
different at each step of the process, but they can be controlled by the nondegeneracy
condition

det
O(pe)e - O.
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This is done exactly as shown in [1]. Note that to get a rigorous proof of this theorem,
we need only copy the proof contained in [1] and add the "parameter" , The unique
difference is that now the nonresonance condition is stronger in the sense that we
must eliminate a bigger set of (resonant) tori.

Acknowledgments. . Jorba thanks R. de la Lla.ve and the Department of
Mathematics of the University of Texas at Austin for their hospitality. Both authors
thank A. Neishtadt for useful comments.

REFERENCES

[1] V. I. ARNOL’D, Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic
motions under small perturbations of the Hamiltonian, Russian Math. Surveys, 18 (1963),
pp. 9-36.

[2] V. I. ARNOL’D, V. V. KOZLOV, AND A. I. NEISHTADT, Dynamical Systems III, Encyclopaedia
of Mathematical Sciences, Springer-Verlag, Berlin, 1988.

[3] N. N. BOGOLJUBOV, Ju. A. MITRO.POLISKI; AND A. M. SAMOILENKO, Methods of Accelerated
Convergence in Nonlinear Mechanics, Springer-Verlag, New York, 1976.

[4] L. CHIERCHIA, Absolutely continuous spectra of quasiperiodic SchrSdinger operators, J. Math.
Phys., 28 (1987), pp. 2891-2898.

[5] C. DEZ, . JORBA, AND C. SIMS, A dynamical equivalent to the equilateral libration points of
the earth-moon system, Celestial Mech. Dynam. Astronom., 50 (1991), pp. 13-29.

[6] E. I. DINABURG AND J..(l-. SINAI, The one-dimensional SchrSdinger equation with quasiperiodic
potential, Functional Anal. Appl., 9 (1975), pp. 8-21.

[7] L. H. ELIASSON, Perturbations of stable invariant tori for Hamiltonian systems, Ann. Scuola
Norm. Sup. Pisa, 15 (1988), pp. 115-148.

[8] , Floquet solutions for the 1-dimensional quasi-periodic SchrSdinger equation, Comm.
Math. Phys., 146 (1992), pp. 447-482.

[9] A. M. FINK, Almost Periodic Differential Equations, Lecture Notes in Math. 377, Springer-
Verlag, Berlin, 1974.

(. GdMEZ, . JORBA, J. MASDEMONT, AND C. SIM6, A quasiperiodic solution as a substitute

of L4 in the earth-moon system, in Proc. 3rd International Symposium on Spacecraft
Flight Dynamics, ESA Publications Division, ESTEC, Noordwijk, the Netherlands, 1991,
pp. 35-41.

[11] Study refinement of semi-analytical halo orbit theory, final report, contract
8625/89/D/MD(SC), European Space Operations Center, European Space Agency, Paris,
1991.

[12] , Study of Poincard maps for orbits near Lagrangian points, final report, contract
9711/91/D/IM(SC), European Space Operations Center, European Space Agency, Paris,
1993.

[13] G. G(MEZ, J. LLIBPE, R. MARTNEZ, AND C. SIM(, Study on orbits near the triangu-
lar libration points in the perturbed restricted three-body problem, final report, contra.ct
6139/84/D/JS(SC), European Space Opertations Center, European Space Agency, Paris,
1987.

[14] R. A. JOHNSON AND G. R. SELL, Smoothness of spectral subbundles and reducibility of quasi-
periodic linear differential systems, J. Differential Equations, 41 (1981), pp. 262-288.

[15] . JORBA, On quasiperiodic perturbations of ordinary differential equations, Ph.D. thesis, Uni-
versitat de Barcelona, Barcelona, 1991.

[16] . JOPBA AND C. SIg, On the reducibility of linear differential equations with quasiperiodic
coefficients, J. Differential Equations, 98 (1992), pp. 111-124.

[17] J. MOSER, Convergent series expansions for quasiperiodic motions, Math. Ann., 169 (1967),
pp. 136-176.

[18] J. /[OSER AND J. PSCHEL, On the stationary SchrSdinger equation with a quasiperiodic po-
tential, Phys. A, 124 (1984), pp. 535-542.

[19] J. H. WILKINSON, The Algebraic Eigenvalue Problem, Oxford University Press, Cambridge,
UK, 1965.

[10]



SIAM J. MATH. ANAL.
Vol. 27, No. 6, pp. 1738-1744, November 1996

1996 Society for Industrial and Applied Mathematics
011

PERIODIC MONOTONE SYSTEMS WITH AN INVARIANT
FUNCTION*

JIANG JI-FA

Abstract. The author studies the periodic time-dependent type-K monotone system

ci Fi(t, xl,...,xn) (i-- 1,...,n)
in the interior of the nonnegative orthant in n-space satisfying the following conditions: (i) if x y,
xi Yi, and xj <_ yj for j : i, then Fi(t,x) <_ Fi(t,y); (ii) F(t,x) is periodic in of period T > 0;
(iii) F possesses an invariant function with positive gradient. It is proved that every solution to
such a system either converges to a periodic solution or eventually leaves any compact set. This
result gives an affirmative answer to the conjecture recently proposed by B. R. Tang, Y. Kuang, and
H. Smith in [SIAM J. Math. Anal., 24 (1993), pp. 1331-1339] for periodic type-K monotone systems.

Key words, type-K monotone system, periodic solution, invariant function, Poincar map
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1. Introduction. Consider the system of ordinary differential equations

(1) F(t, x),

where F" R x P - Rn is continuous with P {p E Rn
"pi > 0 for all i, 1 _< _< n}

and satisfies the following conditions:
(i) F(t,x) is periodic in t of period T > 0, that is, F(t + ’,x) F(t,x) for all

t E R and all x . P;
(ii) system (1) has the uniqueness property for the initial-value problems on

R x P and every solution of (1) can be extended into the future;
(iii) for each fixed t, the vector function F(t, x) is of type K in P, i.e., F(t, x) <_

Fi(t, y) for any two distinct points x (xl,x2,... ,xn) and y (yl, y2, .., y) in P
with xi yi and xk <_ yk(k 1,2,...,n; k i);

(iv) (1) possesses an order-increasing invariant function, i.e., there exists a C
function H" P - R such that grad H(x) >> O for each x P and

(grad H(x), F(t, x)) 0

for all t R and all x P. The autonomous system (1) has been studied exten-
sively in the econometria lectures [17, 18] and the papers [4, 13, 19]. The limiting
behavior of these systems is well understood. However, if one wishes to build a the-
ory of such systems which reflects changes due to seasonal adjustments, then it is

nimportant to study time-dependent systems. In the case H(x) i= xi, (1) is
the generalized gross-substitute system which was studied by Nakajima [2] and Sell
and Nakajima [3]. Their results show that every compact solution to such a system
is asymptotically periodic (almost periodic). When F(t, x) is independent of t and
F(xl, x2,..., x) is strictly increasing in Xk for all k i, the flow generated by (1) is
strongly monotone. Mierczyfiski [4] proved that every solution either converges to an
equilibrium or eventually leaves any compact set. The author’s paper [13] investigates
the case where Fi(x,x2,... ,Xn) is nondecreasing in x for all k : and proves the

Received by the editors December 27, 1993; accepted for publication (in revised form) June 27,
1995. This research was supported by National Natural Foundation of China grant 19271001.

Department of Mathematics, University of Science and Technology of China, Hefei, People’s
Republic of China.
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same result. Assume that F(t,x) is continuously differentiable in x E P, DxF(t, x)
is irreducible, and all its off-diagonal terms are nonnegative. If every solution of (1)
is compact, then the abstract results of Tak [6] and Dancer and Hess [9] imply
that every solution is asymptotically periodic of period -. In the recent paper [1],
B. R. Tang, Y. Kuang, and H. Smith conjectured that for the periodic (almost peri-
odic) system (1), if conditions (ii)-(iv) hold, then every solution either converges to a
periodic solution (an almost periodic solution) or eventually leaves any compact set.
Meanwhile, they partly proved this conjecture. More precisely, assuming that H is C2

with cooperative Hessian matrix, the inequality in (iii) is strict, and some additional
conditions for H hold, they cleverly constructed a Liapunov function and proved the
above conjecture is true by the theory of skew-product flow.

The object of this paper is to prove that the conjecture proposed by B. R. Tang,
Y. Kuang, and H. Smith [1] holds in the case where F(t, x) is periodic in t. We shall
prove the following.

THEOREM A. If system (1) satisfies conditions (i)-(iv), then every compact so-
lution is asymptotically periodic of period 7.

This result naturally generalizes that of [2] to the case of a not-necessarily linear-
invariant function and drops the strict monotonicity condition in [1, 4] and the irre-
ducibility condition in [6, 9, 14], each of which is needed to guarantee that the system
is strongly monotone. Using the ideas in [14], we can prove that the set of fixed points
for the Poincar( map T is a curve totally ordered by << if the strict monotonicity or
irreducibility condition is satisfied. However, if we assume that the system is mono-
tone without strict assumption, then other cases can occur. For example, consider
the system

(3)
5: -x -- y q- z2,

x y + (3 + 2 sin t)z2,
-(2 + sin t)z,

which is defined in x >_ 0, y _> 0, and z >_ 0 and possesses an invariant function
H x + y + z2. By solving the nonlinear equations in (3), we can easily prove
that for any solution (x(t), y(t), z(t)) of (3), there exists a constant c _> 0 such
that (x(t), y(t),z(t)) -- (c, c, 0) as t +oc and the set of periodic points for (3) is

{ (c, c, 0) c >_ 0}, which is totally ordered by <_ but not by <<. Moreover, if we add an
equation b 0 to the system (3), then it becomes a four-dimensionM one in which
the set of periodic points is { (c, c, 0, d) c _> 0, d >_ 0}. This set is not ordered by _<.

Next, we consider the system

(4)
5:1 (2 -[- cos t)exl x2 exl -- 1,

5:2 1 e-1 (2 + cos t)x2

for xl >_ 0, x2 _> 0. System (4) has an invariant function H(xl, x2) 1 e-1 / x2.
We calculate the corresponding Liapunov function Y(x, y) R_ R_ --. R+, which
is defined in [1, p. 1334]"

It is easy to see that limlx_yl__,+ V(x, y) +oc does not hold. Therefore, Theo-
rem 3.1 in [1] cannot be applied to system (4). However, Theorem A can be applied.
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2. Definitions and preliminary lemmas. Let x, y E Rn. There exists a
partial order in Rn given by x _< y (x <<: y) if and only if x _< y (x < y) for

1, 2,...,n. We write x < y to signify that x _< y and x y. If x and y are two
vectors with x < y, let [[x,y]] {z’x z y}, [x,y]] {z’x <_ z < y}, and
[[x,y] {z’x z <_ y}. If x and y are two vectors with x < y, let Ix, y] {z’x <_
z_<y}. [p, oe]] is the set {x’x>_p}. IfAcPisaset, thena_<A (A_<a) means
a _< x (x _< a) for all x E A; similar-notation holds for a < A, etc.

We denote by (t, x) the solution of (1) satisfying (0, x) x. For x P, we
also write x(t) for (t, x).

Fundamental to our study is Kamke’s theorem, which is stated as follows.
KAMKE’S THEOREM. Assume (ii) and (iii) hold. Let x(t) and y(t) be solutions of

(1) defined for a <_ t <_ b such that x(a) y(a) (resp., x(a) <_ y(b)). Then x(t) y(t)
(resp., x(t) <_ y(t)) for all t [a, b].

W. A. Coppel [10. p. 30] discussed the following question: assuming that x(a) <_
y(a), under what conditions can we have the equality x(b) y(b)? His argument
shows that if (ii) and (iii) hold, then x(b) y(b) if and only if x(t) y(t) for any
t e [a, b].

Define the Poincar6 map T" P --. P by

Tx (T, X).

Then T is continuous and Tkx fl(kw, x) for any positive integerk. Let Tkx denote
the ith component of Tkx. If the dimension n of Euclidean space Rn is fixed, we
let N {1,2,...,n}. If I C N, we denote by C(I) the complement of I in N,
C(I) N- I. From Kamke’s theorem and the argument discussed by Coppel in [10,
p. 30], we obtain the following.

LEMMA 2.1. If x < y with x < y for e I, then Tkx < Tky and Tkx. < Ty for
I and any fixed positive integer k.
DEFINITION. Let x(t) be a solution of system (1) defined on [to, +cx) for some

to R. x(t) is said to be compact if there exist two positive vectors a, b P such
that a <_ x(t) <_ b for all t >_ to.

A compact solution x(t) is said to be asymptotically periodic of period 7 if there
is a periodic solution y(t), y(t + 7) y(t), such that x(t) y(t) -- 0 as t --Suppose (t, x) is a compact solution of (1). The positive semiorbit of x is defined
by O+(x) {Tkx k Z+}, where Z+ {0, 1,2,...} and the w-limit set of x is
defined by w(x) {y" Tnkx y(k ) for some sequence n - in Z+}. Then
w(x) is fully invariant, i.e., Tw(x)= w(x).

LEMMA 2.2. Assume that (t, x) is a compact solution of (1) and w(x) is the
w-limit set of x. Then for any y e w(x), (t, y) is also a compact solution of

Proof. By the definition of co(x), there exists some sequence
such that lim_ Tnkx y, i.e., (nk7, x) --. y, as k --. oe. Since the solutions of (1)
are continuous with respect to initial conditions (see [11, p. 94]), for any fixed t > 0,
(t, y) limk-o (t, (nk7, X)). By condition (i), F(t,x) is periodic in t of period
7. Therefore, (t, p(nkT, x)) (t + nkT, x). The compactness of (t, x) implies that
there exist two positive vectors a, b E P such that a _< q(t, x) <_ b for any t > 0. It
follows that

a _< (t, (nkT, x)) <_ b.
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Letting k -- x, we have

a _< (t, y) _< b,

i.e., o(t, y) is compact. This completes the proof.
Finally, let E {p E P Tp p} denote the set of all fixed points for T.

3. Proof of Theorem A. It is convenient to establish some preliminary results
before proceeding to the proof of Theorem A. In all of these, we assume the hypotheses
of the theorem hold.

LEMMA 3.1. Suppose p E. Then for any neighborhood W of p in P, there
exists another neighborhood U C W of p such that TkU C U for any positive integer
k. Therefore, the fixed point p of T is Liapunov stable.

Proof. Fixa, b Wwitha<<p<< band [a,b] C W. Then we may choosec,
d e [[a, b]] so that c << p. << d. Let hi H(c) and h2 H(d). Then we define the sets

A H-1 (h) [[O, p], B H-l(h2)NO, ]], and U U [[u,v]].
(u,v)EAxB

It is easy to see that A, B c [a, b] if lip-ell and lip- d[[ are sufficiently small. Clearly,
U C [a, b] is open.

Since H is an invariant function of system (1), H((t,x)) =_ const for a fixed
xePandallt>_0. ThusH(Tku) =H(u) h andH(Tkv) =H(v) =h2 for any
positive integer k. From p E and Kamke’s theorem, it follows that Tu <_ p <_ Tv.
This proves that Tu A and Tkv B. Therefore,

TkU U
(u,v)EAxB

[[Tu, Tv]] c U c W

for each positive integer k. The proof of the lemma is complete.
LEMMA 3.2. There cannot exist two points p, q E such that p < q and o, q] (q

E=
Proof. Suppose the contrary, that is, there exist p, q E with p < q such that

there is no fixed point between p and q. Lemma 2.1 implies that Tx < Ty for any
x, y P with x < y. Following Dancer and Hess [9], such a map T is strictly order
preserving. Applying [9, Prop. 1], we obtain that there is a monotone entire orbit
(x)ez in [p, q] connecting p and q, where Z denotes the set of all integers. Then
either limk-+-c Xk p and limk_ xk q or limk_+_ x q and limk-oo x p.
Because H is an invariant function, H(xk) c for any k E Z. The continuity of H
implies that H(p) H(q) c. But from p < q and grad H(x) >> 0 for any x P, it
follows that H(p) < H(q), a contradiction. This proves Lemma 3.2.

LEMMA a.a. svpos that o(t,x) is a compact solution of (1) and q w(x) is a
stable fixed point of T. Then w(x) {q}.

This lemma is adapted from [9, p. 130].
LEMMA 3.4. Assume that o(t, x) is a compact solution of (1). If p and q are the

greatest lower bound and the least upper bound of co(x), respectively, then p and q are
the fixed points of T.

Proof. Since o(t, x) is a compact solution of (1), there are two positive vectors a,
b P such that a _< o(t, x) _< b for any t _> 0. Hence a _< co(x) _< b. It follows that
a <_ p <_ q <_ b. Suppose that the conclusion is false. Then, for example, Tp p. By
the definition of p, p <_ w(x). Kamke’s theorem and the full invariance of w(x) imply
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that Tp <_ co(x). By definition, Tp is also a lower bound for co(x), whence Tp < p.
Because grad H(x) >> O for each x E P, H(Tp) < H(p). But it follows from (2) that
H(Tp) H(p)--a contradiction. This proves the lemma.

LEMMA 3.5. If 99(t, x) is a compact solution of (1) and co(x) {p}, .then (t, x)
(t, p) -- 0 as t - oc.

This lemma is well known, so its proof is omitted.
Suppose that (t, x) is a compact solution of (1) and w(x) is the w-limit set of x.

Let p (Pl,P2,...,Pn) and q (ql, q2,..., qn) be the greatest lower bound and the
least upper bound of w(x), respectively. For y (Yl, Y2,..., Yn), we define

(u) {i u # p}.

Here, denotes the cardinality of the set. Furthermore, we define

M(x,p) max{ap(y) y e co(x)}.

From Lemma 2.2, for any y w(x), (t, y) is compact. Therefore, we can also define
M(y, u), where u is the greatest lower bound of w(y).

Proof of Theorem A. Suppose that 99(t, z) is a compact solution of (1) and w(x)
is the w-limit set of x. In order to prove the theorem, by Lemma 3.5, we have only to
prove that w(x) is a singleton. Lemma 3.1 tells us that p is Liapunov stable for any
p E. Therefore, by Lemma 3.3, we have only to prove that co(x)C?E . Therefore,
suppose co(x) C E , and we shall prove the following two facts:

(I) M(x,p) <_ n- 1; and
(II) there exists y co(x) such that M(y, u) < M(x,p), where u is the greatest

lower bound of w(y).
First, we prove (I). By Lemma 3.4, the greatest lower bound p of co(x) is a fixed

point of T. Since w(x) f3 E , p - w(x), hence p < W(x). If (I) is not true, then
M(x,p) n, i.e., there is a point y w(x) such that ap(y) n, which implies that
p << y. We claim that [p, y]] C E {p} must hold. If this equality is false,, then there
is a fixed point Po E such that p < po << y. Since y co(x), there is an integer
ko > 0 such that Po << Tkx. Kamke’s theorem implies that Po << Tkx for k >_ ko. It
immediately follows that Po <_ w(x), i.e., Po is a lower bound of w(x), whence po <_ p,
contradicting p < po. This proves that [p, y]] C E {p}. Let q denote the least upper
bound of w(x). Then, by Lemma 3.4, q E. co(x) C E implies that p < w(x) < q.
Sincep << y and y w(x), p << q. Obviously, [p,q]CE is a compact set. Since
[p, y]] N E {p}, it is easy to prove that B := ([p, ql E)\{p} is also a compact set.
By Zorn’s lemma, B contains a minimal element Po. It is not difficult to see that

P < Po. The minimality of Po implies that there exists no fixed point between p and
po, that is, [p, Po] C? E {p, Po}, contradicting Lemma 3.2. (I) is proved.

Second, we prove (II). Let M(x,p) m _< n- 1 and choose y w(x) such that
Crp(y) m. Without loss of generality, we may assume that y p (hence, y > p)
for 1, 2,..., m. The maximality of m implies that yj pj for j m + 1,..., n.
For any integer k > 0, applying Lemma 2.1, we have pi < Ty for 1, 2,..., m.
Since Tky co(x), the maximality of m implies that pj Ty for j m + 1,..., n.

Let rm {(Xl,Z,...,xm,O,O,...,O) xi >_ 0 for 1,2,...,m}. Then
O+(y) C p + r", which implies that w(y) c p + rm. For an n-dimensional vec-
tor z (Zl,Z2,... ,zn), we define an m-dimensional vector 5 (zl,z2,... ,z,), and
we also use the same symbols _<, <, and << to denote the order relation in R".
Suppose u and v are the greatest lower bound and the least upper bound of w(y),
respectively. Obviously, uj vj pj for j m + 1,..., n. Therefore, M(y, u) <_ m.



PERIODIC MONOTONE SYSTEMS 1743

We assert that M(y, u) < m. If not, M(y, u) rn. By the definition of M(y, u),
there is a point z E w(y) such that r(z) m, i.e., 2 << 2. We claim that there
exists a relative open set V in [u, v] containing u such that V C E {u}. If the claim
is false, then there is a sequence {wk} C E such that u < wk for any k > 0 and
limk_ Wk u. Hence limk_k g << and there exists a k0 > 0 such that
hk << 2 for k >_ k0. Let w Wko. Then wj uj vj pj for j m+l,...,n. Since
z e w(y), there exists an integer kl > 0 such that 5 << y. Because wj Ty pj

for j m+ 1,...,n,w < Tkly. Lemma 2.1 implies that w < Tky for k >_ kl.
Hence w <_ w(y), i.e., w is a lower bound of w.(y), whence w _< u, contradicting
u < w. This contradiction shows that our claim is true, i.e., V gl E {u}. Therefore,
C ([u, v] N E)\{u} is a compact set. Zorn’s lemma implies that C contains a min-
imal element u0. Obviously, u < u0 and [u, u0] C E {u, u0}, contradicting Lemma
3.2. This proves that our assertion holds, i.e., M(y, u) < M(x,p).

For any y w(x), w(y) n E . Let Y0 Y and u0 u. Then, repeatedly using
(II) rn + 1 times, we have {Y0, yl,..., Y,} c w(x) such that

M(yi, ui) < M(yi-1, ui_

for 1, 2,..., m, where u is the greatest lower bound of w(yi). Since M(yo, Uo)
M(y,u) < m, it follows from (5) that M(yi, ui) < rn- for 0,1,2,...,rn.
Therefore, M(y,, u,) < 0. But by the definition of M(ym, u,), it is a nonnegative
integer--a contradiction. This shows that w(x) C E . The proof is complete.

Remark 1. For infinite-dimensional strongly monotone systems satisfying a much
more general conservation law than the one used in this paper, analogous results are
proved by Tak5 in [7, 8]. All these systems have a common characteristic: every fixed
point (equilibrium) is Liapunov stable. The author [12, 15, 16] proves the results of
convergence to fixed point without the strongly assumption.

Remark 2. J. Mierczyfiski [5] proved that if (iii) and (iv) hold and F(t, x) satisfies
the carathodory conditions, then the solutions of (1) uniquely exist for the initial
value problem on R x P. Assuming further that (i) holds, we can conclude that every
compact solution is asymptotically periodic of period - under the above hypotheses.

Acknowledgments. The author is indebted to the referees for their valuable
suggestions.
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NONSTATIONARY SUBDIVISION SCHEMES AND
MULTIRESOLUTION ANALYSIS*

ALBERT COHENt AND NIRA DYN$

Abstract. Nonstationary subdivision schemes consist of recursive refinements of an initial sparse
sequence with the use of masks that may vary from one scale to the next finer one. This paper
is concerned with both the convergence of nonstationary subdivision schemes and the properties
of their limit functions. We first establish a general result on the convergence of such schemes
to C compactly supported functions. We show that these limit functions allow us to define a
multiresolution analysis that has the property of spectral approximation. Finally, we use these
general results to construct C compactly supported cardinal interpolants and also C compactly
supported orthonormal wavelet bases that constitute Riesz bases for Sobolev spaces of any order.

Key words, subdivision schemes, multiresolution analysis, spectral approximation, dyadic in-
terpolation, wavelets.

AMS subject classifications. 41A28, 41A30, 41A10, 42C15

1. Introduction. Subdivision schemes constitute a useful tool for the fast gen-
eration of smooth curves and surfaces from a set of control points by means of iterative
refinements. In the most-often-considered binary univariate case, one starts from a
sequence so (k) and obtains at step j a sequence s# (2-J k) generated from the previous
one by linear rules:

(1.1) sj(2-Jk) 2 E
nEk+2

Cj,k(Tt)Sj_l (2-j (

The masks cj,k {cj,k(n)}nE are, in general, finite sequences, a property that is
clearly useful for the practical implementation of (1.1).

A natural problem is then to study the convergence of such an algorithm to a limit
function. In particular, the scheme is said to be strongly convergent if and only if there
exists a continuous function f(x) such that limj_+(supk Isj(2-Jk)- f(2-Jk)l) O.
One can study more general types of convergence with the use of a smooth function
g that is well localized in space (for example, compactly supported) and satisfies the
interpolation property g(k) 5k. One can then define fj(x) s#(2-Jk)g(2Jx-k)
and study the convergence of fj to f in a functional sense.

A subdivision scheme is said to be stationary and uniform when the masks
cj,k(n) c, are independent of the parameters j and k. In that case, one can
rewrite (1.1) as

Note that (1.2) is equivalent to filling in the sequence sj-1 with zeros at the interme-
diate points 2-J (2k + 1) and applying a discrete convolution with the sequence (ck).
Detailed reviews of stationary subdivision have been done by Cavaretta, Dahmen,
and Micchelli (1991)and Dyn (1992).
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These algorithms apply in a natural way to computer-aided geometric design.
Moreover, the interest in stationary subdivision schemes has grown in the digital-
image-processing and numerical-analysis communities since they have been connected
to multiresolution analysis and wavelet bases.

A multiresolution analysis consists of a nested sequence of approximation sub-
spaces

(1.3) {0} --+ V-2 C V-I C V0 C V1 C V2 --- L2(]R)

that are generated by a "scaling fllnction" p E V0 in the sense that the set {(2Jx-
k)}k constitutes a Riesz basis for Vj. By Vj L2(IR), we mean here that for any f
in L2(IR), limj_+o IIPjf- f[[0 0, where Pjf is the L-projection of f onto V and
][" II0 is the L2 norm (we shall use the notation I1" ]]s for the Sobolev H W norm).
Here again, many generalizations are possible (see Meyer (1990) or Daubechies (1992)
for a detailed review of this concept).

Since the spaces Vj are embedded, the scaling function satisfies an equation of
the type

(1.4) (x) 2E Cnp(2x n).

We shall assume here that p is compactly supported so that the cn’s are finite in
number. In that case, is also an L function and by taking the Fourier transform
of (1.4), we have

(1.5)

where re(w) ’n erie-inw. Assuming that p is normalized in the sense that

f p 5(0)= 1, by iterating (1.5), we obtain

This formula indicates that is the limit in the weak (or distribution) sense of a sta-
tionary subdivision scheme since it represents in the Fourier domain the refinement of
an initial Dirac sequence by iterative convolutions with c. Note also that the support
of is contained in the convex hull of the support of the mask (ck). Conversly, any
refinable function, i.e., weak limit of such a scheme, satisfies a "refinement equation"
of the type described above and is a potential candidate to generate a multiresolution
analysis (see also Derfel, Dyn, and Levin (1995)).

Given a stationary subdivision scheme, we see here that two questionsare relevant:
Is the scheme convergent and in what sense?
What are the properties of the limit functions?

By the last question, we mean in particular the approximation properties of the
spaces Vj (can we approximate in norms other than L2, in particular in Sobolev
spaces H, with specific rates...), the exact regularity of the scaling function, and
other properties of such as cardinal interpolation or orthonormality of its integer
shifts.

Numerous contributions have been made to these two problems. The convergence
of the subdivision and the approximation properties of the multiresolution spaces are
strongly linked: in particular, one can prove (see Dyn and Levin (1990); Cavaretta,
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Dahmen, and Micchelli (1992); and Daubechies and Lagarias (1991)) that both the
convergence of the subdivision scheme to a Cr function for some r > 0 and the
property that limj+oo2JsIIPjf- fll0 0 for all f E H8 (s < r) imply that the
scaling function satisfies the Strang-Fix conditions of order N, where N is an integer
such that N < r < N + 1. These conditions can be expressed by three equivalent
statements"

Any polynomial of degree not exceedding N can be expressed as a combina-
tion of the integer shifts of .

dFor all p _< N and n e {0}, (-)P(2n’) 0, (0) 1.
dFor all p <_ N, (--5)Pm() 0 or, equivalently, En(-1)n;c o.

Note that this last statement reveals that re(w) can be written as

N+I

where q(w) is a trigonometric polynomial. (1.7) implies that there are at least N + 2
nonzero c,’s, and thus the support length of is at least N + 1. This leads to
the observation that very good approximation rates for regular functions, as well as
convergence of the subdivision in a smooth norm, can only be achieved if one accepts
the loss of some space localization (in particular, one cannot build a refinable function
that is both compactly supported and in C).

More recently, attention has been given to subdivision schemes that are nonsta-
tionary in scale, i.e., for which the masks may vary from one step of the refinement
process to the next. A model case is the scheme that uses at step k the same mask
k k k+lcn (n)2- (0 < n < k) that would give rise in the stationary subdivision case

to B-splines of degree k- 1. It was proved by Derfel, Dyn, and Levin (1995) that
such a scheme converges strongly to the "up-function" introduced by Rvachev and
Rvachev (1971) (see also Rvachev (1990)). The limit function can thus be written in
the Fourier domain as

II 2
k=l

The length of its support is given by L k>0 k2-k 2 < +cx. Such a function
cannot satisfy a refinement equation of the type of (1.4). However, note that the
product (1.8) can also be written as

k=l n=0 k=n+l
+oo e_i2-nw

n=O

II
n--O

It follows that

X[0,1] * 2X[0,1/2] *"" * 2Jx[0,2-y] *""
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is a C function that satisfies a "continuous-refinement equation" of the type

(1.9) (x) 2X[0,] * (2.) (2x y)dy.

The idea of using iterative convolutions to build C compactly supported test func-
tions is older than Rvachev’s work: it can be found in Mandelbrojt (1942).

Returning to subdivision schemes, we see that by letting the masks grow linearly,
it is possible to obtain a C function while preserving the compact-support property.
It was also shown by Dyn and Ron (1995) that a "semimultiresolution analysis’.’ can
be derived by defining, for all j >_ 0, Vj Span{j(2Jx- k))ke with

+oo ( e_i2_ )
k+j

(1 10) 3j(w) H 1 +
2

k=l

and that these spaces have the property of spectral approximation in L" for any
r k 0 and for all f Hr, limj-+oo 2J"]]Pjf fllo o.

Our goal in this paper is to generalize these results to a large class of nonstationary
subdivision schemes.

Assuming that such a scheme converges at least in the sense of tempered distri-
butions, the general form of its limit function will be given in the Fourier domain
by

(1.11) () H mk(2-kw)’
k=l

where rnk is the sequence of trigonometric polynomials associated with the masks
of the subdivision. Note that, since we do not assume any particular form for rnk,

the function will not in general satisfy any type of refinement equation, discrete or

continuous, thus making the analysis of its smoothness and approximation properties
more difficult.

What is the interest of such a generalization? It is important to remark that
the approximation properties of the up-function and its associated multiresolution
analysis, very attractive from the theoretical point of view, suffer from a major nu-
merical disadvantage: the computation of the L projection onto Vj is difficult to
manage at high scales since the Gram matrix of the basis {J (2Jx- k)}kE becomes
ill conditioned. More precisely, its condition number C(j) grows exponentially with
j:

(1.12) (k/)j+l C(j) <( const -The upper bound is taken from Dyn and Ron (1995) and the lower bound is obtained
here:

C(j):
-1
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-1

-1

>

The same problem occurs when one wants to interpolate data on the grid 2-JTZ by
a function in V for j odd: one checks from a similar computation that the condition
number D(j) of the system grows exponentially.

In a more general setting, it is possible to keep these condition numbers bounded
as j grows. One can even fix one of them to 1 by imposing constraints on the trigono-
metric polynomials mk so that the limit functions have orthonormality or cardinal
interpolation properties (see 4).

Finally, an important property of multiresolution analysis is the equivalence

2Ilfll 2 IIPofll + 2eJ llPj+ f- Pjfllo
j>o

that is the key to multilevel preconditionning techniques (see Dahmen and Kunoth
(1992)) and that can also be expressed in terms of wavelet coeificients. Thus far, we
have only been able to prove this equivalence in the orthonormal case for all r > 0
(see 4).

Our paper is organized as follows. In 2, we give a general result on the con-
vergence of a nonstationary subdivision scheme in C under very mild conditions
on the masks. In 3, we study the approximation properties of the associated mul-
tiresolution spaces and prove that spectral approximation can be achieved for all
Sobolev norms. Finally, in 4, we apply these results to dyadic interpolation and to
orthonormal wavelets that constitute Riesz bases for all Sobolev spaces. This partic-
ular wavelet basis has recently been introduced in a paper by Berkolaiko and Novikov
(1992) which was concerned with the existence of a multiscale orthonomal basis of
compactly supported C functions.

For the sake of simplicity, we limit ourselves to the one-dimensional setting and
our results are stated in the case where the length of the masks grows at least linearly.
We show in the appendix how this canbe extended to more general growth rates of
the mask length.

2. Nonstationary subdivision schemes. Let {mk}>0 be a sequence of finite
masks, i.e., rn(n) 0 if Inl > d(k). We denote by ink(w) En rn(n)e-in their
representation in the Fourier domain, i.e., a sequence of trigonometric polynomials of
degree d(k). Let us consider the nonstationary subdivision scheme that is associated
with this sequence of masks, i.e., sj(2-Jk) 2rnj(k- 2n)sj_l(2-J+ln). If the
input is a Dirac sequence 5,,0, one obtains after n steps a sequence of samples on the
grid 2-Z that can be interpolated in a unique way by a function [] that is band
limited on [-2, 2]. This function is defined by

(2.1)
n

[n](z) H mk(2-kw)X[-’,] (2-nw)"
k=l

Note that the functions [n] are analytic and thus not compactly supported. We shall
use these particular interpolants in order to study the convergence of the subdivision
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scheme to the limit function defined (if this is possible) by

+

II
k--1

After n steps, the result of the subdivision in the space domain is supported in
[-L(n),L(n)] with L(n) E=I 2-kd(k) A natural condition for the compactly
supported limit function is thus

(2.3) L E 2-kd(k) < +"
k=l

Our first result shows that this condition is also instrumental in the derivation of
the convergence in the sense of tempered distributions of the subdivision scheme.

THEOREM 2.1. Assume that rk 2-kd(k) and Sk ]mk(O)- 1 are both
summable sequences and that the functions [mk(w)] are uniformly bounded by some
constant M > O. Then [n] converges uniformly on any compact set to and pin]
converges to in the sense of tempered distributions. The tempered distribution is
compactly supported in I-L, L] with L k>0 rk.

Proof. We first study the convergence of the infinite product (2.2). For a fixed
w, we have to check the su.mmability in k of tk(w) ]m(2-kw) 1. If, in addition,
k>0 tk(w) is uniformly bounded on every compact set, then (2.2) will also converge
uniformly on every compact set.

We can write

+
d

2-wlsup ma +sa.

Using Bernstein’s inequality, we obtain the estimate

(2.4) sup

and thus

<_ Md(k),

t(w) <_ Mlwlrk + sk,

which proves the uniform convergence of (2.2) on every compact set.
The.same argument shows that for any n > p _> 0, the products

n

(2.6) P(w)= n mk(2-kw)’
k=p+l

are uniformly bounded on [-2p+I, 2p+I] by the same B > 0. We can define these
products to be equal to 1 whenever n _< p so that this statement makes sense for
all n, p > 0. This applies in particular to 5In] P and P0, which are thus
uniformly bounded on [-2, 2].

For 2p _< Iwl _< 2p+I with p _> 0, we can write

P

I I l( )l II
k=l

<_ BMp <_ BMOg2 I,l < B]w] b
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with b log2(M (we have assumed here without loss of generality that M _> 1). For
all w E IR, we thus have the estimate

where the constant B does not depend on n. Consequently, it also holds for the
pointwise limit 73.

Now take any test function g(w) in the Schwartz class S(IR). For any e > 0, there
exists A > 0 such that

(2.8) BwI>A g(w)(1 / ]o,l)d < e/2.

By the uniform convergence of [n] to on every compact, there exists N such
that for all n > N,

(2.9) I<A g(w)((w)

Combining (2.7), (2.8), and (2.9), we immediately obtain the convergence of ([n]lg
to (lg). [3

We are now interested in finding additional hypotheses for stronger convergence
of the subdivision scheme to a C compactly supported function . Note that, in
contrast to its approximants [n], the function cannot be analytic. Our next result
states general conditions for the uniform convergence of [] and all its derivatives.

THEOREM 2.2. Assume that the hypotheses of Theorem 2.1 are satisfied and that
we have the estimate

with k lakl < +oc and re(w) cosZ(w/2)zh(w), for some >_ 0 (not necessarily
integer), where the function (n(w) is bounded, HSlder continuous at the origin and

satisfies (n(O) 1 and cri sup YI=I rh(2kw)l < 2zi for some fixed integer > O.
dThen 7 is a C compactly supported function and, for all s +,

dconverges uniformly to (-3-5)
Proof. It is sufficient to show that for all s 7Z+, the functions

are dominated by an L function f(w) that does not depend on n" by dominated
convergence, this implies

(2.11) -+,,:,lim /Iwll() []()]d o

and thus the uniform convergence of all the derivatives of [n] in the space domain.
We shall construct these dominating functions using the additional hypotheses that
we have made on the functions ink(w). First, we need a technical estimate that will
be useful: for any q _> 0, there exists Cq > 0 such that for any sequence {ak}k>0 with
0_ak

_
1 and anyn>_p_>0,

n

(2.12) H Cq(1 + Iw[) b
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with b log2(M). (As in the previous theorem, we assume without loss of generality
that M >_ 1.) Indeed, using the same argument (Bernstein’s inequality) as in the
proof of Theorem 2.1, we observe that I-[=p Imq+k(2-kw)l ak is uniformly bounded in
[-1, 1] by a constant Cq that does not depend on ak, p, and n since we have

I -I’+(-)1 -< In+(-) 1
]+(-) +(0) + ]+(0)
2qMw[rq+k + Sq+k 2qMrq+ + Sq+a.

For 2 w] 2t+ with p < n, we now derive

n n

k:p k=p k=l+l
n

Mt ]mq+k(2-k)l
k=/+l

Cq(M)g= Cqll b,

In the ces where n, this estimate still holds since M M, while for < p, the
bound is Cq. This proves (2.12) for all .

We are now ready to build the dominating functions f(). %r fixed s 2 0,
choose p N such that p((log2 a)/i ) + s + b < -1. (This is always possible since
we have assumed (log2 ai)/i < .) For n p, we can estimate []() on [-2,
by

n

k=l
n

Mp-I

k=p

n n

Mp- Im(2-)l Im(-)l.
k=p k=p

Using estimate (2.12) and hypothesis (2.10), we thus obtain

n

I]()1 Mp-ICp(1 + I[) / Im(2-)lp

k=p
n

MP-Cp(1 + I1)b lcos(2-k-DlPl(-k)lp

k=p

Mp_lCp( + il)
Isinc(2-p)[p

Isinc(2--l) IZp
k=p

n

A,( + tl)-z 1(2-)1,
k=p

where Av depends only on p, since ]sinc(2--)]p is bounded below away from 0
on [-2r, 2] by a constant that does not depend on n but only on p. To estimate
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the remaining product, we remark that since rh(w) is bounded and HSlder continuous
at the origin and rh(0) 1, then for all n >_ p _> 0, the products 1-I=p Irh(2-kw)!p
are uniformly bounded on [-1, 1] by a constant Bp that is independent of n. For
2 _< Ice < 2t+l with p _< < n, using the hypothesis on rh, we obtain

H 1(2-)1-= n 1(2-)1 H 1(2-)1
k=p k=p k=/+l

n--l

H 1(2-%)1 H 1(2--Z)l
k=p k=l

B H 1(2-)1

Bp}]p (sup ()[)(i--1)p
lp/i

Pi
(p/i)ogl o

where Dp depends only on p (again, in the cases where n or < p, this still holds
by replacing the product that does not make sense by 1). Combining this with the
previous estimate, we obtain

(e.la) () < (1 + 1)+(
where Kp depends only on p, and thus

(e.14) -Z).

This also holds trivially for wl > 2. Since we have assumed that b+s+p((log ai)/i-
) < -1, this gives us the desired uniform L estimate. This concludes the proof of
the theorem.

Remarks. The hypotheses of Theorem 2.2 imply, in particular, that the degree
d(k) of m grows at least linearly (ink has a zero of order k at w ). This is
not strictly necessary: we show in the appendix that it is possible to obtain strongly
converging subdivision schemes with a C limit function as soon as d(k) tends to
+ without any assumption on its asymptotic behavior (but with the assumption
Im()l 1, which removes a lot of technicalities).

These hypotheses can also be weakened by assuming that estimate (2.10) is satis-
fled only for k sufficiently large" the limit behavior of the subdivision does not depend
on the first iterations.

3. Multiresolution approximation. Let {m}k>0 be a sequence of finite masks
that satisfy the hypotheses of Theorem 2.2. We define a sequence of C compactly
supported functions by

(a.) () +(e-), j 0.
k=l

We see that 0 and that j is obtained as the limit of the same subdivision
algorithm by cancelling the first j iterations. It follows that j is also in C. Since
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j(w) mj+l(W/2)j+l (w/2), we see that this sequence of functions satisfies a series
of recursive refinement equations"

In[<_d(j+l)

mj+l (Tt)j+I (2X

It is thus natural to define a "semimultiresolution analysis" {Vj}j>0 by Vj
Span{j(2Jx- k)}keTz. The inclusion V C Vj+I comes from (3.2).

We shall now study the approximation properties of these spaces in Sobolev
spaces. Given a function f E Hr, we can define

(3.3) d(f, V)s inf IIf gIl
gevj

for s _< r, where II. is the Hs norm. We are concerned here with the behavior of
d(f, Vj) as j goes to +. By definition, the spaces Vj have approximation order (resp.
density order) r in H if 2(r-s)Jd(f, Vj)s is bounded (resp. goes to 0) as j

We shall first establish a general result using a technique introduced in a paper
by de Boor, DeVore, and Ron (1992) in which the authors are concerned with approx-
imation in the L2 norm from shift-invariant spaces. Here we adapt their technique to
the derivation of density orders in Sobolev norms. Approximation orders in Sobolev
norms by shift-invariant spaces are studied in Zao (1995) and Ron (1995).

THEOREM 3.1. Let {gJ}j_>0 be a sequence of compactly supported functions in
H for some s >_ 0 and define Vj Span{.(2Jx- k)}k. For r >_ s, assume that
there exists t ]0, :r] such that, for all 0 <_ v <_ s,

(3.4) sup
Il<t

Then the spaces Vj have density order r in Hs" let Pj be the L2 projection onto Vj and
let Sj be the operator defined by Sf(w) f(w)X[_t,t](2-Yw), where represents the

Fourier-transform operator (f(w) ](w)). Then for all f e H, we have d(f, Vj) <_
[IPySyf f[] _< c2J(-)llf[[e(f,j) with 0 < (f,j) < 1 and limy_+ e(f,j) 0.

Proof. First, observe that we can always associate with j a function CJ defined
by

(nTZ )1/2+

such that {2J/2y(2Jx- k)}ke is an orthonormal basis of Vj" in the case where

En IJ(cO -" 2n71")1 2 Ek{J (’)1j ("- ]g)} e-ikw vanishes at SO,He isolated point, we
can easily check that Cj is still the L2 limit when a - 0 of Cj,s defined by

(3.6) Cj, (w)

/
1/2

n

and that , is an g2 combination of j(x- k).
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Consequently, we can write

Pjf(x) 2y (flCj(2j -k)}dpj(2Yx k)

for any f E L2. For all j >_ 0, we define Qj I- Py and Tj I- Sj. We can thus
estimate the approximation error as follows:

Let f be in Hr, i.e., Ilfl12 (2r) -1 f lf(w)12(1 + Iwl2r)dw < +oc. We shall
examine these three quantities separately and prove that they all satisfy the estimate
that we want for d(Vj, f).

The "truncation error" IITy fll is independent of the approximating subspaces Vj.
It is clear that we have

IITYfII (27r)-1 Jlcol>2Jt If(W)I2(1 + Iwl2)dw

<-- (27r)-122j(s-r)t2(s-r) l>2Jt If(W)12(1 + Iwl2)dw

< 622J(s-) Ilfll2e(f, j),

with 0 _< e(f, j) <_ 1 and e(f, j) 0 as j +oc.
For the second term, we have

To estimate IIQjfll), we note that

PySyf(w) bj(2-Jw) (SyflCy(2j -k)}e
kE TZ,

k

Since the above sum defines a 2J+lr-periodic function which coincides on [-2Yr, 2JTr]
with f(w)x[_t,t](2-Jw)(2-Jw), it follows that, on the interval [-2JTr, 2JTr],

PySyf(w) lby(2-Jw)lf(w)x[_t,t](2-Yw).
From this, we derive

If(w) Pjyf(w)12dw
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P

--(271") -1 / If(c)l(1 -[y(2-Yc)l)dc
I<et

< Il E I( +

< Illj()l

Combining these estimates with hypothesis (3.4) in the case where v 0, we obtain

(3.9)

with 0 _< e(j) _< 1 and e(j)
Finally, for the last term IITjPjjfll, we note that for co such that

2Jr, we have, by (3.8) and the observation following it,

(3.10) .7"PjSjf(co) j(2-Jco)j(2-Jco 2n7r)](co 2J+1n7t’),

and .7:PjSjf(co) 0 for 2Jr < Ico- 2J+inrl < 2Jr. Consequently, we can estimate
this last term as follows:

]]rjPJSJfll2s (27r)-1
1>2t

<_ C. fl lYPjSjf(w + 2J+lnr)lalw + 2J+lnrl2dw

c I(-)]() I + e+-l;(e- + e)le
l<2t n0

Iwl<t

Combining this estimate with hypothesis (3.4) in the case where v s; we obtain

(3.11)

with 0 <_ e(j) <_ 1 and a(j) 0 as j --, +co. This concludes the proof of the theo-
rem.

We now. return to the case of multiresolution spaces generated by the functions
defined by (3.1) with the conditions on the masks stated in Theorem 2.2. The following
result shows that, under an additional assumption on these masks, hypothesis (3.4)
is satisfied for any r, v

_
0.
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THEOREM 3.2. Assume that the family {m(co)}k>0 satisfies the hypotheses of
Theorem 2.2 and

(3.12) Imk(w)l >_ (1- ck)la(w)l,
where ]c < 1, Ickl < +, a(a) is HSlder continuous at the origin with exponent

" > 0 and a(O) 1. Then there exists t > 0 such that for all r, v 0,

(3.13) sup (,,-’w + 2n’’j( + 2n)’ )Il<t ij()]2
0 as j +.

Proof. We shall prove that, for fixed v > 0, there exist constants A, B, C, D, T > 0
such that if ]w] < T, the following holds:

(3.14)

and

(3.15)

ABJ

where is the exponent that appears in the hypothesis of Theorem 2.2. It will then
be sufficient to choose t ]0, T[ such that (Dt)2Z/B < 1 in order to ensure (3.13).

First, we introduce four functions:

(3.16) II 1-I Im(2-k )l
k=l k=l

and

(3.17) ga(W)
k=l k=l

The above infinite products are convergent since the functions re(co) and a(cz) are
HSlder continuous at the origin, achieving the value 1 there, and hence the Iogarithm
of each of the four infinite products is a convergent series.

By (3.1), (2.10), and (3.12), wehave

.(3.18) Maha(co)[ga(co)]j <_ Ij(w)l <_ M,h,(w)[gn(U)]y,
where

(3.19) Ma H (1 -level), M, H (1 + lal)
k=l k=l

To get an upper bound for the numerator of (3.13), define

(3.20) 9m (w) sinc (w/2)l(w)

with
hypotheses of Theorem 2.2,

For _> 0 and 21 _< Iwl <_ 2/+1, we have, by the

(3.21)
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Combining (3.21)with (3.19), we obtain the estimates

(3.22) gin(w) <_ K2(1 + Iwl)-
with fl- (log2 ai)/i > 0 and

(3.23) gm (W + 2nTr) _< KIII
In the last inequality, we used the bound

(3.24) sinc(n + w/2) <_ Iwllw + 2n1-1, n E {0}.

Finally, by (3.22) and since g,(w) is HSlder continuous at the origin with the
same exponent as re(w), we can also write hm (w) as

(3.25) h,(w) H gm(2-kW)"
k=0

For any 5 E ]0, 1[, choose w5 > 0 such that 9m(W) < 6 if > . For >_ 0 and
2we _< Iwl < 2+1w, we thus have

Since 5 is arbitrary, this shows that h(w) has rapid decay at infinity. We can
thus define

(3.26) K3

1/,8oo,o ud from (a.18) with C D
To obtain a lower bound for the denominator of (3.13), we use the fact that ha(w)

and ga(w) are HSlder continuous at the origin with the same exponent as a(w) and
both are 1at the origin. Thus ha(w) _> 01 > 0 andga(W) _> 02 > 0 for Iwl small
enough, which together with (3.18) yields (3.14) with A 2 2MO and B 0. D

Combining Theorem 3.1 and 3.2, we immediatly obtain the following corollary.
CoaoaaY 3.3. Let {m(w)}>0 be a family of trigonometric polynomials that

satisfy the hypotheses of Theorem 3.2 and let {}i_>0 be the associated scaling func-
tions defined by (3.1). Then the semimultiresolution analysis {V}i_>0 generated by
these functions achieve spectral approximation, i.e., it has density order r in H for
allr>_s>_O.

Remarks. As in the previous section, the hypotheses here can also be weakened
by assuming that the hypotheses on the functions ink(w) hold only for k sufficiently
large since only the scaling functions at coarse scales will be affected.

Here we have concentrated on the rate of approximation in Sobolev spaces H (IR).
If we are interested in the approximation of a function f H(I), where I is a finite
interval, we can use the space Vj/ defined by the restriction into I of the functions
of V. This space has finite dimension, and we can easily check that there exists a
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constant C > 0 such that dim(V) <_ C2J. The property that 2(r-s)Jd(f, Vz)s goes
to 0 as j +oc reveals that {VI}j_>0 is a sequence of n-width approximation spaces
for Sobolev spaces. In that sense, the V spaces are optimal for approximation in all
Sobolev spaces.

One may also like to obtain similar optimal results for other types of Besov spaces

B(LP), e.g., HSlder space C B(L). The generalizations of the results of this
section depend on p in an essential way:

When p 2, for H B(L2) in particular, these spaces can be fully
described in the Fourier domain because of the isometry of f ] with respect
to the L2 norm, and Theorem 3.1 can be generalized to q 1.

When p : 2, this task seems much more difficult since one has to deal with
the space domain in which the Support of the functions j grows with j, at least
linearly. Take, for example, the HSlder space Cs (s N + r, r E ]0, 1])" a natural
method of approximating f E C by a function in V is to approximate f locally by
a polynomial of degree N with an L error of order (Ax) and to generate these
polynomials locally by the functions {j(2Jx- k)}k provided that the Strang-
Fix conditions of order N are satisfied. In the case that we consider, due to the
particular properties of ink(w), the V spaces contain polynomials of arbitrarily high
degree as j grows. However, since the support of the functions j grows at least
linearly, one can only predict an L error of order (j2-J) for arbitrary s. In the
standard multiresolution-analysis framework, the error will be of order 2--sj since the
generating function is the same at every scale, but only for s <_ N + 1, N being the
order of the Strang-Fix conditions, which is constant for all j _> 0.

For C functions, better rates of convergences can be expected. An interesting
perspective is the exploration of the approximation properties of the V spaces in
classes of C functions defined by the growth of the sup norm of their derivatives
(Gevrey classes; see Hormander (1983)).

Finally, let us remark that an important problem--besides knowing the rate of
convergence of the best approximation in a fixed norm--is the construction of this
best approximation numerically. In the case of Sobolev spaces, we gave an explicit
approximation operator that combines truncation in the Fourier domain with L
projection onto V. An interesting case is when the functions {j(x- k)}m form
orthonormal systems for all j _> 0 so that the L2 projection can be expressed directly
in terms of theses compactly supported functions. The next section will focus on

an example of such a system, showing that it leads to orthonormal bases of smooth
compactly supported wavelets that are Riesz bases for all Sobolev spaces and that the
asymptotically best H approximation is always achieved by the L projection.

4. Smooth cardinal interpolation and orthonormal wavelet bases with
compact ,support. By definition, a scaling function has the property of cardinal
interpolation if

and the property of orthonormality if

In the framework of standard multiresolution-analysis and refinement equations, such
functions were first studied by Deslauriers and Dubuc (1987) and Dyn, Gregory, and
Levin (1987) in the interpolating case and by Daubechies (1988) and Meyer (1990)
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in the orthonormal case. They can be generated by imposing specific necessary con-
straints on the coefficients cn in (1.4) or, equivalently, on the function re(w). These
constraints are c2n (1/2)&,0 or, equivalently,

(4.3) re(w) + m(w + 7r) 1

for interpolation and

(4.4) I n( )l + + 1

for orthonormality. We recall here the main results of these constructions without
proving them since they are now classics and can be found in detail in Daubechies
(1992) and Meyer (1990)"

The constraint (4.3) (resp. (4.4)) will be sufficient to ensure (4.1) (resp. (4.2))
if and only if the associated subdivision scheme (i.e., the sequence [n]) converges in
CO (resp. in L2) since the functions 9[] that interpolate the subdivision at step n
satisfy by recursion the interpolation (resp. orthonormality) property.

It is clear that a trigonometric polynomial solution of (4.4) leads to one of
(4.3) by taking its square modulus. The converse is also true assuming that the
solution M() of (4.3) is a positive, even trigonometric polynomial; then the Riesz
lemma ensures the existence of a trigonometric polynomial m() that satisfies Irnl
M.

An important family of solutions of (4.3) is given by

(4.5)
N-1

MN(W) cos2N (w/2) E (N-jl+j)sin2J (w/2)

for all N > 0. It is associated with a family {mN(W)}N>O of solutions of (4.4) by
the previous argument. It was shown by Daubechies (1988) that the regularity of the
associated orthonormal and interpolating scaling functions increases linearly with N
in an asymptotical sense.

Let {u(x- k)}k be an orthonormal basis of a closed subspace U C

L2(IR), let re(w) be a solution of (4.4), and define v, w E U by

(4.6) @(cz) +

Then {2--1/2V(X/2-- k)}kTU{2-1/2W(X/2-- ])}/7Z constitutes an orthonormal basis
of U. Applying this splitting trick to the refinable orthonormal function detemined
by rn(), one defines the "mother wavelet" by () e-/2m(/2 + )(/2).
The complete system {2/2(2jx k) }j,kem constitutes an orthonormal wavelet basis
of L2() and so does {(x k)} U {2J/2(2Jx k)}jk0,.

The function has the same support length and global regularity as p (in the
compactly supported univariate case). The Strang-Fix conditions of order N for are
equivalent to the property that has N + 1 vanishing moments, i.e., f xk(x)dx 0
for k 0,..., N, and hold if and are in H () (s N+r, r e ]0, 1]). In addition,
the wavelet basis is also a Riesz basis for all Sobolev spaces with exponent smaller
than s when , H(N).

We shall now use the families {MN()}N>O and {mN()}N>O described by (4.5)
and mN 2 MN as the masks of nonstationary subdivision schemes. We will be able
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to apply the results of the previous sections thanks to an estimate borrowed from
Volkmer (1992).

LEMMA 4.1. The functions MN(W) satisfy

(4.7) cos2(w/2)lN <_ MN(W) <_ IM(w)lN,
where M(w) is a 2r-periodic function satisfying M(w) 1 if Iwl <_ r/2 and M(w)
sin2(w) iffr/2 <_ Iwl <_ . The function M(w) can be written as M(w) cos2(w/2)M(w),
where M(w) is bounded and Hhlder continuous and satisfies

(4.8) a2- sup 121/(w)//(2w)l < 24-- 16.

Proof. From (4.5), we clearly have MN(W) >_ cos2N(w/2). The upper estimate is
also trivial for Iwl _< r/2 in view of (4.3). For Iwl. >_ r/2, note that the polynomial
PN(Y) N-1 g-+j)yj-j=0 ( with 1/2 < y < 1 satisfies

N-1 N-1
N-I+j N-1 N-I+j<

j=o j=O

(2y)N-1pN(1/2)= (4y)N-1
_

(4y)N.

(We find PN(1/2) 2N-1 by taking y 1/2 in the equation (1- y)NPN(y)+
yNpN(1 y) 1, which expresses that MN is a solution of (4.3).) Consequently, we

have, for r/2 <_ Iwl <_ r,

Mg(w) Cos2N(w/2)PN(Sin2(w/2) <_ [4COS2(W/2)sin2(w/2)]g
[sin2(w)]g [M(w)[g.

To prove (4.8), we remark that sup(h:/(w)) 4 and that this supremum is attained
only at the points w (2n+l)r. Consequently, s.upw(37/(w)/(2w)) < sup [h:/(w)l 2
16. [:]

We are now ready to apply the results of the previous sections. For all j :> 0, we
define

(4.9) (i(w) H M+k(2-kw)
k--1

and

(4.10) j(w) H mj+k(2-kw)"
k--1

THEOREM 4.2. For all j > O, the subdivision algorithms associated with j
and j converge to these functions in the sense of the uniform convergence of all
the derivatives. The functions J (resp. j) are in C, are compactly supported in

[-3- 2j, 3+ 2j] (resp. [0, 3+ 2j]), and have the property of cardinal interpolation (resp.
orthonormality). The families {}j>0 and {j}j>0 both generate multiresolution
analyses that have the property of spectral approximation.

Proof. This result is a simple application of the theorems in the previous sections:
Lemma 4.1 indicates that the functions Mg(w) and row(W) satisfy the hypotheses of
Theorems 2.1, 2.2, and 3.2. The convergence of the subdivision schemes and the
spectral approximation property follow from these results.
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Since MN(w) 2N- 2N--]n=O cue the supportsEn-----O Cn cos(nd) and mN(w) --inw

of J and j are, respectively, the intervals [-nj, Ly] and [0, Lj] with Lj -k>0(2k+
2j 1)2-k 3 + 2j.

Finally, the properties of cardinal interpolation and orthonormality can be derived
with the same arguments as in the stationary case: we consider the functions that
interpolate the subdivision values after n steps, i.e.,

n

(4.11) (](w) H My+k(2-kw)x[-,] (2-’w)
k=l

and

n

(4.12) hI(w) H mj+k(2-kd)[-,r] (2-nO’))"
k=l

The function that is defined by 0]= q3]- X[-,] is clearly both orthonormM and
interpolatory. The standard theory (see Daubechies (1992) and Deslauriers and Dubuc
(1987)) indicates that the property of cardinal interpolation (resp. orthonormMity) of
a function u is preserved by the transformation u --. v such that )(w) m(w/2)(w/2)
if re(w) is a solution of (4.3) (resp. (4.4)).

Consequently, we can easily check by ecursion that ] (resp. pn])is interpo-
latory (resp. orthonormal) for all n, j 0, and the same holds for Oj (resp. j) by
uniform convergence of the subdivision Mgorithm.

Since in the interpolatory case, the subdivision with a finite number of iterations
already has the property of cardinal interpolation, it is possible to use these masks
to interpolate a sequence on a grid of points F 7 into a sequence on a finer grid
2-iF. As j goes to +, the limit curve is C and the influence of a single point in
F on this curve is limited in space since the limit function from a Dirac sequence is
compactly supported. This is clearly a numericM advantage over interpolation with
cardinal sines. Figure 1 represents the function 0 Obtained after 10 iterations of the
subdivision.

For the orthonormal case, in Figure 2, we have represented the function 0. In
this setting, we can use the "splitting trick" that we have mentionned for the standard
case to build orthonormal wavelet bases: for each j 0, we define

(4.13) y(w) -iW/2mj+l

so that the family

(4.14) Cj,k 2J/2j(2Jx- k), k E ,
constitutes an orthonormal basis of the orthogonal complement Wj of Vj in Vj+i.
Since the spaces Vj approximate any L2 function with arbitrarily small L2 error as j
grows, the system {o(x k) }kErn U {j,k(x)}j>0,kE constitutes an orthonormal basis
of L2(IR). Note that the function Cj has j vanishing moments and that, although
its support grows linearly with j, this growth is dominated by the scaling 2-j so
that these wavelets can still be used to analyze and represent the local features of a
function.

The last result of this section indicates that this particular system has very good
properties with respect to Sobolev spaces.
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THEOREM 4.3. The system {99(x--k)}keU{qdj,k(x)}jelN,ke constitutes a Riesz
basis for all Sobolev spaces Hs"

If f(x) Eke ck(x k) + --y>o,ae dj,kCj,k(X) is a function in Hr, then its
wavelet series converges in Hs for 0 <_ s<_ r and we have the equivalence

(4.15)
k j,k j>_O

where Rj Pj+l-Pj is the L2 projector onto Wj. Also, density order r in Hs norm
is achieved by the n2 projection in the sense that 2J(r-8)llPjf
for any f E Hr.

Proof. First, we define a function u(w) and a sequence of functions {Vn(W)}n>O
by

(4.17) Vn(W) --]m(w/2 + r)ln+l H Im(2-  )l
k=2

where re(w) v/M(w). The same arguments used for the function h(w) in the proof
of Theorem 3.2 indicate that u(w) and v,(w) have rapid decay at infinity. Using
Lemma 4.1 and the fact that re(w) is bounded by 1, we obtain

(4.18) Ij(w)l <_ u(w)
for all j _> 0 and

(4.19) <

for all j _> n _> O. Now consider a function f E H with n _< r < n + 1. We clearly
have

(4.20)
2n

IlPofll + 2YllRjfll < C(r)llfllo.
j=O

2n 22rjwith C(r) 1 + -y=o For the scales j > 2n, by Parseval and Poisson identities,
we have

(2r)-12j/ + +
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Using (4.20) and the Schwarz inequality, we then obtain

IIRjfl[ <_ (2r) -12j/_ I](2j (o2 -- 217))V2n+l (o2 + 2/71")1 dw

_< ()-IA() f 1()1/1(2-)d
with A(r) sup[-lem V2n+l (lz + 2/7r)] < +(X). For r < n + 1, we can .also define
B(r) sup(-jem [2-Jw[-2rV2n+l (2-Jw)) < +c (because v2n+l has a zero of order
2n + 2 at the origin). Summing on j > 2n our previous estimate with the appropriate
weights, we thus obtain

E 22rj IIRJ fl]o2 (2r)-1A(r)
j--2n+l

(2w)-lA(r) E / 10)12rI](O’))I212--Jo21--2rV2n+l (2-J(M)d2
j=2n+l_

A(r)B(r)llfll2.

Combining our results for all j _> O, we finally obtain

(4.21) Ikl + 2Jldj,kl [A(r)B(r) + C(r)][[fll2,
k j,k

For the converse inequality, we first prove the following lemma.
LEMMA 4.4. For every r >_ O, there exists K(r) such that for all j E IN, the

functions f Vj satisfy the following Bernstein-type estimate"

f e y [[fllo < [[fll,- -K(r)2Yi[fllo

Proof. Let f -ke akj(2j" -k), E la] < . Then

(4.23) -JkwE ake-2
k

Using (4.1), we get
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with (K(r))2 sup Ee=(1 + Iw + 2r/l)u(w + 27r/) < c. t]

Returning to the proof of the theorem, to conclude (4.15), we use the following
result about Besov spaces (see, for example, Frazier and Jawerth (1985)): for r > 0,
1 < p, q < +, the norm of a function f in B,q is equivalent to the quantity

(4.24) inf

where the infimum is taken over all the sequences of positive numbers {j}j_>0 such
that for some integer m > r, there exists a sequence of functions {fj }_>0 in W that
satisfies

(4.25) f fy, fj
J Lp

<_ j2(m-r)j

It is clear that if IlP0(f)ll + Ey 2YllR(f)llo is bounded, f0 Pof and fj Rj-lf
for j > 0 will be a decomposition that satifies (4.25) with j 2rJ[Ifjllog(m) in
g2(lN) since by Lemma 4.4,

(4.26)

Consequently, we have

(4.27) Ilfll D(r) (llP(f)ll + 22YllRY(f)ll)
and (4.15) is proved.

Finally, we can use (4.27) and (4.21) to evaluate IIPjf- fl12 for f e Hr, r > s.
We obtain

where K(r,s) D(s)(A(r)B(r)+ C(r)), (j,f) e [0, 1] going to 0 as j
Spectral approximation is thus aChieved by the L2 projection onto Vj.

Remarks. One may be interested in the characterization of other Besov spaces,
such as Hhlder spaces, by the properties of their wavelet coefficients. This task seems
difficult for exactly the same reason that was mentioned at the end of the previous
section: one would have to deal with the space domain in which the support of
grows linearly.

In the more general framework of a nonstationary multiresolution analysis {V }j_>0
described in the previous section, it would be interesting to prove an equivalence of
the type of (4.15),

(4.28) Ilfll IIPofll + 22JsllPj+if-
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since it is the key to multilevel preconditioning techniques (Dahmen and Kunoth
(1992)), even when there is no explicit wavelet basis. We do not know so far under
which general conditions such an equivalence holds.

5. Conclusions.. We have studied the convergence of nonstationary subdivision
schemes and the properties of their limit functions in terms of approximation. Some
open problems are raised in a natural way:

the approximation and characterization of functions in spaces other than Hs

(more general Besov spaces and Gevrey classes of Coo functions);
the possible generalizations to the multidimensional framework (other than

simple tensor products) and to biorthogonal wavelets;
the search for weaker (if possible, necessary and sufficient) conditions for

convergence of the subdivision algorithm, generating C functions.
The orthonormal wavelet basis that we described in the last section gives an

answer to an important question in approximation: find a basis that has spectral ap-
proximation properties, like the trigonometric system in Sobolev spaces with boundary
conditions, and allows us to describe functions locally in space. In particular, we can
adapt this system to an interval using for example the approach described in Cohen,
Daubechies, and Vial (1993) so that the expansion in the adapted basis asymptotically
achieves the n-width in any Sobolev space HS(I).

The numerical implementation of such an expansion has, of course, the same
pyramidal structure as in the standard fast wavelet transform algorithm, using longer
filters at the high scales and smaller filters at the coarse scales. This idea is very
natural in terms of signal processing since it does not make sense to use a filter with
a comparable size to that of the whole signal at the coarse scales. Our results on the
convergence of nonstationary subdivision indicate that the regularity of the recon-
struction will not be affected by the use of small filters (corresponding to nonregular
scaling functions) at the coarsest scales. An interesting perspective is the applica-
tion of these algorithms in image compression, where both smoothness and space
localization of the limit function are required.

Appendix. We want to show here that, under mild conditions, Co scaling func-
tions can be obtained with any type of growth of the mask length in the subdivision.

Let {mk(w)}k>o be a family of trigonometric polymomials that satisfies

(A.1) [mk(w)[ _< [m(w)] k,
where [m(w)[ cosZ(w/2)rh(w)[ _< 1 with/3 _> 0 and rh(w) is bounded and Hhlder
continuous at the origin and satisfies ai sup [n=l rh(2ka;)l < 2zi for some > 0.

Now consider a sequence of strictly positive numbers {1 (k) }k>0 with the following
properties:

(A.2) lim l(k)= +c

and

<
k>0

From Theorem 2.1, we know that we can define a compactly supported tempered
distribution 9 by

(A.4) (w) H ml(k) (2-kw)’
k--1
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where the product converges uniformly on every compact set.
To study the convergence of the associated subdivision algorithm in the strong

sense, we define

(A.5)
n

[-1() H "()(-)x[--,-l(-")
k=l

(A.6)
n

h(w) n Im(2-aw)l(a))[-,l(2-)’

(A.7)
n

gn(w) H Im(2-)lxI-,l(2-)
k=l

Now

(A.8)
n

gn(W) (sinc(w/2))(sinc(2-n-lw))-/ n I#t(2-kw)lX[-r,r] (2-nw)

and infll<2. Isinc(2-n-lw) 2/r; hence the same technique used for the estimation
of g(w) in the proof of Theorem 3.2 yields

(A.9) g.(w) < C(1 + iwl) -e

with e =/- (log2 ai)/i > 0. For a fixed s > 0, consider an integer p > 0 such that
pe >_ s. Since l(k) goes to +oc, there exists an integer m _> 0 such that l(k) >_ p for
all k > m. For n > m, we can thus estimate [n](w) as follows"

I["l(w)l <_ h,(w)
n

k--1

<- n im(2-kW)lt(k)X[-=,’l (2-"w)
k"m+l

<- H l’(-)lI-,l(-)
k=m+l

[n_m(-mCO)]p

<_ c( + Iol)-,
where Cs Cp sups((1 + Iwl)/(1 + 2-lwl)) depends only on s. Since s is arbitrary,
we obtain the C convergence of the subdivision by dominated convergence, s in
Theorem 2.2.

This more general result applies in particular to the trigonometric polynomials of
4 since the function M(w) of Lemma 4.1 is bounded by 1.
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A NONLINEAR OPERATOR RELATED TO SCALING FUNCTIONS
AND WAVELETS*

YING HUANG

Abstract. This paper studies a certain nonlinear operator T from L2(]) to itself under which
every scaling function is a fixed point. The iterations Tnf of T on any L2-function f with the
Riesz basis property are investigated; they turn out to be the subdivision-scheme iterates of f with
weights depending on f only. The paper gives conditions for convergence of T f to a limit in different
topologies and studies the regularity of the limit functions. The results are illustrated with examples.
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1. Introduction. Orthonormal bases of wavelets Cj,k(x) 2-J/2(2-Jx k)
(j,k e Z) for n2(I) have many useful properties [Ru], [ca], Jill, [I2], [BF]. The
construction of such wavelet bases is well understood; every such basis corresponds to
a multiresolution analysis characterizedby a scaling function (x) (see, e.g., [Daul]).
What makes a randomly chosen a scaling function? There exist many different
possible choices for . We shall see that scaling functions can all be viewed as the
fixed points of a nonlinear operator.

In a multiresolution analysis, for appropriately chosen cn and dn, the functions
and satisfy,

(x) (x)
n n

and +/- (. rn) for all m e Z. It follows that +/- (2 -n) for all n E Z. Now
define a nonlinear operator, denoted T, which projects any nonzero function in L2(R)
onto the closed subspace spanned by its own scaled translates. More precisely,

T" L2() --. L2(), Tf := orthorgonal projection of f onto Span{f_l,;n e Z},

where, as usual, fj,k 2-J/2f(2-Jx- k). It is clear that T and T 0. This
paper studies the properties of T.

The operator T is nonlinear: we have T(Af) A Tf for all A C, but there is no
a priori reason to expect T(f+g) Tf+Tg, and we shall see explicit counterexamples
in 3. Because T is defined as an orthogonM projection, we always have

(.1) IlTfll < Ilfl].

As pointed out above, multiresolution scaling functions are fixed points of T.
We can study the iterations Tnf of T on an arbitrary f L2(]). If these Tnf have
a nontriviM limit, then this limit is a fixed point of T and is therefore a candidate
of a scaling function. It leads to a multiresolution analysis "naturally" associated
with f. When does such a nontrivial limit exist? How stable is the procedure under
small perturbations of f? This paper contains answers to these questions. A key
observation in our analysis is that T is closely related to subdivision schemes.

Received by the editors June 9, 1994; accepted for publication (in revised form) May 30, 1995.
Mathematics Department, Rutgers University, New Brunswick, NJ 08903.
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The contents of this paper are as follows. We begin with a presentation of the
basic properties of T: in 2, we give an explicit formula for Tf for a large class of
functions f, and then we discuss the continuity and the fixed point set of T. In 3, we
show the connection of Tnf with subdivision schemes. Then 4 and 5 study sufficient
conditions for convergence of Tn (or rescaled iterates of Tn) in different topologies.
The final section, 6, consists of examples of functions and their corresponding limit
functions, illustrating the results of 4 and 5.

We conclude this introduction by fixing some notations for the rest of the paper.
We normalize the Fourier transform as follows"

1 f_+ e_ix(1.2) /() ----(f)^()"= f(x) dx.

Here the integral converges absolutely for all if f is in nl (I); for general f E n2(I),
(1.2) should be understood via the standard limiting process. Throughout this paper,
the symbol II" (without a subscript) will be reserved for the L2() norm

Ilfll 2 (f f) f(x) f(x) dx.

With our normalization of the Fourier transform, the Plancherel identity is Ilfll
2. Basic properties of T. In this section, we first introduce the definition of

the Riesz basis property for an L2-function f and obtain an explicit formula for the
Fourier transform of Tf. With this, we then study the continuity of T and the set of
fixed points of T.

2.1. A formula for T. Since Tf is defined by the orthogonal projection of f
onto Span{f_l,n; n E Z), it is tempting to write

(2.1) Tf(x) an" f(2x n),
nEZ

and to try to determine the an’s in (2.1). This is not always straightforward, however.
First of all, the f(. n) may not be independent, so that several sequences of coef-
ficients Cn in (2.1) would lead to the same answer. An example is given by f(x) 1
for 0 < x < 2, f(x) 0 otherwise. For any x e I, we have nE,(-1)n/(x- n) 0;
since Tf f, we thus have Tf(x) f(x) f(2x)+f(2x-2)+’y.ne,(-1)nf(2x-n),
where 3’ C is arbitrary. This nonuniqueness of the Cn’S can be circumvented
by prescribing an algorithm for determining the an’S. Since Span{f_l,;n Z}
LJNel Vf,N, where Vf,N Span{f_l,n; Inl < N}, and since any finite set of f-,n is
always independent, we have, in general,

Nlim an .f(2x--n)Tf(x) N.-.-bcx:lim Proj V:,N f(x)
N.---}.-bcx

NSwhere the an are now determined uniquely by solving the linear system

an f(2. -k) 0 Vlk < N.

N’s tend to a limit as N - +, we could define this limitIf, for every fixed n, the an
as , understanding (2.1) in this limiting sense. In the example above, we have
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N 0 for all N _> 2. However for general f, the anNav 1, a2
N 1, and all other an

Y’s blow up as Nneed not tend to a limit. A technical example in which the an
is f(x) ei(/2)x(2 -Ixl) for Ixl _< 2, f(x) 0 otherwise. For details, see [nu].

In the rest of this paper, we shall restrict ourselves to the (very large) class
of functions that do not exhibit such problems. We shall say that a function f
has the Riesz basis property (abbreviated: f is RBP) if f E L2(N) and if the set
{f(x- k)}kez is a Riesz basis for its closed linear span, i.e., there exist two constants
0 < C1 < C2 < +cx such that for all finite linear combinations of the f(x- k), we
have

27rC1 Ick[ 2
_

ckf(x k) <_ 2rC2 lCkl 2.

Using Plancherel’s formula, this is equivalent to

(2.2) C1 <_ If(( + 2r/)l 2 -< C2 a.e. in .
When f is RBP, any function g in Span{f(. n); n E Z} can be uniquely written as
g(x) nez fin" f(x- n) with/2-coefficients/3n. One can. therefore always write an
expression of type (2.1) for Tf. The coefficients an can then be found as follows.

PROPOSITION 2.1. If f is RBP, then (Tf)^()= a(2)f(2), where

(2.3) a() Ete ](2 + 47r/)]( + 27r/).
I]( +

Proof. We can rewrite (2.1) as either Tf keZ ak f-,k for some ak

C or (Tf)() a()](), where a() eae-ik. By the definition of T as

an orthogonal projection operator, we have (Tf f, f-,m) 0 for any m Z. Thus

(f, f-i,m} (Tf f-l,m) a (f-,k, f-,m}.
k

Multiplying both sides of this equation by e-im and summing over m Z, we get

mZ m,k lZ

Hence

On the other hand,

Then

meZ(f f-1,m) e-im

(f, f_,m)e-im 27rx/- f(2 + 4r/)f( + 2r/).
mZ IGZ

Similarly, Ez(f, fo,)e-i 27r ez If( + 2r/)[ 2
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2.2. Continuity of T. We already know from (1.1) that T is bounded. This
does not immediately imply that T is continuous because T is nonlinear (see 3.1).
Thus we need to prove the following.

THEOREM 2.2. Assume that f is RBP. For any > O, we can find , depending
only on and f, such that if g is RBP and Ill gll <- , then IITf Tgll <_ .

Remark. Here we require that both f and g are RBP because we want to use

(2.3). Note that the Riesz basis property for f and Ill- gli <- 5 together do not
necessarily imply that g is RBP.

Proof of Theorem 2.2. Define f# via its Fourier transform by

(e.4) (/#)() ]()

This is well defined a.e. in {. Then, again a.e. in {,

or, equivalently, the {f#-l,k; k E Z}’s constitute an orthonormal basis for Vf. Thus by
an argument similar to the one that proved Proposition 2.1, we have.for any h E L2 (IR)
that (Projys# h)A({) ai#,h(2) (f#)^(2) with

a,#,h(g) 27r [] (2g + 47r/)(f#)(g + 27r/).

Thus

IlProjys# f Projy# fll 2llas#,s" (f#)^ %#,s" (g#)ll

<_ 2(]l(al#,l -ag#,I)(f#)/xll + ]]ag#,$((f#)/x -(g#)^)]])"= 2(11 + 12).

However,

f I(#)( + .)lla,() %,()1 d

l__2rc il<r laI#’l({) ag#,l({)l 2 d{ (by (2.5))

2j I](2{ + 4/)1 If#({ + 2k) g({ + 2k)led

5 2cu,,llf# -g#[[= (cu,, is the upper bound for f in (2.2)).

On the other hand,

I := Ias#,i()l 2 If#(5 + 27r/) g(g + 27r/)lUdg

_< mx lag#,f(g)12lf# g#ll.

By (2.2), (2.5), and the Cauchy-Schwarz inequality, [ag#,f2 2C2,f. Thus

Projue f Proje fll a2llf 11.
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To control IIf# g#11, we define the sequences bI () and bg () by b[ () := ]( + 2r/)
and b() 0( + 2r/); then bY() e /2(Z) a.e. in , and IlbY()[ll2 >_ Cl,y > 0,
IIb"() II,. > 0. Wh

d

4

C,f (C,f is the lower bound for f in (2.2)).

Therefore,

]lTf Tgl[ <_ ]]Projv# f Projv# f[[ + ][Projv# f Projv#

8V/27re2,f/Cl,f" llf- gll + llf- gll,

Thus we just need to choose 5 e/(8V/2rC2,I/CI,I + 1) to obtain IlTf-Tgll
<e.

By using stronger topology, we cn void the explicit requirement that 9 be
RBP.

COaOARY 2.3. Assume ha f s RBP aud If(x)12( Ixl)dx < . o ay
> O, nnd > 0 h g ai f If(x) (x)12(1 Ixl2)dx , hn

IITf Tgll .
Proof. 1. Assume that f If(x) g(x)12(1 + Ixl2)dx , whre the > 0 wil

be determined lter. Then

IIf gllL If(x) g(x)l( + Ixl)dx ixldx
Hwo hv I]()- ()1 /.

2. Similarly, IlfllL M and IlgllL M + 6/ for some costnt M > 0
depending only on f. Thus f and g re continuous nd [f()
Consequently, [Ill Ill (2M +/)/ M6 if w choose
and let M 3M/.

3. We are now redy to prove that

1(+)1: C,/4 fory e[-,].
lZ

(Here C,f is the ower bound for f in (2.2).) By the sme rgument (due to A. Cohen)
as in prt 1 of the proof of Theorem 6.3.1 in [Du2], the continuity of f implies that
th it Lo(f) e N, h that for U e [-, ], go If( + )1: C,/e.
Thus, with the choice 6 := C,f/(4(2Lo + 1)M),

1( + a)l: I]( + :)1: -(aL0 + )M
IZILo I/lLo

c,z/- (aL0 + )MI C,z/4.. On the other hnd, since f Ig(x)l(llxl)dx < , it follows that
i8 uniformly continuous in [-, ]. Thus it is bounded above nd g i8 RBP. We can
now use sme rgument a8 in the proof of Theorem 2.2.
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2.3. A characterization of fixed points of T. It is obvious from the definition
of T that any function f with the Riesz basis property which is also a fixed point of
T should be a function satisfying the refinement equation

(e.) () .f(e- ),
kEZ

where the sequence {x/ak} is called the mask. Such functions are called refinable
functions (see [CDM] for a review). Conversely, if an L2-function f satisfies (2.6),
then f will be a fixed point of T. When--that is, for which ak--does (2.6) have
L2-solutions?

Formula (2.6) implies, at least formally, that

(.7) ]() ](o)1-I a(:-.),
j’-i

where again a() - kEZ ake-ik The following standard result gives a sufficient

condition guaranteeing pointwise convergence in of the right-hand side of (2.7).
PROPOSITION 2.4. If a() is a 27-periodic function with a(O) 1 and iffor some

constant c and c e (0, 1], la() a(O)l <_ cll for -- O, then

(:.8) $() l a(-)
j’-i

is well defined for E I and is continuous in
Next, we address L2-convergence. In [Herl], Herv gives the following conditions

guaranteeing that is in L2().
THEOREM 2.5 (Herv). Let a() be a 2r-periodic function with a(O) 1 and

suppose that

la()l Iv()l, > 0, () # 0,COS

where Iv()- v(O)l <_ clla for - O. Let Plvl be the operator which acts on any
F E C[0, ] via

51 F()

and let be the spectral radius of Plvl restricted to C[0, 2r]. If f < 22r, then
defined as in (2.8) is in L2().

We give a proof for this result in 4 when we discuss the L2-convergence of T’f.
This criterion becomes practical when one also has an algorithm for computing

the spectral radius of the operator Pvl. In the same paper [Herl], Herv( also derived
a formula for computing this spectral radius; see also [CD2].

Proposition 2.4 requires that la() a(0)l <_ cll for c near 0, and this condition
implies decay for the {ak}’s. Interestingly enough, there exist refinement equations
without decay (even growth) for the {ak}’s which nevertheless have L2-solutions.
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Example 2.6. Consider f(x) (1 1/21xl).X,xl<2. Then it is easy to check that

n 2nf(x 2n) x and n(2n- 1/2)f(x 2n + 1) x. Thus

f(x) f(2x + 2)+ f(2x)+ -f(2x- 2)

Here I1 I1, while f is in L(IR). Of course, ghis example can be generalized o
higher-order B-splines, leading o examples wih I1, Ikl. Noe hat ghese examples
also show tha a refinable function can be ghe solugion of several differeng refinemeng

equations.

3. General formula for Tn. It follows from (1.1) that IITn+lfll <_ IlTnfl[ <_
[[fl[ for all n _> 1. By the weak compactness of the unit ball, we can therefore
expect at least weak accumulation points for the sequence {Tnf}nen. When is this
accumulation point unique and nontriviM? Also, when do we have convergence in the
L2-norm as well? We look at an example in 3.1. In 3.2, we derive a general formula
for (Tf) ^, which will allow us to answer these questions in 4.

3.1. A linear combination of a wavelet and its scaling function. The
different orthonormality relations make this example particularly easy. Noting that
T ,T 0, we study the action of T on a linear combination of and :

PROPOSITION 3.1. Let , respectively, , be the scaling function, respectively,
wavelet, associated with a multiresolution analysis with I(x)l_ C(1 + Ixl)-. Define
f "= a + with I12 + I/12 1. Then limg._,c(TNf)^() = 0 a.e. in unless

O, in which case f a and Tgf f for all N e N. Moreover, TNf converges
to 0 weakly in L2 as well.

Before starting the proof, let us review some "standard" notations and properties
of wavelet analysis. For more details, we refer to [Dau2].

Let mo() 2 ne hne-ine andm() -2 nege-in with ha (, -l,n)
and gn (, -,). In the following proof, we will use the fact that

(3.1) hnhn+2k = ,o, E hngn$ O, gngn+2 5,o,
nZ nZ nZ

m0(O) 1, and m(O) O. Note that the decay of ensures that the hn’s are
absolutely summable.

Proof of Proposition 3.1. If O, we are done. We now assume/ O, so [a[ < !.
Since the functions f-,n a-,n + 3-,n are orthonormal, we have



AN OPERATOR RELATED TO WAVELETS 1777

It follows that T2f, the projection of fl Tf onto Span{f1(2 -n); n e Z}, is given
by

By induction, we then obtain, for all N E N,

(3.) fg+l TN+If .(11 h. + g.)f_,.,
m

(S S-,./= I1 (1 h. + Zg.),
(S,f(o m)/= !1 ..o.

Formula (3.2) can be rewritten as

(3.3)

Since :(0) a and the hn’s and gn’S are absolutely summable, [a m0(2-J)+
m(2-J()] goes to a pointwise in as j -o cx with la < 1, thus the limit of

(3.3) for N --, cx exists, and

lim (TNf)^() O a.e. in.

Now observing that I m0(2-J) +/ m(2-J) _< 1, we have, again from (3.3), that

1 1I(TNf)^()I-< I](2-N-)I < llfll < (II + I/I)IIII.

Therefore, for the dense set in L2 () of u with Fourier transform E L2 (1) NL (1),
we can use Lebesgue’s dominated-convergence theorem to get

lim (TNf u} lim ((TNf)^ t} {NIim(TNf)/ t) 0,
N--+c N-,c

Since the TNf’s are also uniformly bounded, this implies the weak convergence of
Tgf to 0. []

Actually, we shall show below (in Example 4.7) that the convergence holds in the
L2-norm as well. Note that the fN,s are, in fact, linear combinations of wavelet packets
as introduced by Coifman and Meyer (for a discussion, see, e.g., [CMW]). Note also
that this proposition demonstrates the nonlinearity of T since a aTe +T =T(a + ).

COROLLARY 3.2. Iterating T on f does not necessarily lead to the closest scaling
function (in the L2-sense) to f.

Proof. Take f as above, f a + with 0. Then the distance of f to the
family of fixed points of T satisfies inf{]lf ]1;T } _< IIf 11 [2 2 (a)] 1/2.
However, by Proposition 3.1, Tnf - 0 so that Ill- Tnfl[-’* 1 > V/2- 2(a)if
() > 1/2.
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3.2. The general case: Link with subdivision schemes. In our previous
examples, Tnf --+ 0, at least in the distributional sense, unless f is a scaling function,
in which case Tf f. Suitable dilations of scaling functions also give fixed points
of T. For example, if f(x) X[0,,0(x), where m is an integer > 2, then f(x)
f(2x) + f(2x m) a.e., so Tf f. On the other hand, if we take f(x) X[o,1/m)(X)
with m > 2, then Tnf(x) X[O,2-n/,)(X) 0 a.e. in x as n --+ oc. What happens
to other dilations, such as f(x) X[0,1+)(x), 0 < e < 1? Also, more generally, what

happens to arbitrary (but nice) functions, such as the Gaussian e-X/2?
To answer these questions, we need to derive an explicit formula for Tnf valid

for general f. We will use formula (2.3) again, not only to compute Tf, but also for
the iterates Tf. This means that we shall need the Riesz basis property for f and
all the Tnf’s. Fortunately, Tf inherits the Riesz basis property from f under some
mild additional assumptions on f.

PROPOSITION 3.3. If f is RBP with continuous ] satisfying

_< c (1 +
for some e, C > O, and if a({), defined by (2.3), satisfies
(3.4) la(g)l 2 + la(g + r)l 2 > 0,

then Tf is RBP; moreover, Tf inherits the other properties of f
Proof. 1. We begin by showing that for some cl, c2 > 0,

By the decay of f, we can make YIZI_>L If({ + 2rc/){ 2 arbitrarily small by choosing the

positive integer L large enough. Then the finite sum IZI<L Id(c + 2rr/)[ 2 is continu-

ous because of the continuity of f. It follows that Y’zz If(c + 2rr/)l 2 is continuous.

Similarly, one can prove the continuity of Ytz f(2{ + 4rr/)f({ + 2r/). Therefore, the
quotient a({) is also continuous. Thus (3.4) implies (3.5).

2. We now prove that Tf is RBP. Using Proposition 2.1, it is easy to check that

E ](Tf)A(2 + 2rr/)12 E [a({ + rrl)]({ + rcl)l
lZ

la()12 E If(c + 2rrk)12 + la( + rr)12 E If( + rr + 2rrk)l 2

k k

which implies 0 < ciC,f _<
3. Since (Tf)/({) a(/2)(/2), the continuity of (Tf)/ is obvious. By the

Cauchy-Schwarz inequality and (2.3), [a({)l <_ C2/C1. Therefore, the decay of f
implies the same type of decay for (Tf)/.

4. Next, we compute a ({). Now that Tf is RBP, we know, similarly to the case
where we obtain a formula for Tf, that fg. := T2f kez ak fl-l,k, or

(f2)() a () (fl)/X

with a ({) @22 ’kez a e-(k defined by replacing 2
3 by (Tf)/ in (2.3). Furthermore,

with

c(g) := (f f_ e-ik. /3 fn, e-ik()
kEZ kEZ
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we have, for n O, 1 (we let a a and fo f),

We now show the surprising result that a a. In fact, we have

Similarly, a1(2) a(2)a()a() + a(2)a( + )c( + ). Hence

al(2) a(2)a()a() + a(2)a( + r)a( + )a1(2)
/1(2) /[]aO(5)1o(5) + laO( + )2o( + )]
aO(2) {aO,, o() o ao ) o(+) o( + )}+ +

a(2).+ + +
Thus a() also satisfies ]a()] 2 + a( + u)2 > 0.

This proposition motivates the following definition.
DEFINITION 3.4. We say that f is T-amenable if f is RBP, if is continuous

and satisfies ]() C (1 + ]])-(/2)- for some , C > O, and if a(), defined by
(2.3), satisfies ]a()] 2 + ]a( + )2 > 0.

Proposition 3.3 can now simply be rephrased as follows: if f is T-amenable, then
so is Tf. By induction, all the successive iterates Tf will then also be T-amenable;
in particular, they will all be RBP. It follows that for some sequence {a}e /2,

n n e-ikf+ T+f kea f,a; an exact formula for an() keak can

be found as was done for a(). By the same computation that established a a,
we have a a-; hence a a for all n N. Since there will be no confusion
hereafter, we will drop the superscript 0 in a(). Sometimes we will add a subscript,
af(), to emphasize the dependence on the original function f.

This observation shows that for T-amenable f, the Tf’s are merely the subdivision-
scheme iterates of f with the weights {ha}.

THEOREM 3.5. If f is T-amenable, then the Tf’s are given by

Formula (3.6) implies, at least formally, that

]() := lim (Tnf)/()= f(O)H a(2-J)
j=l

which can also be rewritten as ]()= a(/2)](/2), or

f(x) af(2x k).
kZ
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We have therefore reduced the problem of studying the limit of the Tnf to finding
the solution of a refinement equation (also called a dilation equation or a two-scale
difference equation) with filter a(). It is not surprising that this limit f should
satisfy a refinement equation since f is a fixed point of T; it is surprising that the
corresponding mask should be given by a(). There exists considerable literature on
refinement equations and refinable functions. See, e.g., [CDM], [DL1], [DL2], [Herl],
and the papers cited therein for a detailed study with applications to the construction
of wavelets and to subdivision schemes in computer-aided geometric design. In the
next section, we shall use some of these results and see how they connect with our
operator.

4. Sufficient conditions for convergence of Tn. Since the functions Tnf
are given by a subdivision scheme, convergence questions boil down to studying the
convergence of subdivision schemes, which is studied in the literature on refinable
functions. Many of the articles on refinement equations concern the case where a()
is a trigonometric polynomial. Here a(c) is usually not a trigonometric polynomial,
and we will be particularly interested in the results obtained by Herv [Herl]-[Her3]
which also apply to nonpolynomial a()’s. Other recent results on convergence of
the cascade algorithm are in [Du] (mostly the finite case) and in [Hern] and [CD2],
which use a different approach. Related results (for another application) can also be
found in [DH]. In this section, we shall state and prove several convergence theorems
for our iterates Tf. In particular, we study pointwise convergence of (Tnf)(),
L-convergence of Tf, and pointwise convergence of (Tf)(x).

THEOREM 4.1 (pointwise convergence of (Tnf)). Assume that f is T-amenable
and that satisfies f(2/)= 5t,0f(0) with (0) O. Assume moreover that

(4.1) [af() ai(O) cl as 0,

where af() is defined as in (2.3). Then (Tf) converges pointwise to a nontrivial
continuous limit (0) with $ defined as in (2.8).

Note that (4.1) is easy to satisfy. It suces, e.g., that f has compact support or

that E [f( + 2/)- f(2/)[2 CI[2 for suciently small .
Theorem 4.1 follows immediately from Proposition 2.4 and the following lemma.
LEMMA 4.2. For a T-amenable function f, the following are equivalent:
(1) af(O)= 1;
(2) ](2/)= 8,o](0) with ](0) O, Z;
(3) Ez f(x k) nonzero constant function.
Proof. 1. We start by proving that (1) (2). Assume that af(O) 1 or, equiva-

lently (by (2.3)), that Ez f(4l)f(2l)- Etz f(2/)l. By the Cauchy-Schwarz
inequality, this implies that (Etez ](21))/ (Ez f(4l))/. However, this
can hold only if

+ 0, e
](4/) C](2/) for some constant C.

Since for k O, k 2t(2m + 1) for some 0 and m Z, we find that

=/(2. + + o.

2. (2) (1) is obvious, and (2) (3) can be checked by Poisson’s summation
formula.
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Note that if a(0) 1, then this lemma implies that a(Tr) 0. (We will use this
below.) Also note that if a() is continuous, then the infinite, product in (2.8) makes
sense only if a(0) 1. Thus (1)-(3) are necessary for the right-hand side of (2.8) to
be nontrivial.

Thus far, we have looked only at the weak convergence of T"f or pointwise
convergence of (Tnf)/(). Before we can speak of convergence in L2-norm, we need to
establish conditions guaranteeing that .is in L2(N). Note that by using Plancherel’s
formula and the Poisson summation formula, we can derive, for all f E L2(R) LI(R),

(4.2) IITfll 2 [](-)1= n la(2-Y)12 d

n

fl F(2-n) H la(2-)l d,
<2r j---1

where F() Ylez I]( + 2z)l is 2r-periodic. In all cases of interest to us, f
will have exponential decay or even compact support so that (4.1) is automatically
satisfied, and F is continuous. We shall assume this continuity in all that follows.

The right-hand side of formula (4.3) can be computed by using properties of
a positive linear operator associated with the continuous 2r-periodic function a().
This operator, which we denoted Plal in 2, is usually called the Perron-Frobenius
operator or transfer operator. Recall that it acts on a continuous 2r-periodic function
F as follows:

This operator often appears in the study of orthonormal wavelets and in the estimation
of the regularity of the scaling functions associated with a(); see, e.g., [CR], [La],
[CDI], [CD2], [Vii, [CDM], [Ei], [Gr], and [Herl]-[Her4]. Its connection with (4.3) is
given by the following lemma.

LEMMA 4.3. For any continuous 2r-periodic function F and all n N,

P,l. F()d F(2-) la(2-J)l d.
r I-<2,r j--1

This lemma (proved by induction; see any of the references above) shows the
relation, stated in Theorem 2.5, between L-estimates as in (4.3) and the spectral
radius of Plal 2. We now give the proof of Theorem 2.5, borrowed from [Co]; see
also [Herl]. We include it here because the same technique also proves the technical
Lemma 4.4 below that we shall use extensively further on.

Proof of Theorem 2.5. It suffices to prove that

f2 n la(2-Y)12 d <

Now using the classical formulas

COS
2J+1

j=l

sin

2n sin(2-n-l) H COS
2J+1

j--1

2 sin
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we find that

2 H la(2-)l d

J2 2sin 2rfi 1(2-)1 d
j=l

c(--1)- ] H I(-) .
NoC chic if w h():== (2)1 =11(2)1 n(2-), Uhen bcuse
vand hence lv[has HSlder exponent a in 0, we know by Proposition 2.4 that h is
conuinuous. fonows uhu for 2-1 I1 2, In(2)l sup/,, Ih(4)l
C, implying In()l c .

=1 I(-) Hnc

n

I C(r)2-z II
<- C(r)2-2 nI" =l

/;c()- ()d < C(r)2-(Z + ) C() Z +
Ivl 2r

Since < 2, we can choose > 0 such that (+ )/2 < 1, so >oI
LEMMA 4.4. Under the same assumptions as in Theorem 2.5, we have, for any

(4.3) lira H la(2-Jc)12 dc 0.
n <ll-<2r j=l

Proof. The only difference between the integral in (4.3) and In is that the product
now has only n factors instead of infinitely many. We use the estimate, for 2no <

n

cos 2J+i
2 sin [

2

2r 2r

<__ C(o, r) 2-2rn.

The rest of the argument is unchanged.
We are now ready to state the main result of this section.
THEOREM 4.5 (L2-convergence of Tnf). Assume that f is T-amenable and that f

atiJ (:) ,o(0). ,n noo tat la()l Icos 1- I()1 ae > 0
with v(r) O, where v() has HSlder exponent c at O. Let 3 be the spectral radius of
PI[ restricted to C[0, 2v]. If/3 < 22, then Tf converges in L2(]l{) to ](0), where

is defined as in (2.8).
Proof. Our proof mimics that of Theorem 3.3 in [CD]; our extra condition of the

decay of ](() is needed here since we do not just consider truncated versions of
as in [CD].
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I. By Lemma 4.2, Proposition 2.4, and Theorem 2.5, we know that the assump-
tions imply that is continuous and in L2(N).

2. Since ] and q are continuous in 0 and since q(0) I, there exists an c E (0, 7r]
such that

(4.4) 11 -< c = ]f()] _< Ct()I and 15()1 _> C’ > 0.

We now divide Tnf into three parts: Tnf 1 + 2 + 3 with

() (Tf)A()Xll<2n()
2() (Tf)A()[XII<2n()
;() (T/)()x,>o().

3. Clearly, n converges pointwise to ](0); by (4.4), Inl is dominated by I1,
I$n()] -< C](2-n)] "HjL1 ]a(2-Jc)l < c15()1, which implies the L2-convergence of

to ](0).
4. For c _< I1 _< , () is bounded above so that

(4.5)

By Lemma 4.4, (4.5) tends to 0 as n --, oc, i.e., 2n -- 0 in L2(N).
5. By formula (4.3),

where, since I/()1-< C(1 + I1) -1/2-e,
n

J1 := f2 H la(2-J)12 E If(2-n + 2hr)12 d
na-<ll -<2r j=l 170

n

_< c2 f II la(2-J)12 d. 0
c<ll<-2,r j-1

by Lemma 4.4 again. It remains to prove that when n

Gn()d an()Xl(l<2,a()d O,
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where Gn(,) := Hjn___l la(2-J)l 2 Elo I](2-n + 2/7r)12" By (4.4), we have

1 12 n 2/7r) 2(4.6) [Gn()XII<2,a() [() l](2- +

Cz(4.7) C I()[2 (by the decay of f).

For any fixed , since (2/) f(0)6t,0 and I]()[ C/(1 + I)(/2)+, we have

lim :0.f(2 + 2)1:
l#o

Therefbre, by (4.6), Gn()X52a() 0 pointwise. By (4.7) and Lebesgue’s theo-
rem, J2 tends to 0, which implies that 0 in L2(). This finishes our proof of
L2 convergence of Tnf to (0).

Remark. If we consider PII P()= and let fl be the spectral radius for

restricted to C[0, 2], then with the same assumptions except that fl < 2r and with

[()[ C(1 + [[)-1- for some C, > 0, we find that the proofs of the previous
lemmas and theorems concerning L22convergence can be copied (with small changes)
to prove a similar theorem for L-convergence of f() to (0)(), which implies the
pointwise convergence of Tf(x) to (0)(x).

THEOREM 4.6 (pointwise convergence of Tf(x)). Let f(x) and a() be as in

Tom 4. it t tro9 e9ait coditio ()1 5 C ( + I1)-1- foo
e, C > O. Let 1 be the spectral radius of PIll restricted to C[0, 2]. If < 2, then

(Tf)()oi L(S) to (0)(); tfo, Tf()o.oiti to
(0)().

Remark. The proofs of L2- or L-convergence both depend on the property that
(2/) (0)St,0. Actually, this is essential for the L2- (or Lt-) convergence of
functions likej a(2-J)(2-). We will study this in detail in the next section.

Example 4.7. In 3.1, we looked at the example where f a + fl with
[a]2 +.[fl[2 1. Let us revisit this example in light of the results of this section. We
have

?(2.) =. 5(2"t) + (2.), (2.) 5,,04(0), (2) ’*0( + )4().
However, (2) ’0()(-) 0 if 2; (2"t) -(( + )) if
2m + 1 Since [(2k + )[2 for all , it follows that m (2mn + )[2 # 0

so that (2n/) cannot be 0 for all 2m + 1, m Z. Thus f can satisfy properties
(1), (2), and (3) of Lemma 4.2 only if fl 0, i.e., f a.

Note also that we can use Lemma 4.3 for a simple proof that TNf 0 in L2()
for fl # 0 (as promised at the end of 3.1). Indeed, we have

+ N

IITN f[I2 f li2N 0(2-j5)+ fl (2-5)12(2-Ns)12d5
J-

N

where w() = amo() + flm() and F() t(+ 2/)[2. Since the {f(.
On the other hand, as a consequence of (3.1)/)}tz s are orthonormal, F() .
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we have Imo()]2 + Iml ()12 1, which implies that Iw()[ 2 + [w( + r)]2 1. Hence
(pl12)gF() = F(). Therefore, limN_. lITWIll2 limg__. lal2N. 2. 0, i.e.,

LTgf o.
We can now answer the questions we raised at the beginning of 3.2.
Example 4.8. First, for f X[0,1+), 0 < < 1, we check that ](2k)

(1 e*(2k))/i(2k). Therefore, f does not satisfy property (2) of Lemma 4.2; hence
hi(0) # 1. By the same argument as used in the proof for (1) (2) in Lemma 4.2,
we even find [af(0) < 1. It then follows that (Tar) O.

Example 4.9. If f(x) e-z2/2, then ]() e-2/2. A similar argument shows
again that (Tf) O.

5. Scaled iteration of T. Most of our examples go to 0 under the iterations of
T, usually because of a systematic "shrinking" of Tnf (see Example 4.7 in the previous
section). Can this can be corrected by adjusting the normalization of Tnf? Note that
although we can control ]]Tnf] (as in Proposition 5.1 below), it is dimcut to give a
simple formula for Tnf. Therefore, instead of studying the sequence Tnf/Tnf},
we will concentrate on the convergence of the sequence F #n"Tf for appropriately
chosen Pn Our analysis of 3 shows that then n() nn a(2_j)](2_n
Without #n, we have several examples where (Tf) 0 pointwise simply because
[a(0)] < 1. To remedy this, we define [a(0)] -n, i.e.,

(5.1) F [a(0)]-. TI.
This makes sense only if a(0) # 0, which we shall assume whenever we study Fn.

We now concentrate on C[0, 2] {f e C[0, 2] SUpx#y If(x) f(y)[/]x y <
+}, a (0, 1]. The following proposition shows that under some conditions, (5.1)
is almost equivalent to simply normalizing the Tnf’s to 1.

PROPOSITION 5.1. Suppose that F() e]( + 2/)]2 and la()] are in
C[0, 2] with a() 0 and a(O) # O. Ifi furthermore, f is T-amenable, then there
exists Cl > O, and for all e > O, there exists c2 > 0 so that cl]a(O)[n [[TI]]
c2[a(0)[n(1 + )n.

To prove this proposition, we shall need the following result, proved in more
generality by Hennion [Hen] and discussed in detail in [Herl].

THEOREM 5.2 (nennion). Assume ]a()] 2 Ca[0,2] and let p be the spectral
radius for P]a]2 r8Ticted to Ca[O, 2]. Then there exists 7 0, []7[[ # 0, such that

PI7 P 7.
Proof of Proposition 5.1. Using results in [Herl] we can check that a() = 0

p ]a(0)[ 2. Using the Cauchy-Schwarz inequality and limn ]]pn[[l/n p, we now
have

IITfll F(2-) la(2-Y)le d p]al2,n F()d.
<2 j=l

c(v + > 0.

Thus we can choose c2 > 0 such that []Tnf[] c2[a(0)](1 + e).
To prove the other inequality, we use the fact that f is RBP and Theorem 5.2.

Take 7 in C[0, 2r]. Then we can assume 7 M for a positive constant M. Hence
0 P7 MPI so that

M p1111 (, P% M(1, Pl) () d (by (2.2))
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where we have used 7 > 0. Thus with C M/v/, IITfll > clla(0)] ". [:!

Remark. The condition a(r) 0 automatically holds if a(0) 1, which reduces
to the unscaled case, because Fn T’f. However, a() 0 is also possible when

with k E Z,a(0) 1. For example, if f is symmetric with respect to the line x k+
then Tf is also symmetric with respect to the same line, and a(Tr) 0 follows.

Let us now investigate the convergence of the F,’s. We begin by considering
functions supported in [0,1]. This gives explicit examples where T"f converages to 0
weakly and for which the Fn’S converge to a nonzero limit nevertheless.

PROPOSITION 5.3. Take f L2() with support f C [0, 1] and such that

(5.2) f0 1/2
f(y)f(2y)dy + f(y)f(2y- 1)dy O.

Assume that fl[o,1] is not constant a.e. Then (TF)/() 0 pointwise for all , but

n() convel’ge8 pointwise to a limit() which may not be O. This limit is in L2()
if and only if

/o f(y)f(2y)dy f(y) f(2y 1)dy,

and in that case F equals ](0)X[0,1].
Proof. Define Co := Ilfl1-2 f3/2 f(y)f(2y)dy and do "-Ilfl1-2 f/2 f(y)f(2y- 1)dy.

Because the f(. n)’s are orthonormal, we easily find a() co + doe-i, so a(0)
co + do, which explains the assumption in (5.2). We also check that Ic01 + Id012 < 5,
so la(0)l <_ 1. Moreover, la(0)[ 1 is only possible if co do 1/2, which would
imply (for details, see [Hu]) that fl[0,11 is constant a.e. Since this was excluded
by our assumption, it follows that la(0)l < 1, and (TnF)/ --+ 0 pointwise. If we
let A() a()/a(O) (co +doe-i)/(co +do), then by Theorem 4.1, ()
](0) l’Ij=l A(2-J), or () A(2)(). IfF L(), then F is also in LI()
and we can apply Theorems 3.1 and 5.1 in [DL1] to conclude A() 1/2(1 +e-i). This

implies (5.3) and F ](0)X[0,1]. [3

There are many functions supported in [0,1] that satisfy (5.3). For instance, any
f symmetric with respect to the line x 1/2 will do, as will any 1/2-periodic function.
An example is f(x) 6(x- x2); for this function, the graph of Fn consists of 2n

arches with amplitude 1.5; this converges to X[0,1] in the distributional sense but not
in L2() or pointwise. (We will see below that this absence of L-convergence holds
in more generality.)

If ](27r/) ](0)51,0, then a(0) 1 and F is just Tnf. The next theorem states
that the condition ](27r/)= ](0)51,0 is necessary for n2- (or L1-) convergence for ln.
This means that, while we have more cases of pointwise convergence for n() than
for (Tnf)/(), nothing is changed for L2- (or L1-) convergence: if (Tnf)A does not
converge in L2 (or L1), then neither does n.

THEOREM 5.4. Assume that b() is 27r-periodic with Hhlder exponent > 0 and
with b(O) 1. For g e L2(I)LI() with [7(0) q, consider the functions G
and G defined by n() 1-Ijn-_ b(2-J)(2--n) and G() := YIj__l b(2-J)0(0). /f
,() converges to () in L2(I) (or nl(If()) as well as pointwise with O, then

Proof. We prove only the case of L2-convergence; the L case is entirely analogous.
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1. Since ( is continuous and 0(0) O, there exists an c e (q, r] such that

I1-< a =v I(()1 _> C > 0. Thus we have 1() 11() G(2-)/C for
all n N.

n2. "We now consider j= b(2-j)Xlla(), which obviously converges pointwise
to y=l b(2-J)xII(). As in step 3 of the proof of Theorem 4.5,

j=l

b(2-J)XI,() 10(0)1 C,

and so lim1 Y= Ib(2-J)12 d ,j=l Ib(2-J)l d > 0. Thus there
exists an n0 such that for all n n0 (with some constant C > 0),

(5.4)
I y=H b(2-y)le @

I<_ y= I<_

3. Assume (2/) # 0 for some # 0. Then we can choose n such that for all
0(2/)12 Consequently,n 2 n and all I1 , 1(2g + 2-n)l
n

In(2n2l+ )12d n Ib(2-J)1210(2/+ 2-n)12d

> -10(2Z)l Ib(2-)l d

k C’10(t)I , Id()ld (by (.4)).

4. On the other hand, we have

For any e > 0, since we assume n --* in L2, we can choose n3 such that the first
for all n > n3 Because by a change of variable,term < g

I< 1_>2n+1-11-
id({)l d{,

for all n > n4we can also choose n4 so that the second term is bounded by 5
5. For n > max{nil/ 1,2,3, 4}, we then can combine the above inequalities

to get

Since e can be made arbitrarily small, this contradicts our assumption that t(27r/) # 0.
Thus 0(27rl) 0 for all # 0. El

Note that the condition () # 0 plays a crucial role" if it is not satisfied, then
Example 4.7, where T’f converges in L2(R) to 0 while (27r/) - 0 for a # 0, provides
a counterexample. Together with Theorem 6.2 from [Herl], Theorem 5.4 can be used
to formulate conditions on f that are nece%sary and sufficient for the L1- or L2-

convergence of the (Tf)A’s as well as of the F’s. (The conditions in Theorems 4.11
and 4.12 are sufficient but not necessary.)
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6. Examples illustrating regularity. In this section, we present examples
showing that the smoothness of f and its limit function are not related. In the
process, these examples also illustrate the results in 4 and 5. To estimate the regu-
larity of a refinable function f with filter a(), we use theorems in [Herl]-[Her3] that
allow us to compute Sobolev exponents s2 (:= sup{s f If()l(1 +
from ]a()l. Typically, we need a() to be factorizable like

Example 6.1. Take f to be continuous and supported in [-1,1] with f(x)+ f(x-
1) nonzero constant for x E [0, 1]. Then f satisfies the conditions in Lemma 4.2
even though f is not necessarily a scaling function. We compare the following two
examples:

1. fl (x) cos9 , Ix _< 1, and fl(x) 0 otherwise. Then

(6.1) a() cos2 1-(1- g-)sin22

Using the formulas in [Herl], we find /3 3.351 < 16 and /31 2.564 < 4, so
52
f and Trill(X) converges pointwise to f(x) (see Theorems 4.5 and 4.6).Tnfl --+

.2. f2(x)l[o,1 t(1 x), t(y) y4(35 84y + 70y2 20y3). Then

1549 _1_ 5 COS -}- i’42768772 COS 2(6.2) a() 1267.
1042
1287 }- 122@7 COS

47871- sin2 2

1

Similar analysis shows that Tnf2(x) converges pointwise to f(x).
Note that while f2(E C4-c) is more regular than fl( C-C), explicit computation

shows that the Sobolev exponents s2 for the limit functions do not differ much: 1.128
for f and 1.508 for f; this is because the regularity of the limit is determined in
large part by the number of factors Icos 21 in la()l rather than by the regularity of f
itself. For graphs of the limit functions, see [Hu].

Example 6.2. To see a similar situation for the regularity of the limit of Fn,
C2X C(X),we consider f(x) e which is but the limit of Fn can be very irregular

depending on the values of c. We have

Two extremes are given by a2 1 and a2 32. In the. first case, a(r) 0.372 10-6

so that a() has "almost" a zero at r and the subdivision scheme produces
smooth functions F, that are very similar to f itself, although the true F must be
less smooth. For a2 32, we find a(0) 0.63455711 and a() 0.63035395. Since
these are the two extreme values of a(), this shows that a() is almost "flat." This
case is very different from the case a2 =5" the limit ofF now is very peaked. Details
and graphs can be found in [Hu].

Example 6.3. We study the convergence of the scaled iterates In for nonsmooth
f. We consider f(x.) 1 for -e < x <_ 1 + e and f(x) 0 otherwise, which is a
dilated and shifted version of X(0,]. We shall restrict ourselves to 0 < e < -. In this
case,

(6.3) a(c) (ei( + e-i) + (e + 1/2)(1 + e-i)
4e cos + 1+ 2e
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and a(0) 5+1
6+1 < 1. We therefore have (Tnf)A - O. On the other hand, since it

is obvious that a() E C, the renormalized Fn’s do have a nontrivial limit. Figure
1 shows the limit function F for a few different e’s. Note that the smoothness of
F changes with e: an easy computation using (6.3) shows that while a(Tr) 0 and
a’(Tr) =/= 0 in general, which means that for 0 < e < and e =/= -, la()l can be
divisible only by Icos 2tl. The value 0re - is an exception; in this case, a(Tr)
a’(Tr) a"(r) 0. This explains why the graph for F withe - is the smoothest!
This is a typical example of a nonsmooth function leading to a much more regular
limit under the scaled iteration.
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FIG. 1. The limit function of Fn for f(x) X(_e,l+e](x) for different values of e: (I)
0.01, (II) 0.14286, (III) 0.2, and (IV) 0.3. Their Sobolev exponents s2 are

1.014, 3.115, 1.138, and 1.163, respectively.
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INTERTWINING MULTIRESOLUTION ANALYSES AND THE
CONSTRUCTION OF PIECEWISE-POLYNOMIAL WAVELETS*

GEORGE C. DONOVANt, JEFFREY S. GERONIMOt, AND DOUGLAS P. HARDINg:

Abstract. Let (Vp) be a local multiresolution analysis of L2(R) of multiplicity r _> 1, i.e.,
V0 is generated by r compactly supported scaling functions. If the scaling functions generate an
orthogonal basis of V0, then (Vp) is called an orthogonal multiresolution analysis. We prove that
there exists an orthogonal local multiresolution analysis (V) of multiplicity r such that

Vq C V) C Vqwn

for some integers q _> 0, n >_ 1, and r > 1.
In particular, this shows that compactly supported orthogonal polynomial spline wavelets and

-scaling functions (of multiplicity r > 1) of arbitrary regularity exist, and we give several such
examples.

Key words, multiwavelet, intertwining multiresolution analyses, orthogonal wavelet, splines

AMS subject classification. 41A15

1. Introduction. The starting point for most wavelet constructions is a sin-
gle function E L2(R), called a scaling function, whose integer translates form a
Riesz basis for a closed linear subspace V0 c L2(R). If the scaling function is com-
pactly supported and generates an orthogonal basis of V0, then the associated wavelet
will also be compactly supported and generate an orthogonal basis. Daubechies (cf.
[5]) constructed scaling functions .and associated wavelets that were compactly sup-
ported, generated orthogonal bases, and were continuous (or smoother). However,
these wavelets do not have closed-form representations; they are defined via a limit-
ing process. Also, it is known that these wavelets cannot have certain other desirable
properties (e.g., symmetry). By giving up compact support (cf. [1]) or orth0gonality
(cf. [4]), symmetric wavelet bases have been constructed using piecewise-polynomial
splines. For some applications, the symmetry and simple representation are more
important than having both compact support and orthogonMity.

Recently, wavelet constructions generated by a finite collection of scaling functions
{1,...,} have been studied (el. [10], [11], [8], [12], [13], [18], [22]). In [8] and

[7], symmetric, compactly supported, continuous, and orthogonal scaling functions
(and associated wavelets) were constructed using r 2 scaling functions. As in the
case of Daubechies wavelets, these functions do not have closed-form representations.
In this paper, using r > 2 scaling functions, we construct wavelets that not only
have the three properties of compact support, arbitrary regularity, and orthogonality
but are also symmetric and piecewise polynomial. In fact, we show that for any
multiresolution analysis generated by compactly supported scaling functions, there
is an associated intertwining orthogonal multiresolution analysis also generated by
compactly supported scaling functions.

More precisely, a multiresolution analysis of multiplicity r is a nested sequence of
closed linear subspaces (Vp) in L2(R) satisfying the following:

1. f E Vp iff f(2-p.)V0 forpZ.
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research of the second and third authors was partially supported by NSF grants.

*School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332.
$Department of Mathematics, Vanderbilt University, Nashville, TN 37240.
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2. Vo C V.
3. npez Vp {0).
4. Uez Vp is dense in L2(R).
5. There are r functions 1,..., such that the collection of integer translates

{s(._ n) s 1,..., r and n e Z} is a aiesz basis of V0.
The functions 1,...,r are called scaling functions and are said to generate the
multiresolution analysis (Vp). If there is a set of compactly supported scaling functions
whose integer translates form an orthogonal basis of V0, then we call (Vp) an orthogonal
multiresolution analysis. The main theorem of this paper is as follows.

THEOREM 1. If (Yp) is a multiresolution analysis generated by compactly sup-
ported scaling functions, then there is some pair of integers (q, n) and some orthogonal
multiresolution analysis (p) such that

We say that (Vp) and (VB) are intertwining multiresolution analyses.
For the sake of completeness, we note that if the scaling functions are compactly

supported, then the intersection property 3 follows from 1 and the fact that V0 is
finitely generated shift-invariant (FSI) space (see 2) [15, Thm. 2.2]. Furthermore,
the density property 4 follows from conditions 1 and 2 (see [3] for the single-scaling-
function case, which directly generalizes to the multiple-scaling-function case). The
Riesz-basis condition 5 may be relaxed: if Vo is an FSI space with compactly supported
generators, then there exists a set of compactly supported generators whose collec-
tion of integer translates form a Riesz basis (cf. [2, Thm. 3.38] and [20, Thm. 3.7]).
In practice, we will take V0 to be a classical spline space, in which case it will be
elementary to verify conditions 1-5 directly.

If (Vp) is an orthogonal multiresolution analysis, then there is a general procedure
(cf. [7], [22], [16], [23])for calculating compactly supported wavelets-1,..., that
generate an orthogonal basis of W0 V1 ( V0. As in the single-scaling-function case,
the work is in finding orthogonal scaling functions.

The structure of this paper is as follows. In 2, we show that, without loss of gen-
erality, we can assume that the scaling functions are supported in [-1, 1]. The spaces
Vp for p _> 0 are examples of FSI spaces, and we develop a necessary and sufficient
condition for an FSI space with generators supported in [-1, 1] to be orthogonal. In
3, we give a construction that, under certain conditions, gives an orthogonal inter-
twining multiresolution analysis. We also provide an example based on continuous
piecewise-linear splines.

In 4, we first prove that if certain orthogonal projections are uniformly bounded
below, then the construction of 3 works and Theorem 1 holds with n 1. We then
use this special case to prove Theorem 1. In 5, we apply the general theory to the
piecewise-polynomial spline spaces Sd, and give an example of orthogonal C cubic
spline scaling functions and wavelets.

2. Orthogonal FSI spaces. If (I) is a subset of L2(R), let T((I)) ((.- n)
n E Z, E (I)) denote the set .of integer translates of elements in (I) and let a((I)) denote
the L2-closure of the linear span of T((I)). Following [2], we call a space Y C L2(R)
an FSI space if V a((I)) for some finite set (I).

Suppose that (Vp) is a multiresolution analysis generated by r scaling functions.
Then Vp for p _> 0 is an FSI space with 2Pr generators. In particular, if the scaling
functions {1,...,} are all supported in I-L, 1], then V1 is generated by the set of
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2r scaling functions {s(2.--n), Is 1,... ,r; n 0, 1} all supported in [-L/2, 1].
Hence there is some q such that the multiresolution analysis (V) defined by V Vp+q
is generated by 2qr scaling functions all supported in [-1, 1].

Thus we will be concerned with FSI spaces whose generators (I) {1,...,}
are supported in [-1, 1].

Remark 2.1. Certain linear dependencies can be removed as follows: if the restric-
tions s][_1,0] and ’][_1,0] are linearly dependent on [-1, 0], then by taking linear
combinations, we can replace one of the generators with a function supported on [0, 1].
By making such replacements, we can assume that there are k generators 1,..., Ck
supported in [-1, 1] such that

1. they are linearly independent on [-1, 0],
2. they are linearly independent on [0, 1],
3. the rest of the generators k+1,..., ,. are supported in [0, 1].

Let Hh() span{(.-h)X[0,1] s 1,...,k} for h 0,1. If, in addition to
satisfying conditions 1--3 above, we have H0(O)rh H1 (q))= {0}, then

1,..., Ck, 1(. 1),..., /(. 1), ck+l,...,

are linearly independent on [0, 1], and we say that 1,..., Cr are minimally supported

Remark 2.2. In the following, k k((I)) will always represent the number of
scaling functions supported on [-1, 1] but not supported on [-1, 0] or [0, 1].

The following lemma, whose proof is delayed until 4, states that any multireso-
lution analysis generated by compactly supported scaling functions can be converted
(as in Remark 2.2) so that it is generated by scaling functions that are minimally
supported on [-1., 1].

LEMMA 2.1. Suppose that (Vp) is a multiresolution analysis generated by com-
pactly supported scaling functions. Then there are some n and some set of scaling
functions minimally supported on [-1, 1] that generate the multiresolution analysis

Let V be an FSI space generated by a collection (I) of r scaling functions minimally
supported on [-1, 1]. We say that V is orthogonal with respect to [-1, 1] if there is some

supported on [-1, 1] such that -((I)’) is an orthogonal basis for V’ (which is some
dilate of V). We will give a necessary and sufficient condition that V be orthogonal
with respect to [-1,1]. Towards this end, let A(V),13o(V),I31(V) c L2(R) be the
subspaces defined by

A(V)--spn{ -- k + 1,..., r}

and

Bh(V) span ({s(. h)X[o,13 8 1,..., k} U A(V)) for h O, 1,

where X[0,1] denotes the characteristic function of [0, 1]. Finally, define Ch(V) by
Ch (V) Bh (V) 0 A(V), the orthogonal complement of A(V) in Bh (V).
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Remark 2.3.
1. It follows from Remark 2.1 that the spaces 4(Y), B0(V), and BI(V) are

independent of the choice of minimally supported generators. For instance, we have

jr(V) {f e V suppf C [0, 1]},

Bo(V)- {fX[o,] fx(-,] e V}

and similarly for B (V).
2. go(V) and C(V) are k dimensional.

LEMMA 2.2. Suppose that V is an FSI space generated by r functions 1,...,
minimally supported on [-1, 1]. Then V is orthogonal with respect to [-1, 1] iff
Co(V) +/- 1 (V).

Proof. If V is orthogonal, then it is easy to see directly that Co(V) +/- C1 (V).
Suppose Co(V) +/- C1 (V). By using the Gram-Schmidt procedure, if necessary, we

can assume that
Cs(._ h) is orthogonal to .4(Y) for s 1,..., k, and h 0, 1;
Cs _l_ Cs’ for s s’ and s,s’= 1,...,r.

Since U0(Y) +/- CI(V), it follows that Cs +/- Cs’(._ 1) for s, s’ 1,... ,k, and hence
{(.- n) ln e Z, s 1,..., r} is an orthogonal basis for Y.

3. Constructing orthogonal multiresolution analyses. The following lemma
provides the basic idea we will use to construct orthogonal multiresolution analyses.

LEMMA 3.1. Let (Vp) be a multiresolution analysis generated by r functions
1,..., cr minimally supported on [-1, 1]. Suppose there is a subspace W of 4(V1)
4(Vo) such that

(1) (I- Pw)Co(Vo) +/- (I- Pw)Cl(Vo),

where Pw is the ortho9onal projection onto W. Let wl,..., w be a basis for /V and
let (gp) be the multiresolution analysis generated by 1,..., Cr, Wl, W. Then
is an orthogonal multiresolution analysis and

Vo c /ro C V1

Proof. Since V C V, we clearly hve V0 C Q0 C V1. This implies Vp c Qp C Vp+l
for all integers p. It then follows that (p) satisfies the first four conditions of
multiresolution analysis.

Observe that Ch(Vo) (I- PW)Ch(Vo) for h 0, 1, and so the result follows from
Lemma 2.2. [3

Remark 3.1. Let Ph denote the orthogonal projection onto C.h(Vo) for h 0, 1.
Condition (1) can be rewritten as

(2) PoP1 PoPwP1.

Therefore, the rank of Pw must be at least the rank of POP1, which is less than or
equal to k. This gives a lower bound on , the dimension of 14] (which equals the rank
of Pw). In all of our examples, PoP1 has rank k and, it turns out, we can choose
to be the lower bound k.

We will use the following notation in the rest of this paper:

(3) /,(x) 2//2(21x- k) for any E L2(R).
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3.1. Example: Piecewise-linear orthogonal scaling functions. Let H"
R - R be the "hat" function defined by

H(x)= {1-1xl if Ix[ <_1,
0 otherwise..

Let 1(x)= v/H(2x) and 2(x)= /H(2x- i) (note that I and 2 have norm I)
and let (Vp) be the multiresolution analysis generated by (I) {1, 2}. In this case,
V-I is the space of continuous piecewise-linear splines with integer knots. Note that
is minimally supported on [-i, I] with k k() I. Also, 4(Vo), Bo(Vo), and BI(Vo)

2 2are spanned by {o2,o}, {,oX[o,1], o,o}, and {O,lX[O,I], o,o}, respectively. Using

C
20,0) 1/40,0,

gives the bses {o,oX[o,111 -Co2,o} nd {,1X[0,1]- Co,o} for Co(Vo) and CI(Vo),
respectively.

Note that 2 210’ 1 1} a{1.1, is basis for 4(V1). Direct calculation yields the basis

{3,1 5,0,3},1 -’51,} for A(V1) .A(Vo). Let w be an arbitrary vector in
e

W a(3,1 512,0) -- b(3,1 512,1),
where we will choose w so that equation (1) is satisfied when 42 is the one-dimensional
subspace spanned by w. Then

I1 11 ( aa + +
and equation (1) holds iff

(4) (,oX[o,1] C02,0, ,lX[0,1]
2 ]2.((01,0X[0,1] Cq02,0, W} (W, 01,1X[0,1] Cq0,0}/IIWl

The left-hand side is easily evaluated to get

o,lX[o,1] Co,o} -1/16.

Using g(x) 1/2H(2x + 1)+ H(2x) + 1/2H(2x- 1), we find

,o (1/2x/),_1 + (1/V/),o + (1/2/),o,

o,o (1/2x/),o + (1/x/),1 + (1/2/),1,
which can be used to calculate

C
2(o,oX[o,1] o,o, w/= (3/Sx/)(b 9a)

and

0,1X[0,1] Cq0,0} (3/8/)(a 9b).

Thus equation (4) becomes

-4(53a2 + 6ab + 53b2) 9(a 9b)(-9a + b),
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2
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FIG. 1. Piecewise-linear orthogonal scaling functions (top, right to left: 1(._ 1), 2, and $3)
(oo,, ,t to ft: , , ,((. )).

which has the following solutions"

b/a (-762 4- 320v/)/262.
We choose b/a (-762 + 320v/)/262. Set $2 2, $3 w/llwll,

y (/)1 <(/)1, (2>(2 <1, 3>3 <1, 2(. + 1)>2(. + 1) <1, 3(. + 1)>3(. + 1),.

nd 1 y/llyll; the om the bove ccu*tio, se that (,,)
nerts te mutirsoution nrsis (%) with V0 %0 c V. Tbes ortono,m
scMing functions nd associated wavelets re shown in Figure 1. The wavelets have
been .constructed so that the techniques used in Theorem 4.4 of [7] lead to wavelet
bsis for L[0, 1]. The interpolation points for these functions are given in Table 1 in
Appendix A and the diltion coecients re given in Tble 4 in Appendix B.

3.2. Example: Symmetric piecewise-linear orthogona] scaling functions.
We now choose V0 between V1 nd V2. Then A(V2) A(V) is 7- 3 4 dimensional.
By applying the intertwining technique twice, we can choose symmetric Wl nd nti-
symmetric w to obtain scaling functions nd wvelets that are either symmetric or

ntismmtric, s sown in Fiur . n ti cs, ($,, $, 4), were ,
wl/llwll, w=/llw=ll, nd 1 y/llyll. Here

4 4, <,1, $,>$, <, %,(. + 1)>’(. + 1).
i=2 i=2

Because of the symmetry, it is not dicult to generate a wavelet bsis for L[0, 1]
from the wavelets given below [7, Thm. 4.4].
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0

2

2 2

FIG. 2. Symmetric (or antisymmetric) piecewise-linear orthogonal scaling functions and
wavelets; from top to bottom and left to right: (.- 1), 2, 3, 4, 1, 2, 3(._ 1), and
4(._ ).
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4. Main theorem. We first prove that, with an additional hypothesis, Theo-
rem 1 holds with n-- 1.

THEOREM 2. Let (Vp) be a multiresolution analysis generated by r functions
1,..., Cr minimally supported on [-1, 1]. Let Qt denote the orthogonal projection
onto A(+I) OA(Y). Suppose there are positive numbers e and lo such that IIQtull >_
ellull for all >_ lo and u in Co(V) U CI(V). Then there is some integer q and some
orthogonal multiresolution analysis (p) such that

y c y c y+.

Proof. As noted in the proof of Lemma 2.2 we can assume that
Cs(._ h)x[0,] is orthogonal to A(V0) for s 1,..., k and h 0, 1, and

s’ 1 r.Cs_kCs’ forsCs’ands,
For 1 _< s _< r and l, n E Z, let ,n(x) 2t/2(2tx- n). Then

A={,n [l<_s<_k,l<_n_<2t-1}U{,nl k+l-<s<-r,0<-n<-2-1}

is a basis for 4(V),

{[oZ[o,l < s <_ k} u h

is a basis for B0(), and

,2 X[0,] 1 _< s _< k} U A

is a basis for 1 (1/}). Observe that ,4(1/}), Bh(V), and Ch(V) have linear dimensions
2r- k, 2tr, and k, respectively.

With q)t,n (Ln,..., Ctk,n)T’ we define the overlap matrix, C (o,o, 0,}
((,o,’,})l,s’k. Let /2(Rk) be the Hilbert space of sequences y {Yn},
Yn Rk with Ily[[ ((Yn,Yn))1/ < where (Yn, Yn) is the Euclidean inner
product. For y,x /2(Rk) set (x,y}t (x,y). We first prove the following
three lemmas before proceeding with the remainder of the proof of Theorem 2.

LEMMA 4.1. Let x {x} e/(Rk) and consider the infinite block-tridiagonal
matrix

Cxi+ for all Z. Then is a bounded positive operator with spectrum C [a, b],
0 < a. Consequently, HtHt, where Hi /2(Rk) /2(R) is the projection

such that Htx {x,}- is positive definite with spectrum C [a, b] and ]()-I
KI-I. Here K is independent 4 l, i, a,d , a,d (- 1)/(/a + 1).

Prog Since {,} 0, 1,...,, j +l,...,r, ana {,} 0,
k + 1,...,r, j k + 1,...,r, # j, it follows from Theorem 3.2 in [8 (also

see [10]) that {i}E forms a Riesz basis for Vo iff (I + Ceie + Ce-ie) k a > O,
0 < 2. Now the symbol of y, (x) (I+Ceio +Ce-io), and we

2find (x,x}t (1)/(2)
he upper bound follows in an analogous manner. he min-max principle [19] now

iplies hat spectrum C [, b] and the decay given in the lemma follows from the
xpotil dy of tmt ofir of bdd mtrio (f. [6], p]). U

Sio is orthogo, c ohoose {, 1 } to be an orthonormal basis

for c(), 0, , such hat {, 1 } is an ohogona] basis for #C()
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for h 0, 1. We also define the normalized basis elements xth,i (luh,i/llQ.llUlh,i]l for
1 _<

__
k and h 0,1.

LEMMA 4.2. Suppose there is some e > 0 such that IIQtull >_ ellull for all
sufficiently large and for u in either Co(V) or CI(I) Let Xh,i and u be as above.h,i
Then for 1 <_ i, j <_ k,

(5) lim (x,i, x,j} 0

and

lim.
(u’i’ ul’ O.(6) -oo IlQZuo,ll llQu,

Proof. Observe that

C ifm-n= 1,
I if m n,{Ol,n, Ol,m}
C-l- if m n -1.

Let f E C0(). Using the bases given above for Jt() and C0(V), f may be
expressed in the form

(7)
21 --1

f 7o-r,oX[o,1]+E -r
"Yn Cl,n

n=l

where each 7n is in Rk. Since f is perpendicular to Jt(ld), it follows that 7
-r )-c satisfies the block-tridiagonal system of equations(?,""" ’2/__1

(8)
71 + C’72 --CTTo,

CTTn-1 + "n + C"n+ O, n 2, 3,..., 2 2,

CT72’-2 + 72/-1 0.

If we define to be the matrix representation of the left:hand side of equation (8),
we find that 7 -1(-7C, 0,..., 0) T. Thus. f is determined by 70 (and l) and we

denote the dependence of f on 7o and by fo,*. Let A (-- 1)/(V + 1). It
follows from Lemma 4.1 that there are positive numbers K and lo such that I]Tnll -<
KAn for n _> 0, >_/0, and IIfo,tll 1. Hence

(9) lira max{llfx[1/9.,1]ll] f Co(l/l) [[fll 1} O.

Similarly,

(10) lim max{llgxto,1/llllg e C1(1/), Ilall 1} o.

Equations (9) and (10) then give

Ulira I{ o,i,u,j}] _< lim

Since Qt is uniformly bounded below on h(/) for h 0, 1 and large enough, this
proves the limit (6).
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If f E C0(V), then Qlf f-(I-Pl+l)f, where P+I is the orthogonal projection
onto A(ld+l), and so (I-P+)I is in C0(ld+l). Therefore, both f and (I-P+i)I de-
cay exponentially away from 0. Thus, as above, the limit in (5) follows from equations
(9) and (10) and the uniform lower bound on .Q. []

Let D denote span(Q/C0(V/)U l)/ll(’/)).
LEMMA 4.3. There is some q such that for _> q there exists a set {z.

1 <_ i,j < k} of 2k functions in gt (A(V+) @ A(ld)) @ Dt such that if

w+ z .=t=. xi,j , +( o, +/- x,j)/(4k),

then {w+, I1 < i, j <_ k} is an orthonormal set.

Proof. Note that dim(A(V+)OA(1/2)) r21. Let {ei 1 _< _<_ r2t} be an
orthonormal basis of A(ld+l) O A(V) Represent W$., z..," ,3 ,,J’ (Xo,i + xi,i)/(4k) in terms
of this basis as column vectors of size r2t. Let W+ be the r2 x k2 matrix whose
(i- 1)k + j column, is w.+. Similarly, define Wt- and Z Let X be the r2 x k2

z,3

matrix whose (i- 1)k + j column is (Xto,i 4-xti,j)/(4k). In block form, we have

(11) w := (w? w,-) (x? + z? x- + z-) x, + z.
Note that {wi,5 1 _< i,j _< k} is an orthonormal set iff W-Wt I, where I is

the 2k x 2k2 identity. Since z+i,j E :D-, we have Xiv Zt 0. Hence W-Wt I iff

ZZ I-X[XI. We can solve this for Zt (using Cholesky factorization, for instance)
if the right-hand side I- X-Xt is positive definite (since it is clearly symmetric).

x /4 for/ > Then for/ > q,Let q be large enough so that I(x0,i, 1,j}1% 1 q.
the absolute values of the elements Of X[X, are of the form I(x0,i 4- Xl,j, Xo,m
X,r}l/(16k2) < 3/(16k2). Thus any row or column sum of the absolute values of
the elements of X[Xt is less than 3/8 < 1, implying that I- X[Xt is diagonally
dominant with positive terms on the diagonal and hence is positive definite.,+,,-,Let q be as in Lemma 4.3 and > q. For 1 _< i, j _< k, let wi,j
where c?. 2 span{w I1 < j < k}. Then, + fli,j 1 and ozi,j, fli,j [0, 1]. Let W ,j

k

--I1 W X

16k2

k

m,n=l

k k

+ 0,,,xi,) (,, + z,,): + (,
n=l m=l

k

+ xl/}.OZm,n
2m,n)(Xo,i, X,n (Xo,m ,j

m,n=l
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Let 3’i,j a,j and _7 (3‘i,j) E [0, 1] kxk. Then ai,j and i,j V/1 -3‘i,j.
We can rewrite the above calculation as

(2) (Uo,,PwuI,j) 23‘i,j 1 + 2f,j(_),

where f,j(7__) is continuous for E [0, 1] kxk. Furthermore, if < , then
t
qI/],j()l < 4ke/ 2e2 Let O,j (l+((16k)/(llQ0,llllQ,jll))(u),, 1,j))/2. Then

equation (2) is equivalent to

or

(14)

where 0A (O,j) Rcx k and ft (f,j)" [0, 1]x k Rkx. Using Lemma 3.1, the
proof will be finished once it is shown that equation (14) has a solution.

By Lemma 4.2, we can find large enough so that 0_ [1/3, 2/3] and so that
f*() [-1/3, 1/3] for 3‘ [0, 1] xk. Then for/large enough,

9 0_- ft

maps the compact, convex set [0, 1] kxk into itself continuously. By the Schauder
fixed-point theorem, equation (14) has a solution 3’ [0, 1]x and thus Theorem 2 is
proved. El

By a suitable modification of the original multiresolution analysis, a new mul-
tiresolution analysis (lp) may be constructed with

vo c c

such that the hypotheses of Lemma 4.2 are satisfied. First note that by Lemma 2.1,
any .multiresolution analysis generated by compactly supported functions may be as-
sumed to have generators that are minimally supported in [-I, I]. Next, let [a, b]
{ E V supp C [a,b]},T { V0: _1_ Vo(-oc, O](R)Vo[O, oc)},T {X[0,o)

T}, and T {X(-,0] T} If all the functions in T have bounded
support, then for chosen large enough so that [-2t, 2t] supports T, I)0 ld gives
rise to a compactly supported orthogonal multiresolution analysis. Consequently,
it is only those flmctions in T that have unbounded support that need to be al-
tered. To this end, define T { G T supp is bounded}, T( { E T
supp is bounded}, T T T0, and T T (TF with k dimT dim T1
and k2 dimT dimT; also set C C0(V) and C CI(V).

The uniform-lower-bound condition of Theorem 2 can be replaced by a simpler
one by passing to limits. Using the notation in the proof of Lemmas 4.2 and 4.1, it
follows that 2-*/2fo,(2-*. converges in L2(R) to some Go, T. Furthermore,
2-t12(Qtfso,t)(2-t. converges to Qf,o,, where Q is the orthogonal projection
onto V[0, oc). We then have the following result.

LEMMA 4.4. IfQ is nonsingular on T, then Qt is uniformly bounded below
as in Theorem 2.

We now complete the proof of Theorem 1 with the following lemma.
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LEMMA 4.5. If (Vp) is a multiresolution analysis generated by compactly supported
scaling functions,^ then there are some integer n and some multiresolution analysis
(p) with Vo C Vo C Vn, such that for in the unit sphere of C0(IY0) or CI(Vo),
112-t/2(PTM Pl)(21.)11 is bounded away from zero for sujficiently large 1. Here 151
is the othogonal projection onto A().

Proof. To construct V0 we will "borrow" functions from V1, V.,..., taking care
not to disturb ToF or T1F. This will be accomplished first by working with functions
in the spaces T and T then approximating these functions by members of To
{(2-1.)" E C0 } and T {(21.)" E C (. + 1) } for sufficiently large l.

Given e T’ of unit length, the fact that (Vp) forms a multiresolution analysis
implies that limt.P and hence that liml_. ]]Ptll I11[ 1, where P
is the orthogonal projection onto l/}(-oc, 0] (R) V[0, oc). Also, since these projections
are onto successively larger spaces, this convergence is monotoncially nondecreasing
in I. We have continuous functions converging monotonically to a continuous function
(i.e., 1) on a compact set, so the convergence must be uniform. Let no be sufficiently
large so that IIPII > 1/4 forall in the unit sphere of T and all/ _> no. We
may choose k2 orthogonal functions Wl,..., wk2 Vno [0, c) with span W0 such that

IIPwoll > 1/4 for all unit functions T. Furthermore, we may assume that
these functions are compactly supported since if they were not, we could approximate
them with arbitrary accuracy by functions that are. Observe that Wo may be shifted
as far to the right as desired without destroying its effectiveness.. Indeed, given any

T, (. + J)x[0,) is again in T for any positive integer, j. Thus for E T,
IIPwo(.-)[[ [IPwo(" + J)[[ IIPwo((" + J)X[o,))ll. This last expression is a
continuous function of , which, by the construction of Wo, may not assume the value
zero. Therefore, it is bounded away from zero on the unit sphere, say by co, where
the value of eo may depend on j, but will always be positive.

In light of the above observation, shift Wo so that suppW0 suppToF and
suppWo f suppWo(1/2.) 0. The first condition guarantees that Wo _k ToE, and the
second guarantees that "borrowing" the dilates of Wo will not decrease the magni-
tudes of projections onto Wo. Similarly choose compactly supported w_,..., w-k2
Vn with span W1 so that suppW1 suppTF suppW1 suppW (1/2.) and

T Let n max{no, nl} and e min{eo, el}. Form a newIIPw}) > el for unit e^ 1"
multiresolution analysis (Vp) by taking

o Vt ()yez Wo(21-1

(R) (])ez W(2

where is chosen sufficiently large so that
1. supp(Wo(2-1")@"’Wo(2-n’)W(2-1")"’W(2-n’)) C [--21-1,2/-1]

and, consequently, supp(ToFTF) C [-2l-, 2I-] (we use 2l- here to assure
that Wo and W1 do not interfere with each other);

2. To and T approximate T and T closely enough so that IIPwoll > (3/4)e
for unit e To e ToE nd IIPw 1[ > (3/4)e for unit e T e T, which is
possible because the scaling functions form a Riesz basis; and

3. []Pwo(I- Pw)]] < e/2 for unit e o(._ 1) and
for unit C, which is possible because the functions in T (respectively,
%o) undergo exponential decay to the left (right), as shown in Lemma 4.1.

Thus we find

c c
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In addition, I1(/5’+1 -/5’)(2i/2(2’.))11 > e/4 for _> 0 and unit e C0(I)o), with an
analogouscondition holding for E C1 (Vo). This is true because in the multiresolution
analysis (Vp), Wo(2.) @ W1 (2t.) C 1)1, so (Wo(2t.))m (R) (W1 (2t’))r C m+l for m _> 1.

If u E C(IYo) is a unit vector, then so is u,,o, and hence

for all m > 1. Vi

Remark 4.1.
1. In the proof of Theorem 2, we took 14 to be a k-dimensional subspace. In

Remark 3.1, it was noted that the rank of PoP1 (which is generically k) is a lower
bound for dim 14. In all of our examples, we achieve the lower bound k.

2. In the case k 1, it is possible to show that the uniform-lower-bound condi-
tion of Theorem 2 always holds. In the next section, we show that this is also true for
the spline spaces 8a,. Thus Theorem 2 holds in at least the cases of most interest.

We conclude this section with the proof of Lemma 2.1. We restate the lemma for
the reader’s convenience.

LEMMA 2.1 Suppose that (Vp) is a multiresolution analysis generated by compactly
supported scaling functions, Then there is some n and some set of scaling functions
minimally supported on [-1, 1] that generate the multiresolution analysis (V) given
by

Proof. Without loss of generality, let Vo be generated by scaling functions (I)

(1,..., Cr) as in Remark 2.1. If f Ho((I)), then f can be expressed uniquely as

k

(15) "f E asCSX[,l]"
s--1

Let p" H0() --. H1 ((I)) be defined by

k

(16) P(f) E asCS("- 1)X[o,1].
8--1

Let E H0() [ H1 () and E’ be the maximal p-invariant subspace of E, i.e.,
p-nE NnC__l (E) (where for the purpose of computing E’, the range of p is extended

to the Minkowski sum of H0(O) and HI()). Since p is nonsingular, p(E’) E’. If we
consider p as an operator on E, let A1,..., Aj be the (possibly complex) eigenvalues
of p with magnitude less than one and Aj+I,..., At be its (possibly complex) eigen-
values with magnitude greater than one. The eigenvalues are listed above including
multiplicities. We claim that p has no eigenvalues that lie on the unit circle; hence

Dim(E) _< k. To see this, suppose that A is an eigenvalue of p with magnitude one
and x an eigenvector associated with this eigenvalue. Let y Re(x); then for A real,
set IlYll Ilpn(y)II; otherwise set 0 < minlul=l IIx + u2ll <_ Ilpr(y)ll < IIx[I.
We may define a sequence of functions {fu}=0 as

(17) f (-1)g,
i=0
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where gi (Py)(" + i) + (p+ly)(. + + 1). Note that
1. g E=la (.+i),

k2. A s=l (al)2 <- [Ig ll < B sk__i (a/s)2
3. I[gill 2 I]pyll 2 + IIp+y][ 2, and
a. + +, +

Therefore, f[ llyl12 + Ilp +Xyll 211xll 2 and =s=k(a)2 = 2:
2a2/B, which shows that T() is not a Riesz bis and thus yields a contradiction.

Let x,..., x be the generalized eigenvectors associated with A,..., A. In the
event that an eigenvalue is complex, its conjugate is also an eigenvalue and we will
replace the appropriate generalized eigenvectors by their real and imaginary parts.
Note that x,...,x form a bis for E. For y Xm, m l,..., j, we define
a sequence of functions (f} as above. In this case, because of the choice of y,

Lpy[[ 0 since ,...,Aj are in magnitude less than one. Therefore, f y.
For y Xm m j + 1,...,1, choose the sequence (f } f =o(-1) gi

L
where g (p-iy)(.- i) + (p-(i+)y)(._ i 1). We again have f y and so
x,... ,x are in V0. By replacing ,..., by appropriate linear combinations of,...,, we may assume that the right halves (and hence also the shifted left
halves) of ,..., are in E’. Since Xl,... ,x span E, we may replace the generators,..., by the equivalent set of generators x,... ,xz. Since x,... ,x have support
in [0, 1], these may be removed to A. By the linear independence of T(), none of the
+,..., can have their right halves or shifted left halves in E. If E O E
then (x,... ,x, +,...,} is minimally supported and spans V0.

If there are nonzero functions in EE’, let E" Ho()E. For nonzero x
let n be such that p (x) E but p(x) E, 1 i < nx, and define n0 . Note
that n is finite for nonzero x since x E and that n+v min(n, nv} for scalars, , and x,y E. Now fori 1,2,..., set Ei (x E" nx i}. Then Ei
is a subspace of E" and E E’. Also, there is some such that E+ 0 and
Ee 0. Let X be a set of vectors that form a basis for Ee. By the definition of , if
x X, then x E. rthermore, p(Xe) gives a linearly independent set of vectors
in Ee_ E. Beginning with the vectors p(Xe) and Xa, complete this set to a basis,
Xe-, for Ee-. Now p(Xa_) is a linearly independent set of vectors in Ee- and
we add a sufficient number of independent vectors to form a bis, Xe_2, for E-2.
Continue this processes until a basis, X, for E has been formed. Since X forms a
bis for E’, (x + p(x)(. + 1) x e X} may be used to replace +,..., . For
x X, set x+p(x)(.+l). We now consider Cx(.+i- 1) for x Xi-Xi+
(wheree set Xe+ 0). Since these are just translates of Cx, x X, we may replace

by . For each x X, let

nx --1

i=O

which is a linear combination of elements from {x’x E X}. Then {q x e Xl}
is linearly independent and may be used to replace {qx x X }. Note that the
support of is [-nx,-nx + 1] U [0, 1] and that span{,(.- az)X[o,]x X1} and

span{(.- b:)X[o,1]’x X} are linearly independent spaces. The set {z,x
X1} W {xi}{= tO {i}i=k+l spans V0. Consequently, there is an integer h, log _<
h < log9 f + 1, such that the above functions, scaled by 2h, are all supported in

[-1, 1], and there is a ( formed from appropriate translates of these functions such



INTERTWINING MULTIRESOLUTION ANALYSES 1805

that T()) forms a basis for Vh. From the above construction and by Remark 2.1 in 2,
appropriate linear combinations of the generators of may be taken so as to produce
a set of generators that is minimally supported. It follows from Theorems 4.3 and 5.3
of [14] that -()) is a Riesz basis of Vh. D

5. Orthogonal spline scaling functions. For h > 0 and 1 _< r <: d / 1, let
Sd,r(h) denote the space of piecewise-polynomial functions on R of degree d with
knots of multiplicity r on hZ. Let [a] denote the least integer greater than or equal
to a.

We let (ti) denote the sequence of knots with multiplicity r for Sd,r(h) given by

ti h[i/r], e Z.

Also, let Nd denote the B-spline in Sd,r(h) with knots t,...,t+d+l. Thus Nd is
supported on [t,t+d+l] C [jh,(j + n)h], where j [i/r] and L [(d + 1)/r].
Observe that the support of Nod is exactly [0, Lh].

Let q be such that 2q+l >_ L and choose h 2-q. Let R 2r and define
Ns_d_ for s 1,...,R. Then (I) (1 generates a multiresolution

analysis (Vp) with V0 Sd,(2-) N L2(R) (see Goodman and Lee [11]). It follows
from the choice of q that (I) is minimally supported in [-1, 1]. Observe that there
are exactly d / 1 r values of such that 0 is an interior point of [ti, ti+d+l]. Hence
k=k()=d+l-r.

In this section, we will show that (Vp) satisfies the hypotheses of Theorem 2 and
so there is an orthogonal 0 between Vq, and Vq,+l for some integer q. Towards this
end, we first develop some results concerning the sign changes of spline functions. We
say that (xl,... ,xa) is a sign-change sequence on (a,b) for f R - R if f is not
identically zero on any subinterval (xj,xj+l), j 0,...,a, where a x0 < xl <

< xa < x+l b, and, for either k 0 or k 1,we have (--1)J+kf(x) >_ 0 for
all x E (xj,xj+l) and j 0,...,a. Let io, il be given integers and define 7)io,1
span {Nid io <_ <_ il} and ai := {x Nid(x) 0} (ti, ti+d+l) for i= i0,...,
We will need the following result concerning sign changes of B-spline expansions.

LEMMA 5.1. Let a, b R and i0, il be integers such that ti < til and suppose
that r <_ d (and thus the B-splines are continuous).

1. If f T)io,i, and (Xl,... ,xa) is a sign-change sequence for f on (a, b), then
for any open interval G c (a, b), we have

(18) card {xy e G}

_
card {i ai n G } 1.

2. If a < Xl < x2 <’’. < xa < b satisfies

X O’io+i_ ’10"io+i for i 1,..., ,
then there is some f 7)io,io+ for which (Xl,... ,x) is a sign-change sequence on

IIi+a(a, b) Furthermore, f does not vanish on any subinterval of i=io cri"

Proof. Part 1 follows from the variation-diminishing property of B-spline expan-
sions (cf. [21, Tam. 4.76]). Let xo e Crio,Xo xi. By [21, Thm. 4.61], there is a
unique f 7)io,i such that

f(xo) l, f(xi) O, l, .
Suppose c 1. Then f coNido + clNdo+1. Since f(xo) 1, at least one of Co and
cl are nonzero. Since Xl :fi t for all k, it follows that both co and ct are nonzero and
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so f does not vanish on any subinterval of a U a Hence by counting the zeros of
f including their multiplicities, it follows from [21, Thm. 4.56] that f changes sign at
xl. It then follows by induction on a that f does not vanish on any subinterval of
(to to++d+)= =o a. Hence [21, Tam. 4.56] shows that (xl,...,x) must be
all of the zeros of f in (tio,tio+a+d+l) and that all of these zeros must be isolated,
simple zeros. Thus (xl,... ,x) is a sign-change sequence of f on (a, b).

LEMMA 5.2. Let f E Vo be such that fx[0,) = 0. Then there is some g V
such that supp g C [0, c) and (f, g) O.

Proof. If r d + 1, then fx[0,) V1 and we can take g fx[0,).
d Nd (2.) is the B-splineSuppose r _< d. Let s t/2 for all i. Note that n

d 0} andassociated with the knots s,..., S+d+l. Let a (s,si+d+l)= {xln (x) >
7)o,il be the span of the B-splines associated with the knots So, Sl+d+.

such thatLet ] fx[0,) If there exists a a a C supp] and f does not change
sign on a,’ then we can choose g n.d If suppf is not of the form [0, b] or [0, ee),
then some component I of supp] does not contain zero and ]Xx VI. In this case,
choose g fXx. If supp] [0, b], then by the first part of Lemma 5.1, on [b- h, b],
] is a polynomial with at most r 1 zeros. Thus on [b- h, b], ] (x b)d-r+p(x),
where p(x) is a polynomial of degree r- 1. Consequently, we can choose a function
g e V1 such that on [b- h, b], we have g (x- (b- h))d-r+p(x).

Finally, suppose supp] [0, c) and each a contains a sign change. Suppose
there are integers i0, j0 and a _> 0 such that

(19)
andXjo aio, XjoWc+l aio+(,

Xjo+i a for 1 a.ioWi--1 N aiowi

Then part 2 of Lemma 5.1 implies that there is some g E V with support (a, b) :=
such that (Xjo is a sign-change sequence for g-on (a, b) Fur-i--io ai +1... Xjo+a

thermore, since g does not vanish on any subinterval of (a, b), we have (f, g} 0.
We now show that there must exist an i0 and j0 so that (19) holds. We first show

that there do not exist integers io and j0 such that

(20) Xio+l ajo+l_l ajo+l

for all _> 1. Suppose not; then

(21) card { >2m.Xj ajo+l
/-1

Since f is in Vo, it follows from part 1 of Lemma 5.1 that there exists a constant c
such that

(22) rn + c > card xj ajo+l
/--1

for all m. This contradicts (21) for rn sufficiently large. Thus the above shows that
there does not exist an infinite sign-change sequence that satisfies (20).

We now rule out the case where (19) fails for each finite c. Let 0 x0 < x <
be an infinite sign-change sequence of f on (0, ), no 1- r, and for each _> no, set
k(i) min{j’xj e a}- 1. Assume that (19) does not hold. Since we have already
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ruled out (20), it must be that for each i there exists an n _> 1 which depends upon
1 n-1 butxk(i)+n n andsuch that Xk(i)+l E a+t_ a+l, aiWn--1 (Ti-}-n

Thus < inf and so from the definition of k(i + n), weXk(i)+n ai+n_ 1. Xk(i)Wn
find that k(i + n) > (k(i) + n) 1 or k(i + n) >_ k(i) + n. Thus for each infinite sign-
change sequence not satisfying (19), there exists an infinite sequence no < n <
such that k(n+l) _> k(n) + ni+ n. Since k(no) O, we find that k(nt) >_ nt no
for all 1. From (21) and (22) above, we find that for large enough, this leads to a
contradiction. [:]

Thus Q, the orthogonal projection onto V[0, oc), is nonsingular on T. Then
Lemma 4.4 implies that (Vp) satisfies the hypotheses of Theorem 2.

THEOREM 3. Let r, d, and q be as above and let V0 Sd,r(2-) n L2(R). Then
there is some integer (t and some orthogonal multiresolution analysis (C/p) such that

c vo c
5.1. Example: ga,2C1 cubic scaling functions. In this case, L 2, q 0,

and V0 is generated by the two B-splines associated with the knot sequences (-1, -1, 0,
0, 1) and (-1, 0, 0, 1, 1). As noted in Remark 3.1, we will need W to have dimension at
least 2. Now A(V)O A(Vo) is two dimensional, which is not large enough to allow for
any freedom in the choice of W. Observe that A(V2)OA(V) is 6- 2 4 dimensional.
Using Mathematica to aid in the calculations, we find a two-dimensional W that
satisfies equation (1). This gives a total of six scaling functions and six wavelets, as
shown in Figure 3.

Appendix A. Interpolation values for scaling functions and wavelets.

TABLE 1
Interpolation values for piecewise-linear scaling functions (at the quarter-integers) and wavelets

(at the eighth-integers) of the example in 3.1.

0 0 0 0 0 0

165 44 v/ -3 2 v 6

3 4- 2 v/ 1 131 242 352 vf -4 vf 6 12 + 8

1265

-18 12 2 150 96 1716 24

-1265 836

5 + 18 1 -381 + 160 242 + 352

132 0 0 0 264 0

5 18 --82

25 2

0 0 o
Norms

4 2x 2v 32V- 10lv 444v 82 28x/+42x/3



1808 G. DONOVAN, J. GERONIMO, AND D. HARDIN

d



INTERTWINING MULTIRESOLUTION ANALYSES 1809



1810 G. DONOVAN, J. GERONIMO, AND D. HARDIN

Scaling Functions

2 2
2

1 2 1 2 -2

2 2

Wavelets

Fic. 3. Piecewise-cubic C orthogonal scaling functions (from right to left and top to bottom:
ql(.- 1), q9.(._ 1), $3, q4, $5, q6) and wavelets (from top to bottom and right to left: (b, (b2,
3(._ 1), 4(. 1), 5(._ 1), 6(._ 1)).

Appendix B. Matrix-dilation coefficients. Suppose that (Vp) is an orthogo-
nal multiresolution analysis generated by scaling functions 1,..., Cr minimally sup-
ported on [-1,1]. Let (1,...,r)-. Since V0 c V1, it follows that must
satisfy a two-scale dilation equation with matrix coefficients:

where each Hn is an r r real matrix. The support and orthogonality of the scaling
functions imply the given summation limits. In Tables 4-6, we give H-2, H-l, H0,
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TABLE 4
Matrix-dilation coefficients for the piecewise-linear scaling functions and wavelets of the exam-

0
H_. 0

0

-x/(3 + 2v/)/44
H-1 0

0

/
Ho 0

0

v/(-3 + 2v)/44

ple in 3.1.

H1 1V//22

-v54(3 + 2/)/3696 x/ri(2 + 5V)/1232
0 0

0 0

lx/i-(67 4- 30V)/3696 x/(--10 4- V/-)/112
0 0
0 0

lx/-i-(67 30x,/-)/3696 v/(10 + V)/l12
3//8 x/’(-4 4- v)/88

x/(32 + 7x/-)/264 x/(-5 + 4V/)/88
1v/-i-(-3 + 2V/-)/3696

3/8
x/(-32 + 7v/)/264

v/(--2 + 5v/)/1232
,/V(4 + v)/88
-( + 4v)/88

0 0 0

0 (3 4- 2x/))/3696 --(2 + 5V)V/1232
0 --v/-(1 4- v/-)/336 x/r(--1 4- 3V)/12.32
0 0 0

(2V 4- 3)x//44
-x/(1 + V)/44

Ko

13/22
K1 (3 2x/-)x//44

lx/-i-(67 4- 30"v/-)/3696
v’(29 4- 13V")/336
Vr-(--2 + v/-)/264

V’54(--67 + 30V/)/3696
"(--29 4- 13v/’)/336
-Vr(V + 2)/264
v/54(3- 2/)/3696

(10 Vr)V’i-/112
V/-(-75 + 17v’r) /1232

x/(13 6V/-)/88
(10 + v/)vri/ll2

-V/-(75 4- 17v/)/1232
-v/(13 + 6V)/88
(2- 5v)v/232

v/i-(1- V/)/44 /(1- V/-)/336 -V"--(3V" 4- 1)/12’32

and H1 for the three examples given in 3.1, 3.2, and 5.1.
The wavelets (1,..., r)T constructed from the scaling functions also sat-

isfy a two-scale dilation equation of the form

(x)
n---2

These matrices are also given in Tables 4-6.
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helpful suggestions and encouragement and Amos Ron for pointing out the simpli-
fications in the multiresolution conditions when the scaling functions are compactly
supported. We especially thank one of the anonymous referees for a careful reading
and for numerous corrections.
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TABLE 5
Matrix-dilation coefficients for the symmetric piecewise-linear scaling functions and wavelets

of the example in 3.2.

Ho

H1

-(-2 + V/)/144 --/-(14 ’65)i1008
0 0

o o

v/-g (-2x/ + v) i14;
0

-v/84

0

0

0

o o o o
0

0

0

v,(4,+ J,,/loo8
3 //56
-9 v/56

-, (-4 + ,/v)/
(65 / 28 x/)/1008

3 x/’/56
-/56,

v’/28
v//14

v/8
(4 ,/v + ,/)/4

V (4- v/)/144
3/8

0

13 x/i84’

3 x//14
0

vrg/84

3 V/-@14 x/-i--/8
0 -1/12 V//6 -(2 V/ + V/)/12 0

0 0

o o

K1

0

-1/14
0

0

v/
0

0

-/28
/4

0 0

0 0

/ (’2 V/ + v)/144 x/’(14 65)/1008
v/g (-4 + vri-)/144 v/g (28.vr- 65 vr)/1008

0 0

0

-v/ (-2 V/ + x/’ /144
-v/ (-4 + V/)’/144-,, :-, + ,z)/

v/84
v’5/4

0-- (i4 + 79) /i008 1/84
-’v/’- (2,8 -4- 79 x/) /100’8 13, x/-/42-,, (:,m + !)/ ,,/

3:v,/1)i
-3 /84
/,:
/6
-3/4
-/84

-2 v’/7
(’2V +) i144 "V; (i4 + 79)/1008,

x/ ’4 + x/)./144 V/ (28 vr + 79 )/1008
(’-2 + )/36 ,(2 + 1)/3,6

o -/7
(- + )/4 (1-6) oos-(- +/4 -(- )/lOO
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